1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/MustExecute.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 #define DEBUG_TYPE "loop-utils" 58 59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 61 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 62 63 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 64 MemorySSAUpdater *MSSAU, 65 bool PreserveLCSSA) { 66 bool Changed = false; 67 68 // We re-use a vector for the in-loop predecesosrs. 69 SmallVector<BasicBlock *, 4> InLoopPredecessors; 70 71 auto RewriteExit = [&](BasicBlock *BB) { 72 assert(InLoopPredecessors.empty() && 73 "Must start with an empty predecessors list!"); 74 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 75 76 // See if there are any non-loop predecessors of this exit block and 77 // keep track of the in-loop predecessors. 78 bool IsDedicatedExit = true; 79 for (auto *PredBB : predecessors(BB)) 80 if (L->contains(PredBB)) { 81 if (isa<IndirectBrInst>(PredBB->getTerminator())) 82 // We cannot rewrite exiting edges from an indirectbr. 83 return false; 84 if (isa<CallBrInst>(PredBB->getTerminator())) 85 // We cannot rewrite exiting edges from a callbr. 86 return false; 87 88 InLoopPredecessors.push_back(PredBB); 89 } else { 90 IsDedicatedExit = false; 91 } 92 93 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 94 95 // Nothing to do if this is already a dedicated exit. 96 if (IsDedicatedExit) 97 return false; 98 99 auto *NewExitBB = SplitBlockPredecessors( 100 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 101 102 if (!NewExitBB) 103 LLVM_DEBUG( 104 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 105 << *L << "\n"); 106 else 107 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 108 << NewExitBB->getName() << "\n"); 109 return true; 110 }; 111 112 // Walk the exit blocks directly rather than building up a data structure for 113 // them, but only visit each one once. 114 SmallPtrSet<BasicBlock *, 4> Visited; 115 for (auto *BB : L->blocks()) 116 for (auto *SuccBB : successors(BB)) { 117 // We're looking for exit blocks so skip in-loop successors. 118 if (L->contains(SuccBB)) 119 continue; 120 121 // Visit each exit block exactly once. 122 if (!Visited.insert(SuccBB).second) 123 continue; 124 125 Changed |= RewriteExit(SuccBB); 126 } 127 128 return Changed; 129 } 130 131 /// Returns the instructions that use values defined in the loop. 132 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 133 SmallVector<Instruction *, 8> UsedOutside; 134 135 for (auto *Block : L->getBlocks()) 136 // FIXME: I believe that this could use copy_if if the Inst reference could 137 // be adapted into a pointer. 138 for (auto &Inst : *Block) { 139 auto Users = Inst.users(); 140 if (any_of(Users, [&](User *U) { 141 auto *Use = cast<Instruction>(U); 142 return !L->contains(Use->getParent()); 143 })) 144 UsedOutside.push_back(&Inst); 145 } 146 147 return UsedOutside; 148 } 149 150 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 151 // By definition, all loop passes need the LoopInfo analysis and the 152 // Dominator tree it depends on. Because they all participate in the loop 153 // pass manager, they must also preserve these. 154 AU.addRequired<DominatorTreeWrapperPass>(); 155 AU.addPreserved<DominatorTreeWrapperPass>(); 156 AU.addRequired<LoopInfoWrapperPass>(); 157 AU.addPreserved<LoopInfoWrapperPass>(); 158 159 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 160 // here because users shouldn't directly get them from this header. 161 extern char &LoopSimplifyID; 162 extern char &LCSSAID; 163 AU.addRequiredID(LoopSimplifyID); 164 AU.addPreservedID(LoopSimplifyID); 165 AU.addRequiredID(LCSSAID); 166 AU.addPreservedID(LCSSAID); 167 // This is used in the LPPassManager to perform LCSSA verification on passes 168 // which preserve lcssa form 169 AU.addRequired<LCSSAVerificationPass>(); 170 AU.addPreserved<LCSSAVerificationPass>(); 171 172 // Loop passes are designed to run inside of a loop pass manager which means 173 // that any function analyses they require must be required by the first loop 174 // pass in the manager (so that it is computed before the loop pass manager 175 // runs) and preserved by all loop pasess in the manager. To make this 176 // reasonably robust, the set needed for most loop passes is maintained here. 177 // If your loop pass requires an analysis not listed here, you will need to 178 // carefully audit the loop pass manager nesting structure that results. 179 AU.addRequired<AAResultsWrapperPass>(); 180 AU.addPreserved<AAResultsWrapperPass>(); 181 AU.addPreserved<BasicAAWrapperPass>(); 182 AU.addPreserved<GlobalsAAWrapperPass>(); 183 AU.addPreserved<SCEVAAWrapperPass>(); 184 AU.addRequired<ScalarEvolutionWrapperPass>(); 185 AU.addPreserved<ScalarEvolutionWrapperPass>(); 186 // FIXME: When all loop passes preserve MemorySSA, it can be required and 187 // preserved here instead of the individual handling in each pass. 188 } 189 190 /// Manually defined generic "LoopPass" dependency initialization. This is used 191 /// to initialize the exact set of passes from above in \c 192 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 193 /// with: 194 /// 195 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 196 /// 197 /// As-if "LoopPass" were a pass. 198 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 199 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 202 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 204 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 205 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 207 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 208 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 209 } 210 211 /// Create MDNode for input string. 212 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 213 LLVMContext &Context = TheLoop->getHeader()->getContext(); 214 Metadata *MDs[] = { 215 MDString::get(Context, Name), 216 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 217 return MDNode::get(Context, MDs); 218 } 219 220 /// Set input string into loop metadata by keeping other values intact. 221 /// If the string is already in loop metadata update value if it is 222 /// different. 223 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 224 unsigned V) { 225 SmallVector<Metadata *, 4> MDs(1); 226 // If the loop already has metadata, retain it. 227 MDNode *LoopID = TheLoop->getLoopID(); 228 if (LoopID) { 229 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 230 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 231 // If it is of form key = value, try to parse it. 232 if (Node->getNumOperands() == 2) { 233 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 234 if (S && S->getString().equals(StringMD)) { 235 ConstantInt *IntMD = 236 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 237 if (IntMD && IntMD->getSExtValue() == V) 238 // It is already in place. Do nothing. 239 return; 240 // We need to update the value, so just skip it here and it will 241 // be added after copying other existed nodes. 242 continue; 243 } 244 } 245 MDs.push_back(Node); 246 } 247 } 248 // Add new metadata. 249 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 250 // Replace current metadata node with new one. 251 LLVMContext &Context = TheLoop->getHeader()->getContext(); 252 MDNode *NewLoopID = MDNode::get(Context, MDs); 253 // Set operand 0 to refer to the loop id itself. 254 NewLoopID->replaceOperandWith(0, NewLoopID); 255 TheLoop->setLoopID(NewLoopID); 256 } 257 258 /// Find string metadata for loop 259 /// 260 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 261 /// operand or null otherwise. If the string metadata is not found return 262 /// Optional's not-a-value. 263 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 264 StringRef Name) { 265 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 266 if (!MD) 267 return None; 268 switch (MD->getNumOperands()) { 269 case 1: 270 return nullptr; 271 case 2: 272 return &MD->getOperand(1); 273 default: 274 llvm_unreachable("loop metadata has 0 or 1 operand"); 275 } 276 } 277 278 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 279 StringRef Name) { 280 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 281 if (!MD) 282 return None; 283 switch (MD->getNumOperands()) { 284 case 1: 285 // When the value is absent it is interpreted as 'attribute set'. 286 return true; 287 case 2: 288 if (ConstantInt *IntMD = 289 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 290 return IntMD->getZExtValue(); 291 return true; 292 } 293 llvm_unreachable("unexpected number of options"); 294 } 295 296 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 297 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 298 } 299 300 Optional<ElementCount> 301 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) { 302 Optional<int> Width = 303 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 304 305 if (Width.hasValue()) { 306 Optional<int> IsScalable = getOptionalIntLoopAttribute( 307 TheLoop, "llvm.loop.vectorize.scalable.enable"); 308 return ElementCount::get(*Width, IsScalable.getValueOr(false)); 309 } 310 311 return None; 312 } 313 314 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 315 StringRef Name) { 316 const MDOperand *AttrMD = 317 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 318 if (!AttrMD) 319 return None; 320 321 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 322 if (!IntMD) 323 return None; 324 325 return IntMD->getSExtValue(); 326 } 327 328 Optional<MDNode *> llvm::makeFollowupLoopID( 329 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 330 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 331 if (!OrigLoopID) { 332 if (AlwaysNew) 333 return nullptr; 334 return None; 335 } 336 337 assert(OrigLoopID->getOperand(0) == OrigLoopID); 338 339 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 340 bool InheritSomeAttrs = 341 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 342 SmallVector<Metadata *, 8> MDs; 343 MDs.push_back(nullptr); 344 345 bool Changed = false; 346 if (InheritAllAttrs || InheritSomeAttrs) { 347 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 348 MDNode *Op = cast<MDNode>(Existing.get()); 349 350 auto InheritThisAttribute = [InheritSomeAttrs, 351 InheritOptionsExceptPrefix](MDNode *Op) { 352 if (!InheritSomeAttrs) 353 return false; 354 355 // Skip malformatted attribute metadata nodes. 356 if (Op->getNumOperands() == 0) 357 return true; 358 Metadata *NameMD = Op->getOperand(0).get(); 359 if (!isa<MDString>(NameMD)) 360 return true; 361 StringRef AttrName = cast<MDString>(NameMD)->getString(); 362 363 // Do not inherit excluded attributes. 364 return !AttrName.startswith(InheritOptionsExceptPrefix); 365 }; 366 367 if (InheritThisAttribute(Op)) 368 MDs.push_back(Op); 369 else 370 Changed = true; 371 } 372 } else { 373 // Modified if we dropped at least one attribute. 374 Changed = OrigLoopID->getNumOperands() > 1; 375 } 376 377 bool HasAnyFollowup = false; 378 for (StringRef OptionName : FollowupOptions) { 379 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 380 if (!FollowupNode) 381 continue; 382 383 HasAnyFollowup = true; 384 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 385 MDs.push_back(Option.get()); 386 Changed = true; 387 } 388 } 389 390 // Attributes of the followup loop not specified explicity, so signal to the 391 // transformation pass to add suitable attributes. 392 if (!AlwaysNew && !HasAnyFollowup) 393 return None; 394 395 // If no attributes were added or remove, the previous loop Id can be reused. 396 if (!AlwaysNew && !Changed) 397 return OrigLoopID; 398 399 // No attributes is equivalent to having no !llvm.loop metadata at all. 400 if (MDs.size() == 1) 401 return nullptr; 402 403 // Build the new loop ID. 404 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 405 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 406 return FollowupLoopID; 407 } 408 409 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 410 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 411 } 412 413 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 414 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 415 } 416 417 bool llvm::hasMustProgress(const Loop *L) { 418 return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 419 } 420 421 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 422 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 423 return TM_SuppressedByUser; 424 425 Optional<int> Count = 426 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 427 if (Count.hasValue()) 428 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 429 430 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 431 return TM_ForcedByUser; 432 433 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 434 return TM_ForcedByUser; 435 436 if (hasDisableAllTransformsHint(L)) 437 return TM_Disable; 438 439 return TM_Unspecified; 440 } 441 442 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 443 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 444 return TM_SuppressedByUser; 445 446 Optional<int> Count = 447 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 448 if (Count.hasValue()) 449 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 450 451 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 452 return TM_ForcedByUser; 453 454 if (hasDisableAllTransformsHint(L)) 455 return TM_Disable; 456 457 return TM_Unspecified; 458 } 459 460 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 461 Optional<bool> Enable = 462 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 463 464 if (Enable == false) 465 return TM_SuppressedByUser; 466 467 Optional<ElementCount> VectorizeWidth = 468 getOptionalElementCountLoopAttribute(L); 469 Optional<int> InterleaveCount = 470 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 471 472 // 'Forcing' vector width and interleave count to one effectively disables 473 // this tranformation. 474 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 475 InterleaveCount == 1) 476 return TM_SuppressedByUser; 477 478 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 479 return TM_Disable; 480 481 if (Enable == true) 482 return TM_ForcedByUser; 483 484 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 485 return TM_Disable; 486 487 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 488 return TM_Enable; 489 490 if (hasDisableAllTransformsHint(L)) 491 return TM_Disable; 492 493 return TM_Unspecified; 494 } 495 496 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 497 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 498 return TM_ForcedByUser; 499 500 if (hasDisableAllTransformsHint(L)) 501 return TM_Disable; 502 503 return TM_Unspecified; 504 } 505 506 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 507 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 508 return TM_SuppressedByUser; 509 510 if (hasDisableAllTransformsHint(L)) 511 return TM_Disable; 512 513 return TM_Unspecified; 514 } 515 516 /// Does a BFS from a given node to all of its children inside a given loop. 517 /// The returned vector of nodes includes the starting point. 518 SmallVector<DomTreeNode *, 16> 519 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 520 SmallVector<DomTreeNode *, 16> Worklist; 521 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 522 // Only include subregions in the top level loop. 523 BasicBlock *BB = DTN->getBlock(); 524 if (CurLoop->contains(BB)) 525 Worklist.push_back(DTN); 526 }; 527 528 AddRegionToWorklist(N); 529 530 for (size_t I = 0; I < Worklist.size(); I++) { 531 for (DomTreeNode *Child : Worklist[I]->children()) 532 AddRegionToWorklist(Child); 533 } 534 535 return Worklist; 536 } 537 538 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 539 LoopInfo *LI, MemorySSA *MSSA) { 540 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 541 auto *Preheader = L->getLoopPreheader(); 542 assert(Preheader && "Preheader should exist!"); 543 544 std::unique_ptr<MemorySSAUpdater> MSSAU; 545 if (MSSA) 546 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 547 548 // Now that we know the removal is safe, remove the loop by changing the 549 // branch from the preheader to go to the single exit block. 550 // 551 // Because we're deleting a large chunk of code at once, the sequence in which 552 // we remove things is very important to avoid invalidation issues. 553 554 // Tell ScalarEvolution that the loop is deleted. Do this before 555 // deleting the loop so that ScalarEvolution can look at the loop 556 // to determine what it needs to clean up. 557 if (SE) 558 SE->forgetLoop(L); 559 560 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 561 assert(OldBr && "Preheader must end with a branch"); 562 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 563 // Connect the preheader to the exit block. Keep the old edge to the header 564 // around to perform the dominator tree update in two separate steps 565 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 566 // preheader -> header. 567 // 568 // 569 // 0. Preheader 1. Preheader 2. Preheader 570 // | | | | 571 // V | V | 572 // Header <--\ | Header <--\ | Header <--\ 573 // | | | | | | | | | | | 574 // | V | | | V | | | V | 575 // | Body --/ | | Body --/ | | Body --/ 576 // V V V V V 577 // Exit Exit Exit 578 // 579 // By doing this is two separate steps we can perform the dominator tree 580 // update without using the batch update API. 581 // 582 // Even when the loop is never executed, we cannot remove the edge from the 583 // source block to the exit block. Consider the case where the unexecuted loop 584 // branches back to an outer loop. If we deleted the loop and removed the edge 585 // coming to this inner loop, this will break the outer loop structure (by 586 // deleting the backedge of the outer loop). If the outer loop is indeed a 587 // non-loop, it will be deleted in a future iteration of loop deletion pass. 588 IRBuilder<> Builder(OldBr); 589 590 auto *ExitBlock = L->getUniqueExitBlock(); 591 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 592 if (ExitBlock) { 593 assert(ExitBlock && "Should have a unique exit block!"); 594 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 595 596 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 597 // Remove the old branch. The conditional branch becomes a new terminator. 598 OldBr->eraseFromParent(); 599 600 // Rewrite phis in the exit block to get their inputs from the Preheader 601 // instead of the exiting block. 602 for (PHINode &P : ExitBlock->phis()) { 603 // Set the zero'th element of Phi to be from the preheader and remove all 604 // other incoming values. Given the loop has dedicated exits, all other 605 // incoming values must be from the exiting blocks. 606 int PredIndex = 0; 607 P.setIncomingBlock(PredIndex, Preheader); 608 // Removes all incoming values from all other exiting blocks (including 609 // duplicate values from an exiting block). 610 // Nuke all entries except the zero'th entry which is the preheader entry. 611 // NOTE! We need to remove Incoming Values in the reverse order as done 612 // below, to keep the indices valid for deletion (removeIncomingValues 613 // updates getNumIncomingValues and shifts all values down into the 614 // operand being deleted). 615 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 616 P.removeIncomingValue(e - i, false); 617 618 assert((P.getNumIncomingValues() == 1 && 619 P.getIncomingBlock(PredIndex) == Preheader) && 620 "Should have exactly one value and that's from the preheader!"); 621 } 622 623 if (DT) { 624 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 625 if (MSSA) { 626 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 627 *DT); 628 if (VerifyMemorySSA) 629 MSSA->verifyMemorySSA(); 630 } 631 } 632 633 // Disconnect the loop body by branching directly to its exit. 634 Builder.SetInsertPoint(Preheader->getTerminator()); 635 Builder.CreateBr(ExitBlock); 636 // Remove the old branch. 637 Preheader->getTerminator()->eraseFromParent(); 638 } else { 639 assert(L->hasNoExitBlocks() && 640 "Loop should have either zero or one exit blocks."); 641 642 Builder.SetInsertPoint(OldBr); 643 Builder.CreateUnreachable(); 644 Preheader->getTerminator()->eraseFromParent(); 645 } 646 647 if (DT) { 648 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 649 if (MSSA) { 650 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 651 *DT); 652 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 653 L->block_end()); 654 MSSAU->removeBlocks(DeadBlockSet); 655 if (VerifyMemorySSA) 656 MSSA->verifyMemorySSA(); 657 } 658 } 659 660 // Use a map to unique and a vector to guarantee deterministic ordering. 661 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 662 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 663 664 if (ExitBlock) { 665 // Given LCSSA form is satisfied, we should not have users of instructions 666 // within the dead loop outside of the loop. However, LCSSA doesn't take 667 // unreachable uses into account. We handle them here. 668 // We could do it after drop all references (in this case all users in the 669 // loop will be already eliminated and we have less work to do but according 670 // to API doc of User::dropAllReferences only valid operation after dropping 671 // references, is deletion. So let's substitute all usages of 672 // instruction from the loop with undef value of corresponding type first. 673 for (auto *Block : L->blocks()) 674 for (Instruction &I : *Block) { 675 auto *Undef = UndefValue::get(I.getType()); 676 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); 677 UI != E;) { 678 Use &U = *UI; 679 ++UI; 680 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 681 if (L->contains(Usr->getParent())) 682 continue; 683 // If we have a DT then we can check that uses outside a loop only in 684 // unreachable block. 685 if (DT) 686 assert(!DT->isReachableFromEntry(U) && 687 "Unexpected user in reachable block"); 688 U.set(Undef); 689 } 690 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 691 if (!DVI) 692 continue; 693 auto Key = 694 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 695 if (Key != DeadDebugSet.end()) 696 continue; 697 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 698 DeadDebugInst.push_back(DVI); 699 } 700 701 // After the loop has been deleted all the values defined and modified 702 // inside the loop are going to be unavailable. 703 // Since debug values in the loop have been deleted, inserting an undef 704 // dbg.value truncates the range of any dbg.value before the loop where the 705 // loop used to be. This is particularly important for constant values. 706 DIBuilder DIB(*ExitBlock->getModule()); 707 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 708 assert(InsertDbgValueBefore && 709 "There should be a non-PHI instruction in exit block, else these " 710 "instructions will have no parent."); 711 for (auto *DVI : DeadDebugInst) 712 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 713 DVI->getVariable(), DVI->getExpression(), 714 DVI->getDebugLoc(), InsertDbgValueBefore); 715 } 716 717 // Remove the block from the reference counting scheme, so that we can 718 // delete it freely later. 719 for (auto *Block : L->blocks()) 720 Block->dropAllReferences(); 721 722 if (MSSA && VerifyMemorySSA) 723 MSSA->verifyMemorySSA(); 724 725 if (LI) { 726 // Erase the instructions and the blocks without having to worry 727 // about ordering because we already dropped the references. 728 // NOTE: This iteration is safe because erasing the block does not remove 729 // its entry from the loop's block list. We do that in the next section. 730 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 731 LpI != LpE; ++LpI) 732 (*LpI)->eraseFromParent(); 733 734 // Finally, the blocks from loopinfo. This has to happen late because 735 // otherwise our loop iterators won't work. 736 737 SmallPtrSet<BasicBlock *, 8> blocks; 738 blocks.insert(L->block_begin(), L->block_end()); 739 for (BasicBlock *BB : blocks) 740 LI->removeBlock(BB); 741 742 // The last step is to update LoopInfo now that we've eliminated this loop. 743 // Note: LoopInfo::erase remove the given loop and relink its subloops with 744 // its parent. While removeLoop/removeChildLoop remove the given loop but 745 // not relink its subloops, which is what we want. 746 if (Loop *ParentLoop = L->getParentLoop()) { 747 Loop::iterator I = find(*ParentLoop, L); 748 assert(I != ParentLoop->end() && "Couldn't find loop"); 749 ParentLoop->removeChildLoop(I); 750 } else { 751 Loop::iterator I = find(*LI, L); 752 assert(I != LI->end() && "Couldn't find loop"); 753 LI->removeLoop(I); 754 } 755 LI->destroy(L); 756 } 757 } 758 759 static Loop *getOutermostLoop(Loop *L) { 760 while (Loop *Parent = L->getParentLoop()) 761 L = Parent; 762 return L; 763 } 764 765 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 766 LoopInfo &LI, MemorySSA *MSSA) { 767 auto *Latch = L->getLoopLatch(); 768 assert(Latch && "multiple latches not yet supported"); 769 auto *Header = L->getHeader(); 770 Loop *OutermostLoop = getOutermostLoop(L); 771 772 SE.forgetLoop(L); 773 774 // Note: By splitting the backedge, and then explicitly making it unreachable 775 // we gracefully handle corner cases such as non-bottom tested loops and the 776 // like. We also have the benefit of being able to reuse existing well tested 777 // code. It might be worth special casing the common bottom tested case at 778 // some point to avoid code churn. 779 780 std::unique_ptr<MemorySSAUpdater> MSSAU; 781 if (MSSA) 782 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 783 784 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 785 786 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 787 (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false, 788 /*PreserveLCSSA*/true, &DTU, MSSAU.get()); 789 790 // Erase (and destroy) this loop instance. Handles relinking sub-loops 791 // and blocks within the loop as needed. 792 LI.erase(L); 793 794 // If the loop we broke had a parent, then changeToUnreachable might have 795 // caused a block to be removed from the parent loop (see loop_nest_lcssa 796 // test case in zero-btc.ll for an example), thus changing the parent's 797 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 798 // loop which might have a had a block removed. 799 if (OutermostLoop != L) 800 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 801 } 802 803 804 /// Checks if \p L has single exit through latch block except possibly 805 /// "deoptimizing" exits. Returns branch instruction terminating the loop 806 /// latch if above check is successful, nullptr otherwise. 807 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 808 BasicBlock *Latch = L->getLoopLatch(); 809 if (!Latch) 810 return nullptr; 811 812 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 813 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 814 return nullptr; 815 816 assert((LatchBR->getSuccessor(0) == L->getHeader() || 817 LatchBR->getSuccessor(1) == L->getHeader()) && 818 "At least one edge out of the latch must go to the header"); 819 820 SmallVector<BasicBlock *, 4> ExitBlocks; 821 L->getUniqueNonLatchExitBlocks(ExitBlocks); 822 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 823 return !EB->getTerminatingDeoptimizeCall(); 824 })) 825 return nullptr; 826 827 return LatchBR; 828 } 829 830 Optional<unsigned> 831 llvm::getLoopEstimatedTripCount(Loop *L, 832 unsigned *EstimatedLoopInvocationWeight) { 833 // Support loops with an exiting latch and other existing exists only 834 // deoptimize. 835 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 836 if (!LatchBranch) 837 return None; 838 839 // To estimate the number of times the loop body was executed, we want to 840 // know the number of times the backedge was taken, vs. the number of times 841 // we exited the loop. 842 uint64_t BackedgeTakenWeight, LatchExitWeight; 843 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 844 return None; 845 846 if (LatchBranch->getSuccessor(0) != L->getHeader()) 847 std::swap(BackedgeTakenWeight, LatchExitWeight); 848 849 if (!LatchExitWeight) 850 return None; 851 852 if (EstimatedLoopInvocationWeight) 853 *EstimatedLoopInvocationWeight = LatchExitWeight; 854 855 // Estimated backedge taken count is a ratio of the backedge taken weight by 856 // the weight of the edge exiting the loop, rounded to nearest. 857 uint64_t BackedgeTakenCount = 858 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 859 // Estimated trip count is one plus estimated backedge taken count. 860 return BackedgeTakenCount + 1; 861 } 862 863 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 864 unsigned EstimatedloopInvocationWeight) { 865 // Support loops with an exiting latch and other existing exists only 866 // deoptimize. 867 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 868 if (!LatchBranch) 869 return false; 870 871 // Calculate taken and exit weights. 872 unsigned LatchExitWeight = 0; 873 unsigned BackedgeTakenWeight = 0; 874 875 if (EstimatedTripCount > 0) { 876 LatchExitWeight = EstimatedloopInvocationWeight; 877 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 878 } 879 880 // Make a swap if back edge is taken when condition is "false". 881 if (LatchBranch->getSuccessor(0) != L->getHeader()) 882 std::swap(BackedgeTakenWeight, LatchExitWeight); 883 884 MDBuilder MDB(LatchBranch->getContext()); 885 886 // Set/Update profile metadata. 887 LatchBranch->setMetadata( 888 LLVMContext::MD_prof, 889 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 890 891 return true; 892 } 893 894 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 895 ScalarEvolution &SE) { 896 Loop *OuterL = InnerLoop->getParentLoop(); 897 if (!OuterL) 898 return true; 899 900 // Get the backedge taken count for the inner loop 901 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 902 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 903 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 904 !InnerLoopBECountSC->getType()->isIntegerTy()) 905 return false; 906 907 // Get whether count is invariant to the outer loop 908 ScalarEvolution::LoopDisposition LD = 909 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 910 if (LD != ScalarEvolution::LoopInvariant) 911 return false; 912 913 return true; 914 } 915 916 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 917 Value *Right) { 918 CmpInst::Predicate Pred; 919 switch (RK) { 920 default: 921 llvm_unreachable("Unknown min/max recurrence kind"); 922 case RecurKind::UMin: 923 Pred = CmpInst::ICMP_ULT; 924 break; 925 case RecurKind::UMax: 926 Pred = CmpInst::ICMP_UGT; 927 break; 928 case RecurKind::SMin: 929 Pred = CmpInst::ICMP_SLT; 930 break; 931 case RecurKind::SMax: 932 Pred = CmpInst::ICMP_SGT; 933 break; 934 case RecurKind::FMin: 935 Pred = CmpInst::FCMP_OLT; 936 break; 937 case RecurKind::FMax: 938 Pred = CmpInst::FCMP_OGT; 939 break; 940 } 941 942 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 943 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 944 return Select; 945 } 946 947 // Helper to generate an ordered reduction. 948 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 949 unsigned Op, RecurKind RdxKind, 950 ArrayRef<Value *> RedOps) { 951 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 952 953 // Extract and apply reduction ops in ascending order: 954 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 955 Value *Result = Acc; 956 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 957 Value *Ext = 958 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 959 960 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 961 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 962 "bin.rdx"); 963 } else { 964 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 965 "Invalid min/max"); 966 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 967 } 968 969 if (!RedOps.empty()) 970 propagateIRFlags(Result, RedOps); 971 } 972 973 return Result; 974 } 975 976 // Helper to generate a log2 shuffle reduction. 977 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 978 unsigned Op, RecurKind RdxKind, 979 ArrayRef<Value *> RedOps) { 980 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 981 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 982 // and vector ops, reducing the set of values being computed by half each 983 // round. 984 assert(isPowerOf2_32(VF) && 985 "Reduction emission only supported for pow2 vectors!"); 986 Value *TmpVec = Src; 987 SmallVector<int, 32> ShuffleMask(VF); 988 for (unsigned i = VF; i != 1; i >>= 1) { 989 // Move the upper half of the vector to the lower half. 990 for (unsigned j = 0; j != i / 2; ++j) 991 ShuffleMask[j] = i / 2 + j; 992 993 // Fill the rest of the mask with undef. 994 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 995 996 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 997 998 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 999 // The builder propagates its fast-math-flags setting. 1000 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 1001 "bin.rdx"); 1002 } else { 1003 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1004 "Invalid min/max"); 1005 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1006 } 1007 if (!RedOps.empty()) 1008 propagateIRFlags(TmpVec, RedOps); 1009 1010 // We may compute the reassociated scalar ops in a way that does not 1011 // preserve nsw/nuw etc. Conservatively, drop those flags. 1012 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 1013 ReductionInst->dropPoisonGeneratingFlags(); 1014 } 1015 // The result is in the first element of the vector. 1016 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1017 } 1018 1019 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 1020 const TargetTransformInfo *TTI, 1021 Value *Src, RecurKind RdxKind, 1022 ArrayRef<Value *> RedOps) { 1023 TargetTransformInfo::ReductionFlags RdxFlags; 1024 RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax || 1025 RdxKind == RecurKind::FMax; 1026 RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin; 1027 1028 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1029 switch (RdxKind) { 1030 case RecurKind::Add: 1031 return Builder.CreateAddReduce(Src); 1032 case RecurKind::Mul: 1033 return Builder.CreateMulReduce(Src); 1034 case RecurKind::And: 1035 return Builder.CreateAndReduce(Src); 1036 case RecurKind::Or: 1037 return Builder.CreateOrReduce(Src); 1038 case RecurKind::Xor: 1039 return Builder.CreateXorReduce(Src); 1040 case RecurKind::FAdd: 1041 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1042 Src); 1043 case RecurKind::FMul: 1044 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1045 case RecurKind::SMax: 1046 return Builder.CreateIntMaxReduce(Src, true); 1047 case RecurKind::SMin: 1048 return Builder.CreateIntMinReduce(Src, true); 1049 case RecurKind::UMax: 1050 return Builder.CreateIntMaxReduce(Src, false); 1051 case RecurKind::UMin: 1052 return Builder.CreateIntMinReduce(Src, false); 1053 case RecurKind::FMax: 1054 return Builder.CreateFPMaxReduce(Src); 1055 case RecurKind::FMin: 1056 return Builder.CreateFPMinReduce(Src); 1057 default: 1058 llvm_unreachable("Unhandled opcode"); 1059 } 1060 } 1061 1062 Value *llvm::createTargetReduction(IRBuilderBase &B, 1063 const TargetTransformInfo *TTI, 1064 RecurrenceDescriptor &Desc, Value *Src) { 1065 // TODO: Support in-order reductions based on the recurrence descriptor. 1066 // All ops in the reduction inherit fast-math-flags from the recurrence 1067 // descriptor. 1068 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1069 B.setFastMathFlags(Desc.getFastMathFlags()); 1070 return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind()); 1071 } 1072 1073 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1074 RecurrenceDescriptor &Desc, Value *Src, 1075 Value *Start) { 1076 assert(Desc.getRecurrenceKind() == RecurKind::FAdd && 1077 "Unexpected reduction kind"); 1078 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1079 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1080 1081 return B.CreateFAddReduce(Start, Src); 1082 } 1083 1084 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1085 auto *VecOp = dyn_cast<Instruction>(I); 1086 if (!VecOp) 1087 return; 1088 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1089 : dyn_cast<Instruction>(OpValue); 1090 if (!Intersection) 1091 return; 1092 const unsigned Opcode = Intersection->getOpcode(); 1093 VecOp->copyIRFlags(Intersection); 1094 for (auto *V : VL) { 1095 auto *Instr = dyn_cast<Instruction>(V); 1096 if (!Instr) 1097 continue; 1098 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1099 VecOp->andIRFlags(V); 1100 } 1101 } 1102 1103 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1104 ScalarEvolution &SE) { 1105 const SCEV *Zero = SE.getZero(S->getType()); 1106 return SE.isAvailableAtLoopEntry(S, L) && 1107 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1108 } 1109 1110 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1111 ScalarEvolution &SE) { 1112 const SCEV *Zero = SE.getZero(S->getType()); 1113 return SE.isAvailableAtLoopEntry(S, L) && 1114 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1115 } 1116 1117 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1118 bool Signed) { 1119 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1120 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1121 APInt::getMinValue(BitWidth); 1122 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1123 return SE.isAvailableAtLoopEntry(S, L) && 1124 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1125 SE.getConstant(Min)); 1126 } 1127 1128 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1129 bool Signed) { 1130 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1131 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1132 APInt::getMaxValue(BitWidth); 1133 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1134 return SE.isAvailableAtLoopEntry(S, L) && 1135 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1136 SE.getConstant(Max)); 1137 } 1138 1139 //===----------------------------------------------------------------------===// 1140 // rewriteLoopExitValues - Optimize IV users outside the loop. 1141 // As a side effect, reduces the amount of IV processing within the loop. 1142 //===----------------------------------------------------------------------===// 1143 1144 // Return true if the SCEV expansion generated by the rewriter can replace the 1145 // original value. SCEV guarantees that it produces the same value, but the way 1146 // it is produced may be illegal IR. Ideally, this function will only be 1147 // called for verification. 1148 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { 1149 // If an SCEV expression subsumed multiple pointers, its expansion could 1150 // reassociate the GEP changing the base pointer. This is illegal because the 1151 // final address produced by a GEP chain must be inbounds relative to its 1152 // underlying object. Otherwise basic alias analysis, among other things, 1153 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 1154 // producing an expression involving multiple pointers. Until then, we must 1155 // bail out here. 1156 // 1157 // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject 1158 // because it understands lcssa phis while SCEV does not. 1159 Value *FromPtr = FromVal; 1160 Value *ToPtr = ToVal; 1161 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) 1162 FromPtr = GEP->getPointerOperand(); 1163 1164 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) 1165 ToPtr = GEP->getPointerOperand(); 1166 1167 if (FromPtr != FromVal || ToPtr != ToVal) { 1168 // Quickly check the common case 1169 if (FromPtr == ToPtr) 1170 return true; 1171 1172 // SCEV may have rewritten an expression that produces the GEP's pointer 1173 // operand. That's ok as long as the pointer operand has the same base 1174 // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the 1175 // base of a recurrence. This handles the case in which SCEV expansion 1176 // converts a pointer type recurrence into a nonrecurrent pointer base 1177 // indexed by an integer recurrence. 1178 1179 // If the GEP base pointer is a vector of pointers, abort. 1180 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 1181 return false; 1182 1183 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 1184 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 1185 if (FromBase == ToBase) 1186 return true; 1187 1188 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out " 1189 << *FromBase << " != " << *ToBase << "\n"); 1190 1191 return false; 1192 } 1193 return true; 1194 } 1195 1196 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1197 SmallPtrSet<const Instruction *, 8> Visited; 1198 SmallVector<const Instruction *, 8> WorkList; 1199 Visited.insert(I); 1200 WorkList.push_back(I); 1201 while (!WorkList.empty()) { 1202 const Instruction *Curr = WorkList.pop_back_val(); 1203 // This use is outside the loop, nothing to do. 1204 if (!L->contains(Curr)) 1205 continue; 1206 // Do we assume it is a "hard" use which will not be eliminated easily? 1207 if (Curr->mayHaveSideEffects()) 1208 return true; 1209 // Otherwise, add all its users to worklist. 1210 for (auto U : Curr->users()) { 1211 auto *UI = cast<Instruction>(U); 1212 if (Visited.insert(UI).second) 1213 WorkList.push_back(UI); 1214 } 1215 } 1216 return false; 1217 } 1218 1219 // Collect information about PHI nodes which can be transformed in 1220 // rewriteLoopExitValues. 1221 struct RewritePhi { 1222 PHINode *PN; // For which PHI node is this replacement? 1223 unsigned Ith; // For which incoming value? 1224 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1225 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1226 bool HighCost; // Is this expansion a high-cost? 1227 1228 Value *Expansion = nullptr; 1229 bool ValidRewrite = false; 1230 1231 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1232 bool H) 1233 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1234 HighCost(H) {} 1235 }; 1236 1237 // Check whether it is possible to delete the loop after rewriting exit 1238 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1239 // aggressively. 1240 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1241 BasicBlock *Preheader = L->getLoopPreheader(); 1242 // If there is no preheader, the loop will not be deleted. 1243 if (!Preheader) 1244 return false; 1245 1246 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1247 // We obviate multiple ExitingBlocks case for simplicity. 1248 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1249 // after exit value rewriting, we can enhance the logic here. 1250 SmallVector<BasicBlock *, 4> ExitingBlocks; 1251 L->getExitingBlocks(ExitingBlocks); 1252 SmallVector<BasicBlock *, 8> ExitBlocks; 1253 L->getUniqueExitBlocks(ExitBlocks); 1254 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1255 return false; 1256 1257 BasicBlock *ExitBlock = ExitBlocks[0]; 1258 BasicBlock::iterator BI = ExitBlock->begin(); 1259 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1260 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1261 1262 // If the Incoming value of P is found in RewritePhiSet, we know it 1263 // could be rewritten to use a loop invariant value in transformation 1264 // phase later. Skip it in the loop invariant check below. 1265 bool found = false; 1266 for (const RewritePhi &Phi : RewritePhiSet) { 1267 if (!Phi.ValidRewrite) 1268 continue; 1269 unsigned i = Phi.Ith; 1270 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1271 found = true; 1272 break; 1273 } 1274 } 1275 1276 Instruction *I; 1277 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1278 if (!L->hasLoopInvariantOperands(I)) 1279 return false; 1280 1281 ++BI; 1282 } 1283 1284 for (auto *BB : L->blocks()) 1285 if (llvm::any_of(*BB, [](Instruction &I) { 1286 return I.mayHaveSideEffects(); 1287 })) 1288 return false; 1289 1290 return true; 1291 } 1292 1293 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1294 ScalarEvolution *SE, 1295 const TargetTransformInfo *TTI, 1296 SCEVExpander &Rewriter, DominatorTree *DT, 1297 ReplaceExitVal ReplaceExitValue, 1298 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1299 // Check a pre-condition. 1300 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1301 "Indvars did not preserve LCSSA!"); 1302 1303 SmallVector<BasicBlock*, 8> ExitBlocks; 1304 L->getUniqueExitBlocks(ExitBlocks); 1305 1306 SmallVector<RewritePhi, 8> RewritePhiSet; 1307 // Find all values that are computed inside the loop, but used outside of it. 1308 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1309 // the exit blocks of the loop to find them. 1310 for (BasicBlock *ExitBB : ExitBlocks) { 1311 // If there are no PHI nodes in this exit block, then no values defined 1312 // inside the loop are used on this path, skip it. 1313 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1314 if (!PN) continue; 1315 1316 unsigned NumPreds = PN->getNumIncomingValues(); 1317 1318 // Iterate over all of the PHI nodes. 1319 BasicBlock::iterator BBI = ExitBB->begin(); 1320 while ((PN = dyn_cast<PHINode>(BBI++))) { 1321 if (PN->use_empty()) 1322 continue; // dead use, don't replace it 1323 1324 if (!SE->isSCEVable(PN->getType())) 1325 continue; 1326 1327 // It's necessary to tell ScalarEvolution about this explicitly so that 1328 // it can walk the def-use list and forget all SCEVs, as it may not be 1329 // watching the PHI itself. Once the new exit value is in place, there 1330 // may not be a def-use connection between the loop and every instruction 1331 // which got a SCEVAddRecExpr for that loop. 1332 SE->forgetValue(PN); 1333 1334 // Iterate over all of the values in all the PHI nodes. 1335 for (unsigned i = 0; i != NumPreds; ++i) { 1336 // If the value being merged in is not integer or is not defined 1337 // in the loop, skip it. 1338 Value *InVal = PN->getIncomingValue(i); 1339 if (!isa<Instruction>(InVal)) 1340 continue; 1341 1342 // If this pred is for a subloop, not L itself, skip it. 1343 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1344 continue; // The Block is in a subloop, skip it. 1345 1346 // Check that InVal is defined in the loop. 1347 Instruction *Inst = cast<Instruction>(InVal); 1348 if (!L->contains(Inst)) 1349 continue; 1350 1351 // Okay, this instruction has a user outside of the current loop 1352 // and varies predictably *inside* the loop. Evaluate the value it 1353 // contains when the loop exits, if possible. We prefer to start with 1354 // expressions which are true for all exits (so as to maximize 1355 // expression reuse by the SCEVExpander), but resort to per-exit 1356 // evaluation if that fails. 1357 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1358 if (isa<SCEVCouldNotCompute>(ExitValue) || 1359 !SE->isLoopInvariant(ExitValue, L) || 1360 !isSafeToExpand(ExitValue, *SE)) { 1361 // TODO: This should probably be sunk into SCEV in some way; maybe a 1362 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1363 // most SCEV expressions and other recurrence types (e.g. shift 1364 // recurrences). Is there existing code we can reuse? 1365 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1366 if (isa<SCEVCouldNotCompute>(ExitCount)) 1367 continue; 1368 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1369 if (AddRec->getLoop() == L) 1370 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1371 if (isa<SCEVCouldNotCompute>(ExitValue) || 1372 !SE->isLoopInvariant(ExitValue, L) || 1373 !isSafeToExpand(ExitValue, *SE)) 1374 continue; 1375 } 1376 1377 // Computing the value outside of the loop brings no benefit if it is 1378 // definitely used inside the loop in a way which can not be optimized 1379 // away. Avoid doing so unless we know we have a value which computes 1380 // the ExitValue already. TODO: This should be merged into SCEV 1381 // expander to leverage its knowledge of existing expressions. 1382 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1383 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1384 continue; 1385 1386 // Check if expansions of this SCEV would count as being high cost. 1387 bool HighCost = Rewriter.isHighCostExpansion( 1388 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1389 1390 // Note that we must not perform expansions until after 1391 // we query *all* the costs, because if we perform temporary expansion 1392 // inbetween, one that we might not intend to keep, said expansion 1393 // *may* affect cost calculation of the the next SCEV's we'll query, 1394 // and next SCEV may errneously get smaller cost. 1395 1396 // Collect all the candidate PHINodes to be rewritten. 1397 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1398 } 1399 } 1400 } 1401 1402 // Now that we've done preliminary filtering and billed all the SCEV's, 1403 // we can perform the last sanity check - the expansion must be valid. 1404 for (RewritePhi &Phi : RewritePhiSet) { 1405 Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(), 1406 Phi.ExpansionPoint); 1407 1408 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " 1409 << *(Phi.Expansion) << '\n' 1410 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1411 1412 // FIXME: isValidRewrite() is a hack. it should be an assert, eventually. 1413 Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion); 1414 if (!Phi.ValidRewrite) { 1415 DeadInsts.push_back(Phi.Expansion); 1416 continue; 1417 } 1418 1419 #ifndef NDEBUG 1420 // If we reuse an instruction from a loop which is neither L nor one of 1421 // its containing loops, we end up breaking LCSSA form for this loop by 1422 // creating a new use of its instruction. 1423 if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion)) 1424 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1425 if (EVL != L) 1426 assert(EVL->contains(L) && "LCSSA breach detected!"); 1427 #endif 1428 } 1429 1430 // TODO: after isValidRewrite() is an assertion, evaluate whether 1431 // it is beneficial to change how we calculate high-cost: 1432 // if we have SCEV 'A' which we know we will expand, should we calculate 1433 // the cost of other SCEV's after expanding SCEV 'A', 1434 // thus potentially giving cost bonus to those other SCEV's? 1435 1436 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1437 int NumReplaced = 0; 1438 1439 // Transformation. 1440 for (const RewritePhi &Phi : RewritePhiSet) { 1441 if (!Phi.ValidRewrite) 1442 continue; 1443 1444 PHINode *PN = Phi.PN; 1445 Value *ExitVal = Phi.Expansion; 1446 1447 // Only do the rewrite when the ExitValue can be expanded cheaply. 1448 // If LoopCanBeDel is true, rewrite exit value aggressively. 1449 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 1450 DeadInsts.push_back(ExitVal); 1451 continue; 1452 } 1453 1454 NumReplaced++; 1455 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1456 PN->setIncomingValue(Phi.Ith, ExitVal); 1457 1458 // If this instruction is dead now, delete it. Don't do it now to avoid 1459 // invalidating iterators. 1460 if (isInstructionTriviallyDead(Inst, TLI)) 1461 DeadInsts.push_back(Inst); 1462 1463 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1464 if (PN->getNumIncomingValues() == 1 && 1465 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1466 PN->replaceAllUsesWith(ExitVal); 1467 PN->eraseFromParent(); 1468 } 1469 } 1470 1471 // The insertion point instruction may have been deleted; clear it out 1472 // so that the rewriter doesn't trip over it later. 1473 Rewriter.clearInsertPoint(); 1474 return NumReplaced; 1475 } 1476 1477 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1478 /// \p OrigLoop. 1479 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1480 Loop *RemainderLoop, uint64_t UF) { 1481 assert(UF > 0 && "Zero unrolled factor is not supported"); 1482 assert(UnrolledLoop != RemainderLoop && 1483 "Unrolled and Remainder loops are expected to distinct"); 1484 1485 // Get number of iterations in the original scalar loop. 1486 unsigned OrigLoopInvocationWeight = 0; 1487 Optional<unsigned> OrigAverageTripCount = 1488 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1489 if (!OrigAverageTripCount) 1490 return; 1491 1492 // Calculate number of iterations in unrolled loop. 1493 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1494 // Calculate number of iterations for remainder loop. 1495 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1496 1497 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1498 OrigLoopInvocationWeight); 1499 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1500 OrigLoopInvocationWeight); 1501 } 1502 1503 /// Utility that implements appending of loops onto a worklist. 1504 /// Loops are added in preorder (analogous for reverse postorder for trees), 1505 /// and the worklist is processed LIFO. 1506 template <typename RangeT> 1507 void llvm::appendReversedLoopsToWorklist( 1508 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1509 // We use an internal worklist to build up the preorder traversal without 1510 // recursion. 1511 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1512 1513 // We walk the initial sequence of loops in reverse because we generally want 1514 // to visit defs before uses and the worklist is LIFO. 1515 for (Loop *RootL : Loops) { 1516 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1517 assert(PreOrderWorklist.empty() && 1518 "Must start with an empty preorder walk worklist."); 1519 PreOrderWorklist.push_back(RootL); 1520 do { 1521 Loop *L = PreOrderWorklist.pop_back_val(); 1522 PreOrderWorklist.append(L->begin(), L->end()); 1523 PreOrderLoops.push_back(L); 1524 } while (!PreOrderWorklist.empty()); 1525 1526 Worklist.insert(std::move(PreOrderLoops)); 1527 PreOrderLoops.clear(); 1528 } 1529 } 1530 1531 template <typename RangeT> 1532 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1533 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1534 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1535 } 1536 1537 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1538 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1539 1540 template void 1541 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1542 SmallPriorityWorklist<Loop *, 4> &Worklist); 1543 1544 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1545 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1546 appendReversedLoopsToWorklist(LI, Worklist); 1547 } 1548 1549 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1550 LoopInfo *LI, LPPassManager *LPM) { 1551 Loop &New = *LI->AllocateLoop(); 1552 if (PL) 1553 PL->addChildLoop(&New); 1554 else 1555 LI->addTopLevelLoop(&New); 1556 1557 if (LPM) 1558 LPM->addLoop(New); 1559 1560 // Add all of the blocks in L to the new loop. 1561 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 1562 I != E; ++I) 1563 if (LI->getLoopFor(*I) == L) 1564 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 1565 1566 // Add all of the subloops to the new loop. 1567 for (Loop *I : *L) 1568 cloneLoop(I, &New, VM, LI, LPM); 1569 1570 return &New; 1571 } 1572 1573 /// IR Values for the lower and upper bounds of a pointer evolution. We 1574 /// need to use value-handles because SCEV expansion can invalidate previously 1575 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1576 /// a previous one. 1577 struct PointerBounds { 1578 TrackingVH<Value> Start; 1579 TrackingVH<Value> End; 1580 }; 1581 1582 /// Expand code for the lower and upper bound of the pointer group \p CG 1583 /// in \p TheLoop. \return the values for the bounds. 1584 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1585 Loop *TheLoop, Instruction *Loc, 1586 SCEVExpander &Exp) { 1587 ScalarEvolution *SE = Exp.getSE(); 1588 // TODO: Add helper to retrieve pointers to CG. 1589 Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue; 1590 const SCEV *Sc = SE->getSCEV(Ptr); 1591 1592 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1593 LLVMContext &Ctx = Loc->getContext(); 1594 1595 // Use this type for pointer arithmetic. 1596 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1597 1598 if (SE->isLoopInvariant(Sc, TheLoop)) { 1599 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 1600 << *Ptr << "\n"); 1601 // Ptr could be in the loop body. If so, expand a new one at the correct 1602 // location. 1603 Instruction *Inst = dyn_cast<Instruction>(Ptr); 1604 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 1605 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 1606 : Ptr; 1607 // We must return a half-open range, which means incrementing Sc. 1608 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 1609 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 1610 return {NewPtr, NewPtrPlusOne}; 1611 } else { 1612 Value *Start = nullptr, *End = nullptr; 1613 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1614 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1615 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1616 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 1617 << "\n"); 1618 return {Start, End}; 1619 } 1620 } 1621 1622 /// Turns a collection of checks into a collection of expanded upper and 1623 /// lower bounds for both pointers in the check. 1624 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1625 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1626 Instruction *Loc, SCEVExpander &Exp) { 1627 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1628 1629 // Here we're relying on the SCEV Expander's cache to only emit code for the 1630 // same bounds once. 1631 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1632 [&](const RuntimePointerCheck &Check) { 1633 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1634 Second = expandBounds(Check.second, L, Loc, Exp); 1635 return std::make_pair(First, Second); 1636 }); 1637 1638 return ChecksWithBounds; 1639 } 1640 1641 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks( 1642 Instruction *Loc, Loop *TheLoop, 1643 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1644 SCEVExpander &Exp) { 1645 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1646 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1647 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1648 1649 LLVMContext &Ctx = Loc->getContext(); 1650 Instruction *FirstInst = nullptr; 1651 IRBuilder<> ChkBuilder(Loc); 1652 // Our instructions might fold to a constant. 1653 Value *MemoryRuntimeCheck = nullptr; 1654 1655 // FIXME: this helper is currently a duplicate of the one in 1656 // LoopVectorize.cpp. 1657 auto GetFirstInst = [](Instruction *FirstInst, Value *V, 1658 Instruction *Loc) -> Instruction * { 1659 if (FirstInst) 1660 return FirstInst; 1661 if (Instruction *I = dyn_cast<Instruction>(V)) 1662 return I->getParent() == Loc->getParent() ? I : nullptr; 1663 return nullptr; 1664 }; 1665 1666 for (const auto &Check : ExpandedChecks) { 1667 const PointerBounds &A = Check.first, &B = Check.second; 1668 // Check if two pointers (A and B) conflict where conflict is computed as: 1669 // start(A) <= end(B) && start(B) <= end(A) 1670 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1671 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1672 1673 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1674 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1675 "Trying to bounds check pointers with different address spaces"); 1676 1677 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1678 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1679 1680 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1681 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1682 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1683 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1684 1685 // [A|B].Start points to the first accessed byte under base [A|B]. 1686 // [A|B].End points to the last accessed byte, plus one. 1687 // There is no conflict when the intervals are disjoint: 1688 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1689 // 1690 // bound0 = (B.Start < A.End) 1691 // bound1 = (A.Start < B.End) 1692 // IsConflict = bound0 & bound1 1693 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1694 FirstInst = GetFirstInst(FirstInst, Cmp0, Loc); 1695 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1696 FirstInst = GetFirstInst(FirstInst, Cmp1, Loc); 1697 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1698 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1699 if (MemoryRuntimeCheck) { 1700 IsConflict = 1701 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1702 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1703 } 1704 MemoryRuntimeCheck = IsConflict; 1705 } 1706 1707 if (!MemoryRuntimeCheck) 1708 return std::make_pair(nullptr, nullptr); 1709 1710 // We have to do this trickery because the IRBuilder might fold the check to a 1711 // constant expression in which case there is no Instruction anchored in a 1712 // the block. 1713 Instruction *Check = 1714 BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); 1715 ChkBuilder.Insert(Check, "memcheck.conflict"); 1716 FirstInst = GetFirstInst(FirstInst, Check, Loc); 1717 return std::make_pair(FirstInst, Check); 1718 } 1719 1720 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, 1721 unsigned MSSAThreshold, 1722 MemorySSA &MSSA, 1723 AAResults &AA) { 1724 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1725 if (!TI || !TI->isConditional()) 1726 return {}; 1727 1728 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1729 // The case with the condition outside the loop should already be handled 1730 // earlier. 1731 if (!CondI || !L.contains(CondI)) 1732 return {}; 1733 1734 SmallVector<Instruction *> InstToDuplicate; 1735 InstToDuplicate.push_back(CondI); 1736 1737 SmallVector<Value *, 4> WorkList; 1738 WorkList.append(CondI->op_begin(), CondI->op_end()); 1739 1740 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1741 SmallVector<MemoryLocation, 4> AccessedLocs; 1742 while (!WorkList.empty()) { 1743 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1744 if (!I || !L.contains(I)) 1745 continue; 1746 1747 // TODO: support additional instructions. 1748 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1749 return {}; 1750 1751 // Do not duplicate volatile and atomic loads. 1752 if (auto *LI = dyn_cast<LoadInst>(I)) 1753 if (LI->isVolatile() || LI->isAtomic()) 1754 return {}; 1755 1756 InstToDuplicate.push_back(I); 1757 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1758 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1759 // Queue the defining access to check for alias checks. 1760 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1761 AccessedLocs.push_back(MemoryLocation::get(I)); 1762 } else { 1763 // MemoryDefs may clobber the location or may be atomic memory 1764 // operations. Bail out. 1765 return {}; 1766 } 1767 } 1768 WorkList.append(I->op_begin(), I->op_end()); 1769 } 1770 1771 if (InstToDuplicate.empty()) 1772 return {}; 1773 1774 SmallVector<BasicBlock *, 4> ExitingBlocks; 1775 L.getExitingBlocks(ExitingBlocks); 1776 auto HasNoClobbersOnPath = 1777 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1778 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1779 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1780 -> Optional<IVConditionInfo> { 1781 IVConditionInfo Info; 1782 // First, collect all blocks in the loop that are on a patch from Succ 1783 // to the header. 1784 SmallVector<BasicBlock *, 4> WorkList; 1785 WorkList.push_back(Succ); 1786 WorkList.push_back(Header); 1787 SmallPtrSet<BasicBlock *, 4> Seen; 1788 Seen.insert(Header); 1789 Info.PathIsNoop &= 1790 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1791 1792 while (!WorkList.empty()) { 1793 BasicBlock *Current = WorkList.pop_back_val(); 1794 if (!L.contains(Current)) 1795 continue; 1796 const auto &SeenIns = Seen.insert(Current); 1797 if (!SeenIns.second) 1798 continue; 1799 1800 Info.PathIsNoop &= all_of( 1801 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1802 WorkList.append(succ_begin(Current), succ_end(Current)); 1803 } 1804 1805 // Require at least 2 blocks on a path through the loop. This skips 1806 // paths that directly exit the loop. 1807 if (Seen.size() < 2) 1808 return {}; 1809 1810 // Next, check if there are any MemoryDefs that are on the path through 1811 // the loop (in the Seen set) and they may-alias any of the locations in 1812 // AccessedLocs. If that is the case, they may modify the condition and 1813 // partial unswitching is not possible. 1814 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1815 while (!AccessesToCheck.empty()) { 1816 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1817 auto SeenI = SeenAccesses.insert(Current); 1818 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1819 continue; 1820 1821 // Bail out if exceeded the threshold. 1822 if (SeenAccesses.size() >= MSSAThreshold) 1823 return {}; 1824 1825 // MemoryUse are read-only accesses. 1826 if (isa<MemoryUse>(Current)) 1827 continue; 1828 1829 // For a MemoryDef, check if is aliases any of the location feeding 1830 // the original condition. 1831 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1832 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1833 return isModSet( 1834 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1835 })) 1836 return {}; 1837 } 1838 1839 for (Use &U : Current->uses()) 1840 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1841 } 1842 1843 // We could also allow loops with known trip counts without mustprogress, 1844 // but ScalarEvolution may not be available. 1845 Info.PathIsNoop &= 1846 L.getHeader()->getParent()->mustProgress() || hasMustProgress(&L); 1847 1848 // If the path is considered a no-op so far, check if it reaches a 1849 // single exit block without any phis. This ensures no values from the 1850 // loop are used outside of the loop. 1851 if (Info.PathIsNoop) { 1852 for (auto *Exiting : ExitingBlocks) { 1853 if (!Seen.contains(Exiting)) 1854 continue; 1855 for (auto *Succ : successors(Exiting)) { 1856 if (L.contains(Succ)) 1857 continue; 1858 1859 Info.PathIsNoop &= llvm::empty(Succ->phis()) && 1860 (!Info.ExitForPath || Info.ExitForPath == Succ); 1861 if (!Info.PathIsNoop) 1862 break; 1863 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1864 "cannot have multiple exit blocks"); 1865 Info.ExitForPath = Succ; 1866 } 1867 } 1868 } 1869 if (!Info.ExitForPath) 1870 Info.PathIsNoop = false; 1871 1872 Info.InstToDuplicate = InstToDuplicate; 1873 return Info; 1874 }; 1875 1876 // If we branch to the same successor, partial unswitching will not be 1877 // beneficial. 1878 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 1879 return {}; 1880 1881 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 1882 AccessesToCheck)) { 1883 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 1884 return Info; 1885 } 1886 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 1887 AccessesToCheck)) { 1888 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 1889 return Info; 1890 } 1891 1892 return {}; 1893 } 1894