1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/MustExecute.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 #define DEBUG_TYPE "loop-utils" 58 59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 61 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 62 63 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 64 MemorySSAUpdater *MSSAU, 65 bool PreserveLCSSA) { 66 bool Changed = false; 67 68 // We re-use a vector for the in-loop predecesosrs. 69 SmallVector<BasicBlock *, 4> InLoopPredecessors; 70 71 auto RewriteExit = [&](BasicBlock *BB) { 72 assert(InLoopPredecessors.empty() && 73 "Must start with an empty predecessors list!"); 74 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 75 76 // See if there are any non-loop predecessors of this exit block and 77 // keep track of the in-loop predecessors. 78 bool IsDedicatedExit = true; 79 for (auto *PredBB : predecessors(BB)) 80 if (L->contains(PredBB)) { 81 if (isa<IndirectBrInst>(PredBB->getTerminator())) 82 // We cannot rewrite exiting edges from an indirectbr. 83 return false; 84 if (isa<CallBrInst>(PredBB->getTerminator())) 85 // We cannot rewrite exiting edges from a callbr. 86 return false; 87 88 InLoopPredecessors.push_back(PredBB); 89 } else { 90 IsDedicatedExit = false; 91 } 92 93 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 94 95 // Nothing to do if this is already a dedicated exit. 96 if (IsDedicatedExit) 97 return false; 98 99 auto *NewExitBB = SplitBlockPredecessors( 100 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 101 102 if (!NewExitBB) 103 LLVM_DEBUG( 104 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 105 << *L << "\n"); 106 else 107 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 108 << NewExitBB->getName() << "\n"); 109 return true; 110 }; 111 112 // Walk the exit blocks directly rather than building up a data structure for 113 // them, but only visit each one once. 114 SmallPtrSet<BasicBlock *, 4> Visited; 115 for (auto *BB : L->blocks()) 116 for (auto *SuccBB : successors(BB)) { 117 // We're looking for exit blocks so skip in-loop successors. 118 if (L->contains(SuccBB)) 119 continue; 120 121 // Visit each exit block exactly once. 122 if (!Visited.insert(SuccBB).second) 123 continue; 124 125 Changed |= RewriteExit(SuccBB); 126 } 127 128 return Changed; 129 } 130 131 /// Returns the instructions that use values defined in the loop. 132 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 133 SmallVector<Instruction *, 8> UsedOutside; 134 135 for (auto *Block : L->getBlocks()) 136 // FIXME: I believe that this could use copy_if if the Inst reference could 137 // be adapted into a pointer. 138 for (auto &Inst : *Block) { 139 auto Users = Inst.users(); 140 if (any_of(Users, [&](User *U) { 141 auto *Use = cast<Instruction>(U); 142 return !L->contains(Use->getParent()); 143 })) 144 UsedOutside.push_back(&Inst); 145 } 146 147 return UsedOutside; 148 } 149 150 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 151 // By definition, all loop passes need the LoopInfo analysis and the 152 // Dominator tree it depends on. Because they all participate in the loop 153 // pass manager, they must also preserve these. 154 AU.addRequired<DominatorTreeWrapperPass>(); 155 AU.addPreserved<DominatorTreeWrapperPass>(); 156 AU.addRequired<LoopInfoWrapperPass>(); 157 AU.addPreserved<LoopInfoWrapperPass>(); 158 159 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 160 // here because users shouldn't directly get them from this header. 161 extern char &LoopSimplifyID; 162 extern char &LCSSAID; 163 AU.addRequiredID(LoopSimplifyID); 164 AU.addPreservedID(LoopSimplifyID); 165 AU.addRequiredID(LCSSAID); 166 AU.addPreservedID(LCSSAID); 167 // This is used in the LPPassManager to perform LCSSA verification on passes 168 // which preserve lcssa form 169 AU.addRequired<LCSSAVerificationPass>(); 170 AU.addPreserved<LCSSAVerificationPass>(); 171 172 // Loop passes are designed to run inside of a loop pass manager which means 173 // that any function analyses they require must be required by the first loop 174 // pass in the manager (so that it is computed before the loop pass manager 175 // runs) and preserved by all loop pasess in the manager. To make this 176 // reasonably robust, the set needed for most loop passes is maintained here. 177 // If your loop pass requires an analysis not listed here, you will need to 178 // carefully audit the loop pass manager nesting structure that results. 179 AU.addRequired<AAResultsWrapperPass>(); 180 AU.addPreserved<AAResultsWrapperPass>(); 181 AU.addPreserved<BasicAAWrapperPass>(); 182 AU.addPreserved<GlobalsAAWrapperPass>(); 183 AU.addPreserved<SCEVAAWrapperPass>(); 184 AU.addRequired<ScalarEvolutionWrapperPass>(); 185 AU.addPreserved<ScalarEvolutionWrapperPass>(); 186 // FIXME: When all loop passes preserve MemorySSA, it can be required and 187 // preserved here instead of the individual handling in each pass. 188 } 189 190 /// Manually defined generic "LoopPass" dependency initialization. This is used 191 /// to initialize the exact set of passes from above in \c 192 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 193 /// with: 194 /// 195 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 196 /// 197 /// As-if "LoopPass" were a pass. 198 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 199 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 202 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 204 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 205 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 207 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 208 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 209 } 210 211 /// Create MDNode for input string. 212 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 213 LLVMContext &Context = TheLoop->getHeader()->getContext(); 214 Metadata *MDs[] = { 215 MDString::get(Context, Name), 216 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 217 return MDNode::get(Context, MDs); 218 } 219 220 /// Set input string into loop metadata by keeping other values intact. 221 /// If the string is already in loop metadata update value if it is 222 /// different. 223 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 224 unsigned V) { 225 SmallVector<Metadata *, 4> MDs(1); 226 // If the loop already has metadata, retain it. 227 MDNode *LoopID = TheLoop->getLoopID(); 228 if (LoopID) { 229 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 230 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 231 // If it is of form key = value, try to parse it. 232 if (Node->getNumOperands() == 2) { 233 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 234 if (S && S->getString().equals(StringMD)) { 235 ConstantInt *IntMD = 236 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 237 if (IntMD && IntMD->getSExtValue() == V) 238 // It is already in place. Do nothing. 239 return; 240 // We need to update the value, so just skip it here and it will 241 // be added after copying other existed nodes. 242 continue; 243 } 244 } 245 MDs.push_back(Node); 246 } 247 } 248 // Add new metadata. 249 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 250 // Replace current metadata node with new one. 251 LLVMContext &Context = TheLoop->getHeader()->getContext(); 252 MDNode *NewLoopID = MDNode::get(Context, MDs); 253 // Set operand 0 to refer to the loop id itself. 254 NewLoopID->replaceOperandWith(0, NewLoopID); 255 TheLoop->setLoopID(NewLoopID); 256 } 257 258 /// Find string metadata for loop 259 /// 260 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 261 /// operand or null otherwise. If the string metadata is not found return 262 /// Optional's not-a-value. 263 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 264 StringRef Name) { 265 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 266 if (!MD) 267 return None; 268 switch (MD->getNumOperands()) { 269 case 1: 270 return nullptr; 271 case 2: 272 return &MD->getOperand(1); 273 default: 274 llvm_unreachable("loop metadata has 0 or 1 operand"); 275 } 276 } 277 278 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 279 StringRef Name) { 280 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 281 if (!MD) 282 return None; 283 switch (MD->getNumOperands()) { 284 case 1: 285 // When the value is absent it is interpreted as 'attribute set'. 286 return true; 287 case 2: 288 if (ConstantInt *IntMD = 289 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 290 return IntMD->getZExtValue(); 291 return true; 292 } 293 llvm_unreachable("unexpected number of options"); 294 } 295 296 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 297 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 298 } 299 300 Optional<ElementCount> 301 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) { 302 Optional<int> Width = 303 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 304 305 if (Width.hasValue()) { 306 Optional<int> IsScalable = getOptionalIntLoopAttribute( 307 TheLoop, "llvm.loop.vectorize.scalable.enable"); 308 return ElementCount::get(*Width, IsScalable.getValueOr(false)); 309 } 310 311 return None; 312 } 313 314 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 315 StringRef Name) { 316 const MDOperand *AttrMD = 317 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 318 if (!AttrMD) 319 return None; 320 321 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 322 if (!IntMD) 323 return None; 324 325 return IntMD->getSExtValue(); 326 } 327 328 Optional<MDNode *> llvm::makeFollowupLoopID( 329 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 330 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 331 if (!OrigLoopID) { 332 if (AlwaysNew) 333 return nullptr; 334 return None; 335 } 336 337 assert(OrigLoopID->getOperand(0) == OrigLoopID); 338 339 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 340 bool InheritSomeAttrs = 341 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 342 SmallVector<Metadata *, 8> MDs; 343 MDs.push_back(nullptr); 344 345 bool Changed = false; 346 if (InheritAllAttrs || InheritSomeAttrs) { 347 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 348 MDNode *Op = cast<MDNode>(Existing.get()); 349 350 auto InheritThisAttribute = [InheritSomeAttrs, 351 InheritOptionsExceptPrefix](MDNode *Op) { 352 if (!InheritSomeAttrs) 353 return false; 354 355 // Skip malformatted attribute metadata nodes. 356 if (Op->getNumOperands() == 0) 357 return true; 358 Metadata *NameMD = Op->getOperand(0).get(); 359 if (!isa<MDString>(NameMD)) 360 return true; 361 StringRef AttrName = cast<MDString>(NameMD)->getString(); 362 363 // Do not inherit excluded attributes. 364 return !AttrName.startswith(InheritOptionsExceptPrefix); 365 }; 366 367 if (InheritThisAttribute(Op)) 368 MDs.push_back(Op); 369 else 370 Changed = true; 371 } 372 } else { 373 // Modified if we dropped at least one attribute. 374 Changed = OrigLoopID->getNumOperands() > 1; 375 } 376 377 bool HasAnyFollowup = false; 378 for (StringRef OptionName : FollowupOptions) { 379 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 380 if (!FollowupNode) 381 continue; 382 383 HasAnyFollowup = true; 384 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 385 MDs.push_back(Option.get()); 386 Changed = true; 387 } 388 } 389 390 // Attributes of the followup loop not specified explicity, so signal to the 391 // transformation pass to add suitable attributes. 392 if (!AlwaysNew && !HasAnyFollowup) 393 return None; 394 395 // If no attributes were added or remove, the previous loop Id can be reused. 396 if (!AlwaysNew && !Changed) 397 return OrigLoopID; 398 399 // No attributes is equivalent to having no !llvm.loop metadata at all. 400 if (MDs.size() == 1) 401 return nullptr; 402 403 // Build the new loop ID. 404 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 405 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 406 return FollowupLoopID; 407 } 408 409 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 410 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 411 } 412 413 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 414 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 415 } 416 417 bool llvm::hasMustProgress(const Loop *L) { 418 return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 419 } 420 421 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 422 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 423 return TM_SuppressedByUser; 424 425 Optional<int> Count = 426 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 427 if (Count.hasValue()) 428 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 429 430 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 431 return TM_ForcedByUser; 432 433 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 434 return TM_ForcedByUser; 435 436 if (hasDisableAllTransformsHint(L)) 437 return TM_Disable; 438 439 return TM_Unspecified; 440 } 441 442 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 443 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 444 return TM_SuppressedByUser; 445 446 Optional<int> Count = 447 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 448 if (Count.hasValue()) 449 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 450 451 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 452 return TM_ForcedByUser; 453 454 if (hasDisableAllTransformsHint(L)) 455 return TM_Disable; 456 457 return TM_Unspecified; 458 } 459 460 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 461 Optional<bool> Enable = 462 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 463 464 if (Enable == false) 465 return TM_SuppressedByUser; 466 467 Optional<ElementCount> VectorizeWidth = 468 getOptionalElementCountLoopAttribute(L); 469 Optional<int> InterleaveCount = 470 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 471 472 // 'Forcing' vector width and interleave count to one effectively disables 473 // this tranformation. 474 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 475 InterleaveCount == 1) 476 return TM_SuppressedByUser; 477 478 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 479 return TM_Disable; 480 481 if (Enable == true) 482 return TM_ForcedByUser; 483 484 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 485 return TM_Disable; 486 487 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 488 return TM_Enable; 489 490 if (hasDisableAllTransformsHint(L)) 491 return TM_Disable; 492 493 return TM_Unspecified; 494 } 495 496 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 497 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 498 return TM_ForcedByUser; 499 500 if (hasDisableAllTransformsHint(L)) 501 return TM_Disable; 502 503 return TM_Unspecified; 504 } 505 506 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 507 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 508 return TM_SuppressedByUser; 509 510 if (hasDisableAllTransformsHint(L)) 511 return TM_Disable; 512 513 return TM_Unspecified; 514 } 515 516 /// Does a BFS from a given node to all of its children inside a given loop. 517 /// The returned vector of nodes includes the starting point. 518 SmallVector<DomTreeNode *, 16> 519 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 520 SmallVector<DomTreeNode *, 16> Worklist; 521 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 522 // Only include subregions in the top level loop. 523 BasicBlock *BB = DTN->getBlock(); 524 if (CurLoop->contains(BB)) 525 Worklist.push_back(DTN); 526 }; 527 528 AddRegionToWorklist(N); 529 530 for (size_t I = 0; I < Worklist.size(); I++) { 531 for (DomTreeNode *Child : Worklist[I]->children()) 532 AddRegionToWorklist(Child); 533 } 534 535 return Worklist; 536 } 537 538 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 539 LoopInfo *LI, MemorySSA *MSSA) { 540 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 541 auto *Preheader = L->getLoopPreheader(); 542 assert(Preheader && "Preheader should exist!"); 543 544 std::unique_ptr<MemorySSAUpdater> MSSAU; 545 if (MSSA) 546 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 547 548 // Now that we know the removal is safe, remove the loop by changing the 549 // branch from the preheader to go to the single exit block. 550 // 551 // Because we're deleting a large chunk of code at once, the sequence in which 552 // we remove things is very important to avoid invalidation issues. 553 554 // Tell ScalarEvolution that the loop is deleted. Do this before 555 // deleting the loop so that ScalarEvolution can look at the loop 556 // to determine what it needs to clean up. 557 if (SE) 558 SE->forgetLoop(L); 559 560 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 561 assert(OldBr && "Preheader must end with a branch"); 562 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 563 // Connect the preheader to the exit block. Keep the old edge to the header 564 // around to perform the dominator tree update in two separate steps 565 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 566 // preheader -> header. 567 // 568 // 569 // 0. Preheader 1. Preheader 2. Preheader 570 // | | | | 571 // V | V | 572 // Header <--\ | Header <--\ | Header <--\ 573 // | | | | | | | | | | | 574 // | V | | | V | | | V | 575 // | Body --/ | | Body --/ | | Body --/ 576 // V V V V V 577 // Exit Exit Exit 578 // 579 // By doing this is two separate steps we can perform the dominator tree 580 // update without using the batch update API. 581 // 582 // Even when the loop is never executed, we cannot remove the edge from the 583 // source block to the exit block. Consider the case where the unexecuted loop 584 // branches back to an outer loop. If we deleted the loop and removed the edge 585 // coming to this inner loop, this will break the outer loop structure (by 586 // deleting the backedge of the outer loop). If the outer loop is indeed a 587 // non-loop, it will be deleted in a future iteration of loop deletion pass. 588 IRBuilder<> Builder(OldBr); 589 590 auto *ExitBlock = L->getUniqueExitBlock(); 591 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 592 if (ExitBlock) { 593 assert(ExitBlock && "Should have a unique exit block!"); 594 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 595 596 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 597 // Remove the old branch. The conditional branch becomes a new terminator. 598 OldBr->eraseFromParent(); 599 600 // Rewrite phis in the exit block to get their inputs from the Preheader 601 // instead of the exiting block. 602 for (PHINode &P : ExitBlock->phis()) { 603 // Set the zero'th element of Phi to be from the preheader and remove all 604 // other incoming values. Given the loop has dedicated exits, all other 605 // incoming values must be from the exiting blocks. 606 int PredIndex = 0; 607 P.setIncomingBlock(PredIndex, Preheader); 608 // Removes all incoming values from all other exiting blocks (including 609 // duplicate values from an exiting block). 610 // Nuke all entries except the zero'th entry which is the preheader entry. 611 // NOTE! We need to remove Incoming Values in the reverse order as done 612 // below, to keep the indices valid for deletion (removeIncomingValues 613 // updates getNumIncomingValues and shifts all values down into the 614 // operand being deleted). 615 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 616 P.removeIncomingValue(e - i, false); 617 618 assert((P.getNumIncomingValues() == 1 && 619 P.getIncomingBlock(PredIndex) == Preheader) && 620 "Should have exactly one value and that's from the preheader!"); 621 } 622 623 if (DT) { 624 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 625 if (MSSA) { 626 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 627 *DT); 628 if (VerifyMemorySSA) 629 MSSA->verifyMemorySSA(); 630 } 631 } 632 633 // Disconnect the loop body by branching directly to its exit. 634 Builder.SetInsertPoint(Preheader->getTerminator()); 635 Builder.CreateBr(ExitBlock); 636 // Remove the old branch. 637 Preheader->getTerminator()->eraseFromParent(); 638 } else { 639 assert(L->hasNoExitBlocks() && 640 "Loop should have either zero or one exit blocks."); 641 642 Builder.SetInsertPoint(OldBr); 643 Builder.CreateUnreachable(); 644 Preheader->getTerminator()->eraseFromParent(); 645 } 646 647 if (DT) { 648 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 649 if (MSSA) { 650 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 651 *DT); 652 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 653 L->block_end()); 654 MSSAU->removeBlocks(DeadBlockSet); 655 if (VerifyMemorySSA) 656 MSSA->verifyMemorySSA(); 657 } 658 } 659 660 // Use a map to unique and a vector to guarantee deterministic ordering. 661 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 662 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 663 664 if (ExitBlock) { 665 // Given LCSSA form is satisfied, we should not have users of instructions 666 // within the dead loop outside of the loop. However, LCSSA doesn't take 667 // unreachable uses into account. We handle them here. 668 // We could do it after drop all references (in this case all users in the 669 // loop will be already eliminated and we have less work to do but according 670 // to API doc of User::dropAllReferences only valid operation after dropping 671 // references, is deletion. So let's substitute all usages of 672 // instruction from the loop with undef value of corresponding type first. 673 for (auto *Block : L->blocks()) 674 for (Instruction &I : *Block) { 675 auto *Undef = UndefValue::get(I.getType()); 676 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); 677 UI != E;) { 678 Use &U = *UI; 679 ++UI; 680 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 681 if (L->contains(Usr->getParent())) 682 continue; 683 // If we have a DT then we can check that uses outside a loop only in 684 // unreachable block. 685 if (DT) 686 assert(!DT->isReachableFromEntry(U) && 687 "Unexpected user in reachable block"); 688 U.set(Undef); 689 } 690 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 691 if (!DVI) 692 continue; 693 auto Key = 694 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 695 if (Key != DeadDebugSet.end()) 696 continue; 697 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 698 DeadDebugInst.push_back(DVI); 699 } 700 701 // After the loop has been deleted all the values defined and modified 702 // inside the loop are going to be unavailable. 703 // Since debug values in the loop have been deleted, inserting an undef 704 // dbg.value truncates the range of any dbg.value before the loop where the 705 // loop used to be. This is particularly important for constant values. 706 DIBuilder DIB(*ExitBlock->getModule()); 707 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 708 assert(InsertDbgValueBefore && 709 "There should be a non-PHI instruction in exit block, else these " 710 "instructions will have no parent."); 711 for (auto *DVI : DeadDebugInst) 712 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 713 DVI->getVariable(), DVI->getExpression(), 714 DVI->getDebugLoc(), InsertDbgValueBefore); 715 } 716 717 // Remove the block from the reference counting scheme, so that we can 718 // delete it freely later. 719 for (auto *Block : L->blocks()) 720 Block->dropAllReferences(); 721 722 if (MSSA && VerifyMemorySSA) 723 MSSA->verifyMemorySSA(); 724 725 if (LI) { 726 // Erase the instructions and the blocks without having to worry 727 // about ordering because we already dropped the references. 728 // NOTE: This iteration is safe because erasing the block does not remove 729 // its entry from the loop's block list. We do that in the next section. 730 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 731 LpI != LpE; ++LpI) 732 (*LpI)->eraseFromParent(); 733 734 // Finally, the blocks from loopinfo. This has to happen late because 735 // otherwise our loop iterators won't work. 736 737 SmallPtrSet<BasicBlock *, 8> blocks; 738 blocks.insert(L->block_begin(), L->block_end()); 739 for (BasicBlock *BB : blocks) 740 LI->removeBlock(BB); 741 742 // The last step is to update LoopInfo now that we've eliminated this loop. 743 // Note: LoopInfo::erase remove the given loop and relink its subloops with 744 // its parent. While removeLoop/removeChildLoop remove the given loop but 745 // not relink its subloops, which is what we want. 746 if (Loop *ParentLoop = L->getParentLoop()) { 747 Loop::iterator I = find(*ParentLoop, L); 748 assert(I != ParentLoop->end() && "Couldn't find loop"); 749 ParentLoop->removeChildLoop(I); 750 } else { 751 Loop::iterator I = find(*LI, L); 752 assert(I != LI->end() && "Couldn't find loop"); 753 LI->removeLoop(I); 754 } 755 LI->destroy(L); 756 } 757 } 758 759 static Loop *getOutermostLoop(Loop *L) { 760 while (Loop *Parent = L->getParentLoop()) 761 L = Parent; 762 return L; 763 } 764 765 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 766 LoopInfo &LI, MemorySSA *MSSA) { 767 auto *Latch = L->getLoopLatch(); 768 assert(Latch && "multiple latches not yet supported"); 769 auto *Header = L->getHeader(); 770 Loop *OutermostLoop = getOutermostLoop(L); 771 772 SE.forgetLoop(L); 773 774 // Note: By splitting the backedge, and then explicitly making it unreachable 775 // we gracefully handle corner cases such as non-bottom tested loops and the 776 // like. We also have the benefit of being able to reuse existing well tested 777 // code. It might be worth special casing the common bottom tested case at 778 // some point to avoid code churn. 779 780 std::unique_ptr<MemorySSAUpdater> MSSAU; 781 if (MSSA) 782 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 783 784 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 785 786 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 787 (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false, 788 /*PreserveLCSSA*/true, &DTU, MSSAU.get()); 789 790 // Erase (and destroy) this loop instance. Handles relinking sub-loops 791 // and blocks within the loop as needed. 792 LI.erase(L); 793 794 // If the loop we broke had a parent, then changeToUnreachable might have 795 // caused a block to be removed from the parent loop (see loop_nest_lcssa 796 // test case in zero-btc.ll for an example), thus changing the parent's 797 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 798 // loop which might have a had a block removed. 799 if (OutermostLoop != L) 800 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 801 } 802 803 804 /// Checks if \p L has single exit through latch block except possibly 805 /// "deoptimizing" exits. Returns branch instruction terminating the loop 806 /// latch if above check is successful, nullptr otherwise. 807 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 808 BasicBlock *Latch = L->getLoopLatch(); 809 if (!Latch) 810 return nullptr; 811 812 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 813 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 814 return nullptr; 815 816 assert((LatchBR->getSuccessor(0) == L->getHeader() || 817 LatchBR->getSuccessor(1) == L->getHeader()) && 818 "At least one edge out of the latch must go to the header"); 819 820 SmallVector<BasicBlock *, 4> ExitBlocks; 821 L->getUniqueNonLatchExitBlocks(ExitBlocks); 822 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 823 return !EB->getTerminatingDeoptimizeCall(); 824 })) 825 return nullptr; 826 827 return LatchBR; 828 } 829 830 Optional<unsigned> 831 llvm::getLoopEstimatedTripCount(Loop *L, 832 unsigned *EstimatedLoopInvocationWeight) { 833 // Support loops with an exiting latch and other existing exists only 834 // deoptimize. 835 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 836 if (!LatchBranch) 837 return None; 838 839 // To estimate the number of times the loop body was executed, we want to 840 // know the number of times the backedge was taken, vs. the number of times 841 // we exited the loop. 842 uint64_t BackedgeTakenWeight, LatchExitWeight; 843 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 844 return None; 845 846 if (LatchBranch->getSuccessor(0) != L->getHeader()) 847 std::swap(BackedgeTakenWeight, LatchExitWeight); 848 849 if (!LatchExitWeight) 850 return None; 851 852 if (EstimatedLoopInvocationWeight) 853 *EstimatedLoopInvocationWeight = LatchExitWeight; 854 855 // Estimated backedge taken count is a ratio of the backedge taken weight by 856 // the weight of the edge exiting the loop, rounded to nearest. 857 uint64_t BackedgeTakenCount = 858 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 859 // Estimated trip count is one plus estimated backedge taken count. 860 return BackedgeTakenCount + 1; 861 } 862 863 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 864 unsigned EstimatedloopInvocationWeight) { 865 // Support loops with an exiting latch and other existing exists only 866 // deoptimize. 867 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 868 if (!LatchBranch) 869 return false; 870 871 // Calculate taken and exit weights. 872 unsigned LatchExitWeight = 0; 873 unsigned BackedgeTakenWeight = 0; 874 875 if (EstimatedTripCount > 0) { 876 LatchExitWeight = EstimatedloopInvocationWeight; 877 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 878 } 879 880 // Make a swap if back edge is taken when condition is "false". 881 if (LatchBranch->getSuccessor(0) != L->getHeader()) 882 std::swap(BackedgeTakenWeight, LatchExitWeight); 883 884 MDBuilder MDB(LatchBranch->getContext()); 885 886 // Set/Update profile metadata. 887 LatchBranch->setMetadata( 888 LLVMContext::MD_prof, 889 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 890 891 return true; 892 } 893 894 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 895 ScalarEvolution &SE) { 896 Loop *OuterL = InnerLoop->getParentLoop(); 897 if (!OuterL) 898 return true; 899 900 // Get the backedge taken count for the inner loop 901 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 902 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 903 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 904 !InnerLoopBECountSC->getType()->isIntegerTy()) 905 return false; 906 907 // Get whether count is invariant to the outer loop 908 ScalarEvolution::LoopDisposition LD = 909 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 910 if (LD != ScalarEvolution::LoopInvariant) 911 return false; 912 913 return true; 914 } 915 916 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 917 Value *Right) { 918 CmpInst::Predicate Pred; 919 switch (RK) { 920 default: 921 llvm_unreachable("Unknown min/max recurrence kind"); 922 case RecurKind::UMin: 923 Pred = CmpInst::ICMP_ULT; 924 break; 925 case RecurKind::UMax: 926 Pred = CmpInst::ICMP_UGT; 927 break; 928 case RecurKind::SMin: 929 Pred = CmpInst::ICMP_SLT; 930 break; 931 case RecurKind::SMax: 932 Pred = CmpInst::ICMP_SGT; 933 break; 934 case RecurKind::FMin: 935 Pred = CmpInst::FCMP_OLT; 936 break; 937 case RecurKind::FMax: 938 Pred = CmpInst::FCMP_OGT; 939 break; 940 } 941 942 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 943 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 944 return Select; 945 } 946 947 // Helper to generate an ordered reduction. 948 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 949 unsigned Op, RecurKind RdxKind, 950 ArrayRef<Value *> RedOps) { 951 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 952 953 // Extract and apply reduction ops in ascending order: 954 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 955 Value *Result = Acc; 956 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 957 Value *Ext = 958 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 959 960 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 961 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 962 "bin.rdx"); 963 } else { 964 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 965 "Invalid min/max"); 966 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 967 } 968 969 if (!RedOps.empty()) 970 propagateIRFlags(Result, RedOps); 971 } 972 973 return Result; 974 } 975 976 // Helper to generate a log2 shuffle reduction. 977 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 978 unsigned Op, RecurKind RdxKind, 979 ArrayRef<Value *> RedOps) { 980 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 981 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 982 // and vector ops, reducing the set of values being computed by half each 983 // round. 984 assert(isPowerOf2_32(VF) && 985 "Reduction emission only supported for pow2 vectors!"); 986 Value *TmpVec = Src; 987 SmallVector<int, 32> ShuffleMask(VF); 988 for (unsigned i = VF; i != 1; i >>= 1) { 989 // Move the upper half of the vector to the lower half. 990 for (unsigned j = 0; j != i / 2; ++j) 991 ShuffleMask[j] = i / 2 + j; 992 993 // Fill the rest of the mask with undef. 994 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 995 996 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 997 998 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 999 // The builder propagates its fast-math-flags setting. 1000 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 1001 "bin.rdx"); 1002 } else { 1003 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1004 "Invalid min/max"); 1005 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1006 } 1007 if (!RedOps.empty()) 1008 propagateIRFlags(TmpVec, RedOps); 1009 1010 // We may compute the reassociated scalar ops in a way that does not 1011 // preserve nsw/nuw etc. Conservatively, drop those flags. 1012 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 1013 ReductionInst->dropPoisonGeneratingFlags(); 1014 } 1015 // The result is in the first element of the vector. 1016 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1017 } 1018 1019 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 1020 const TargetTransformInfo *TTI, 1021 Value *Src, RecurKind RdxKind, 1022 ArrayRef<Value *> RedOps) { 1023 TargetTransformInfo::ReductionFlags RdxFlags; 1024 RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax || 1025 RdxKind == RecurKind::FMax; 1026 RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin; 1027 1028 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1029 switch (RdxKind) { 1030 case RecurKind::Add: 1031 return Builder.CreateAddReduce(Src); 1032 case RecurKind::Mul: 1033 return Builder.CreateMulReduce(Src); 1034 case RecurKind::And: 1035 return Builder.CreateAndReduce(Src); 1036 case RecurKind::Or: 1037 return Builder.CreateOrReduce(Src); 1038 case RecurKind::Xor: 1039 return Builder.CreateXorReduce(Src); 1040 case RecurKind::FAdd: 1041 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1042 Src); 1043 case RecurKind::FMul: 1044 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1045 case RecurKind::SMax: 1046 return Builder.CreateIntMaxReduce(Src, true); 1047 case RecurKind::SMin: 1048 return Builder.CreateIntMinReduce(Src, true); 1049 case RecurKind::UMax: 1050 return Builder.CreateIntMaxReduce(Src, false); 1051 case RecurKind::UMin: 1052 return Builder.CreateIntMinReduce(Src, false); 1053 case RecurKind::FMax: 1054 return Builder.CreateFPMaxReduce(Src); 1055 case RecurKind::FMin: 1056 return Builder.CreateFPMinReduce(Src); 1057 default: 1058 llvm_unreachable("Unhandled opcode"); 1059 } 1060 } 1061 1062 Value *llvm::createTargetReduction(IRBuilderBase &B, 1063 const TargetTransformInfo *TTI, 1064 RecurrenceDescriptor &Desc, Value *Src) { 1065 // TODO: Support in-order reductions based on the recurrence descriptor. 1066 // All ops in the reduction inherit fast-math-flags from the recurrence 1067 // descriptor. 1068 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1069 B.setFastMathFlags(Desc.getFastMathFlags()); 1070 return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind()); 1071 } 1072 1073 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1074 auto *VecOp = dyn_cast<Instruction>(I); 1075 if (!VecOp) 1076 return; 1077 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1078 : dyn_cast<Instruction>(OpValue); 1079 if (!Intersection) 1080 return; 1081 const unsigned Opcode = Intersection->getOpcode(); 1082 VecOp->copyIRFlags(Intersection); 1083 for (auto *V : VL) { 1084 auto *Instr = dyn_cast<Instruction>(V); 1085 if (!Instr) 1086 continue; 1087 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1088 VecOp->andIRFlags(V); 1089 } 1090 } 1091 1092 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1093 ScalarEvolution &SE) { 1094 const SCEV *Zero = SE.getZero(S->getType()); 1095 return SE.isAvailableAtLoopEntry(S, L) && 1096 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1097 } 1098 1099 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1100 ScalarEvolution &SE) { 1101 const SCEV *Zero = SE.getZero(S->getType()); 1102 return SE.isAvailableAtLoopEntry(S, L) && 1103 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1104 } 1105 1106 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1107 bool Signed) { 1108 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1109 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1110 APInt::getMinValue(BitWidth); 1111 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1112 return SE.isAvailableAtLoopEntry(S, L) && 1113 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1114 SE.getConstant(Min)); 1115 } 1116 1117 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1118 bool Signed) { 1119 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1120 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1121 APInt::getMaxValue(BitWidth); 1122 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1123 return SE.isAvailableAtLoopEntry(S, L) && 1124 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1125 SE.getConstant(Max)); 1126 } 1127 1128 //===----------------------------------------------------------------------===// 1129 // rewriteLoopExitValues - Optimize IV users outside the loop. 1130 // As a side effect, reduces the amount of IV processing within the loop. 1131 //===----------------------------------------------------------------------===// 1132 1133 // Return true if the SCEV expansion generated by the rewriter can replace the 1134 // original value. SCEV guarantees that it produces the same value, but the way 1135 // it is produced may be illegal IR. Ideally, this function will only be 1136 // called for verification. 1137 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { 1138 // If an SCEV expression subsumed multiple pointers, its expansion could 1139 // reassociate the GEP changing the base pointer. This is illegal because the 1140 // final address produced by a GEP chain must be inbounds relative to its 1141 // underlying object. Otherwise basic alias analysis, among other things, 1142 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 1143 // producing an expression involving multiple pointers. Until then, we must 1144 // bail out here. 1145 // 1146 // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject 1147 // because it understands lcssa phis while SCEV does not. 1148 Value *FromPtr = FromVal; 1149 Value *ToPtr = ToVal; 1150 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) 1151 FromPtr = GEP->getPointerOperand(); 1152 1153 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) 1154 ToPtr = GEP->getPointerOperand(); 1155 1156 if (FromPtr != FromVal || ToPtr != ToVal) { 1157 // Quickly check the common case 1158 if (FromPtr == ToPtr) 1159 return true; 1160 1161 // SCEV may have rewritten an expression that produces the GEP's pointer 1162 // operand. That's ok as long as the pointer operand has the same base 1163 // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the 1164 // base of a recurrence. This handles the case in which SCEV expansion 1165 // converts a pointer type recurrence into a nonrecurrent pointer base 1166 // indexed by an integer recurrence. 1167 1168 // If the GEP base pointer is a vector of pointers, abort. 1169 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 1170 return false; 1171 1172 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 1173 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 1174 if (FromBase == ToBase) 1175 return true; 1176 1177 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out " 1178 << *FromBase << " != " << *ToBase << "\n"); 1179 1180 return false; 1181 } 1182 return true; 1183 } 1184 1185 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1186 SmallPtrSet<const Instruction *, 8> Visited; 1187 SmallVector<const Instruction *, 8> WorkList; 1188 Visited.insert(I); 1189 WorkList.push_back(I); 1190 while (!WorkList.empty()) { 1191 const Instruction *Curr = WorkList.pop_back_val(); 1192 // This use is outside the loop, nothing to do. 1193 if (!L->contains(Curr)) 1194 continue; 1195 // Do we assume it is a "hard" use which will not be eliminated easily? 1196 if (Curr->mayHaveSideEffects()) 1197 return true; 1198 // Otherwise, add all its users to worklist. 1199 for (auto U : Curr->users()) { 1200 auto *UI = cast<Instruction>(U); 1201 if (Visited.insert(UI).second) 1202 WorkList.push_back(UI); 1203 } 1204 } 1205 return false; 1206 } 1207 1208 // Collect information about PHI nodes which can be transformed in 1209 // rewriteLoopExitValues. 1210 struct RewritePhi { 1211 PHINode *PN; // For which PHI node is this replacement? 1212 unsigned Ith; // For which incoming value? 1213 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1214 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1215 bool HighCost; // Is this expansion a high-cost? 1216 1217 Value *Expansion = nullptr; 1218 bool ValidRewrite = false; 1219 1220 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1221 bool H) 1222 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1223 HighCost(H) {} 1224 }; 1225 1226 // Check whether it is possible to delete the loop after rewriting exit 1227 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1228 // aggressively. 1229 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1230 BasicBlock *Preheader = L->getLoopPreheader(); 1231 // If there is no preheader, the loop will not be deleted. 1232 if (!Preheader) 1233 return false; 1234 1235 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1236 // We obviate multiple ExitingBlocks case for simplicity. 1237 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1238 // after exit value rewriting, we can enhance the logic here. 1239 SmallVector<BasicBlock *, 4> ExitingBlocks; 1240 L->getExitingBlocks(ExitingBlocks); 1241 SmallVector<BasicBlock *, 8> ExitBlocks; 1242 L->getUniqueExitBlocks(ExitBlocks); 1243 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1244 return false; 1245 1246 BasicBlock *ExitBlock = ExitBlocks[0]; 1247 BasicBlock::iterator BI = ExitBlock->begin(); 1248 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1249 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1250 1251 // If the Incoming value of P is found in RewritePhiSet, we know it 1252 // could be rewritten to use a loop invariant value in transformation 1253 // phase later. Skip it in the loop invariant check below. 1254 bool found = false; 1255 for (const RewritePhi &Phi : RewritePhiSet) { 1256 if (!Phi.ValidRewrite) 1257 continue; 1258 unsigned i = Phi.Ith; 1259 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1260 found = true; 1261 break; 1262 } 1263 } 1264 1265 Instruction *I; 1266 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1267 if (!L->hasLoopInvariantOperands(I)) 1268 return false; 1269 1270 ++BI; 1271 } 1272 1273 for (auto *BB : L->blocks()) 1274 if (llvm::any_of(*BB, [](Instruction &I) { 1275 return I.mayHaveSideEffects(); 1276 })) 1277 return false; 1278 1279 return true; 1280 } 1281 1282 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1283 ScalarEvolution *SE, 1284 const TargetTransformInfo *TTI, 1285 SCEVExpander &Rewriter, DominatorTree *DT, 1286 ReplaceExitVal ReplaceExitValue, 1287 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1288 // Check a pre-condition. 1289 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1290 "Indvars did not preserve LCSSA!"); 1291 1292 SmallVector<BasicBlock*, 8> ExitBlocks; 1293 L->getUniqueExitBlocks(ExitBlocks); 1294 1295 SmallVector<RewritePhi, 8> RewritePhiSet; 1296 // Find all values that are computed inside the loop, but used outside of it. 1297 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1298 // the exit blocks of the loop to find them. 1299 for (BasicBlock *ExitBB : ExitBlocks) { 1300 // If there are no PHI nodes in this exit block, then no values defined 1301 // inside the loop are used on this path, skip it. 1302 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1303 if (!PN) continue; 1304 1305 unsigned NumPreds = PN->getNumIncomingValues(); 1306 1307 // Iterate over all of the PHI nodes. 1308 BasicBlock::iterator BBI = ExitBB->begin(); 1309 while ((PN = dyn_cast<PHINode>(BBI++))) { 1310 if (PN->use_empty()) 1311 continue; // dead use, don't replace it 1312 1313 if (!SE->isSCEVable(PN->getType())) 1314 continue; 1315 1316 // It's necessary to tell ScalarEvolution about this explicitly so that 1317 // it can walk the def-use list and forget all SCEVs, as it may not be 1318 // watching the PHI itself. Once the new exit value is in place, there 1319 // may not be a def-use connection between the loop and every instruction 1320 // which got a SCEVAddRecExpr for that loop. 1321 SE->forgetValue(PN); 1322 1323 // Iterate over all of the values in all the PHI nodes. 1324 for (unsigned i = 0; i != NumPreds; ++i) { 1325 // If the value being merged in is not integer or is not defined 1326 // in the loop, skip it. 1327 Value *InVal = PN->getIncomingValue(i); 1328 if (!isa<Instruction>(InVal)) 1329 continue; 1330 1331 // If this pred is for a subloop, not L itself, skip it. 1332 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1333 continue; // The Block is in a subloop, skip it. 1334 1335 // Check that InVal is defined in the loop. 1336 Instruction *Inst = cast<Instruction>(InVal); 1337 if (!L->contains(Inst)) 1338 continue; 1339 1340 // Okay, this instruction has a user outside of the current loop 1341 // and varies predictably *inside* the loop. Evaluate the value it 1342 // contains when the loop exits, if possible. We prefer to start with 1343 // expressions which are true for all exits (so as to maximize 1344 // expression reuse by the SCEVExpander), but resort to per-exit 1345 // evaluation if that fails. 1346 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1347 if (isa<SCEVCouldNotCompute>(ExitValue) || 1348 !SE->isLoopInvariant(ExitValue, L) || 1349 !isSafeToExpand(ExitValue, *SE)) { 1350 // TODO: This should probably be sunk into SCEV in some way; maybe a 1351 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1352 // most SCEV expressions and other recurrence types (e.g. shift 1353 // recurrences). Is there existing code we can reuse? 1354 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1355 if (isa<SCEVCouldNotCompute>(ExitCount)) 1356 continue; 1357 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1358 if (AddRec->getLoop() == L) 1359 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1360 if (isa<SCEVCouldNotCompute>(ExitValue) || 1361 !SE->isLoopInvariant(ExitValue, L) || 1362 !isSafeToExpand(ExitValue, *SE)) 1363 continue; 1364 } 1365 1366 // Computing the value outside of the loop brings no benefit if it is 1367 // definitely used inside the loop in a way which can not be optimized 1368 // away. Avoid doing so unless we know we have a value which computes 1369 // the ExitValue already. TODO: This should be merged into SCEV 1370 // expander to leverage its knowledge of existing expressions. 1371 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1372 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1373 continue; 1374 1375 // Check if expansions of this SCEV would count as being high cost. 1376 bool HighCost = Rewriter.isHighCostExpansion( 1377 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1378 1379 // Note that we must not perform expansions until after 1380 // we query *all* the costs, because if we perform temporary expansion 1381 // inbetween, one that we might not intend to keep, said expansion 1382 // *may* affect cost calculation of the the next SCEV's we'll query, 1383 // and next SCEV may errneously get smaller cost. 1384 1385 // Collect all the candidate PHINodes to be rewritten. 1386 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1387 } 1388 } 1389 } 1390 1391 // Now that we've done preliminary filtering and billed all the SCEV's, 1392 // we can perform the last sanity check - the expansion must be valid. 1393 for (RewritePhi &Phi : RewritePhiSet) { 1394 Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(), 1395 Phi.ExpansionPoint); 1396 1397 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " 1398 << *(Phi.Expansion) << '\n' 1399 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1400 1401 // FIXME: isValidRewrite() is a hack. it should be an assert, eventually. 1402 Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion); 1403 if (!Phi.ValidRewrite) { 1404 DeadInsts.push_back(Phi.Expansion); 1405 continue; 1406 } 1407 1408 #ifndef NDEBUG 1409 // If we reuse an instruction from a loop which is neither L nor one of 1410 // its containing loops, we end up breaking LCSSA form for this loop by 1411 // creating a new use of its instruction. 1412 if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion)) 1413 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1414 if (EVL != L) 1415 assert(EVL->contains(L) && "LCSSA breach detected!"); 1416 #endif 1417 } 1418 1419 // TODO: after isValidRewrite() is an assertion, evaluate whether 1420 // it is beneficial to change how we calculate high-cost: 1421 // if we have SCEV 'A' which we know we will expand, should we calculate 1422 // the cost of other SCEV's after expanding SCEV 'A', 1423 // thus potentially giving cost bonus to those other SCEV's? 1424 1425 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1426 int NumReplaced = 0; 1427 1428 // Transformation. 1429 for (const RewritePhi &Phi : RewritePhiSet) { 1430 if (!Phi.ValidRewrite) 1431 continue; 1432 1433 PHINode *PN = Phi.PN; 1434 Value *ExitVal = Phi.Expansion; 1435 1436 // Only do the rewrite when the ExitValue can be expanded cheaply. 1437 // If LoopCanBeDel is true, rewrite exit value aggressively. 1438 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 1439 DeadInsts.push_back(ExitVal); 1440 continue; 1441 } 1442 1443 NumReplaced++; 1444 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1445 PN->setIncomingValue(Phi.Ith, ExitVal); 1446 1447 // If this instruction is dead now, delete it. Don't do it now to avoid 1448 // invalidating iterators. 1449 if (isInstructionTriviallyDead(Inst, TLI)) 1450 DeadInsts.push_back(Inst); 1451 1452 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1453 if (PN->getNumIncomingValues() == 1 && 1454 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1455 PN->replaceAllUsesWith(ExitVal); 1456 PN->eraseFromParent(); 1457 } 1458 } 1459 1460 // The insertion point instruction may have been deleted; clear it out 1461 // so that the rewriter doesn't trip over it later. 1462 Rewriter.clearInsertPoint(); 1463 return NumReplaced; 1464 } 1465 1466 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1467 /// \p OrigLoop. 1468 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1469 Loop *RemainderLoop, uint64_t UF) { 1470 assert(UF > 0 && "Zero unrolled factor is not supported"); 1471 assert(UnrolledLoop != RemainderLoop && 1472 "Unrolled and Remainder loops are expected to distinct"); 1473 1474 // Get number of iterations in the original scalar loop. 1475 unsigned OrigLoopInvocationWeight = 0; 1476 Optional<unsigned> OrigAverageTripCount = 1477 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1478 if (!OrigAverageTripCount) 1479 return; 1480 1481 // Calculate number of iterations in unrolled loop. 1482 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1483 // Calculate number of iterations for remainder loop. 1484 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1485 1486 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1487 OrigLoopInvocationWeight); 1488 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1489 OrigLoopInvocationWeight); 1490 } 1491 1492 /// Utility that implements appending of loops onto a worklist. 1493 /// Loops are added in preorder (analogous for reverse postorder for trees), 1494 /// and the worklist is processed LIFO. 1495 template <typename RangeT> 1496 void llvm::appendReversedLoopsToWorklist( 1497 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1498 // We use an internal worklist to build up the preorder traversal without 1499 // recursion. 1500 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1501 1502 // We walk the initial sequence of loops in reverse because we generally want 1503 // to visit defs before uses and the worklist is LIFO. 1504 for (Loop *RootL : Loops) { 1505 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1506 assert(PreOrderWorklist.empty() && 1507 "Must start with an empty preorder walk worklist."); 1508 PreOrderWorklist.push_back(RootL); 1509 do { 1510 Loop *L = PreOrderWorklist.pop_back_val(); 1511 PreOrderWorklist.append(L->begin(), L->end()); 1512 PreOrderLoops.push_back(L); 1513 } while (!PreOrderWorklist.empty()); 1514 1515 Worklist.insert(std::move(PreOrderLoops)); 1516 PreOrderLoops.clear(); 1517 } 1518 } 1519 1520 template <typename RangeT> 1521 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1522 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1523 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1524 } 1525 1526 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1527 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1528 1529 template void 1530 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1531 SmallPriorityWorklist<Loop *, 4> &Worklist); 1532 1533 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1534 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1535 appendReversedLoopsToWorklist(LI, Worklist); 1536 } 1537 1538 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1539 LoopInfo *LI, LPPassManager *LPM) { 1540 Loop &New = *LI->AllocateLoop(); 1541 if (PL) 1542 PL->addChildLoop(&New); 1543 else 1544 LI->addTopLevelLoop(&New); 1545 1546 if (LPM) 1547 LPM->addLoop(New); 1548 1549 // Add all of the blocks in L to the new loop. 1550 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 1551 I != E; ++I) 1552 if (LI->getLoopFor(*I) == L) 1553 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 1554 1555 // Add all of the subloops to the new loop. 1556 for (Loop *I : *L) 1557 cloneLoop(I, &New, VM, LI, LPM); 1558 1559 return &New; 1560 } 1561 1562 /// IR Values for the lower and upper bounds of a pointer evolution. We 1563 /// need to use value-handles because SCEV expansion can invalidate previously 1564 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1565 /// a previous one. 1566 struct PointerBounds { 1567 TrackingVH<Value> Start; 1568 TrackingVH<Value> End; 1569 }; 1570 1571 /// Expand code for the lower and upper bound of the pointer group \p CG 1572 /// in \p TheLoop. \return the values for the bounds. 1573 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1574 Loop *TheLoop, Instruction *Loc, 1575 SCEVExpander &Exp) { 1576 ScalarEvolution *SE = Exp.getSE(); 1577 // TODO: Add helper to retrieve pointers to CG. 1578 Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue; 1579 const SCEV *Sc = SE->getSCEV(Ptr); 1580 1581 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1582 LLVMContext &Ctx = Loc->getContext(); 1583 1584 // Use this type for pointer arithmetic. 1585 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1586 1587 if (SE->isLoopInvariant(Sc, TheLoop)) { 1588 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 1589 << *Ptr << "\n"); 1590 // Ptr could be in the loop body. If so, expand a new one at the correct 1591 // location. 1592 Instruction *Inst = dyn_cast<Instruction>(Ptr); 1593 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 1594 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 1595 : Ptr; 1596 // We must return a half-open range, which means incrementing Sc. 1597 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 1598 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 1599 return {NewPtr, NewPtrPlusOne}; 1600 } else { 1601 Value *Start = nullptr, *End = nullptr; 1602 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1603 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1604 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1605 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 1606 << "\n"); 1607 return {Start, End}; 1608 } 1609 } 1610 1611 /// Turns a collection of checks into a collection of expanded upper and 1612 /// lower bounds for both pointers in the check. 1613 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1614 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1615 Instruction *Loc, SCEVExpander &Exp) { 1616 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1617 1618 // Here we're relying on the SCEV Expander's cache to only emit code for the 1619 // same bounds once. 1620 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1621 [&](const RuntimePointerCheck &Check) { 1622 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1623 Second = expandBounds(Check.second, L, Loc, Exp); 1624 return std::make_pair(First, Second); 1625 }); 1626 1627 return ChecksWithBounds; 1628 } 1629 1630 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks( 1631 Instruction *Loc, Loop *TheLoop, 1632 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1633 SCEVExpander &Exp) { 1634 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1635 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1636 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1637 1638 LLVMContext &Ctx = Loc->getContext(); 1639 Instruction *FirstInst = nullptr; 1640 IRBuilder<> ChkBuilder(Loc); 1641 // Our instructions might fold to a constant. 1642 Value *MemoryRuntimeCheck = nullptr; 1643 1644 // FIXME: this helper is currently a duplicate of the one in 1645 // LoopVectorize.cpp. 1646 auto GetFirstInst = [](Instruction *FirstInst, Value *V, 1647 Instruction *Loc) -> Instruction * { 1648 if (FirstInst) 1649 return FirstInst; 1650 if (Instruction *I = dyn_cast<Instruction>(V)) 1651 return I->getParent() == Loc->getParent() ? I : nullptr; 1652 return nullptr; 1653 }; 1654 1655 for (const auto &Check : ExpandedChecks) { 1656 const PointerBounds &A = Check.first, &B = Check.second; 1657 // Check if two pointers (A and B) conflict where conflict is computed as: 1658 // start(A) <= end(B) && start(B) <= end(A) 1659 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1660 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1661 1662 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1663 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1664 "Trying to bounds check pointers with different address spaces"); 1665 1666 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1667 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1668 1669 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1670 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1671 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1672 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1673 1674 // [A|B].Start points to the first accessed byte under base [A|B]. 1675 // [A|B].End points to the last accessed byte, plus one. 1676 // There is no conflict when the intervals are disjoint: 1677 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1678 // 1679 // bound0 = (B.Start < A.End) 1680 // bound1 = (A.Start < B.End) 1681 // IsConflict = bound0 & bound1 1682 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1683 FirstInst = GetFirstInst(FirstInst, Cmp0, Loc); 1684 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1685 FirstInst = GetFirstInst(FirstInst, Cmp1, Loc); 1686 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1687 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1688 if (MemoryRuntimeCheck) { 1689 IsConflict = 1690 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1691 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1692 } 1693 MemoryRuntimeCheck = IsConflict; 1694 } 1695 1696 if (!MemoryRuntimeCheck) 1697 return std::make_pair(nullptr, nullptr); 1698 1699 // We have to do this trickery because the IRBuilder might fold the check to a 1700 // constant expression in which case there is no Instruction anchored in a 1701 // the block. 1702 Instruction *Check = 1703 BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); 1704 ChkBuilder.Insert(Check, "memcheck.conflict"); 1705 FirstInst = GetFirstInst(FirstInst, Check, Loc); 1706 return std::make_pair(FirstInst, Check); 1707 } 1708