1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSAUpdater.h"
23 #include "llvm/Analysis/MustExecute.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 #define DEBUG_TYPE "loop-utils"
46 
47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
48 
49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
50                                    MemorySSAUpdater *MSSAU,
51                                    bool PreserveLCSSA) {
52   bool Changed = false;
53 
54   // We re-use a vector for the in-loop predecesosrs.
55   SmallVector<BasicBlock *, 4> InLoopPredecessors;
56 
57   auto RewriteExit = [&](BasicBlock *BB) {
58     assert(InLoopPredecessors.empty() &&
59            "Must start with an empty predecessors list!");
60     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
61 
62     // See if there are any non-loop predecessors of this exit block and
63     // keep track of the in-loop predecessors.
64     bool IsDedicatedExit = true;
65     for (auto *PredBB : predecessors(BB))
66       if (L->contains(PredBB)) {
67         if (isa<IndirectBrInst>(PredBB->getTerminator()))
68           // We cannot rewrite exiting edges from an indirectbr.
69           return false;
70         if (isa<CallBrInst>(PredBB->getTerminator()))
71           // We cannot rewrite exiting edges from a callbr.
72           return false;
73 
74         InLoopPredecessors.push_back(PredBB);
75       } else {
76         IsDedicatedExit = false;
77       }
78 
79     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
80 
81     // Nothing to do if this is already a dedicated exit.
82     if (IsDedicatedExit)
83       return false;
84 
85     auto *NewExitBB = SplitBlockPredecessors(
86         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
87 
88     if (!NewExitBB)
89       LLVM_DEBUG(
90           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
91                  << *L << "\n");
92     else
93       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
94                         << NewExitBB->getName() << "\n");
95     return true;
96   };
97 
98   // Walk the exit blocks directly rather than building up a data structure for
99   // them, but only visit each one once.
100   SmallPtrSet<BasicBlock *, 4> Visited;
101   for (auto *BB : L->blocks())
102     for (auto *SuccBB : successors(BB)) {
103       // We're looking for exit blocks so skip in-loop successors.
104       if (L->contains(SuccBB))
105         continue;
106 
107       // Visit each exit block exactly once.
108       if (!Visited.insert(SuccBB).second)
109         continue;
110 
111       Changed |= RewriteExit(SuccBB);
112     }
113 
114   return Changed;
115 }
116 
117 /// Returns the instructions that use values defined in the loop.
118 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
119   SmallVector<Instruction *, 8> UsedOutside;
120 
121   for (auto *Block : L->getBlocks())
122     // FIXME: I believe that this could use copy_if if the Inst reference could
123     // be adapted into a pointer.
124     for (auto &Inst : *Block) {
125       auto Users = Inst.users();
126       if (any_of(Users, [&](User *U) {
127             auto *Use = cast<Instruction>(U);
128             return !L->contains(Use->getParent());
129           }))
130         UsedOutside.push_back(&Inst);
131     }
132 
133   return UsedOutside;
134 }
135 
136 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
137   // By definition, all loop passes need the LoopInfo analysis and the
138   // Dominator tree it depends on. Because they all participate in the loop
139   // pass manager, they must also preserve these.
140   AU.addRequired<DominatorTreeWrapperPass>();
141   AU.addPreserved<DominatorTreeWrapperPass>();
142   AU.addRequired<LoopInfoWrapperPass>();
143   AU.addPreserved<LoopInfoWrapperPass>();
144 
145   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
146   // here because users shouldn't directly get them from this header.
147   extern char &LoopSimplifyID;
148   extern char &LCSSAID;
149   AU.addRequiredID(LoopSimplifyID);
150   AU.addPreservedID(LoopSimplifyID);
151   AU.addRequiredID(LCSSAID);
152   AU.addPreservedID(LCSSAID);
153   // This is used in the LPPassManager to perform LCSSA verification on passes
154   // which preserve lcssa form
155   AU.addRequired<LCSSAVerificationPass>();
156   AU.addPreserved<LCSSAVerificationPass>();
157 
158   // Loop passes are designed to run inside of a loop pass manager which means
159   // that any function analyses they require must be required by the first loop
160   // pass in the manager (so that it is computed before the loop pass manager
161   // runs) and preserved by all loop pasess in the manager. To make this
162   // reasonably robust, the set needed for most loop passes is maintained here.
163   // If your loop pass requires an analysis not listed here, you will need to
164   // carefully audit the loop pass manager nesting structure that results.
165   AU.addRequired<AAResultsWrapperPass>();
166   AU.addPreserved<AAResultsWrapperPass>();
167   AU.addPreserved<BasicAAWrapperPass>();
168   AU.addPreserved<GlobalsAAWrapperPass>();
169   AU.addPreserved<SCEVAAWrapperPass>();
170   AU.addRequired<ScalarEvolutionWrapperPass>();
171   AU.addPreserved<ScalarEvolutionWrapperPass>();
172 }
173 
174 /// Manually defined generic "LoopPass" dependency initialization. This is used
175 /// to initialize the exact set of passes from above in \c
176 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
177 /// with:
178 ///
179 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
180 ///
181 /// As-if "LoopPass" were a pass.
182 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
183   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
184   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
185   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
186   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
187   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
188   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
189   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
190   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
192 }
193 
194 /// Find string metadata for loop
195 ///
196 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
197 /// operand or null otherwise.  If the string metadata is not found return
198 /// Optional's not-a-value.
199 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
200                                                             StringRef Name) {
201   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
202   if (!MD)
203     return None;
204   switch (MD->getNumOperands()) {
205   case 1:
206     return nullptr;
207   case 2:
208     return &MD->getOperand(1);
209   default:
210     llvm_unreachable("loop metadata has 0 or 1 operand");
211   }
212 }
213 
214 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
215                                                    StringRef Name) {
216   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
217   if (!MD)
218     return None;
219   switch (MD->getNumOperands()) {
220   case 1:
221     // When the value is absent it is interpreted as 'attribute set'.
222     return true;
223   case 2:
224     if (ConstantInt *IntMD =
225             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
226       return IntMD->getZExtValue();
227     return true;
228   }
229   llvm_unreachable("unexpected number of options");
230 }
231 
232 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
233   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
234 }
235 
236 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
237                                                       StringRef Name) {
238   const MDOperand *AttrMD =
239       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
240   if (!AttrMD)
241     return None;
242 
243   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
244   if (!IntMD)
245     return None;
246 
247   return IntMD->getSExtValue();
248 }
249 
250 Optional<MDNode *> llvm::makeFollowupLoopID(
251     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
252     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
253   if (!OrigLoopID) {
254     if (AlwaysNew)
255       return nullptr;
256     return None;
257   }
258 
259   assert(OrigLoopID->getOperand(0) == OrigLoopID);
260 
261   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
262   bool InheritSomeAttrs =
263       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
264   SmallVector<Metadata *, 8> MDs;
265   MDs.push_back(nullptr);
266 
267   bool Changed = false;
268   if (InheritAllAttrs || InheritSomeAttrs) {
269     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
270       MDNode *Op = cast<MDNode>(Existing.get());
271 
272       auto InheritThisAttribute = [InheritSomeAttrs,
273                                    InheritOptionsExceptPrefix](MDNode *Op) {
274         if (!InheritSomeAttrs)
275           return false;
276 
277         // Skip malformatted attribute metadata nodes.
278         if (Op->getNumOperands() == 0)
279           return true;
280         Metadata *NameMD = Op->getOperand(0).get();
281         if (!isa<MDString>(NameMD))
282           return true;
283         StringRef AttrName = cast<MDString>(NameMD)->getString();
284 
285         // Do not inherit excluded attributes.
286         return !AttrName.startswith(InheritOptionsExceptPrefix);
287       };
288 
289       if (InheritThisAttribute(Op))
290         MDs.push_back(Op);
291       else
292         Changed = true;
293     }
294   } else {
295     // Modified if we dropped at least one attribute.
296     Changed = OrigLoopID->getNumOperands() > 1;
297   }
298 
299   bool HasAnyFollowup = false;
300   for (StringRef OptionName : FollowupOptions) {
301     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
302     if (!FollowupNode)
303       continue;
304 
305     HasAnyFollowup = true;
306     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
307       MDs.push_back(Option.get());
308       Changed = true;
309     }
310   }
311 
312   // Attributes of the followup loop not specified explicity, so signal to the
313   // transformation pass to add suitable attributes.
314   if (!AlwaysNew && !HasAnyFollowup)
315     return None;
316 
317   // If no attributes were added or remove, the previous loop Id can be reused.
318   if (!AlwaysNew && !Changed)
319     return OrigLoopID;
320 
321   // No attributes is equivalent to having no !llvm.loop metadata at all.
322   if (MDs.size() == 1)
323     return nullptr;
324 
325   // Build the new loop ID.
326   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
327   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
328   return FollowupLoopID;
329 }
330 
331 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
332   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
333 }
334 
335 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
336   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
337     return TM_SuppressedByUser;
338 
339   Optional<int> Count =
340       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
341   if (Count.hasValue())
342     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
343 
344   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
345     return TM_ForcedByUser;
346 
347   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
348     return TM_ForcedByUser;
349 
350   if (hasDisableAllTransformsHint(L))
351     return TM_Disable;
352 
353   return TM_Unspecified;
354 }
355 
356 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
357   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
358     return TM_SuppressedByUser;
359 
360   Optional<int> Count =
361       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
362   if (Count.hasValue())
363     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
364 
365   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
366     return TM_ForcedByUser;
367 
368   if (hasDisableAllTransformsHint(L))
369     return TM_Disable;
370 
371   return TM_Unspecified;
372 }
373 
374 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
375   Optional<bool> Enable =
376       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
377 
378   if (Enable == false)
379     return TM_SuppressedByUser;
380 
381   Optional<int> VectorizeWidth =
382       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
383   Optional<int> InterleaveCount =
384       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
385 
386   // 'Forcing' vector width and interleave count to one effectively disables
387   // this tranformation.
388   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
389     return TM_SuppressedByUser;
390 
391   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
392     return TM_Disable;
393 
394   if (Enable == true)
395     return TM_ForcedByUser;
396 
397   if (VectorizeWidth == 1 && InterleaveCount == 1)
398     return TM_Disable;
399 
400   if (VectorizeWidth > 1 || InterleaveCount > 1)
401     return TM_Enable;
402 
403   if (hasDisableAllTransformsHint(L))
404     return TM_Disable;
405 
406   return TM_Unspecified;
407 }
408 
409 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
410   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
411     return TM_ForcedByUser;
412 
413   if (hasDisableAllTransformsHint(L))
414     return TM_Disable;
415 
416   return TM_Unspecified;
417 }
418 
419 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
420   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
421     return TM_SuppressedByUser;
422 
423   if (hasDisableAllTransformsHint(L))
424     return TM_Disable;
425 
426   return TM_Unspecified;
427 }
428 
429 /// Does a BFS from a given node to all of its children inside a given loop.
430 /// The returned vector of nodes includes the starting point.
431 SmallVector<DomTreeNode *, 16>
432 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
433   SmallVector<DomTreeNode *, 16> Worklist;
434   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
435     // Only include subregions in the top level loop.
436     BasicBlock *BB = DTN->getBlock();
437     if (CurLoop->contains(BB))
438       Worklist.push_back(DTN);
439   };
440 
441   AddRegionToWorklist(N);
442 
443   for (size_t I = 0; I < Worklist.size(); I++)
444     for (DomTreeNode *Child : Worklist[I]->getChildren())
445       AddRegionToWorklist(Child);
446 
447   return Worklist;
448 }
449 
450 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
451                           ScalarEvolution *SE = nullptr,
452                           LoopInfo *LI = nullptr) {
453   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
454   auto *Preheader = L->getLoopPreheader();
455   assert(Preheader && "Preheader should exist!");
456 
457   // Now that we know the removal is safe, remove the loop by changing the
458   // branch from the preheader to go to the single exit block.
459   //
460   // Because we're deleting a large chunk of code at once, the sequence in which
461   // we remove things is very important to avoid invalidation issues.
462 
463   // Tell ScalarEvolution that the loop is deleted. Do this before
464   // deleting the loop so that ScalarEvolution can look at the loop
465   // to determine what it needs to clean up.
466   if (SE)
467     SE->forgetLoop(L);
468 
469   auto *ExitBlock = L->getUniqueExitBlock();
470   assert(ExitBlock && "Should have a unique exit block!");
471   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
472 
473   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
474   assert(OldBr && "Preheader must end with a branch");
475   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
476   // Connect the preheader to the exit block. Keep the old edge to the header
477   // around to perform the dominator tree update in two separate steps
478   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
479   // preheader -> header.
480   //
481   //
482   // 0.  Preheader          1.  Preheader           2.  Preheader
483   //        |                    |   |                   |
484   //        V                    |   V                   |
485   //      Header <--\            | Header <--\           | Header <--\
486   //       |  |     |            |  |  |     |           |  |  |     |
487   //       |  V     |            |  |  V     |           |  |  V     |
488   //       | Body --/            |  | Body --/           |  | Body --/
489   //       V                     V  V                    V  V
490   //      Exit                   Exit                    Exit
491   //
492   // By doing this is two separate steps we can perform the dominator tree
493   // update without using the batch update API.
494   //
495   // Even when the loop is never executed, we cannot remove the edge from the
496   // source block to the exit block. Consider the case where the unexecuted loop
497   // branches back to an outer loop. If we deleted the loop and removed the edge
498   // coming to this inner loop, this will break the outer loop structure (by
499   // deleting the backedge of the outer loop). If the outer loop is indeed a
500   // non-loop, it will be deleted in a future iteration of loop deletion pass.
501   IRBuilder<> Builder(OldBr);
502   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
503   // Remove the old branch. The conditional branch becomes a new terminator.
504   OldBr->eraseFromParent();
505 
506   // Rewrite phis in the exit block to get their inputs from the Preheader
507   // instead of the exiting block.
508   for (PHINode &P : ExitBlock->phis()) {
509     // Set the zero'th element of Phi to be from the preheader and remove all
510     // other incoming values. Given the loop has dedicated exits, all other
511     // incoming values must be from the exiting blocks.
512     int PredIndex = 0;
513     P.setIncomingBlock(PredIndex, Preheader);
514     // Removes all incoming values from all other exiting blocks (including
515     // duplicate values from an exiting block).
516     // Nuke all entries except the zero'th entry which is the preheader entry.
517     // NOTE! We need to remove Incoming Values in the reverse order as done
518     // below, to keep the indices valid for deletion (removeIncomingValues
519     // updates getNumIncomingValues and shifts all values down into the operand
520     // being deleted).
521     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
522       P.removeIncomingValue(e - i, false);
523 
524     assert((P.getNumIncomingValues() == 1 &&
525             P.getIncomingBlock(PredIndex) == Preheader) &&
526            "Should have exactly one value and that's from the preheader!");
527   }
528 
529   // Disconnect the loop body by branching directly to its exit.
530   Builder.SetInsertPoint(Preheader->getTerminator());
531   Builder.CreateBr(ExitBlock);
532   // Remove the old branch.
533   Preheader->getTerminator()->eraseFromParent();
534 
535   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
536   if (DT) {
537     // Update the dominator tree by informing it about the new edge from the
538     // preheader to the exit and the removed edge.
539     DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
540                       {DominatorTree::Delete, Preheader, L->getHeader()}});
541   }
542 
543   // Use a map to unique and a vector to guarantee deterministic ordering.
544   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
545   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
546 
547   // Given LCSSA form is satisfied, we should not have users of instructions
548   // within the dead loop outside of the loop. However, LCSSA doesn't take
549   // unreachable uses into account. We handle them here.
550   // We could do it after drop all references (in this case all users in the
551   // loop will be already eliminated and we have less work to do but according
552   // to API doc of User::dropAllReferences only valid operation after dropping
553   // references, is deletion. So let's substitute all usages of
554   // instruction from the loop with undef value of corresponding type first.
555   for (auto *Block : L->blocks())
556     for (Instruction &I : *Block) {
557       auto *Undef = UndefValue::get(I.getType());
558       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
559         Use &U = *UI;
560         ++UI;
561         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
562           if (L->contains(Usr->getParent()))
563             continue;
564         // If we have a DT then we can check that uses outside a loop only in
565         // unreachable block.
566         if (DT)
567           assert(!DT->isReachableFromEntry(U) &&
568                  "Unexpected user in reachable block");
569         U.set(Undef);
570       }
571       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
572       if (!DVI)
573         continue;
574       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
575       if (Key != DeadDebugSet.end())
576         continue;
577       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
578       DeadDebugInst.push_back(DVI);
579     }
580 
581   // After the loop has been deleted all the values defined and modified
582   // inside the loop are going to be unavailable.
583   // Since debug values in the loop have been deleted, inserting an undef
584   // dbg.value truncates the range of any dbg.value before the loop where the
585   // loop used to be. This is particularly important for constant values.
586   DIBuilder DIB(*ExitBlock->getModule());
587   for (auto *DVI : DeadDebugInst)
588     DIB.insertDbgValueIntrinsic(
589         UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(),
590         DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI());
591 
592   // Remove the block from the reference counting scheme, so that we can
593   // delete it freely later.
594   for (auto *Block : L->blocks())
595     Block->dropAllReferences();
596 
597   if (LI) {
598     // Erase the instructions and the blocks without having to worry
599     // about ordering because we already dropped the references.
600     // NOTE: This iteration is safe because erasing the block does not remove
601     // its entry from the loop's block list.  We do that in the next section.
602     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
603          LpI != LpE; ++LpI)
604       (*LpI)->eraseFromParent();
605 
606     // Finally, the blocks from loopinfo.  This has to happen late because
607     // otherwise our loop iterators won't work.
608 
609     SmallPtrSet<BasicBlock *, 8> blocks;
610     blocks.insert(L->block_begin(), L->block_end());
611     for (BasicBlock *BB : blocks)
612       LI->removeBlock(BB);
613 
614     // The last step is to update LoopInfo now that we've eliminated this loop.
615     LI->erase(L);
616   }
617 }
618 
619 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
620   // Only support loops with a unique exiting block, and a latch.
621   if (!L->getExitingBlock())
622     return None;
623 
624   // Get the branch weights for the loop's backedge.
625   BranchInst *LatchBR =
626       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
627   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
628     return None;
629 
630   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
631           LatchBR->getSuccessor(1) == L->getHeader()) &&
632          "At least one edge out of the latch must go to the header");
633 
634   // To estimate the number of times the loop body was executed, we want to
635   // know the number of times the backedge was taken, vs. the number of times
636   // we exited the loop.
637   uint64_t TrueVal, FalseVal;
638   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
639     return None;
640 
641   if (!TrueVal || !FalseVal)
642     return 0;
643 
644   // Divide the count of the backedge by the count of the edge exiting the loop,
645   // rounding to nearest.
646   if (LatchBR->getSuccessor(0) == L->getHeader())
647     return (TrueVal + (FalseVal / 2)) / FalseVal;
648   else
649     return (FalseVal + (TrueVal / 2)) / TrueVal;
650 }
651 
652 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
653                                               ScalarEvolution &SE) {
654   Loop *OuterL = InnerLoop->getParentLoop();
655   if (!OuterL)
656     return true;
657 
658   // Get the backedge taken count for the inner loop
659   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
660   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
661   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
662       !InnerLoopBECountSC->getType()->isIntegerTy())
663     return false;
664 
665   // Get whether count is invariant to the outer loop
666   ScalarEvolution::LoopDisposition LD =
667       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
668   if (LD != ScalarEvolution::LoopInvariant)
669     return false;
670 
671   return true;
672 }
673 
674 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
675   if (isa<FPMathOperator>(V))
676     cast<Instruction>(V)->setFastMathFlags(FMF);
677   return V;
678 }
679 
680 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
681                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
682                             Value *Left, Value *Right) {
683   CmpInst::Predicate P = CmpInst::ICMP_NE;
684   switch (RK) {
685   default:
686     llvm_unreachable("Unknown min/max recurrence kind");
687   case RecurrenceDescriptor::MRK_UIntMin:
688     P = CmpInst::ICMP_ULT;
689     break;
690   case RecurrenceDescriptor::MRK_UIntMax:
691     P = CmpInst::ICMP_UGT;
692     break;
693   case RecurrenceDescriptor::MRK_SIntMin:
694     P = CmpInst::ICMP_SLT;
695     break;
696   case RecurrenceDescriptor::MRK_SIntMax:
697     P = CmpInst::ICMP_SGT;
698     break;
699   case RecurrenceDescriptor::MRK_FloatMin:
700     P = CmpInst::FCMP_OLT;
701     break;
702   case RecurrenceDescriptor::MRK_FloatMax:
703     P = CmpInst::FCMP_OGT;
704     break;
705   }
706 
707   // We only match FP sequences that are 'fast', so we can unconditionally
708   // set it on any generated instructions.
709   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
710   FastMathFlags FMF;
711   FMF.setFast();
712   Builder.setFastMathFlags(FMF);
713 
714   Value *Cmp;
715   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
716       RK == RecurrenceDescriptor::MRK_FloatMax)
717     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
718   else
719     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
720 
721   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
722   return Select;
723 }
724 
725 // Helper to generate an ordered reduction.
726 Value *
727 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
728                           unsigned Op,
729                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
730                           ArrayRef<Value *> RedOps) {
731   unsigned VF = Src->getType()->getVectorNumElements();
732 
733   // Extract and apply reduction ops in ascending order:
734   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
735   Value *Result = Acc;
736   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
737     Value *Ext =
738         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
739 
740     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
741       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
742                                    "bin.rdx");
743     } else {
744       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
745              "Invalid min/max");
746       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
747     }
748 
749     if (!RedOps.empty())
750       propagateIRFlags(Result, RedOps);
751   }
752 
753   return Result;
754 }
755 
756 // Helper to generate a log2 shuffle reduction.
757 Value *
758 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
759                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
760                           FastMathFlags FMF, ArrayRef<Value *> RedOps) {
761   unsigned VF = Src->getType()->getVectorNumElements();
762   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
763   // and vector ops, reducing the set of values being computed by half each
764   // round.
765   assert(isPowerOf2_32(VF) &&
766          "Reduction emission only supported for pow2 vectors!");
767   Value *TmpVec = Src;
768   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
769   for (unsigned i = VF; i != 1; i >>= 1) {
770     // Move the upper half of the vector to the lower half.
771     for (unsigned j = 0; j != i / 2; ++j)
772       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
773 
774     // Fill the rest of the mask with undef.
775     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
776               UndefValue::get(Builder.getInt32Ty()));
777 
778     Value *Shuf = Builder.CreateShuffleVector(
779         TmpVec, UndefValue::get(TmpVec->getType()),
780         ConstantVector::get(ShuffleMask), "rdx.shuf");
781 
782     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
783       // Floating point operations had to be 'fast' to enable the reduction.
784       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
785                                                    TmpVec, Shuf, "bin.rdx"),
786                                FMF);
787     } else {
788       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
789              "Invalid min/max");
790       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
791     }
792     if (!RedOps.empty())
793       propagateIRFlags(TmpVec, RedOps);
794   }
795   // The result is in the first element of the vector.
796   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
797 }
798 
799 /// Create a simple vector reduction specified by an opcode and some
800 /// flags (if generating min/max reductions).
801 Value *llvm::createSimpleTargetReduction(
802     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
803     Value *Src, TargetTransformInfo::ReductionFlags Flags, FastMathFlags FMF,
804     ArrayRef<Value *> RedOps) {
805   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
806 
807   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
808   std::function<Value *()> BuildFunc;
809   using RD = RecurrenceDescriptor;
810   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
811   // TODO: Support creating ordered reductions.
812   FastMathFlags FMFFast;
813   FMFFast.setFast();
814 
815   switch (Opcode) {
816   case Instruction::Add:
817     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
818     break;
819   case Instruction::Mul:
820     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
821     break;
822   case Instruction::And:
823     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
824     break;
825   case Instruction::Or:
826     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
827     break;
828   case Instruction::Xor:
829     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
830     break;
831   case Instruction::FAdd:
832     BuildFunc = [&]() {
833       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
834       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
835       return Rdx;
836     };
837     break;
838   case Instruction::FMul:
839     BuildFunc = [&]() {
840       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
841       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
842       return Rdx;
843     };
844     break;
845   case Instruction::ICmp:
846     if (Flags.IsMaxOp) {
847       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
848       BuildFunc = [&]() {
849         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
850       };
851     } else {
852       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
853       BuildFunc = [&]() {
854         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
855       };
856     }
857     break;
858   case Instruction::FCmp:
859     if (Flags.IsMaxOp) {
860       MinMaxKind = RD::MRK_FloatMax;
861       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
862     } else {
863       MinMaxKind = RD::MRK_FloatMin;
864       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
865     }
866     break;
867   default:
868     llvm_unreachable("Unhandled opcode");
869     break;
870   }
871   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
872     return BuildFunc();
873   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, FMF, RedOps);
874 }
875 
876 /// Create a vector reduction using a given recurrence descriptor.
877 Value *llvm::createTargetReduction(IRBuilder<> &B,
878                                    const TargetTransformInfo *TTI,
879                                    RecurrenceDescriptor &Desc, Value *Src,
880                                    bool NoNaN) {
881   // TODO: Support in-order reductions based on the recurrence descriptor.
882   using RD = RecurrenceDescriptor;
883   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
884   TargetTransformInfo::ReductionFlags Flags;
885   Flags.NoNaN = NoNaN;
886   switch (RecKind) {
887   case RD::RK_FloatAdd:
888     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags,
889                                        Desc.getFastMathFlags());
890   case RD::RK_FloatMult:
891     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags,
892                                        Desc.getFastMathFlags());
893   case RD::RK_IntegerAdd:
894     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags,
895                                        Desc.getFastMathFlags());
896   case RD::RK_IntegerMult:
897     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags,
898                                        Desc.getFastMathFlags());
899   case RD::RK_IntegerAnd:
900     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags,
901                                        Desc.getFastMathFlags());
902   case RD::RK_IntegerOr:
903     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags,
904                                        Desc.getFastMathFlags());
905   case RD::RK_IntegerXor:
906     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags,
907                                        Desc.getFastMathFlags());
908   case RD::RK_IntegerMinMax: {
909     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
910     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
911     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
912     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags,
913                                        Desc.getFastMathFlags());
914   }
915   case RD::RK_FloatMinMax: {
916     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
917     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags,
918                                        Desc.getFastMathFlags());
919   }
920   default:
921     llvm_unreachable("Unhandled RecKind");
922   }
923 }
924 
925 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
926   auto *VecOp = dyn_cast<Instruction>(I);
927   if (!VecOp)
928     return;
929   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
930                                             : dyn_cast<Instruction>(OpValue);
931   if (!Intersection)
932     return;
933   const unsigned Opcode = Intersection->getOpcode();
934   VecOp->copyIRFlags(Intersection);
935   for (auto *V : VL) {
936     auto *Instr = dyn_cast<Instruction>(V);
937     if (!Instr)
938       continue;
939     if (OpValue == nullptr || Opcode == Instr->getOpcode())
940       VecOp->andIRFlags(V);
941   }
942 }
943 
944 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
945                                  ScalarEvolution &SE) {
946   const SCEV *Zero = SE.getZero(S->getType());
947   return SE.isAvailableAtLoopEntry(S, L) &&
948          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
949 }
950 
951 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
952                                     ScalarEvolution &SE) {
953   const SCEV *Zero = SE.getZero(S->getType());
954   return SE.isAvailableAtLoopEntry(S, L) &&
955          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
956 }
957 
958 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
959                              bool Signed) {
960   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
961   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
962     APInt::getMinValue(BitWidth);
963   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
964   return SE.isAvailableAtLoopEntry(S, L) &&
965          SE.isLoopEntryGuardedByCond(L, Predicate, S,
966                                      SE.getConstant(Min));
967 }
968 
969 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
970                              bool Signed) {
971   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
972   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
973     APInt::getMaxValue(BitWidth);
974   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
975   return SE.isAvailableAtLoopEntry(S, L) &&
976          SE.isLoopEntryGuardedByCond(L, Predicate, S,
977                                      SE.getConstant(Max));
978 }
979