1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<bool> ForceReductionIntrinsic(
58     "force-reduction-intrinsics", cl::Hidden,
59     cl::desc("Force creating reduction intrinsics for testing."),
60     cl::init(false));
61 
62 #define DEBUG_TYPE "loop-utils"
63 
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 
67 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
68                                    MemorySSAUpdater *MSSAU,
69                                    bool PreserveLCSSA) {
70   bool Changed = false;
71 
72   // We re-use a vector for the in-loop predecesosrs.
73   SmallVector<BasicBlock *, 4> InLoopPredecessors;
74 
75   auto RewriteExit = [&](BasicBlock *BB) {
76     assert(InLoopPredecessors.empty() &&
77            "Must start with an empty predecessors list!");
78     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
79 
80     // See if there are any non-loop predecessors of this exit block and
81     // keep track of the in-loop predecessors.
82     bool IsDedicatedExit = true;
83     for (auto *PredBB : predecessors(BB))
84       if (L->contains(PredBB)) {
85         if (isa<IndirectBrInst>(PredBB->getTerminator()))
86           // We cannot rewrite exiting edges from an indirectbr.
87           return false;
88         if (isa<CallBrInst>(PredBB->getTerminator()))
89           // We cannot rewrite exiting edges from a callbr.
90           return false;
91 
92         InLoopPredecessors.push_back(PredBB);
93       } else {
94         IsDedicatedExit = false;
95       }
96 
97     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
98 
99     // Nothing to do if this is already a dedicated exit.
100     if (IsDedicatedExit)
101       return false;
102 
103     auto *NewExitBB = SplitBlockPredecessors(
104         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
105 
106     if (!NewExitBB)
107       LLVM_DEBUG(
108           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
109                  << *L << "\n");
110     else
111       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
112                         << NewExitBB->getName() << "\n");
113     return true;
114   };
115 
116   // Walk the exit blocks directly rather than building up a data structure for
117   // them, but only visit each one once.
118   SmallPtrSet<BasicBlock *, 4> Visited;
119   for (auto *BB : L->blocks())
120     for (auto *SuccBB : successors(BB)) {
121       // We're looking for exit blocks so skip in-loop successors.
122       if (L->contains(SuccBB))
123         continue;
124 
125       // Visit each exit block exactly once.
126       if (!Visited.insert(SuccBB).second)
127         continue;
128 
129       Changed |= RewriteExit(SuccBB);
130     }
131 
132   return Changed;
133 }
134 
135 /// Returns the instructions that use values defined in the loop.
136 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
137   SmallVector<Instruction *, 8> UsedOutside;
138 
139   for (auto *Block : L->getBlocks())
140     // FIXME: I believe that this could use copy_if if the Inst reference could
141     // be adapted into a pointer.
142     for (auto &Inst : *Block) {
143       auto Users = Inst.users();
144       if (any_of(Users, [&](User *U) {
145             auto *Use = cast<Instruction>(U);
146             return !L->contains(Use->getParent());
147           }))
148         UsedOutside.push_back(&Inst);
149     }
150 
151   return UsedOutside;
152 }
153 
154 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
155   // By definition, all loop passes need the LoopInfo analysis and the
156   // Dominator tree it depends on. Because they all participate in the loop
157   // pass manager, they must also preserve these.
158   AU.addRequired<DominatorTreeWrapperPass>();
159   AU.addPreserved<DominatorTreeWrapperPass>();
160   AU.addRequired<LoopInfoWrapperPass>();
161   AU.addPreserved<LoopInfoWrapperPass>();
162 
163   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
164   // here because users shouldn't directly get them from this header.
165   extern char &LoopSimplifyID;
166   extern char &LCSSAID;
167   AU.addRequiredID(LoopSimplifyID);
168   AU.addPreservedID(LoopSimplifyID);
169   AU.addRequiredID(LCSSAID);
170   AU.addPreservedID(LCSSAID);
171   // This is used in the LPPassManager to perform LCSSA verification on passes
172   // which preserve lcssa form
173   AU.addRequired<LCSSAVerificationPass>();
174   AU.addPreserved<LCSSAVerificationPass>();
175 
176   // Loop passes are designed to run inside of a loop pass manager which means
177   // that any function analyses they require must be required by the first loop
178   // pass in the manager (so that it is computed before the loop pass manager
179   // runs) and preserved by all loop pasess in the manager. To make this
180   // reasonably robust, the set needed for most loop passes is maintained here.
181   // If your loop pass requires an analysis not listed here, you will need to
182   // carefully audit the loop pass manager nesting structure that results.
183   AU.addRequired<AAResultsWrapperPass>();
184   AU.addPreserved<AAResultsWrapperPass>();
185   AU.addPreserved<BasicAAWrapperPass>();
186   AU.addPreserved<GlobalsAAWrapperPass>();
187   AU.addPreserved<SCEVAAWrapperPass>();
188   AU.addRequired<ScalarEvolutionWrapperPass>();
189   AU.addPreserved<ScalarEvolutionWrapperPass>();
190   // FIXME: When all loop passes preserve MemorySSA, it can be required and
191   // preserved here instead of the individual handling in each pass.
192 }
193 
194 /// Manually defined generic "LoopPass" dependency initialization. This is used
195 /// to initialize the exact set of passes from above in \c
196 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
197 /// with:
198 ///
199 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
200 ///
201 /// As-if "LoopPass" were a pass.
202 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
203   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
206   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
208   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
209   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
210   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
211   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
212   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
213 }
214 
215 /// Create MDNode for input string.
216 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
217   LLVMContext &Context = TheLoop->getHeader()->getContext();
218   Metadata *MDs[] = {
219       MDString::get(Context, Name),
220       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
221   return MDNode::get(Context, MDs);
222 }
223 
224 /// Set input string into loop metadata by keeping other values intact.
225 /// If the string is already in loop metadata update value if it is
226 /// different.
227 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
228                                    unsigned V) {
229   SmallVector<Metadata *, 4> MDs(1);
230   // If the loop already has metadata, retain it.
231   MDNode *LoopID = TheLoop->getLoopID();
232   if (LoopID) {
233     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
234       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
235       // If it is of form key = value, try to parse it.
236       if (Node->getNumOperands() == 2) {
237         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
238         if (S && S->getString().equals(StringMD)) {
239           ConstantInt *IntMD =
240               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
241           if (IntMD && IntMD->getSExtValue() == V)
242             // It is already in place. Do nothing.
243             return;
244           // We need to update the value, so just skip it here and it will
245           // be added after copying other existed nodes.
246           continue;
247         }
248       }
249       MDs.push_back(Node);
250     }
251   }
252   // Add new metadata.
253   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
254   // Replace current metadata node with new one.
255   LLVMContext &Context = TheLoop->getHeader()->getContext();
256   MDNode *NewLoopID = MDNode::get(Context, MDs);
257   // Set operand 0 to refer to the loop id itself.
258   NewLoopID->replaceOperandWith(0, NewLoopID);
259   TheLoop->setLoopID(NewLoopID);
260 }
261 
262 /// Find string metadata for loop
263 ///
264 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
265 /// operand or null otherwise.  If the string metadata is not found return
266 /// Optional's not-a-value.
267 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
268                                                             StringRef Name) {
269   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
270   if (!MD)
271     return None;
272   switch (MD->getNumOperands()) {
273   case 1:
274     return nullptr;
275   case 2:
276     return &MD->getOperand(1);
277   default:
278     llvm_unreachable("loop metadata has 0 or 1 operand");
279   }
280 }
281 
282 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
283                                                    StringRef Name) {
284   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
285   if (!MD)
286     return None;
287   switch (MD->getNumOperands()) {
288   case 1:
289     // When the value is absent it is interpreted as 'attribute set'.
290     return true;
291   case 2:
292     if (ConstantInt *IntMD =
293             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
294       return IntMD->getZExtValue();
295     return true;
296   }
297   llvm_unreachable("unexpected number of options");
298 }
299 
300 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
301   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
302 }
303 
304 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
305                                                       StringRef Name) {
306   const MDOperand *AttrMD =
307       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
308   if (!AttrMD)
309     return None;
310 
311   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
312   if (!IntMD)
313     return None;
314 
315   return IntMD->getSExtValue();
316 }
317 
318 Optional<MDNode *> llvm::makeFollowupLoopID(
319     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
320     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
321   if (!OrigLoopID) {
322     if (AlwaysNew)
323       return nullptr;
324     return None;
325   }
326 
327   assert(OrigLoopID->getOperand(0) == OrigLoopID);
328 
329   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
330   bool InheritSomeAttrs =
331       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
332   SmallVector<Metadata *, 8> MDs;
333   MDs.push_back(nullptr);
334 
335   bool Changed = false;
336   if (InheritAllAttrs || InheritSomeAttrs) {
337     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
338       MDNode *Op = cast<MDNode>(Existing.get());
339 
340       auto InheritThisAttribute = [InheritSomeAttrs,
341                                    InheritOptionsExceptPrefix](MDNode *Op) {
342         if (!InheritSomeAttrs)
343           return false;
344 
345         // Skip malformatted attribute metadata nodes.
346         if (Op->getNumOperands() == 0)
347           return true;
348         Metadata *NameMD = Op->getOperand(0).get();
349         if (!isa<MDString>(NameMD))
350           return true;
351         StringRef AttrName = cast<MDString>(NameMD)->getString();
352 
353         // Do not inherit excluded attributes.
354         return !AttrName.startswith(InheritOptionsExceptPrefix);
355       };
356 
357       if (InheritThisAttribute(Op))
358         MDs.push_back(Op);
359       else
360         Changed = true;
361     }
362   } else {
363     // Modified if we dropped at least one attribute.
364     Changed = OrigLoopID->getNumOperands() > 1;
365   }
366 
367   bool HasAnyFollowup = false;
368   for (StringRef OptionName : FollowupOptions) {
369     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
370     if (!FollowupNode)
371       continue;
372 
373     HasAnyFollowup = true;
374     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
375       MDs.push_back(Option.get());
376       Changed = true;
377     }
378   }
379 
380   // Attributes of the followup loop not specified explicity, so signal to the
381   // transformation pass to add suitable attributes.
382   if (!AlwaysNew && !HasAnyFollowup)
383     return None;
384 
385   // If no attributes were added or remove, the previous loop Id can be reused.
386   if (!AlwaysNew && !Changed)
387     return OrigLoopID;
388 
389   // No attributes is equivalent to having no !llvm.loop metadata at all.
390   if (MDs.size() == 1)
391     return nullptr;
392 
393   // Build the new loop ID.
394   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
395   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
396   return FollowupLoopID;
397 }
398 
399 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
400   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
401 }
402 
403 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
404   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
405 }
406 
407 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
408   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
409     return TM_SuppressedByUser;
410 
411   Optional<int> Count =
412       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
413   if (Count.hasValue())
414     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
415 
416   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
417     return TM_ForcedByUser;
418 
419   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
420     return TM_ForcedByUser;
421 
422   if (hasDisableAllTransformsHint(L))
423     return TM_Disable;
424 
425   return TM_Unspecified;
426 }
427 
428 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
429   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
430     return TM_SuppressedByUser;
431 
432   Optional<int> Count =
433       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
434   if (Count.hasValue())
435     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
436 
437   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
438     return TM_ForcedByUser;
439 
440   if (hasDisableAllTransformsHint(L))
441     return TM_Disable;
442 
443   return TM_Unspecified;
444 }
445 
446 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
447   Optional<bool> Enable =
448       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
449 
450   if (Enable == false)
451     return TM_SuppressedByUser;
452 
453   Optional<int> VectorizeWidth =
454       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
455   Optional<int> InterleaveCount =
456       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
457 
458   // 'Forcing' vector width and interleave count to one effectively disables
459   // this tranformation.
460   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
461     return TM_SuppressedByUser;
462 
463   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
464     return TM_Disable;
465 
466   if (Enable == true)
467     return TM_ForcedByUser;
468 
469   if (VectorizeWidth == 1 && InterleaveCount == 1)
470     return TM_Disable;
471 
472   if (VectorizeWidth > 1 || InterleaveCount > 1)
473     return TM_Enable;
474 
475   if (hasDisableAllTransformsHint(L))
476     return TM_Disable;
477 
478   return TM_Unspecified;
479 }
480 
481 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
482   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
483     return TM_ForcedByUser;
484 
485   if (hasDisableAllTransformsHint(L))
486     return TM_Disable;
487 
488   return TM_Unspecified;
489 }
490 
491 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
492   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
493     return TM_SuppressedByUser;
494 
495   if (hasDisableAllTransformsHint(L))
496     return TM_Disable;
497 
498   return TM_Unspecified;
499 }
500 
501 /// Does a BFS from a given node to all of its children inside a given loop.
502 /// The returned vector of nodes includes the starting point.
503 SmallVector<DomTreeNode *, 16>
504 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
505   SmallVector<DomTreeNode *, 16> Worklist;
506   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
507     // Only include subregions in the top level loop.
508     BasicBlock *BB = DTN->getBlock();
509     if (CurLoop->contains(BB))
510       Worklist.push_back(DTN);
511   };
512 
513   AddRegionToWorklist(N);
514 
515   for (size_t I = 0; I < Worklist.size(); I++) {
516     for (DomTreeNode *Child : Worklist[I]->children())
517       AddRegionToWorklist(Child);
518   }
519 
520   return Worklist;
521 }
522 
523 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
524                           LoopInfo *LI, MemorySSA *MSSA) {
525   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
526   auto *Preheader = L->getLoopPreheader();
527   assert(Preheader && "Preheader should exist!");
528 
529   std::unique_ptr<MemorySSAUpdater> MSSAU;
530   if (MSSA)
531     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
532 
533   // Now that we know the removal is safe, remove the loop by changing the
534   // branch from the preheader to go to the single exit block.
535   //
536   // Because we're deleting a large chunk of code at once, the sequence in which
537   // we remove things is very important to avoid invalidation issues.
538 
539   // Tell ScalarEvolution that the loop is deleted. Do this before
540   // deleting the loop so that ScalarEvolution can look at the loop
541   // to determine what it needs to clean up.
542   if (SE)
543     SE->forgetLoop(L);
544 
545   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
546   assert(OldBr && "Preheader must end with a branch");
547   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
548   // Connect the preheader to the exit block. Keep the old edge to the header
549   // around to perform the dominator tree update in two separate steps
550   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
551   // preheader -> header.
552   //
553   //
554   // 0.  Preheader          1.  Preheader           2.  Preheader
555   //        |                    |   |                   |
556   //        V                    |   V                   |
557   //      Header <--\            | Header <--\           | Header <--\
558   //       |  |     |            |  |  |     |           |  |  |     |
559   //       |  V     |            |  |  V     |           |  |  V     |
560   //       | Body --/            |  | Body --/           |  | Body --/
561   //       V                     V  V                    V  V
562   //      Exit                   Exit                    Exit
563   //
564   // By doing this is two separate steps we can perform the dominator tree
565   // update without using the batch update API.
566   //
567   // Even when the loop is never executed, we cannot remove the edge from the
568   // source block to the exit block. Consider the case where the unexecuted loop
569   // branches back to an outer loop. If we deleted the loop and removed the edge
570   // coming to this inner loop, this will break the outer loop structure (by
571   // deleting the backedge of the outer loop). If the outer loop is indeed a
572   // non-loop, it will be deleted in a future iteration of loop deletion pass.
573   IRBuilder<> Builder(OldBr);
574 
575   auto *ExitBlock = L->getUniqueExitBlock();
576   if (ExitBlock) {
577     assert(ExitBlock && "Should have a unique exit block!");
578     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
579 
580     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
581     // Remove the old branch. The conditional branch becomes a new terminator.
582     OldBr->eraseFromParent();
583 
584     // Rewrite phis in the exit block to get their inputs from the Preheader
585     // instead of the exiting block.
586     for (PHINode &P : ExitBlock->phis()) {
587       // Set the zero'th element of Phi to be from the preheader and remove all
588       // other incoming values. Given the loop has dedicated exits, all other
589       // incoming values must be from the exiting blocks.
590       int PredIndex = 0;
591       P.setIncomingBlock(PredIndex, Preheader);
592       // Removes all incoming values from all other exiting blocks (including
593       // duplicate values from an exiting block).
594       // Nuke all entries except the zero'th entry which is the preheader entry.
595       // NOTE! We need to remove Incoming Values in the reverse order as done
596       // below, to keep the indices valid for deletion (removeIncomingValues
597       // updates getNumIncomingValues and shifts all values down into the
598       // operand being deleted).
599       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
600         P.removeIncomingValue(e - i, false);
601 
602       assert((P.getNumIncomingValues() == 1 &&
603               P.getIncomingBlock(PredIndex) == Preheader) &&
604              "Should have exactly one value and that's from the preheader!");
605     }
606 
607     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
608     if (DT) {
609       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
610       if (MSSA) {
611         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
612                             *DT);
613         if (VerifyMemorySSA)
614           MSSA->verifyMemorySSA();
615       }
616     }
617 
618     // Disconnect the loop body by branching directly to its exit.
619     Builder.SetInsertPoint(Preheader->getTerminator());
620     Builder.CreateBr(ExitBlock);
621     // Remove the old branch.
622     Preheader->getTerminator()->eraseFromParent();
623 
624     if (DT) {
625       DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
626       if (MSSA) {
627         MSSAU->applyUpdates(
628             {{DominatorTree::Delete, Preheader, L->getHeader()}}, *DT);
629         SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
630                                                      L->block_end());
631         MSSAU->removeBlocks(DeadBlockSet);
632         if (VerifyMemorySSA)
633           MSSA->verifyMemorySSA();
634       }
635     }
636   } else {
637     assert(L->hasNoExitBlocks() &&
638            "Loop should have either zero or one exit blocks.");
639     Builder.SetInsertPoint(OldBr);
640     Builder.CreateUnreachable();
641     Preheader->getTerminator()->eraseFromParent();
642   }
643 
644   // Use a map to unique and a vector to guarantee deterministic ordering.
645   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
646   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
647 
648   if (ExitBlock) {
649     // Given LCSSA form is satisfied, we should not have users of instructions
650     // within the dead loop outside of the loop. However, LCSSA doesn't take
651     // unreachable uses into account. We handle them here.
652     // We could do it after drop all references (in this case all users in the
653     // loop will be already eliminated and we have less work to do but according
654     // to API doc of User::dropAllReferences only valid operation after dropping
655     // references, is deletion. So let's substitute all usages of
656     // instruction from the loop with undef value of corresponding type first.
657     for (auto *Block : L->blocks())
658       for (Instruction &I : *Block) {
659         auto *Undef = UndefValue::get(I.getType());
660         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
661              UI != E;) {
662           Use &U = *UI;
663           ++UI;
664           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
665             if (L->contains(Usr->getParent()))
666               continue;
667           // If we have a DT then we can check that uses outside a loop only in
668           // unreachable block.
669           if (DT)
670             assert(!DT->isReachableFromEntry(U) &&
671                    "Unexpected user in reachable block");
672           U.set(Undef);
673         }
674         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
675         if (!DVI)
676           continue;
677         auto Key =
678             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
679         if (Key != DeadDebugSet.end())
680           continue;
681         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
682         DeadDebugInst.push_back(DVI);
683       }
684 
685     // After the loop has been deleted all the values defined and modified
686     // inside the loop are going to be unavailable.
687     // Since debug values in the loop have been deleted, inserting an undef
688     // dbg.value truncates the range of any dbg.value before the loop where the
689     // loop used to be. This is particularly important for constant values.
690     DIBuilder DIB(*ExitBlock->getModule());
691     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
692     assert(InsertDbgValueBefore &&
693            "There should be a non-PHI instruction in exit block, else these "
694            "instructions will have no parent.");
695     for (auto *DVI : DeadDebugInst)
696       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
697                                   DVI->getVariable(), DVI->getExpression(),
698                                   DVI->getDebugLoc(), InsertDbgValueBefore);
699   }
700 
701   // Remove the block from the reference counting scheme, so that we can
702   // delete it freely later.
703   for (auto *Block : L->blocks())
704     Block->dropAllReferences();
705 
706   if (MSSA && VerifyMemorySSA)
707     MSSA->verifyMemorySSA();
708 
709   if (LI) {
710     // Erase the instructions and the blocks without having to worry
711     // about ordering because we already dropped the references.
712     // NOTE: This iteration is safe because erasing the block does not remove
713     // its entry from the loop's block list.  We do that in the next section.
714     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
715          LpI != LpE; ++LpI)
716       (*LpI)->eraseFromParent();
717 
718     // Finally, the blocks from loopinfo.  This has to happen late because
719     // otherwise our loop iterators won't work.
720 
721     SmallPtrSet<BasicBlock *, 8> blocks;
722     blocks.insert(L->block_begin(), L->block_end());
723     for (BasicBlock *BB : blocks)
724       LI->removeBlock(BB);
725 
726     // The last step is to update LoopInfo now that we've eliminated this loop.
727     // Note: LoopInfo::erase remove the given loop and relink its subloops with
728     // its parent. While removeLoop/removeChildLoop remove the given loop but
729     // not relink its subloops, which is what we want.
730     if (Loop *ParentLoop = L->getParentLoop()) {
731       Loop::iterator I = find(*ParentLoop, L);
732       assert(I != ParentLoop->end() && "Couldn't find loop");
733       ParentLoop->removeChildLoop(I);
734     } else {
735       Loop::iterator I = find(*LI, L);
736       assert(I != LI->end() && "Couldn't find loop");
737       LI->removeLoop(I);
738     }
739     LI->destroy(L);
740   }
741 }
742 
743 /// Checks if \p L has single exit through latch block except possibly
744 /// "deoptimizing" exits. Returns branch instruction terminating the loop
745 /// latch if above check is successful, nullptr otherwise.
746 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
747   BasicBlock *Latch = L->getLoopLatch();
748   if (!Latch)
749     return nullptr;
750 
751   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
752   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
753     return nullptr;
754 
755   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
756           LatchBR->getSuccessor(1) == L->getHeader()) &&
757          "At least one edge out of the latch must go to the header");
758 
759   SmallVector<BasicBlock *, 4> ExitBlocks;
760   L->getUniqueNonLatchExitBlocks(ExitBlocks);
761   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
762         return !EB->getTerminatingDeoptimizeCall();
763       }))
764     return nullptr;
765 
766   return LatchBR;
767 }
768 
769 Optional<unsigned>
770 llvm::getLoopEstimatedTripCount(Loop *L,
771                                 unsigned *EstimatedLoopInvocationWeight) {
772   // Support loops with an exiting latch and other existing exists only
773   // deoptimize.
774   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
775   if (!LatchBranch)
776     return None;
777 
778   // To estimate the number of times the loop body was executed, we want to
779   // know the number of times the backedge was taken, vs. the number of times
780   // we exited the loop.
781   uint64_t BackedgeTakenWeight, LatchExitWeight;
782   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
783     return None;
784 
785   if (LatchBranch->getSuccessor(0) != L->getHeader())
786     std::swap(BackedgeTakenWeight, LatchExitWeight);
787 
788   if (!LatchExitWeight)
789     return None;
790 
791   if (EstimatedLoopInvocationWeight)
792     *EstimatedLoopInvocationWeight = LatchExitWeight;
793 
794   // Estimated backedge taken count is a ratio of the backedge taken weight by
795   // the weight of the edge exiting the loop, rounded to nearest.
796   uint64_t BackedgeTakenCount =
797       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
798   // Estimated trip count is one plus estimated backedge taken count.
799   return BackedgeTakenCount + 1;
800 }
801 
802 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
803                                      unsigned EstimatedloopInvocationWeight) {
804   // Support loops with an exiting latch and other existing exists only
805   // deoptimize.
806   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
807   if (!LatchBranch)
808     return false;
809 
810   // Calculate taken and exit weights.
811   unsigned LatchExitWeight = 0;
812   unsigned BackedgeTakenWeight = 0;
813 
814   if (EstimatedTripCount > 0) {
815     LatchExitWeight = EstimatedloopInvocationWeight;
816     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
817   }
818 
819   // Make a swap if back edge is taken when condition is "false".
820   if (LatchBranch->getSuccessor(0) != L->getHeader())
821     std::swap(BackedgeTakenWeight, LatchExitWeight);
822 
823   MDBuilder MDB(LatchBranch->getContext());
824 
825   // Set/Update profile metadata.
826   LatchBranch->setMetadata(
827       LLVMContext::MD_prof,
828       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
829 
830   return true;
831 }
832 
833 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
834                                               ScalarEvolution &SE) {
835   Loop *OuterL = InnerLoop->getParentLoop();
836   if (!OuterL)
837     return true;
838 
839   // Get the backedge taken count for the inner loop
840   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
841   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
842   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
843       !InnerLoopBECountSC->getType()->isIntegerTy())
844     return false;
845 
846   // Get whether count is invariant to the outer loop
847   ScalarEvolution::LoopDisposition LD =
848       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
849   if (LD != ScalarEvolution::LoopInvariant)
850     return false;
851 
852   return true;
853 }
854 
855 Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
856                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
857                             Value *Left, Value *Right) {
858   CmpInst::Predicate P = CmpInst::ICMP_NE;
859   switch (RK) {
860   default:
861     llvm_unreachable("Unknown min/max recurrence kind");
862   case RecurrenceDescriptor::MRK_UIntMin:
863     P = CmpInst::ICMP_ULT;
864     break;
865   case RecurrenceDescriptor::MRK_UIntMax:
866     P = CmpInst::ICMP_UGT;
867     break;
868   case RecurrenceDescriptor::MRK_SIntMin:
869     P = CmpInst::ICMP_SLT;
870     break;
871   case RecurrenceDescriptor::MRK_SIntMax:
872     P = CmpInst::ICMP_SGT;
873     break;
874   case RecurrenceDescriptor::MRK_FloatMin:
875     P = CmpInst::FCMP_OLT;
876     break;
877   case RecurrenceDescriptor::MRK_FloatMax:
878     P = CmpInst::FCMP_OGT;
879     break;
880   }
881 
882   // We only match FP sequences that are 'fast', so we can unconditionally
883   // set it on any generated instructions.
884   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
885   FastMathFlags FMF;
886   FMF.setFast();
887   Builder.setFastMathFlags(FMF);
888   Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
889   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
890   return Select;
891 }
892 
893 // Helper to generate an ordered reduction.
894 Value *
895 llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
896                           unsigned Op,
897                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
898                           ArrayRef<Value *> RedOps) {
899   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
900 
901   // Extract and apply reduction ops in ascending order:
902   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
903   Value *Result = Acc;
904   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
905     Value *Ext =
906         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
907 
908     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
909       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
910                                    "bin.rdx");
911     } else {
912       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
913              "Invalid min/max");
914       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
915     }
916 
917     if (!RedOps.empty())
918       propagateIRFlags(Result, RedOps);
919   }
920 
921   return Result;
922 }
923 
924 // Helper to generate a log2 shuffle reduction.
925 Value *
926 llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
927                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
928                           ArrayRef<Value *> RedOps) {
929   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
930   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
931   // and vector ops, reducing the set of values being computed by half each
932   // round.
933   assert(isPowerOf2_32(VF) &&
934          "Reduction emission only supported for pow2 vectors!");
935   Value *TmpVec = Src;
936   SmallVector<int, 32> ShuffleMask(VF);
937   for (unsigned i = VF; i != 1; i >>= 1) {
938     // Move the upper half of the vector to the lower half.
939     for (unsigned j = 0; j != i / 2; ++j)
940       ShuffleMask[j] = i / 2 + j;
941 
942     // Fill the rest of the mask with undef.
943     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
944 
945     Value *Shuf = Builder.CreateShuffleVector(
946         TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf");
947 
948     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
949       // The builder propagates its fast-math-flags setting.
950       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
951                                    "bin.rdx");
952     } else {
953       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
954              "Invalid min/max");
955       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
956     }
957     if (!RedOps.empty())
958       propagateIRFlags(TmpVec, RedOps);
959 
960     // We may compute the reassociated scalar ops in a way that does not
961     // preserve nsw/nuw etc. Conservatively, drop those flags.
962     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
963       ReductionInst->dropPoisonGeneratingFlags();
964   }
965   // The result is in the first element of the vector.
966   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
967 }
968 
969 /// Create a simple vector reduction specified by an opcode and some
970 /// flags (if generating min/max reductions).
971 Value *llvm::createSimpleTargetReduction(
972     IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
973     Value *Src, TargetTransformInfo::ReductionFlags Flags,
974     ArrayRef<Value *> RedOps) {
975   auto *SrcVTy = cast<VectorType>(Src->getType());
976 
977   std::function<Value *()> BuildFunc;
978   using RD = RecurrenceDescriptor;
979   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
980 
981   switch (Opcode) {
982   case Instruction::Add:
983     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
984     break;
985   case Instruction::Mul:
986     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
987     break;
988   case Instruction::And:
989     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
990     break;
991   case Instruction::Or:
992     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
993     break;
994   case Instruction::Xor:
995     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
996     break;
997   case Instruction::FAdd:
998     BuildFunc = [&]() {
999       auto Rdx = Builder.CreateFAddReduce(
1000           ConstantFP::getNegativeZero(SrcVTy->getElementType()), Src);
1001       return Rdx;
1002     };
1003     break;
1004   case Instruction::FMul:
1005     BuildFunc = [&]() {
1006       Type *Ty = SrcVTy->getElementType();
1007       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
1008       return Rdx;
1009     };
1010     break;
1011   case Instruction::ICmp:
1012     if (Flags.IsMaxOp) {
1013       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1014       BuildFunc = [&]() {
1015         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1016       };
1017     } else {
1018       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1019       BuildFunc = [&]() {
1020         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1021       };
1022     }
1023     break;
1024   case Instruction::FCmp:
1025     if (Flags.IsMaxOp) {
1026       MinMaxKind = RD::MRK_FloatMax;
1027       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1028     } else {
1029       MinMaxKind = RD::MRK_FloatMin;
1030       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1031     }
1032     break;
1033   default:
1034     llvm_unreachable("Unhandled opcode");
1035     break;
1036   }
1037   if (ForceReductionIntrinsic ||
1038       TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1039     return BuildFunc();
1040   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1041 }
1042 
1043 /// Create a vector reduction using a given recurrence descriptor.
1044 Value *llvm::createTargetReduction(IRBuilderBase &B,
1045                                    const TargetTransformInfo *TTI,
1046                                    RecurrenceDescriptor &Desc, Value *Src,
1047                                    bool NoNaN) {
1048   // TODO: Support in-order reductions based on the recurrence descriptor.
1049   using RD = RecurrenceDescriptor;
1050   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1051   TargetTransformInfo::ReductionFlags Flags;
1052   Flags.NoNaN = NoNaN;
1053 
1054   // All ops in the reduction inherit fast-math-flags from the recurrence
1055   // descriptor.
1056   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1057   B.setFastMathFlags(Desc.getFastMathFlags());
1058 
1059   switch (RecKind) {
1060   case RD::RK_FloatAdd:
1061     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1062   case RD::RK_FloatMult:
1063     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1064   case RD::RK_IntegerAdd:
1065     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1066   case RD::RK_IntegerMult:
1067     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1068   case RD::RK_IntegerAnd:
1069     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1070   case RD::RK_IntegerOr:
1071     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1072   case RD::RK_IntegerXor:
1073     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1074   case RD::RK_IntegerMinMax: {
1075     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1076     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1077     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1078     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1079   }
1080   case RD::RK_FloatMinMax: {
1081     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1082     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1083   }
1084   default:
1085     llvm_unreachable("Unhandled RecKind");
1086   }
1087 }
1088 
1089 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1090   auto *VecOp = dyn_cast<Instruction>(I);
1091   if (!VecOp)
1092     return;
1093   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1094                                             : dyn_cast<Instruction>(OpValue);
1095   if (!Intersection)
1096     return;
1097   const unsigned Opcode = Intersection->getOpcode();
1098   VecOp->copyIRFlags(Intersection);
1099   for (auto *V : VL) {
1100     auto *Instr = dyn_cast<Instruction>(V);
1101     if (!Instr)
1102       continue;
1103     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1104       VecOp->andIRFlags(V);
1105   }
1106 }
1107 
1108 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1109                                  ScalarEvolution &SE) {
1110   const SCEV *Zero = SE.getZero(S->getType());
1111   return SE.isAvailableAtLoopEntry(S, L) &&
1112          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1113 }
1114 
1115 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1116                                     ScalarEvolution &SE) {
1117   const SCEV *Zero = SE.getZero(S->getType());
1118   return SE.isAvailableAtLoopEntry(S, L) &&
1119          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1120 }
1121 
1122 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1123                              bool Signed) {
1124   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1125   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1126     APInt::getMinValue(BitWidth);
1127   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1128   return SE.isAvailableAtLoopEntry(S, L) &&
1129          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1130                                      SE.getConstant(Min));
1131 }
1132 
1133 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1134                              bool Signed) {
1135   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1136   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1137     APInt::getMaxValue(BitWidth);
1138   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1139   return SE.isAvailableAtLoopEntry(S, L) &&
1140          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1141                                      SE.getConstant(Max));
1142 }
1143 
1144 //===----------------------------------------------------------------------===//
1145 // rewriteLoopExitValues - Optimize IV users outside the loop.
1146 // As a side effect, reduces the amount of IV processing within the loop.
1147 //===----------------------------------------------------------------------===//
1148 
1149 // Return true if the SCEV expansion generated by the rewriter can replace the
1150 // original value. SCEV guarantees that it produces the same value, but the way
1151 // it is produced may be illegal IR.  Ideally, this function will only be
1152 // called for verification.
1153 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1154   // If an SCEV expression subsumed multiple pointers, its expansion could
1155   // reassociate the GEP changing the base pointer. This is illegal because the
1156   // final address produced by a GEP chain must be inbounds relative to its
1157   // underlying object. Otherwise basic alias analysis, among other things,
1158   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1159   // producing an expression involving multiple pointers. Until then, we must
1160   // bail out here.
1161   //
1162   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1163   // because it understands lcssa phis while SCEV does not.
1164   Value *FromPtr = FromVal;
1165   Value *ToPtr = ToVal;
1166   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1167     FromPtr = GEP->getPointerOperand();
1168 
1169   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1170     ToPtr = GEP->getPointerOperand();
1171 
1172   if (FromPtr != FromVal || ToPtr != ToVal) {
1173     // Quickly check the common case
1174     if (FromPtr == ToPtr)
1175       return true;
1176 
1177     // SCEV may have rewritten an expression that produces the GEP's pointer
1178     // operand. That's ok as long as the pointer operand has the same base
1179     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1180     // base of a recurrence. This handles the case in which SCEV expansion
1181     // converts a pointer type recurrence into a nonrecurrent pointer base
1182     // indexed by an integer recurrence.
1183 
1184     // If the GEP base pointer is a vector of pointers, abort.
1185     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1186       return false;
1187 
1188     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1189     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1190     if (FromBase == ToBase)
1191       return true;
1192 
1193     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1194                       << *FromBase << " != " << *ToBase << "\n");
1195 
1196     return false;
1197   }
1198   return true;
1199 }
1200 
1201 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1202   SmallPtrSet<const Instruction *, 8> Visited;
1203   SmallVector<const Instruction *, 8> WorkList;
1204   Visited.insert(I);
1205   WorkList.push_back(I);
1206   while (!WorkList.empty()) {
1207     const Instruction *Curr = WorkList.pop_back_val();
1208     // This use is outside the loop, nothing to do.
1209     if (!L->contains(Curr))
1210       continue;
1211     // Do we assume it is a "hard" use which will not be eliminated easily?
1212     if (Curr->mayHaveSideEffects())
1213       return true;
1214     // Otherwise, add all its users to worklist.
1215     for (auto U : Curr->users()) {
1216       auto *UI = cast<Instruction>(U);
1217       if (Visited.insert(UI).second)
1218         WorkList.push_back(UI);
1219     }
1220   }
1221   return false;
1222 }
1223 
1224 // Collect information about PHI nodes which can be transformed in
1225 // rewriteLoopExitValues.
1226 struct RewritePhi {
1227   PHINode *PN;               // For which PHI node is this replacement?
1228   unsigned Ith;              // For which incoming value?
1229   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1230   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1231   bool HighCost;               // Is this expansion a high-cost?
1232 
1233   Value *Expansion = nullptr;
1234   bool ValidRewrite = false;
1235 
1236   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1237              bool H)
1238       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1239         HighCost(H) {}
1240 };
1241 
1242 // Check whether it is possible to delete the loop after rewriting exit
1243 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1244 // aggressively.
1245 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1246   BasicBlock *Preheader = L->getLoopPreheader();
1247   // If there is no preheader, the loop will not be deleted.
1248   if (!Preheader)
1249     return false;
1250 
1251   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1252   // We obviate multiple ExitingBlocks case for simplicity.
1253   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1254   // after exit value rewriting, we can enhance the logic here.
1255   SmallVector<BasicBlock *, 4> ExitingBlocks;
1256   L->getExitingBlocks(ExitingBlocks);
1257   SmallVector<BasicBlock *, 8> ExitBlocks;
1258   L->getUniqueExitBlocks(ExitBlocks);
1259   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1260     return false;
1261 
1262   BasicBlock *ExitBlock = ExitBlocks[0];
1263   BasicBlock::iterator BI = ExitBlock->begin();
1264   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1265     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1266 
1267     // If the Incoming value of P is found in RewritePhiSet, we know it
1268     // could be rewritten to use a loop invariant value in transformation
1269     // phase later. Skip it in the loop invariant check below.
1270     bool found = false;
1271     for (const RewritePhi &Phi : RewritePhiSet) {
1272       if (!Phi.ValidRewrite)
1273         continue;
1274       unsigned i = Phi.Ith;
1275       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1276         found = true;
1277         break;
1278       }
1279     }
1280 
1281     Instruction *I;
1282     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1283       if (!L->hasLoopInvariantOperands(I))
1284         return false;
1285 
1286     ++BI;
1287   }
1288 
1289   for (auto *BB : L->blocks())
1290     if (llvm::any_of(*BB, [](Instruction &I) {
1291           return I.mayHaveSideEffects();
1292         }))
1293       return false;
1294 
1295   return true;
1296 }
1297 
1298 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1299                                 ScalarEvolution *SE,
1300                                 const TargetTransformInfo *TTI,
1301                                 SCEVExpander &Rewriter, DominatorTree *DT,
1302                                 ReplaceExitVal ReplaceExitValue,
1303                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1304   // Check a pre-condition.
1305   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1306          "Indvars did not preserve LCSSA!");
1307 
1308   SmallVector<BasicBlock*, 8> ExitBlocks;
1309   L->getUniqueExitBlocks(ExitBlocks);
1310 
1311   SmallVector<RewritePhi, 8> RewritePhiSet;
1312   // Find all values that are computed inside the loop, but used outside of it.
1313   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1314   // the exit blocks of the loop to find them.
1315   for (BasicBlock *ExitBB : ExitBlocks) {
1316     // If there are no PHI nodes in this exit block, then no values defined
1317     // inside the loop are used on this path, skip it.
1318     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1319     if (!PN) continue;
1320 
1321     unsigned NumPreds = PN->getNumIncomingValues();
1322 
1323     // Iterate over all of the PHI nodes.
1324     BasicBlock::iterator BBI = ExitBB->begin();
1325     while ((PN = dyn_cast<PHINode>(BBI++))) {
1326       if (PN->use_empty())
1327         continue; // dead use, don't replace it
1328 
1329       if (!SE->isSCEVable(PN->getType()))
1330         continue;
1331 
1332       // It's necessary to tell ScalarEvolution about this explicitly so that
1333       // it can walk the def-use list and forget all SCEVs, as it may not be
1334       // watching the PHI itself. Once the new exit value is in place, there
1335       // may not be a def-use connection between the loop and every instruction
1336       // which got a SCEVAddRecExpr for that loop.
1337       SE->forgetValue(PN);
1338 
1339       // Iterate over all of the values in all the PHI nodes.
1340       for (unsigned i = 0; i != NumPreds; ++i) {
1341         // If the value being merged in is not integer or is not defined
1342         // in the loop, skip it.
1343         Value *InVal = PN->getIncomingValue(i);
1344         if (!isa<Instruction>(InVal))
1345           continue;
1346 
1347         // If this pred is for a subloop, not L itself, skip it.
1348         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1349           continue; // The Block is in a subloop, skip it.
1350 
1351         // Check that InVal is defined in the loop.
1352         Instruction *Inst = cast<Instruction>(InVal);
1353         if (!L->contains(Inst))
1354           continue;
1355 
1356         // Okay, this instruction has a user outside of the current loop
1357         // and varies predictably *inside* the loop.  Evaluate the value it
1358         // contains when the loop exits, if possible.  We prefer to start with
1359         // expressions which are true for all exits (so as to maximize
1360         // expression reuse by the SCEVExpander), but resort to per-exit
1361         // evaluation if that fails.
1362         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1363         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1364             !SE->isLoopInvariant(ExitValue, L) ||
1365             !isSafeToExpand(ExitValue, *SE)) {
1366           // TODO: This should probably be sunk into SCEV in some way; maybe a
1367           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1368           // most SCEV expressions and other recurrence types (e.g. shift
1369           // recurrences).  Is there existing code we can reuse?
1370           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1371           if (isa<SCEVCouldNotCompute>(ExitCount))
1372             continue;
1373           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1374             if (AddRec->getLoop() == L)
1375               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1376           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1377               !SE->isLoopInvariant(ExitValue, L) ||
1378               !isSafeToExpand(ExitValue, *SE))
1379             continue;
1380         }
1381 
1382         // Computing the value outside of the loop brings no benefit if it is
1383         // definitely used inside the loop in a way which can not be optimized
1384         // away. Avoid doing so unless we know we have a value which computes
1385         // the ExitValue already. TODO: This should be merged into SCEV
1386         // expander to leverage its knowledge of existing expressions.
1387         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1388             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1389           continue;
1390 
1391         // Check if expansions of this SCEV would count as being high cost.
1392         bool HighCost = Rewriter.isHighCostExpansion(
1393             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1394 
1395         // Note that we must not perform expansions until after
1396         // we query *all* the costs, because if we perform temporary expansion
1397         // inbetween, one that we might not intend to keep, said expansion
1398         // *may* affect cost calculation of the the next SCEV's we'll query,
1399         // and next SCEV may errneously get smaller cost.
1400 
1401         // Collect all the candidate PHINodes to be rewritten.
1402         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1403       }
1404     }
1405   }
1406 
1407   // Now that we've done preliminary filtering and billed all the SCEV's,
1408   // we can perform the last sanity check - the expansion must be valid.
1409   for (RewritePhi &Phi : RewritePhiSet) {
1410     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1411                                            Phi.ExpansionPoint);
1412 
1413     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1414                       << *(Phi.Expansion) << '\n'
1415                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1416 
1417     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1418     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1419     if (!Phi.ValidRewrite) {
1420       DeadInsts.push_back(Phi.Expansion);
1421       continue;
1422     }
1423 
1424 #ifndef NDEBUG
1425     // If we reuse an instruction from a loop which is neither L nor one of
1426     // its containing loops, we end up breaking LCSSA form for this loop by
1427     // creating a new use of its instruction.
1428     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1429       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1430         if (EVL != L)
1431           assert(EVL->contains(L) && "LCSSA breach detected!");
1432 #endif
1433   }
1434 
1435   // TODO: after isValidRewrite() is an assertion, evaluate whether
1436   // it is beneficial to change how we calculate high-cost:
1437   // if we have SCEV 'A' which we know we will expand, should we calculate
1438   // the cost of other SCEV's after expanding SCEV 'A',
1439   // thus potentially giving cost bonus to those other SCEV's?
1440 
1441   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1442   int NumReplaced = 0;
1443 
1444   // Transformation.
1445   for (const RewritePhi &Phi : RewritePhiSet) {
1446     if (!Phi.ValidRewrite)
1447       continue;
1448 
1449     PHINode *PN = Phi.PN;
1450     Value *ExitVal = Phi.Expansion;
1451 
1452     // Only do the rewrite when the ExitValue can be expanded cheaply.
1453     // If LoopCanBeDel is true, rewrite exit value aggressively.
1454     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1455       DeadInsts.push_back(ExitVal);
1456       continue;
1457     }
1458 
1459     NumReplaced++;
1460     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1461     PN->setIncomingValue(Phi.Ith, ExitVal);
1462 
1463     // If this instruction is dead now, delete it. Don't do it now to avoid
1464     // invalidating iterators.
1465     if (isInstructionTriviallyDead(Inst, TLI))
1466       DeadInsts.push_back(Inst);
1467 
1468     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1469     if (PN->getNumIncomingValues() == 1 &&
1470         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1471       PN->replaceAllUsesWith(ExitVal);
1472       PN->eraseFromParent();
1473     }
1474   }
1475 
1476   // The insertion point instruction may have been deleted; clear it out
1477   // so that the rewriter doesn't trip over it later.
1478   Rewriter.clearInsertPoint();
1479   return NumReplaced;
1480 }
1481 
1482 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1483 /// \p OrigLoop.
1484 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1485                                         Loop *RemainderLoop, uint64_t UF) {
1486   assert(UF > 0 && "Zero unrolled factor is not supported");
1487   assert(UnrolledLoop != RemainderLoop &&
1488          "Unrolled and Remainder loops are expected to distinct");
1489 
1490   // Get number of iterations in the original scalar loop.
1491   unsigned OrigLoopInvocationWeight = 0;
1492   Optional<unsigned> OrigAverageTripCount =
1493       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1494   if (!OrigAverageTripCount)
1495     return;
1496 
1497   // Calculate number of iterations in unrolled loop.
1498   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1499   // Calculate number of iterations for remainder loop.
1500   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1501 
1502   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1503                             OrigLoopInvocationWeight);
1504   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1505                             OrigLoopInvocationWeight);
1506 }
1507 
1508 /// Utility that implements appending of loops onto a worklist.
1509 /// Loops are added in preorder (analogous for reverse postorder for trees),
1510 /// and the worklist is processed LIFO.
1511 template <typename RangeT>
1512 void llvm::appendReversedLoopsToWorklist(
1513     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1514   // We use an internal worklist to build up the preorder traversal without
1515   // recursion.
1516   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1517 
1518   // We walk the initial sequence of loops in reverse because we generally want
1519   // to visit defs before uses and the worklist is LIFO.
1520   for (Loop *RootL : Loops) {
1521     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1522     assert(PreOrderWorklist.empty() &&
1523            "Must start with an empty preorder walk worklist.");
1524     PreOrderWorklist.push_back(RootL);
1525     do {
1526       Loop *L = PreOrderWorklist.pop_back_val();
1527       PreOrderWorklist.append(L->begin(), L->end());
1528       PreOrderLoops.push_back(L);
1529     } while (!PreOrderWorklist.empty());
1530 
1531     Worklist.insert(std::move(PreOrderLoops));
1532     PreOrderLoops.clear();
1533   }
1534 }
1535 
1536 template <typename RangeT>
1537 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1538                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1539   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1540 }
1541 
1542 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1543     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1544 
1545 template void
1546 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1547                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1548 
1549 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1550                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1551   appendReversedLoopsToWorklist(LI, Worklist);
1552 }
1553 
1554 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1555                       LoopInfo *LI, LPPassManager *LPM) {
1556   Loop &New = *LI->AllocateLoop();
1557   if (PL)
1558     PL->addChildLoop(&New);
1559   else
1560     LI->addTopLevelLoop(&New);
1561 
1562   if (LPM)
1563     LPM->addLoop(New);
1564 
1565   // Add all of the blocks in L to the new loop.
1566   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1567        I != E; ++I)
1568     if (LI->getLoopFor(*I) == L)
1569       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1570 
1571   // Add all of the subloops to the new loop.
1572   for (Loop *I : *L)
1573     cloneLoop(I, &New, VM, LI, LPM);
1574 
1575   return &New;
1576 }
1577 
1578 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1579 /// need to use value-handles because SCEV expansion can invalidate previously
1580 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1581 /// a previous one.
1582 struct PointerBounds {
1583   TrackingVH<Value> Start;
1584   TrackingVH<Value> End;
1585 };
1586 
1587 /// Expand code for the lower and upper bound of the pointer group \p CG
1588 /// in \p TheLoop.  \return the values for the bounds.
1589 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1590                                   Loop *TheLoop, Instruction *Loc,
1591                                   SCEVExpander &Exp, ScalarEvolution *SE) {
1592   // TODO: Add helper to retrieve pointers to CG.
1593   Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1594   const SCEV *Sc = SE->getSCEV(Ptr);
1595 
1596   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1597   LLVMContext &Ctx = Loc->getContext();
1598 
1599   // Use this type for pointer arithmetic.
1600   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1601 
1602   if (SE->isLoopInvariant(Sc, TheLoop)) {
1603     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1604                       << *Ptr << "\n");
1605     // Ptr could be in the loop body. If so, expand a new one at the correct
1606     // location.
1607     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1608     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1609                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1610                         : Ptr;
1611     // We must return a half-open range, which means incrementing Sc.
1612     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1613     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1614     return {NewPtr, NewPtrPlusOne};
1615   } else {
1616     Value *Start = nullptr, *End = nullptr;
1617     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1618     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1619     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1620     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1621                       << "\n");
1622     return {Start, End};
1623   }
1624 }
1625 
1626 /// Turns a collection of checks into a collection of expanded upper and
1627 /// lower bounds for both pointers in the check.
1628 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1629 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1630              Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1631   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1632 
1633   // Here we're relying on the SCEV Expander's cache to only emit code for the
1634   // same bounds once.
1635   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1636             [&](const RuntimePointerCheck &Check) {
1637               PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1638                             Second =
1639                                 expandBounds(Check.second, L, Loc, Exp, SE);
1640               return std::make_pair(First, Second);
1641             });
1642 
1643   return ChecksWithBounds;
1644 }
1645 
1646 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1647     Instruction *Loc, Loop *TheLoop,
1648     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1649     ScalarEvolution *SE) {
1650   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1651   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1652   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1653   SCEVExpander Exp(*SE, DL, "induction");
1654   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1655 
1656   LLVMContext &Ctx = Loc->getContext();
1657   Instruction *FirstInst = nullptr;
1658   IRBuilder<> ChkBuilder(Loc);
1659   // Our instructions might fold to a constant.
1660   Value *MemoryRuntimeCheck = nullptr;
1661 
1662   // FIXME: this helper is currently a duplicate of the one in
1663   // LoopVectorize.cpp.
1664   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1665                          Instruction *Loc) -> Instruction * {
1666     if (FirstInst)
1667       return FirstInst;
1668     if (Instruction *I = dyn_cast<Instruction>(V))
1669       return I->getParent() == Loc->getParent() ? I : nullptr;
1670     return nullptr;
1671   };
1672 
1673   for (const auto &Check : ExpandedChecks) {
1674     const PointerBounds &A = Check.first, &B = Check.second;
1675     // Check if two pointers (A and B) conflict where conflict is computed as:
1676     // start(A) <= end(B) && start(B) <= end(A)
1677     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1678     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1679 
1680     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1681            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1682            "Trying to bounds check pointers with different address spaces");
1683 
1684     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1685     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1686 
1687     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1688     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1689     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1690     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1691 
1692     // [A|B].Start points to the first accessed byte under base [A|B].
1693     // [A|B].End points to the last accessed byte, plus one.
1694     // There is no conflict when the intervals are disjoint:
1695     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1696     //
1697     // bound0 = (B.Start < A.End)
1698     // bound1 = (A.Start < B.End)
1699     //  IsConflict = bound0 & bound1
1700     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1701     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1702     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1703     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1704     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1705     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1706     if (MemoryRuntimeCheck) {
1707       IsConflict =
1708           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1709       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1710     }
1711     MemoryRuntimeCheck = IsConflict;
1712   }
1713 
1714   if (!MemoryRuntimeCheck)
1715     return std::make_pair(nullptr, nullptr);
1716 
1717   // We have to do this trickery because the IRBuilder might fold the check to a
1718   // constant expression in which case there is no Instruction anchored in a
1719   // the block.
1720   Instruction *Check =
1721       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1722   ChkBuilder.Insert(Check, "memcheck.conflict");
1723   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1724   return std::make_pair(FirstInst, Check);
1725 }
1726