1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<bool> ForceReductionIntrinsic(
58     "force-reduction-intrinsics", cl::Hidden,
59     cl::desc("Force creating reduction intrinsics for testing."),
60     cl::init(false));
61 
62 #define DEBUG_TYPE "loop-utils"
63 
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 
67 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
68                                    MemorySSAUpdater *MSSAU,
69                                    bool PreserveLCSSA) {
70   bool Changed = false;
71 
72   // We re-use a vector for the in-loop predecesosrs.
73   SmallVector<BasicBlock *, 4> InLoopPredecessors;
74 
75   auto RewriteExit = [&](BasicBlock *BB) {
76     assert(InLoopPredecessors.empty() &&
77            "Must start with an empty predecessors list!");
78     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
79 
80     // See if there are any non-loop predecessors of this exit block and
81     // keep track of the in-loop predecessors.
82     bool IsDedicatedExit = true;
83     for (auto *PredBB : predecessors(BB))
84       if (L->contains(PredBB)) {
85         if (isa<IndirectBrInst>(PredBB->getTerminator()))
86           // We cannot rewrite exiting edges from an indirectbr.
87           return false;
88         if (isa<CallBrInst>(PredBB->getTerminator()))
89           // We cannot rewrite exiting edges from a callbr.
90           return false;
91 
92         InLoopPredecessors.push_back(PredBB);
93       } else {
94         IsDedicatedExit = false;
95       }
96 
97     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
98 
99     // Nothing to do if this is already a dedicated exit.
100     if (IsDedicatedExit)
101       return false;
102 
103     auto *NewExitBB = SplitBlockPredecessors(
104         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
105 
106     if (!NewExitBB)
107       LLVM_DEBUG(
108           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
109                  << *L << "\n");
110     else
111       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
112                         << NewExitBB->getName() << "\n");
113     return true;
114   };
115 
116   // Walk the exit blocks directly rather than building up a data structure for
117   // them, but only visit each one once.
118   SmallPtrSet<BasicBlock *, 4> Visited;
119   for (auto *BB : L->blocks())
120     for (auto *SuccBB : successors(BB)) {
121       // We're looking for exit blocks so skip in-loop successors.
122       if (L->contains(SuccBB))
123         continue;
124 
125       // Visit each exit block exactly once.
126       if (!Visited.insert(SuccBB).second)
127         continue;
128 
129       Changed |= RewriteExit(SuccBB);
130     }
131 
132   return Changed;
133 }
134 
135 /// Returns the instructions that use values defined in the loop.
136 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
137   SmallVector<Instruction *, 8> UsedOutside;
138 
139   for (auto *Block : L->getBlocks())
140     // FIXME: I believe that this could use copy_if if the Inst reference could
141     // be adapted into a pointer.
142     for (auto &Inst : *Block) {
143       auto Users = Inst.users();
144       if (any_of(Users, [&](User *U) {
145             auto *Use = cast<Instruction>(U);
146             return !L->contains(Use->getParent());
147           }))
148         UsedOutside.push_back(&Inst);
149     }
150 
151   return UsedOutside;
152 }
153 
154 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
155   // By definition, all loop passes need the LoopInfo analysis and the
156   // Dominator tree it depends on. Because they all participate in the loop
157   // pass manager, they must also preserve these.
158   AU.addRequired<DominatorTreeWrapperPass>();
159   AU.addPreserved<DominatorTreeWrapperPass>();
160   AU.addRequired<LoopInfoWrapperPass>();
161   AU.addPreserved<LoopInfoWrapperPass>();
162 
163   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
164   // here because users shouldn't directly get them from this header.
165   extern char &LoopSimplifyID;
166   extern char &LCSSAID;
167   AU.addRequiredID(LoopSimplifyID);
168   AU.addPreservedID(LoopSimplifyID);
169   AU.addRequiredID(LCSSAID);
170   AU.addPreservedID(LCSSAID);
171   // This is used in the LPPassManager to perform LCSSA verification on passes
172   // which preserve lcssa form
173   AU.addRequired<LCSSAVerificationPass>();
174   AU.addPreserved<LCSSAVerificationPass>();
175 
176   // Loop passes are designed to run inside of a loop pass manager which means
177   // that any function analyses they require must be required by the first loop
178   // pass in the manager (so that it is computed before the loop pass manager
179   // runs) and preserved by all loop pasess in the manager. To make this
180   // reasonably robust, the set needed for most loop passes is maintained here.
181   // If your loop pass requires an analysis not listed here, you will need to
182   // carefully audit the loop pass manager nesting structure that results.
183   AU.addRequired<AAResultsWrapperPass>();
184   AU.addPreserved<AAResultsWrapperPass>();
185   AU.addPreserved<BasicAAWrapperPass>();
186   AU.addPreserved<GlobalsAAWrapperPass>();
187   AU.addPreserved<SCEVAAWrapperPass>();
188   AU.addRequired<ScalarEvolutionWrapperPass>();
189   AU.addPreserved<ScalarEvolutionWrapperPass>();
190   // FIXME: When all loop passes preserve MemorySSA, it can be required and
191   // preserved here instead of the individual handling in each pass.
192 }
193 
194 /// Manually defined generic "LoopPass" dependency initialization. This is used
195 /// to initialize the exact set of passes from above in \c
196 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
197 /// with:
198 ///
199 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
200 ///
201 /// As-if "LoopPass" were a pass.
202 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
203   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
206   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
208   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
209   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
210   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
211   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
212   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
213 }
214 
215 /// Create MDNode for input string.
216 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
217   LLVMContext &Context = TheLoop->getHeader()->getContext();
218   Metadata *MDs[] = {
219       MDString::get(Context, Name),
220       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
221   return MDNode::get(Context, MDs);
222 }
223 
224 /// Set input string into loop metadata by keeping other values intact.
225 /// If the string is already in loop metadata update value if it is
226 /// different.
227 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
228                                    unsigned V) {
229   SmallVector<Metadata *, 4> MDs(1);
230   // If the loop already has metadata, retain it.
231   MDNode *LoopID = TheLoop->getLoopID();
232   if (LoopID) {
233     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
234       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
235       // If it is of form key = value, try to parse it.
236       if (Node->getNumOperands() == 2) {
237         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
238         if (S && S->getString().equals(StringMD)) {
239           ConstantInt *IntMD =
240               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
241           if (IntMD && IntMD->getSExtValue() == V)
242             // It is already in place. Do nothing.
243             return;
244           // We need to update the value, so just skip it here and it will
245           // be added after copying other existed nodes.
246           continue;
247         }
248       }
249       MDs.push_back(Node);
250     }
251   }
252   // Add new metadata.
253   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
254   // Replace current metadata node with new one.
255   LLVMContext &Context = TheLoop->getHeader()->getContext();
256   MDNode *NewLoopID = MDNode::get(Context, MDs);
257   // Set operand 0 to refer to the loop id itself.
258   NewLoopID->replaceOperandWith(0, NewLoopID);
259   TheLoop->setLoopID(NewLoopID);
260 }
261 
262 /// Find string metadata for loop
263 ///
264 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
265 /// operand or null otherwise.  If the string metadata is not found return
266 /// Optional's not-a-value.
267 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
268                                                             StringRef Name) {
269   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
270   if (!MD)
271     return None;
272   switch (MD->getNumOperands()) {
273   case 1:
274     return nullptr;
275   case 2:
276     return &MD->getOperand(1);
277   default:
278     llvm_unreachable("loop metadata has 0 or 1 operand");
279   }
280 }
281 
282 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
283                                                    StringRef Name) {
284   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
285   if (!MD)
286     return None;
287   switch (MD->getNumOperands()) {
288   case 1:
289     // When the value is absent it is interpreted as 'attribute set'.
290     return true;
291   case 2:
292     if (ConstantInt *IntMD =
293             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
294       return IntMD->getZExtValue();
295     return true;
296   }
297   llvm_unreachable("unexpected number of options");
298 }
299 
300 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
301   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
302 }
303 
304 Optional<ElementCount>
305 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
306   Optional<int> Width =
307       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
308 
309   if (Width.hasValue()) {
310     Optional<int> IsScalable = getOptionalIntLoopAttribute(
311         TheLoop, "llvm.loop.vectorize.scalable.enable");
312     return ElementCount::get(*Width,
313                              IsScalable.hasValue() ? *IsScalable : false);
314   }
315 
316   return None;
317 }
318 
319 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
320                                                       StringRef Name) {
321   const MDOperand *AttrMD =
322       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
323   if (!AttrMD)
324     return None;
325 
326   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
327   if (!IntMD)
328     return None;
329 
330   return IntMD->getSExtValue();
331 }
332 
333 Optional<MDNode *> llvm::makeFollowupLoopID(
334     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
335     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
336   if (!OrigLoopID) {
337     if (AlwaysNew)
338       return nullptr;
339     return None;
340   }
341 
342   assert(OrigLoopID->getOperand(0) == OrigLoopID);
343 
344   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
345   bool InheritSomeAttrs =
346       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
347   SmallVector<Metadata *, 8> MDs;
348   MDs.push_back(nullptr);
349 
350   bool Changed = false;
351   if (InheritAllAttrs || InheritSomeAttrs) {
352     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
353       MDNode *Op = cast<MDNode>(Existing.get());
354 
355       auto InheritThisAttribute = [InheritSomeAttrs,
356                                    InheritOptionsExceptPrefix](MDNode *Op) {
357         if (!InheritSomeAttrs)
358           return false;
359 
360         // Skip malformatted attribute metadata nodes.
361         if (Op->getNumOperands() == 0)
362           return true;
363         Metadata *NameMD = Op->getOperand(0).get();
364         if (!isa<MDString>(NameMD))
365           return true;
366         StringRef AttrName = cast<MDString>(NameMD)->getString();
367 
368         // Do not inherit excluded attributes.
369         return !AttrName.startswith(InheritOptionsExceptPrefix);
370       };
371 
372       if (InheritThisAttribute(Op))
373         MDs.push_back(Op);
374       else
375         Changed = true;
376     }
377   } else {
378     // Modified if we dropped at least one attribute.
379     Changed = OrigLoopID->getNumOperands() > 1;
380   }
381 
382   bool HasAnyFollowup = false;
383   for (StringRef OptionName : FollowupOptions) {
384     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
385     if (!FollowupNode)
386       continue;
387 
388     HasAnyFollowup = true;
389     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
390       MDs.push_back(Option.get());
391       Changed = true;
392     }
393   }
394 
395   // Attributes of the followup loop not specified explicity, so signal to the
396   // transformation pass to add suitable attributes.
397   if (!AlwaysNew && !HasAnyFollowup)
398     return None;
399 
400   // If no attributes were added or remove, the previous loop Id can be reused.
401   if (!AlwaysNew && !Changed)
402     return OrigLoopID;
403 
404   // No attributes is equivalent to having no !llvm.loop metadata at all.
405   if (MDs.size() == 1)
406     return nullptr;
407 
408   // Build the new loop ID.
409   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
410   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
411   return FollowupLoopID;
412 }
413 
414 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
415   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
416 }
417 
418 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
419   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
420 }
421 
422 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
423   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
424     return TM_SuppressedByUser;
425 
426   Optional<int> Count =
427       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
428   if (Count.hasValue())
429     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
430 
431   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
432     return TM_ForcedByUser;
433 
434   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
435     return TM_ForcedByUser;
436 
437   if (hasDisableAllTransformsHint(L))
438     return TM_Disable;
439 
440   return TM_Unspecified;
441 }
442 
443 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
444   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
445     return TM_SuppressedByUser;
446 
447   Optional<int> Count =
448       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
449   if (Count.hasValue())
450     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
451 
452   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
453     return TM_ForcedByUser;
454 
455   if (hasDisableAllTransformsHint(L))
456     return TM_Disable;
457 
458   return TM_Unspecified;
459 }
460 
461 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
462   Optional<bool> Enable =
463       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
464 
465   if (Enable == false)
466     return TM_SuppressedByUser;
467 
468   Optional<ElementCount> VectorizeWidth =
469       getOptionalElementCountLoopAttribute(L);
470   Optional<int> InterleaveCount =
471       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
472 
473   // 'Forcing' vector width and interleave count to one effectively disables
474   // this tranformation.
475   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
476       InterleaveCount == 1)
477     return TM_SuppressedByUser;
478 
479   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
480     return TM_Disable;
481 
482   if (Enable == true)
483     return TM_ForcedByUser;
484 
485   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
486     return TM_Disable;
487 
488   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
489     return TM_Enable;
490 
491   if (hasDisableAllTransformsHint(L))
492     return TM_Disable;
493 
494   return TM_Unspecified;
495 }
496 
497 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
498   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
499     return TM_ForcedByUser;
500 
501   if (hasDisableAllTransformsHint(L))
502     return TM_Disable;
503 
504   return TM_Unspecified;
505 }
506 
507 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
508   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
509     return TM_SuppressedByUser;
510 
511   if (hasDisableAllTransformsHint(L))
512     return TM_Disable;
513 
514   return TM_Unspecified;
515 }
516 
517 /// Does a BFS from a given node to all of its children inside a given loop.
518 /// The returned vector of nodes includes the starting point.
519 SmallVector<DomTreeNode *, 16>
520 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
521   SmallVector<DomTreeNode *, 16> Worklist;
522   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
523     // Only include subregions in the top level loop.
524     BasicBlock *BB = DTN->getBlock();
525     if (CurLoop->contains(BB))
526       Worklist.push_back(DTN);
527   };
528 
529   AddRegionToWorklist(N);
530 
531   for (size_t I = 0; I < Worklist.size(); I++) {
532     for (DomTreeNode *Child : Worklist[I]->children())
533       AddRegionToWorklist(Child);
534   }
535 
536   return Worklist;
537 }
538 
539 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
540                           LoopInfo *LI, MemorySSA *MSSA) {
541   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
542   auto *Preheader = L->getLoopPreheader();
543   assert(Preheader && "Preheader should exist!");
544 
545   std::unique_ptr<MemorySSAUpdater> MSSAU;
546   if (MSSA)
547     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
548 
549   // Now that we know the removal is safe, remove the loop by changing the
550   // branch from the preheader to go to the single exit block.
551   //
552   // Because we're deleting a large chunk of code at once, the sequence in which
553   // we remove things is very important to avoid invalidation issues.
554 
555   // Tell ScalarEvolution that the loop is deleted. Do this before
556   // deleting the loop so that ScalarEvolution can look at the loop
557   // to determine what it needs to clean up.
558   if (SE)
559     SE->forgetLoop(L);
560 
561   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
562   assert(OldBr && "Preheader must end with a branch");
563   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
564   // Connect the preheader to the exit block. Keep the old edge to the header
565   // around to perform the dominator tree update in two separate steps
566   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
567   // preheader -> header.
568   //
569   //
570   // 0.  Preheader          1.  Preheader           2.  Preheader
571   //        |                    |   |                   |
572   //        V                    |   V                   |
573   //      Header <--\            | Header <--\           | Header <--\
574   //       |  |     |            |  |  |     |           |  |  |     |
575   //       |  V     |            |  |  V     |           |  |  V     |
576   //       | Body --/            |  | Body --/           |  | Body --/
577   //       V                     V  V                    V  V
578   //      Exit                   Exit                    Exit
579   //
580   // By doing this is two separate steps we can perform the dominator tree
581   // update without using the batch update API.
582   //
583   // Even when the loop is never executed, we cannot remove the edge from the
584   // source block to the exit block. Consider the case where the unexecuted loop
585   // branches back to an outer loop. If we deleted the loop and removed the edge
586   // coming to this inner loop, this will break the outer loop structure (by
587   // deleting the backedge of the outer loop). If the outer loop is indeed a
588   // non-loop, it will be deleted in a future iteration of loop deletion pass.
589   IRBuilder<> Builder(OldBr);
590 
591   auto *ExitBlock = L->getUniqueExitBlock();
592   if (ExitBlock) {
593     assert(ExitBlock && "Should have a unique exit block!");
594     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
595 
596     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
597     // Remove the old branch. The conditional branch becomes a new terminator.
598     OldBr->eraseFromParent();
599 
600     // Rewrite phis in the exit block to get their inputs from the Preheader
601     // instead of the exiting block.
602     for (PHINode &P : ExitBlock->phis()) {
603       // Set the zero'th element of Phi to be from the preheader and remove all
604       // other incoming values. Given the loop has dedicated exits, all other
605       // incoming values must be from the exiting blocks.
606       int PredIndex = 0;
607       P.setIncomingBlock(PredIndex, Preheader);
608       // Removes all incoming values from all other exiting blocks (including
609       // duplicate values from an exiting block).
610       // Nuke all entries except the zero'th entry which is the preheader entry.
611       // NOTE! We need to remove Incoming Values in the reverse order as done
612       // below, to keep the indices valid for deletion (removeIncomingValues
613       // updates getNumIncomingValues and shifts all values down into the
614       // operand being deleted).
615       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
616         P.removeIncomingValue(e - i, false);
617 
618       assert((P.getNumIncomingValues() == 1 &&
619               P.getIncomingBlock(PredIndex) == Preheader) &&
620              "Should have exactly one value and that's from the preheader!");
621     }
622 
623     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
624     if (DT) {
625       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
626       if (MSSA) {
627         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
628                             *DT);
629         if (VerifyMemorySSA)
630           MSSA->verifyMemorySSA();
631       }
632     }
633 
634     // Disconnect the loop body by branching directly to its exit.
635     Builder.SetInsertPoint(Preheader->getTerminator());
636     Builder.CreateBr(ExitBlock);
637     // Remove the old branch.
638     Preheader->getTerminator()->eraseFromParent();
639 
640     if (DT) {
641       DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
642       if (MSSA) {
643         MSSAU->applyUpdates(
644             {{DominatorTree::Delete, Preheader, L->getHeader()}}, *DT);
645         SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
646                                                      L->block_end());
647         MSSAU->removeBlocks(DeadBlockSet);
648         if (VerifyMemorySSA)
649           MSSA->verifyMemorySSA();
650       }
651     }
652   } else {
653     assert(L->hasNoExitBlocks() &&
654            "Loop should have either zero or one exit blocks.");
655     Builder.SetInsertPoint(OldBr);
656     Builder.CreateUnreachable();
657     Preheader->getTerminator()->eraseFromParent();
658   }
659 
660   // Use a map to unique and a vector to guarantee deterministic ordering.
661   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
662   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
663 
664   if (ExitBlock) {
665     // Given LCSSA form is satisfied, we should not have users of instructions
666     // within the dead loop outside of the loop. However, LCSSA doesn't take
667     // unreachable uses into account. We handle them here.
668     // We could do it after drop all references (in this case all users in the
669     // loop will be already eliminated and we have less work to do but according
670     // to API doc of User::dropAllReferences only valid operation after dropping
671     // references, is deletion. So let's substitute all usages of
672     // instruction from the loop with undef value of corresponding type first.
673     for (auto *Block : L->blocks())
674       for (Instruction &I : *Block) {
675         auto *Undef = UndefValue::get(I.getType());
676         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
677              UI != E;) {
678           Use &U = *UI;
679           ++UI;
680           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
681             if (L->contains(Usr->getParent()))
682               continue;
683           // If we have a DT then we can check that uses outside a loop only in
684           // unreachable block.
685           if (DT)
686             assert(!DT->isReachableFromEntry(U) &&
687                    "Unexpected user in reachable block");
688           U.set(Undef);
689         }
690         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
691         if (!DVI)
692           continue;
693         auto Key =
694             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
695         if (Key != DeadDebugSet.end())
696           continue;
697         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
698         DeadDebugInst.push_back(DVI);
699       }
700 
701     // After the loop has been deleted all the values defined and modified
702     // inside the loop are going to be unavailable.
703     // Since debug values in the loop have been deleted, inserting an undef
704     // dbg.value truncates the range of any dbg.value before the loop where the
705     // loop used to be. This is particularly important for constant values.
706     DIBuilder DIB(*ExitBlock->getModule());
707     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
708     assert(InsertDbgValueBefore &&
709            "There should be a non-PHI instruction in exit block, else these "
710            "instructions will have no parent.");
711     for (auto *DVI : DeadDebugInst)
712       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
713                                   DVI->getVariable(), DVI->getExpression(),
714                                   DVI->getDebugLoc(), InsertDbgValueBefore);
715   }
716 
717   // Remove the block from the reference counting scheme, so that we can
718   // delete it freely later.
719   for (auto *Block : L->blocks())
720     Block->dropAllReferences();
721 
722   if (MSSA && VerifyMemorySSA)
723     MSSA->verifyMemorySSA();
724 
725   if (LI) {
726     // Erase the instructions and the blocks without having to worry
727     // about ordering because we already dropped the references.
728     // NOTE: This iteration is safe because erasing the block does not remove
729     // its entry from the loop's block list.  We do that in the next section.
730     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
731          LpI != LpE; ++LpI)
732       (*LpI)->eraseFromParent();
733 
734     // Finally, the blocks from loopinfo.  This has to happen late because
735     // otherwise our loop iterators won't work.
736 
737     SmallPtrSet<BasicBlock *, 8> blocks;
738     blocks.insert(L->block_begin(), L->block_end());
739     for (BasicBlock *BB : blocks)
740       LI->removeBlock(BB);
741 
742     // The last step is to update LoopInfo now that we've eliminated this loop.
743     // Note: LoopInfo::erase remove the given loop and relink its subloops with
744     // its parent. While removeLoop/removeChildLoop remove the given loop but
745     // not relink its subloops, which is what we want.
746     if (Loop *ParentLoop = L->getParentLoop()) {
747       Loop::iterator I = find(*ParentLoop, L);
748       assert(I != ParentLoop->end() && "Couldn't find loop");
749       ParentLoop->removeChildLoop(I);
750     } else {
751       Loop::iterator I = find(*LI, L);
752       assert(I != LI->end() && "Couldn't find loop");
753       LI->removeLoop(I);
754     }
755     LI->destroy(L);
756   }
757 }
758 
759 /// Checks if \p L has single exit through latch block except possibly
760 /// "deoptimizing" exits. Returns branch instruction terminating the loop
761 /// latch if above check is successful, nullptr otherwise.
762 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
763   BasicBlock *Latch = L->getLoopLatch();
764   if (!Latch)
765     return nullptr;
766 
767   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
768   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
769     return nullptr;
770 
771   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
772           LatchBR->getSuccessor(1) == L->getHeader()) &&
773          "At least one edge out of the latch must go to the header");
774 
775   SmallVector<BasicBlock *, 4> ExitBlocks;
776   L->getUniqueNonLatchExitBlocks(ExitBlocks);
777   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
778         return !EB->getTerminatingDeoptimizeCall();
779       }))
780     return nullptr;
781 
782   return LatchBR;
783 }
784 
785 Optional<unsigned>
786 llvm::getLoopEstimatedTripCount(Loop *L,
787                                 unsigned *EstimatedLoopInvocationWeight) {
788   // Support loops with an exiting latch and other existing exists only
789   // deoptimize.
790   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
791   if (!LatchBranch)
792     return None;
793 
794   // To estimate the number of times the loop body was executed, we want to
795   // know the number of times the backedge was taken, vs. the number of times
796   // we exited the loop.
797   uint64_t BackedgeTakenWeight, LatchExitWeight;
798   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
799     return None;
800 
801   if (LatchBranch->getSuccessor(0) != L->getHeader())
802     std::swap(BackedgeTakenWeight, LatchExitWeight);
803 
804   if (!LatchExitWeight)
805     return None;
806 
807   if (EstimatedLoopInvocationWeight)
808     *EstimatedLoopInvocationWeight = LatchExitWeight;
809 
810   // Estimated backedge taken count is a ratio of the backedge taken weight by
811   // the weight of the edge exiting the loop, rounded to nearest.
812   uint64_t BackedgeTakenCount =
813       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
814   // Estimated trip count is one plus estimated backedge taken count.
815   return BackedgeTakenCount + 1;
816 }
817 
818 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
819                                      unsigned EstimatedloopInvocationWeight) {
820   // Support loops with an exiting latch and other existing exists only
821   // deoptimize.
822   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
823   if (!LatchBranch)
824     return false;
825 
826   // Calculate taken and exit weights.
827   unsigned LatchExitWeight = 0;
828   unsigned BackedgeTakenWeight = 0;
829 
830   if (EstimatedTripCount > 0) {
831     LatchExitWeight = EstimatedloopInvocationWeight;
832     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
833   }
834 
835   // Make a swap if back edge is taken when condition is "false".
836   if (LatchBranch->getSuccessor(0) != L->getHeader())
837     std::swap(BackedgeTakenWeight, LatchExitWeight);
838 
839   MDBuilder MDB(LatchBranch->getContext());
840 
841   // Set/Update profile metadata.
842   LatchBranch->setMetadata(
843       LLVMContext::MD_prof,
844       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
845 
846   return true;
847 }
848 
849 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
850                                               ScalarEvolution &SE) {
851   Loop *OuterL = InnerLoop->getParentLoop();
852   if (!OuterL)
853     return true;
854 
855   // Get the backedge taken count for the inner loop
856   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
857   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
858   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
859       !InnerLoopBECountSC->getType()->isIntegerTy())
860     return false;
861 
862   // Get whether count is invariant to the outer loop
863   ScalarEvolution::LoopDisposition LD =
864       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
865   if (LD != ScalarEvolution::LoopInvariant)
866     return false;
867 
868   return true;
869 }
870 
871 Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
872                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
873                             Value *Left, Value *Right) {
874   CmpInst::Predicate P = CmpInst::ICMP_NE;
875   switch (RK) {
876   default:
877     llvm_unreachable("Unknown min/max recurrence kind");
878   case RecurrenceDescriptor::MRK_UIntMin:
879     P = CmpInst::ICMP_ULT;
880     break;
881   case RecurrenceDescriptor::MRK_UIntMax:
882     P = CmpInst::ICMP_UGT;
883     break;
884   case RecurrenceDescriptor::MRK_SIntMin:
885     P = CmpInst::ICMP_SLT;
886     break;
887   case RecurrenceDescriptor::MRK_SIntMax:
888     P = CmpInst::ICMP_SGT;
889     break;
890   case RecurrenceDescriptor::MRK_FloatMin:
891     P = CmpInst::FCMP_OLT;
892     break;
893   case RecurrenceDescriptor::MRK_FloatMax:
894     P = CmpInst::FCMP_OGT;
895     break;
896   }
897 
898   // We only match FP sequences that are 'fast', so we can unconditionally
899   // set it on any generated instructions.
900   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
901   FastMathFlags FMF;
902   FMF.setFast();
903   Builder.setFastMathFlags(FMF);
904   Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
905   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
906   return Select;
907 }
908 
909 // Helper to generate an ordered reduction.
910 Value *
911 llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
912                           unsigned Op,
913                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
914                           ArrayRef<Value *> RedOps) {
915   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
916 
917   // Extract and apply reduction ops in ascending order:
918   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
919   Value *Result = Acc;
920   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
921     Value *Ext =
922         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
923 
924     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
925       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
926                                    "bin.rdx");
927     } else {
928       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
929              "Invalid min/max");
930       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
931     }
932 
933     if (!RedOps.empty())
934       propagateIRFlags(Result, RedOps);
935   }
936 
937   return Result;
938 }
939 
940 // Helper to generate a log2 shuffle reduction.
941 Value *
942 llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
943                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
944                           ArrayRef<Value *> RedOps) {
945   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
946   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
947   // and vector ops, reducing the set of values being computed by half each
948   // round.
949   assert(isPowerOf2_32(VF) &&
950          "Reduction emission only supported for pow2 vectors!");
951   Value *TmpVec = Src;
952   SmallVector<int, 32> ShuffleMask(VF);
953   for (unsigned i = VF; i != 1; i >>= 1) {
954     // Move the upper half of the vector to the lower half.
955     for (unsigned j = 0; j != i / 2; ++j)
956       ShuffleMask[j] = i / 2 + j;
957 
958     // Fill the rest of the mask with undef.
959     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
960 
961     Value *Shuf = Builder.CreateShuffleVector(
962         TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf");
963 
964     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
965       // The builder propagates its fast-math-flags setting.
966       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
967                                    "bin.rdx");
968     } else {
969       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
970              "Invalid min/max");
971       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
972     }
973     if (!RedOps.empty())
974       propagateIRFlags(TmpVec, RedOps);
975 
976     // We may compute the reassociated scalar ops in a way that does not
977     // preserve nsw/nuw etc. Conservatively, drop those flags.
978     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
979       ReductionInst->dropPoisonGeneratingFlags();
980   }
981   // The result is in the first element of the vector.
982   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
983 }
984 
985 /// Create a simple vector reduction specified by an opcode and some
986 /// flags (if generating min/max reductions).
987 Value *llvm::createSimpleTargetReduction(
988     IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
989     Value *Src, TargetTransformInfo::ReductionFlags Flags,
990     ArrayRef<Value *> RedOps) {
991   auto *SrcVTy = cast<VectorType>(Src->getType());
992 
993   std::function<Value *()> BuildFunc;
994   using RD = RecurrenceDescriptor;
995   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
996 
997   switch (Opcode) {
998   case Instruction::Add:
999     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1000     break;
1001   case Instruction::Mul:
1002     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1003     break;
1004   case Instruction::And:
1005     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1006     break;
1007   case Instruction::Or:
1008     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1009     break;
1010   case Instruction::Xor:
1011     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1012     break;
1013   case Instruction::FAdd:
1014     BuildFunc = [&]() {
1015       auto Rdx = Builder.CreateFAddReduce(
1016           ConstantFP::getNegativeZero(SrcVTy->getElementType()), Src);
1017       return Rdx;
1018     };
1019     break;
1020   case Instruction::FMul:
1021     BuildFunc = [&]() {
1022       Type *Ty = SrcVTy->getElementType();
1023       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
1024       return Rdx;
1025     };
1026     break;
1027   case Instruction::ICmp:
1028     if (Flags.IsMaxOp) {
1029       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1030       BuildFunc = [&]() {
1031         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1032       };
1033     } else {
1034       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1035       BuildFunc = [&]() {
1036         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1037       };
1038     }
1039     break;
1040   case Instruction::FCmp:
1041     if (Flags.IsMaxOp) {
1042       MinMaxKind = RD::MRK_FloatMax;
1043       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1044     } else {
1045       MinMaxKind = RD::MRK_FloatMin;
1046       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1047     }
1048     break;
1049   default:
1050     llvm_unreachable("Unhandled opcode");
1051     break;
1052   }
1053   if (ForceReductionIntrinsic ||
1054       TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1055     return BuildFunc();
1056   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1057 }
1058 
1059 /// Create a vector reduction using a given recurrence descriptor.
1060 Value *llvm::createTargetReduction(IRBuilderBase &B,
1061                                    const TargetTransformInfo *TTI,
1062                                    RecurrenceDescriptor &Desc, Value *Src,
1063                                    bool NoNaN) {
1064   // TODO: Support in-order reductions based on the recurrence descriptor.
1065   using RD = RecurrenceDescriptor;
1066   TargetTransformInfo::ReductionFlags Flags;
1067   Flags.NoNaN = NoNaN;
1068 
1069   // All ops in the reduction inherit fast-math-flags from the recurrence
1070   // descriptor.
1071   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1072   B.setFastMathFlags(Desc.getFastMathFlags());
1073 
1074   RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1075   Flags.IsMaxOp = MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax ||
1076                   MMKind == RD::MRK_FloatMax;
1077   Flags.IsSigned = MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin;
1078   return createSimpleTargetReduction(B, TTI, Desc.getRecurrenceBinOp(), Src,
1079                                      Flags);
1080 }
1081 
1082 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1083   auto *VecOp = dyn_cast<Instruction>(I);
1084   if (!VecOp)
1085     return;
1086   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1087                                             : dyn_cast<Instruction>(OpValue);
1088   if (!Intersection)
1089     return;
1090   const unsigned Opcode = Intersection->getOpcode();
1091   VecOp->copyIRFlags(Intersection);
1092   for (auto *V : VL) {
1093     auto *Instr = dyn_cast<Instruction>(V);
1094     if (!Instr)
1095       continue;
1096     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1097       VecOp->andIRFlags(V);
1098   }
1099 }
1100 
1101 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1102                                  ScalarEvolution &SE) {
1103   const SCEV *Zero = SE.getZero(S->getType());
1104   return SE.isAvailableAtLoopEntry(S, L) &&
1105          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1106 }
1107 
1108 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1109                                     ScalarEvolution &SE) {
1110   const SCEV *Zero = SE.getZero(S->getType());
1111   return SE.isAvailableAtLoopEntry(S, L) &&
1112          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1113 }
1114 
1115 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1116                              bool Signed) {
1117   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1118   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1119     APInt::getMinValue(BitWidth);
1120   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1121   return SE.isAvailableAtLoopEntry(S, L) &&
1122          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1123                                      SE.getConstant(Min));
1124 }
1125 
1126 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1127                              bool Signed) {
1128   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1129   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1130     APInt::getMaxValue(BitWidth);
1131   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1132   return SE.isAvailableAtLoopEntry(S, L) &&
1133          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1134                                      SE.getConstant(Max));
1135 }
1136 
1137 //===----------------------------------------------------------------------===//
1138 // rewriteLoopExitValues - Optimize IV users outside the loop.
1139 // As a side effect, reduces the amount of IV processing within the loop.
1140 //===----------------------------------------------------------------------===//
1141 
1142 // Return true if the SCEV expansion generated by the rewriter can replace the
1143 // original value. SCEV guarantees that it produces the same value, but the way
1144 // it is produced may be illegal IR.  Ideally, this function will only be
1145 // called for verification.
1146 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1147   // If an SCEV expression subsumed multiple pointers, its expansion could
1148   // reassociate the GEP changing the base pointer. This is illegal because the
1149   // final address produced by a GEP chain must be inbounds relative to its
1150   // underlying object. Otherwise basic alias analysis, among other things,
1151   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1152   // producing an expression involving multiple pointers. Until then, we must
1153   // bail out here.
1154   //
1155   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1156   // because it understands lcssa phis while SCEV does not.
1157   Value *FromPtr = FromVal;
1158   Value *ToPtr = ToVal;
1159   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1160     FromPtr = GEP->getPointerOperand();
1161 
1162   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1163     ToPtr = GEP->getPointerOperand();
1164 
1165   if (FromPtr != FromVal || ToPtr != ToVal) {
1166     // Quickly check the common case
1167     if (FromPtr == ToPtr)
1168       return true;
1169 
1170     // SCEV may have rewritten an expression that produces the GEP's pointer
1171     // operand. That's ok as long as the pointer operand has the same base
1172     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1173     // base of a recurrence. This handles the case in which SCEV expansion
1174     // converts a pointer type recurrence into a nonrecurrent pointer base
1175     // indexed by an integer recurrence.
1176 
1177     // If the GEP base pointer is a vector of pointers, abort.
1178     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1179       return false;
1180 
1181     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1182     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1183     if (FromBase == ToBase)
1184       return true;
1185 
1186     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1187                       << *FromBase << " != " << *ToBase << "\n");
1188 
1189     return false;
1190   }
1191   return true;
1192 }
1193 
1194 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1195   SmallPtrSet<const Instruction *, 8> Visited;
1196   SmallVector<const Instruction *, 8> WorkList;
1197   Visited.insert(I);
1198   WorkList.push_back(I);
1199   while (!WorkList.empty()) {
1200     const Instruction *Curr = WorkList.pop_back_val();
1201     // This use is outside the loop, nothing to do.
1202     if (!L->contains(Curr))
1203       continue;
1204     // Do we assume it is a "hard" use which will not be eliminated easily?
1205     if (Curr->mayHaveSideEffects())
1206       return true;
1207     // Otherwise, add all its users to worklist.
1208     for (auto U : Curr->users()) {
1209       auto *UI = cast<Instruction>(U);
1210       if (Visited.insert(UI).second)
1211         WorkList.push_back(UI);
1212     }
1213   }
1214   return false;
1215 }
1216 
1217 // Collect information about PHI nodes which can be transformed in
1218 // rewriteLoopExitValues.
1219 struct RewritePhi {
1220   PHINode *PN;               // For which PHI node is this replacement?
1221   unsigned Ith;              // For which incoming value?
1222   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1223   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1224   bool HighCost;               // Is this expansion a high-cost?
1225 
1226   Value *Expansion = nullptr;
1227   bool ValidRewrite = false;
1228 
1229   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1230              bool H)
1231       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1232         HighCost(H) {}
1233 };
1234 
1235 // Check whether it is possible to delete the loop after rewriting exit
1236 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1237 // aggressively.
1238 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1239   BasicBlock *Preheader = L->getLoopPreheader();
1240   // If there is no preheader, the loop will not be deleted.
1241   if (!Preheader)
1242     return false;
1243 
1244   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1245   // We obviate multiple ExitingBlocks case for simplicity.
1246   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1247   // after exit value rewriting, we can enhance the logic here.
1248   SmallVector<BasicBlock *, 4> ExitingBlocks;
1249   L->getExitingBlocks(ExitingBlocks);
1250   SmallVector<BasicBlock *, 8> ExitBlocks;
1251   L->getUniqueExitBlocks(ExitBlocks);
1252   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1253     return false;
1254 
1255   BasicBlock *ExitBlock = ExitBlocks[0];
1256   BasicBlock::iterator BI = ExitBlock->begin();
1257   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1258     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1259 
1260     // If the Incoming value of P is found in RewritePhiSet, we know it
1261     // could be rewritten to use a loop invariant value in transformation
1262     // phase later. Skip it in the loop invariant check below.
1263     bool found = false;
1264     for (const RewritePhi &Phi : RewritePhiSet) {
1265       if (!Phi.ValidRewrite)
1266         continue;
1267       unsigned i = Phi.Ith;
1268       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1269         found = true;
1270         break;
1271       }
1272     }
1273 
1274     Instruction *I;
1275     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1276       if (!L->hasLoopInvariantOperands(I))
1277         return false;
1278 
1279     ++BI;
1280   }
1281 
1282   for (auto *BB : L->blocks())
1283     if (llvm::any_of(*BB, [](Instruction &I) {
1284           return I.mayHaveSideEffects();
1285         }))
1286       return false;
1287 
1288   return true;
1289 }
1290 
1291 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1292                                 ScalarEvolution *SE,
1293                                 const TargetTransformInfo *TTI,
1294                                 SCEVExpander &Rewriter, DominatorTree *DT,
1295                                 ReplaceExitVal ReplaceExitValue,
1296                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1297   // Check a pre-condition.
1298   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1299          "Indvars did not preserve LCSSA!");
1300 
1301   SmallVector<BasicBlock*, 8> ExitBlocks;
1302   L->getUniqueExitBlocks(ExitBlocks);
1303 
1304   SmallVector<RewritePhi, 8> RewritePhiSet;
1305   // Find all values that are computed inside the loop, but used outside of it.
1306   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1307   // the exit blocks of the loop to find them.
1308   for (BasicBlock *ExitBB : ExitBlocks) {
1309     // If there are no PHI nodes in this exit block, then no values defined
1310     // inside the loop are used on this path, skip it.
1311     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1312     if (!PN) continue;
1313 
1314     unsigned NumPreds = PN->getNumIncomingValues();
1315 
1316     // Iterate over all of the PHI nodes.
1317     BasicBlock::iterator BBI = ExitBB->begin();
1318     while ((PN = dyn_cast<PHINode>(BBI++))) {
1319       if (PN->use_empty())
1320         continue; // dead use, don't replace it
1321 
1322       if (!SE->isSCEVable(PN->getType()))
1323         continue;
1324 
1325       // It's necessary to tell ScalarEvolution about this explicitly so that
1326       // it can walk the def-use list and forget all SCEVs, as it may not be
1327       // watching the PHI itself. Once the new exit value is in place, there
1328       // may not be a def-use connection between the loop and every instruction
1329       // which got a SCEVAddRecExpr for that loop.
1330       SE->forgetValue(PN);
1331 
1332       // Iterate over all of the values in all the PHI nodes.
1333       for (unsigned i = 0; i != NumPreds; ++i) {
1334         // If the value being merged in is not integer or is not defined
1335         // in the loop, skip it.
1336         Value *InVal = PN->getIncomingValue(i);
1337         if (!isa<Instruction>(InVal))
1338           continue;
1339 
1340         // If this pred is for a subloop, not L itself, skip it.
1341         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1342           continue; // The Block is in a subloop, skip it.
1343 
1344         // Check that InVal is defined in the loop.
1345         Instruction *Inst = cast<Instruction>(InVal);
1346         if (!L->contains(Inst))
1347           continue;
1348 
1349         // Okay, this instruction has a user outside of the current loop
1350         // and varies predictably *inside* the loop.  Evaluate the value it
1351         // contains when the loop exits, if possible.  We prefer to start with
1352         // expressions which are true for all exits (so as to maximize
1353         // expression reuse by the SCEVExpander), but resort to per-exit
1354         // evaluation if that fails.
1355         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1356         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1357             !SE->isLoopInvariant(ExitValue, L) ||
1358             !isSafeToExpand(ExitValue, *SE)) {
1359           // TODO: This should probably be sunk into SCEV in some way; maybe a
1360           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1361           // most SCEV expressions and other recurrence types (e.g. shift
1362           // recurrences).  Is there existing code we can reuse?
1363           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1364           if (isa<SCEVCouldNotCompute>(ExitCount))
1365             continue;
1366           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1367             if (AddRec->getLoop() == L)
1368               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1369           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1370               !SE->isLoopInvariant(ExitValue, L) ||
1371               !isSafeToExpand(ExitValue, *SE))
1372             continue;
1373         }
1374 
1375         // Computing the value outside of the loop brings no benefit if it is
1376         // definitely used inside the loop in a way which can not be optimized
1377         // away. Avoid doing so unless we know we have a value which computes
1378         // the ExitValue already. TODO: This should be merged into SCEV
1379         // expander to leverage its knowledge of existing expressions.
1380         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1381             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1382           continue;
1383 
1384         // Check if expansions of this SCEV would count as being high cost.
1385         bool HighCost = Rewriter.isHighCostExpansion(
1386             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1387 
1388         // Note that we must not perform expansions until after
1389         // we query *all* the costs, because if we perform temporary expansion
1390         // inbetween, one that we might not intend to keep, said expansion
1391         // *may* affect cost calculation of the the next SCEV's we'll query,
1392         // and next SCEV may errneously get smaller cost.
1393 
1394         // Collect all the candidate PHINodes to be rewritten.
1395         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1396       }
1397     }
1398   }
1399 
1400   // Now that we've done preliminary filtering and billed all the SCEV's,
1401   // we can perform the last sanity check - the expansion must be valid.
1402   for (RewritePhi &Phi : RewritePhiSet) {
1403     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1404                                            Phi.ExpansionPoint);
1405 
1406     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1407                       << *(Phi.Expansion) << '\n'
1408                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1409 
1410     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1411     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1412     if (!Phi.ValidRewrite) {
1413       DeadInsts.push_back(Phi.Expansion);
1414       continue;
1415     }
1416 
1417 #ifndef NDEBUG
1418     // If we reuse an instruction from a loop which is neither L nor one of
1419     // its containing loops, we end up breaking LCSSA form for this loop by
1420     // creating a new use of its instruction.
1421     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1422       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1423         if (EVL != L)
1424           assert(EVL->contains(L) && "LCSSA breach detected!");
1425 #endif
1426   }
1427 
1428   // TODO: after isValidRewrite() is an assertion, evaluate whether
1429   // it is beneficial to change how we calculate high-cost:
1430   // if we have SCEV 'A' which we know we will expand, should we calculate
1431   // the cost of other SCEV's after expanding SCEV 'A',
1432   // thus potentially giving cost bonus to those other SCEV's?
1433 
1434   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1435   int NumReplaced = 0;
1436 
1437   // Transformation.
1438   for (const RewritePhi &Phi : RewritePhiSet) {
1439     if (!Phi.ValidRewrite)
1440       continue;
1441 
1442     PHINode *PN = Phi.PN;
1443     Value *ExitVal = Phi.Expansion;
1444 
1445     // Only do the rewrite when the ExitValue can be expanded cheaply.
1446     // If LoopCanBeDel is true, rewrite exit value aggressively.
1447     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1448       DeadInsts.push_back(ExitVal);
1449       continue;
1450     }
1451 
1452     NumReplaced++;
1453     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1454     PN->setIncomingValue(Phi.Ith, ExitVal);
1455 
1456     // If this instruction is dead now, delete it. Don't do it now to avoid
1457     // invalidating iterators.
1458     if (isInstructionTriviallyDead(Inst, TLI))
1459       DeadInsts.push_back(Inst);
1460 
1461     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1462     if (PN->getNumIncomingValues() == 1 &&
1463         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1464       PN->replaceAllUsesWith(ExitVal);
1465       PN->eraseFromParent();
1466     }
1467   }
1468 
1469   // The insertion point instruction may have been deleted; clear it out
1470   // so that the rewriter doesn't trip over it later.
1471   Rewriter.clearInsertPoint();
1472   return NumReplaced;
1473 }
1474 
1475 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1476 /// \p OrigLoop.
1477 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1478                                         Loop *RemainderLoop, uint64_t UF) {
1479   assert(UF > 0 && "Zero unrolled factor is not supported");
1480   assert(UnrolledLoop != RemainderLoop &&
1481          "Unrolled and Remainder loops are expected to distinct");
1482 
1483   // Get number of iterations in the original scalar loop.
1484   unsigned OrigLoopInvocationWeight = 0;
1485   Optional<unsigned> OrigAverageTripCount =
1486       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1487   if (!OrigAverageTripCount)
1488     return;
1489 
1490   // Calculate number of iterations in unrolled loop.
1491   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1492   // Calculate number of iterations for remainder loop.
1493   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1494 
1495   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1496                             OrigLoopInvocationWeight);
1497   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1498                             OrigLoopInvocationWeight);
1499 }
1500 
1501 /// Utility that implements appending of loops onto a worklist.
1502 /// Loops are added in preorder (analogous for reverse postorder for trees),
1503 /// and the worklist is processed LIFO.
1504 template <typename RangeT>
1505 void llvm::appendReversedLoopsToWorklist(
1506     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1507   // We use an internal worklist to build up the preorder traversal without
1508   // recursion.
1509   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1510 
1511   // We walk the initial sequence of loops in reverse because we generally want
1512   // to visit defs before uses and the worklist is LIFO.
1513   for (Loop *RootL : Loops) {
1514     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1515     assert(PreOrderWorklist.empty() &&
1516            "Must start with an empty preorder walk worklist.");
1517     PreOrderWorklist.push_back(RootL);
1518     do {
1519       Loop *L = PreOrderWorklist.pop_back_val();
1520       PreOrderWorklist.append(L->begin(), L->end());
1521       PreOrderLoops.push_back(L);
1522     } while (!PreOrderWorklist.empty());
1523 
1524     Worklist.insert(std::move(PreOrderLoops));
1525     PreOrderLoops.clear();
1526   }
1527 }
1528 
1529 template <typename RangeT>
1530 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1531                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1532   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1533 }
1534 
1535 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1536     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1537 
1538 template void
1539 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1540                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1541 
1542 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1543                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1544   appendReversedLoopsToWorklist(LI, Worklist);
1545 }
1546 
1547 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1548                       LoopInfo *LI, LPPassManager *LPM) {
1549   Loop &New = *LI->AllocateLoop();
1550   if (PL)
1551     PL->addChildLoop(&New);
1552   else
1553     LI->addTopLevelLoop(&New);
1554 
1555   if (LPM)
1556     LPM->addLoop(New);
1557 
1558   // Add all of the blocks in L to the new loop.
1559   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1560        I != E; ++I)
1561     if (LI->getLoopFor(*I) == L)
1562       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1563 
1564   // Add all of the subloops to the new loop.
1565   for (Loop *I : *L)
1566     cloneLoop(I, &New, VM, LI, LPM);
1567 
1568   return &New;
1569 }
1570 
1571 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1572 /// need to use value-handles because SCEV expansion can invalidate previously
1573 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1574 /// a previous one.
1575 struct PointerBounds {
1576   TrackingVH<Value> Start;
1577   TrackingVH<Value> End;
1578 };
1579 
1580 /// Expand code for the lower and upper bound of the pointer group \p CG
1581 /// in \p TheLoop.  \return the values for the bounds.
1582 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1583                                   Loop *TheLoop, Instruction *Loc,
1584                                   SCEVExpander &Exp, ScalarEvolution *SE) {
1585   // TODO: Add helper to retrieve pointers to CG.
1586   Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1587   const SCEV *Sc = SE->getSCEV(Ptr);
1588 
1589   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1590   LLVMContext &Ctx = Loc->getContext();
1591 
1592   // Use this type for pointer arithmetic.
1593   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1594 
1595   if (SE->isLoopInvariant(Sc, TheLoop)) {
1596     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1597                       << *Ptr << "\n");
1598     // Ptr could be in the loop body. If so, expand a new one at the correct
1599     // location.
1600     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1601     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1602                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1603                         : Ptr;
1604     // We must return a half-open range, which means incrementing Sc.
1605     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1606     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1607     return {NewPtr, NewPtrPlusOne};
1608   } else {
1609     Value *Start = nullptr, *End = nullptr;
1610     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1611     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1612     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1613     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1614                       << "\n");
1615     return {Start, End};
1616   }
1617 }
1618 
1619 /// Turns a collection of checks into a collection of expanded upper and
1620 /// lower bounds for both pointers in the check.
1621 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1622 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1623              Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1624   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1625 
1626   // Here we're relying on the SCEV Expander's cache to only emit code for the
1627   // same bounds once.
1628   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1629             [&](const RuntimePointerCheck &Check) {
1630               PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1631                             Second =
1632                                 expandBounds(Check.second, L, Loc, Exp, SE);
1633               return std::make_pair(First, Second);
1634             });
1635 
1636   return ChecksWithBounds;
1637 }
1638 
1639 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1640     Instruction *Loc, Loop *TheLoop,
1641     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1642     ScalarEvolution *SE) {
1643   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1644   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1645   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1646   SCEVExpander Exp(*SE, DL, "induction");
1647   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1648 
1649   LLVMContext &Ctx = Loc->getContext();
1650   Instruction *FirstInst = nullptr;
1651   IRBuilder<> ChkBuilder(Loc);
1652   // Our instructions might fold to a constant.
1653   Value *MemoryRuntimeCheck = nullptr;
1654 
1655   // FIXME: this helper is currently a duplicate of the one in
1656   // LoopVectorize.cpp.
1657   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1658                          Instruction *Loc) -> Instruction * {
1659     if (FirstInst)
1660       return FirstInst;
1661     if (Instruction *I = dyn_cast<Instruction>(V))
1662       return I->getParent() == Loc->getParent() ? I : nullptr;
1663     return nullptr;
1664   };
1665 
1666   for (const auto &Check : ExpandedChecks) {
1667     const PointerBounds &A = Check.first, &B = Check.second;
1668     // Check if two pointers (A and B) conflict where conflict is computed as:
1669     // start(A) <= end(B) && start(B) <= end(A)
1670     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1671     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1672 
1673     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1674            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1675            "Trying to bounds check pointers with different address spaces");
1676 
1677     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1678     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1679 
1680     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1681     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1682     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1683     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1684 
1685     // [A|B].Start points to the first accessed byte under base [A|B].
1686     // [A|B].End points to the last accessed byte, plus one.
1687     // There is no conflict when the intervals are disjoint:
1688     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1689     //
1690     // bound0 = (B.Start < A.End)
1691     // bound1 = (A.Start < B.End)
1692     //  IsConflict = bound0 & bound1
1693     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1694     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1695     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1696     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1697     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1698     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1699     if (MemoryRuntimeCheck) {
1700       IsConflict =
1701           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1702       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1703     }
1704     MemoryRuntimeCheck = IsConflict;
1705   }
1706 
1707   if (!MemoryRuntimeCheck)
1708     return std::make_pair(nullptr, nullptr);
1709 
1710   // We have to do this trickery because the IRBuilder might fold the check to a
1711   // constant expression in which case there is no Instruction anchored in a
1712   // the block.
1713   Instruction *Check =
1714       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1715   ChkBuilder.Insert(Check, "memcheck.conflict");
1716   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1717   return std::make_pair(FirstInst, Check);
1718 }
1719