1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 #define DEBUG_TYPE "loop-utils"
58 
59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
61 
62 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
63                                    MemorySSAUpdater *MSSAU,
64                                    bool PreserveLCSSA) {
65   bool Changed = false;
66 
67   // We re-use a vector for the in-loop predecesosrs.
68   SmallVector<BasicBlock *, 4> InLoopPredecessors;
69 
70   auto RewriteExit = [&](BasicBlock *BB) {
71     assert(InLoopPredecessors.empty() &&
72            "Must start with an empty predecessors list!");
73     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
74 
75     // See if there are any non-loop predecessors of this exit block and
76     // keep track of the in-loop predecessors.
77     bool IsDedicatedExit = true;
78     for (auto *PredBB : predecessors(BB))
79       if (L->contains(PredBB)) {
80         if (isa<IndirectBrInst>(PredBB->getTerminator()))
81           // We cannot rewrite exiting edges from an indirectbr.
82           return false;
83         if (isa<CallBrInst>(PredBB->getTerminator()))
84           // We cannot rewrite exiting edges from a callbr.
85           return false;
86 
87         InLoopPredecessors.push_back(PredBB);
88       } else {
89         IsDedicatedExit = false;
90       }
91 
92     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
93 
94     // Nothing to do if this is already a dedicated exit.
95     if (IsDedicatedExit)
96       return false;
97 
98     auto *NewExitBB = SplitBlockPredecessors(
99         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
100 
101     if (!NewExitBB)
102       LLVM_DEBUG(
103           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
104                  << *L << "\n");
105     else
106       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
107                         << NewExitBB->getName() << "\n");
108     return true;
109   };
110 
111   // Walk the exit blocks directly rather than building up a data structure for
112   // them, but only visit each one once.
113   SmallPtrSet<BasicBlock *, 4> Visited;
114   for (auto *BB : L->blocks())
115     for (auto *SuccBB : successors(BB)) {
116       // We're looking for exit blocks so skip in-loop successors.
117       if (L->contains(SuccBB))
118         continue;
119 
120       // Visit each exit block exactly once.
121       if (!Visited.insert(SuccBB).second)
122         continue;
123 
124       Changed |= RewriteExit(SuccBB);
125     }
126 
127   return Changed;
128 }
129 
130 /// Returns the instructions that use values defined in the loop.
131 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
132   SmallVector<Instruction *, 8> UsedOutside;
133 
134   for (auto *Block : L->getBlocks())
135     // FIXME: I believe that this could use copy_if if the Inst reference could
136     // be adapted into a pointer.
137     for (auto &Inst : *Block) {
138       auto Users = Inst.users();
139       if (any_of(Users, [&](User *U) {
140             auto *Use = cast<Instruction>(U);
141             return !L->contains(Use->getParent());
142           }))
143         UsedOutside.push_back(&Inst);
144     }
145 
146   return UsedOutside;
147 }
148 
149 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
150   // By definition, all loop passes need the LoopInfo analysis and the
151   // Dominator tree it depends on. Because they all participate in the loop
152   // pass manager, they must also preserve these.
153   AU.addRequired<DominatorTreeWrapperPass>();
154   AU.addPreserved<DominatorTreeWrapperPass>();
155   AU.addRequired<LoopInfoWrapperPass>();
156   AU.addPreserved<LoopInfoWrapperPass>();
157 
158   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
159   // here because users shouldn't directly get them from this header.
160   extern char &LoopSimplifyID;
161   extern char &LCSSAID;
162   AU.addRequiredID(LoopSimplifyID);
163   AU.addPreservedID(LoopSimplifyID);
164   AU.addRequiredID(LCSSAID);
165   AU.addPreservedID(LCSSAID);
166   // This is used in the LPPassManager to perform LCSSA verification on passes
167   // which preserve lcssa form
168   AU.addRequired<LCSSAVerificationPass>();
169   AU.addPreserved<LCSSAVerificationPass>();
170 
171   // Loop passes are designed to run inside of a loop pass manager which means
172   // that any function analyses they require must be required by the first loop
173   // pass in the manager (so that it is computed before the loop pass manager
174   // runs) and preserved by all loop pasess in the manager. To make this
175   // reasonably robust, the set needed for most loop passes is maintained here.
176   // If your loop pass requires an analysis not listed here, you will need to
177   // carefully audit the loop pass manager nesting structure that results.
178   AU.addRequired<AAResultsWrapperPass>();
179   AU.addPreserved<AAResultsWrapperPass>();
180   AU.addPreserved<BasicAAWrapperPass>();
181   AU.addPreserved<GlobalsAAWrapperPass>();
182   AU.addPreserved<SCEVAAWrapperPass>();
183   AU.addRequired<ScalarEvolutionWrapperPass>();
184   AU.addPreserved<ScalarEvolutionWrapperPass>();
185   // FIXME: When all loop passes preserve MemorySSA, it can be required and
186   // preserved here instead of the individual handling in each pass.
187 }
188 
189 /// Manually defined generic "LoopPass" dependency initialization. This is used
190 /// to initialize the exact set of passes from above in \c
191 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
192 /// with:
193 ///
194 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
195 ///
196 /// As-if "LoopPass" were a pass.
197 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
198   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
200   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
201   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
202   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
206   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
208 }
209 
210 /// Create MDNode for input string.
211 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
212   LLVMContext &Context = TheLoop->getHeader()->getContext();
213   Metadata *MDs[] = {
214       MDString::get(Context, Name),
215       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
216   return MDNode::get(Context, MDs);
217 }
218 
219 /// Set input string into loop metadata by keeping other values intact.
220 /// If the string is already in loop metadata update value if it is
221 /// different.
222 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
223                                    unsigned V) {
224   SmallVector<Metadata *, 4> MDs(1);
225   // If the loop already has metadata, retain it.
226   MDNode *LoopID = TheLoop->getLoopID();
227   if (LoopID) {
228     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
229       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
230       // If it is of form key = value, try to parse it.
231       if (Node->getNumOperands() == 2) {
232         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
233         if (S && S->getString().equals(StringMD)) {
234           ConstantInt *IntMD =
235               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
236           if (IntMD && IntMD->getSExtValue() == V)
237             // It is already in place. Do nothing.
238             return;
239           // We need to update the value, so just skip it here and it will
240           // be added after copying other existed nodes.
241           continue;
242         }
243       }
244       MDs.push_back(Node);
245     }
246   }
247   // Add new metadata.
248   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
249   // Replace current metadata node with new one.
250   LLVMContext &Context = TheLoop->getHeader()->getContext();
251   MDNode *NewLoopID = MDNode::get(Context, MDs);
252   // Set operand 0 to refer to the loop id itself.
253   NewLoopID->replaceOperandWith(0, NewLoopID);
254   TheLoop->setLoopID(NewLoopID);
255 }
256 
257 Optional<ElementCount>
258 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
259   Optional<int> Width =
260       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
261 
262   if (Width.hasValue()) {
263     Optional<int> IsScalable = getOptionalIntLoopAttribute(
264         TheLoop, "llvm.loop.vectorize.scalable.enable");
265     return ElementCount::get(*Width, IsScalable.getValueOr(false));
266   }
267 
268   return None;
269 }
270 
271 Optional<MDNode *> llvm::makeFollowupLoopID(
272     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
273     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
274   if (!OrigLoopID) {
275     if (AlwaysNew)
276       return nullptr;
277     return None;
278   }
279 
280   assert(OrigLoopID->getOperand(0) == OrigLoopID);
281 
282   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
283   bool InheritSomeAttrs =
284       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
285   SmallVector<Metadata *, 8> MDs;
286   MDs.push_back(nullptr);
287 
288   bool Changed = false;
289   if (InheritAllAttrs || InheritSomeAttrs) {
290     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
291       MDNode *Op = cast<MDNode>(Existing.get());
292 
293       auto InheritThisAttribute = [InheritSomeAttrs,
294                                    InheritOptionsExceptPrefix](MDNode *Op) {
295         if (!InheritSomeAttrs)
296           return false;
297 
298         // Skip malformatted attribute metadata nodes.
299         if (Op->getNumOperands() == 0)
300           return true;
301         Metadata *NameMD = Op->getOperand(0).get();
302         if (!isa<MDString>(NameMD))
303           return true;
304         StringRef AttrName = cast<MDString>(NameMD)->getString();
305 
306         // Do not inherit excluded attributes.
307         return !AttrName.startswith(InheritOptionsExceptPrefix);
308       };
309 
310       if (InheritThisAttribute(Op))
311         MDs.push_back(Op);
312       else
313         Changed = true;
314     }
315   } else {
316     // Modified if we dropped at least one attribute.
317     Changed = OrigLoopID->getNumOperands() > 1;
318   }
319 
320   bool HasAnyFollowup = false;
321   for (StringRef OptionName : FollowupOptions) {
322     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
323     if (!FollowupNode)
324       continue;
325 
326     HasAnyFollowup = true;
327     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
328       MDs.push_back(Option.get());
329       Changed = true;
330     }
331   }
332 
333   // Attributes of the followup loop not specified explicity, so signal to the
334   // transformation pass to add suitable attributes.
335   if (!AlwaysNew && !HasAnyFollowup)
336     return None;
337 
338   // If no attributes were added or remove, the previous loop Id can be reused.
339   if (!AlwaysNew && !Changed)
340     return OrigLoopID;
341 
342   // No attributes is equivalent to having no !llvm.loop metadata at all.
343   if (MDs.size() == 1)
344     return nullptr;
345 
346   // Build the new loop ID.
347   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
348   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
349   return FollowupLoopID;
350 }
351 
352 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
353   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
354 }
355 
356 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
357   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
358 }
359 
360 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
362     return TM_SuppressedByUser;
363 
364   Optional<int> Count =
365       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
366   if (Count.hasValue())
367     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
368 
369   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
370     return TM_ForcedByUser;
371 
372   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
373     return TM_ForcedByUser;
374 
375   if (hasDisableAllTransformsHint(L))
376     return TM_Disable;
377 
378   return TM_Unspecified;
379 }
380 
381 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
383     return TM_SuppressedByUser;
384 
385   Optional<int> Count =
386       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
387   if (Count.hasValue())
388     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
389 
390   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
391     return TM_ForcedByUser;
392 
393   if (hasDisableAllTransformsHint(L))
394     return TM_Disable;
395 
396   return TM_Unspecified;
397 }
398 
399 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
400   Optional<bool> Enable =
401       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
402 
403   if (Enable == false)
404     return TM_SuppressedByUser;
405 
406   Optional<ElementCount> VectorizeWidth =
407       getOptionalElementCountLoopAttribute(L);
408   Optional<int> InterleaveCount =
409       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
410 
411   // 'Forcing' vector width and interleave count to one effectively disables
412   // this tranformation.
413   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
414       InterleaveCount == 1)
415     return TM_SuppressedByUser;
416 
417   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
418     return TM_Disable;
419 
420   if (Enable == true)
421     return TM_ForcedByUser;
422 
423   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
424     return TM_Disable;
425 
426   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
427     return TM_Enable;
428 
429   if (hasDisableAllTransformsHint(L))
430     return TM_Disable;
431 
432   return TM_Unspecified;
433 }
434 
435 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
436   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
437     return TM_ForcedByUser;
438 
439   if (hasDisableAllTransformsHint(L))
440     return TM_Disable;
441 
442   return TM_Unspecified;
443 }
444 
445 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
446   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
447     return TM_SuppressedByUser;
448 
449   if (hasDisableAllTransformsHint(L))
450     return TM_Disable;
451 
452   return TM_Unspecified;
453 }
454 
455 /// Does a BFS from a given node to all of its children inside a given loop.
456 /// The returned vector of nodes includes the starting point.
457 SmallVector<DomTreeNode *, 16>
458 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
459   SmallVector<DomTreeNode *, 16> Worklist;
460   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
461     // Only include subregions in the top level loop.
462     BasicBlock *BB = DTN->getBlock();
463     if (CurLoop->contains(BB))
464       Worklist.push_back(DTN);
465   };
466 
467   AddRegionToWorklist(N);
468 
469   for (size_t I = 0; I < Worklist.size(); I++) {
470     for (DomTreeNode *Child : Worklist[I]->children())
471       AddRegionToWorklist(Child);
472   }
473 
474   return Worklist;
475 }
476 
477 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
478                           LoopInfo *LI, MemorySSA *MSSA) {
479   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
480   auto *Preheader = L->getLoopPreheader();
481   assert(Preheader && "Preheader should exist!");
482 
483   std::unique_ptr<MemorySSAUpdater> MSSAU;
484   if (MSSA)
485     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
486 
487   // Now that we know the removal is safe, remove the loop by changing the
488   // branch from the preheader to go to the single exit block.
489   //
490   // Because we're deleting a large chunk of code at once, the sequence in which
491   // we remove things is very important to avoid invalidation issues.
492 
493   // Tell ScalarEvolution that the loop is deleted. Do this before
494   // deleting the loop so that ScalarEvolution can look at the loop
495   // to determine what it needs to clean up.
496   if (SE)
497     SE->forgetLoop(L);
498 
499   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
500   assert(OldBr && "Preheader must end with a branch");
501   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
502   // Connect the preheader to the exit block. Keep the old edge to the header
503   // around to perform the dominator tree update in two separate steps
504   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
505   // preheader -> header.
506   //
507   //
508   // 0.  Preheader          1.  Preheader           2.  Preheader
509   //        |                    |   |                   |
510   //        V                    |   V                   |
511   //      Header <--\            | Header <--\           | Header <--\
512   //       |  |     |            |  |  |     |           |  |  |     |
513   //       |  V     |            |  |  V     |           |  |  V     |
514   //       | Body --/            |  | Body --/           |  | Body --/
515   //       V                     V  V                    V  V
516   //      Exit                   Exit                    Exit
517   //
518   // By doing this is two separate steps we can perform the dominator tree
519   // update without using the batch update API.
520   //
521   // Even when the loop is never executed, we cannot remove the edge from the
522   // source block to the exit block. Consider the case where the unexecuted loop
523   // branches back to an outer loop. If we deleted the loop and removed the edge
524   // coming to this inner loop, this will break the outer loop structure (by
525   // deleting the backedge of the outer loop). If the outer loop is indeed a
526   // non-loop, it will be deleted in a future iteration of loop deletion pass.
527   IRBuilder<> Builder(OldBr);
528 
529   auto *ExitBlock = L->getUniqueExitBlock();
530   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
531   if (ExitBlock) {
532     assert(ExitBlock && "Should have a unique exit block!");
533     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
534 
535     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
536     // Remove the old branch. The conditional branch becomes a new terminator.
537     OldBr->eraseFromParent();
538 
539     // Rewrite phis in the exit block to get their inputs from the Preheader
540     // instead of the exiting block.
541     for (PHINode &P : ExitBlock->phis()) {
542       // Set the zero'th element of Phi to be from the preheader and remove all
543       // other incoming values. Given the loop has dedicated exits, all other
544       // incoming values must be from the exiting blocks.
545       int PredIndex = 0;
546       P.setIncomingBlock(PredIndex, Preheader);
547       // Removes all incoming values from all other exiting blocks (including
548       // duplicate values from an exiting block).
549       // Nuke all entries except the zero'th entry which is the preheader entry.
550       // NOTE! We need to remove Incoming Values in the reverse order as done
551       // below, to keep the indices valid for deletion (removeIncomingValues
552       // updates getNumIncomingValues and shifts all values down into the
553       // operand being deleted).
554       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
555         P.removeIncomingValue(e - i, false);
556 
557       assert((P.getNumIncomingValues() == 1 &&
558               P.getIncomingBlock(PredIndex) == Preheader) &&
559              "Should have exactly one value and that's from the preheader!");
560     }
561 
562     if (DT) {
563       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
564       if (MSSA) {
565         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
566                             *DT);
567         if (VerifyMemorySSA)
568           MSSA->verifyMemorySSA();
569       }
570     }
571 
572     // Disconnect the loop body by branching directly to its exit.
573     Builder.SetInsertPoint(Preheader->getTerminator());
574     Builder.CreateBr(ExitBlock);
575     // Remove the old branch.
576     Preheader->getTerminator()->eraseFromParent();
577   } else {
578     assert(L->hasNoExitBlocks() &&
579            "Loop should have either zero or one exit blocks.");
580 
581     Builder.SetInsertPoint(OldBr);
582     Builder.CreateUnreachable();
583     Preheader->getTerminator()->eraseFromParent();
584   }
585 
586   if (DT) {
587     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
588     if (MSSA) {
589       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
590                           *DT);
591       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
592                                                    L->block_end());
593       MSSAU->removeBlocks(DeadBlockSet);
594       if (VerifyMemorySSA)
595         MSSA->verifyMemorySSA();
596     }
597   }
598 
599   // Use a map to unique and a vector to guarantee deterministic ordering.
600   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
601   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
602 
603   if (ExitBlock) {
604     // Given LCSSA form is satisfied, we should not have users of instructions
605     // within the dead loop outside of the loop. However, LCSSA doesn't take
606     // unreachable uses into account. We handle them here.
607     // We could do it after drop all references (in this case all users in the
608     // loop will be already eliminated and we have less work to do but according
609     // to API doc of User::dropAllReferences only valid operation after dropping
610     // references, is deletion. So let's substitute all usages of
611     // instruction from the loop with undef value of corresponding type first.
612     for (auto *Block : L->blocks())
613       for (Instruction &I : *Block) {
614         auto *Undef = UndefValue::get(I.getType());
615         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
616              UI != E;) {
617           Use &U = *UI;
618           ++UI;
619           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
620             if (L->contains(Usr->getParent()))
621               continue;
622           // If we have a DT then we can check that uses outside a loop only in
623           // unreachable block.
624           if (DT)
625             assert(!DT->isReachableFromEntry(U) &&
626                    "Unexpected user in reachable block");
627           U.set(Undef);
628         }
629         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
630         if (!DVI)
631           continue;
632         auto Key =
633             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
634         if (Key != DeadDebugSet.end())
635           continue;
636         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
637         DeadDebugInst.push_back(DVI);
638       }
639 
640     // After the loop has been deleted all the values defined and modified
641     // inside the loop are going to be unavailable.
642     // Since debug values in the loop have been deleted, inserting an undef
643     // dbg.value truncates the range of any dbg.value before the loop where the
644     // loop used to be. This is particularly important for constant values.
645     DIBuilder DIB(*ExitBlock->getModule());
646     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
647     assert(InsertDbgValueBefore &&
648            "There should be a non-PHI instruction in exit block, else these "
649            "instructions will have no parent.");
650     for (auto *DVI : DeadDebugInst)
651       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
652                                   DVI->getVariable(), DVI->getExpression(),
653                                   DVI->getDebugLoc(), InsertDbgValueBefore);
654   }
655 
656   // Remove the block from the reference counting scheme, so that we can
657   // delete it freely later.
658   for (auto *Block : L->blocks())
659     Block->dropAllReferences();
660 
661   if (MSSA && VerifyMemorySSA)
662     MSSA->verifyMemorySSA();
663 
664   if (LI) {
665     // Erase the instructions and the blocks without having to worry
666     // about ordering because we already dropped the references.
667     // NOTE: This iteration is safe because erasing the block does not remove
668     // its entry from the loop's block list.  We do that in the next section.
669     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
670          LpI != LpE; ++LpI)
671       (*LpI)->eraseFromParent();
672 
673     // Finally, the blocks from loopinfo.  This has to happen late because
674     // otherwise our loop iterators won't work.
675 
676     SmallPtrSet<BasicBlock *, 8> blocks;
677     blocks.insert(L->block_begin(), L->block_end());
678     for (BasicBlock *BB : blocks)
679       LI->removeBlock(BB);
680 
681     // The last step is to update LoopInfo now that we've eliminated this loop.
682     // Note: LoopInfo::erase remove the given loop and relink its subloops with
683     // its parent. While removeLoop/removeChildLoop remove the given loop but
684     // not relink its subloops, which is what we want.
685     if (Loop *ParentLoop = L->getParentLoop()) {
686       Loop::iterator I = find(*ParentLoop, L);
687       assert(I != ParentLoop->end() && "Couldn't find loop");
688       ParentLoop->removeChildLoop(I);
689     } else {
690       Loop::iterator I = find(*LI, L);
691       assert(I != LI->end() && "Couldn't find loop");
692       LI->removeLoop(I);
693     }
694     LI->destroy(L);
695   }
696 }
697 
698 static Loop *getOutermostLoop(Loop *L) {
699   while (Loop *Parent = L->getParentLoop())
700     L = Parent;
701   return L;
702 }
703 
704 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
705                              LoopInfo &LI, MemorySSA *MSSA) {
706   auto *Latch = L->getLoopLatch();
707   assert(Latch && "multiple latches not yet supported");
708   auto *Header = L->getHeader();
709   Loop *OutermostLoop = getOutermostLoop(L);
710 
711   SE.forgetLoop(L);
712 
713   std::unique_ptr<MemorySSAUpdater> MSSAU;
714   if (MSSA)
715     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
716 
717   // Update the CFG and domtree.  We chose to special case a couple of
718   // of common cases for code quality and test readability reasons.
719   [&]() -> void {
720     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
721       if (!BI->isConditional()) {
722         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
723         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
724                                   MSSAU.get());
725         return;
726       }
727 
728       // Conditional latch/exit - note that latch can be shared by inner
729       // and outer loop so the other target doesn't need to an exit
730       if (L->isLoopExiting(Latch)) {
731         // TODO: Generalize ConstantFoldTerminator so that it can be used
732         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
733         // LCSSA: header is an exit block of a preceeding sibling loop w/o
734         // dedicated exits.)
735         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
736         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
737 
738         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
739         Header->removePredecessor(Latch, true);
740 
741         IRBuilder<> Builder(BI);
742         auto *NewBI = Builder.CreateBr(ExitBB);
743         // Transfer the metadata to the new branch instruction (minus the
744         // loop info since this is no longer a loop)
745         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
746                                   LLVMContext::MD_annotation});
747 
748         BI->eraseFromParent();
749         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
750         if (MSSA)
751           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
752         return;
753       }
754     }
755 
756     // General case.  By splitting the backedge, and then explicitly making it
757     // unreachable we gracefully handle corner cases such as switch and invoke
758     // termiantors.
759     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
760 
761     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
762     (void)changeToUnreachable(BackedgeBB->getTerminator(),
763                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
764   }();
765 
766   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
767   // and blocks within the loop as needed.
768   LI.erase(L);
769 
770   // If the loop we broke had a parent, then changeToUnreachable might have
771   // caused a block to be removed from the parent loop (see loop_nest_lcssa
772   // test case in zero-btc.ll for an example), thus changing the parent's
773   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
774   // loop which might have a had a block removed.
775   if (OutermostLoop != L)
776     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
777 }
778 
779 
780 /// Checks if \p L has single exit through latch block except possibly
781 /// "deoptimizing" exits. Returns branch instruction terminating the loop
782 /// latch if above check is successful, nullptr otherwise.
783 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
784   BasicBlock *Latch = L->getLoopLatch();
785   if (!Latch)
786     return nullptr;
787 
788   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
789   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
790     return nullptr;
791 
792   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
793           LatchBR->getSuccessor(1) == L->getHeader()) &&
794          "At least one edge out of the latch must go to the header");
795 
796   SmallVector<BasicBlock *, 4> ExitBlocks;
797   L->getUniqueNonLatchExitBlocks(ExitBlocks);
798   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
799         return !EB->getTerminatingDeoptimizeCall();
800       }))
801     return nullptr;
802 
803   return LatchBR;
804 }
805 
806 Optional<unsigned>
807 llvm::getLoopEstimatedTripCount(Loop *L,
808                                 unsigned *EstimatedLoopInvocationWeight) {
809   // Support loops with an exiting latch and other existing exists only
810   // deoptimize.
811   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
812   if (!LatchBranch)
813     return None;
814 
815   // To estimate the number of times the loop body was executed, we want to
816   // know the number of times the backedge was taken, vs. the number of times
817   // we exited the loop.
818   uint64_t BackedgeTakenWeight, LatchExitWeight;
819   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
820     return None;
821 
822   if (LatchBranch->getSuccessor(0) != L->getHeader())
823     std::swap(BackedgeTakenWeight, LatchExitWeight);
824 
825   if (!LatchExitWeight)
826     return None;
827 
828   if (EstimatedLoopInvocationWeight)
829     *EstimatedLoopInvocationWeight = LatchExitWeight;
830 
831   // Estimated backedge taken count is a ratio of the backedge taken weight by
832   // the weight of the edge exiting the loop, rounded to nearest.
833   uint64_t BackedgeTakenCount =
834       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
835   // Estimated trip count is one plus estimated backedge taken count.
836   return BackedgeTakenCount + 1;
837 }
838 
839 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
840                                      unsigned EstimatedloopInvocationWeight) {
841   // Support loops with an exiting latch and other existing exists only
842   // deoptimize.
843   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
844   if (!LatchBranch)
845     return false;
846 
847   // Calculate taken and exit weights.
848   unsigned LatchExitWeight = 0;
849   unsigned BackedgeTakenWeight = 0;
850 
851   if (EstimatedTripCount > 0) {
852     LatchExitWeight = EstimatedloopInvocationWeight;
853     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
854   }
855 
856   // Make a swap if back edge is taken when condition is "false".
857   if (LatchBranch->getSuccessor(0) != L->getHeader())
858     std::swap(BackedgeTakenWeight, LatchExitWeight);
859 
860   MDBuilder MDB(LatchBranch->getContext());
861 
862   // Set/Update profile metadata.
863   LatchBranch->setMetadata(
864       LLVMContext::MD_prof,
865       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
866 
867   return true;
868 }
869 
870 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
871                                               ScalarEvolution &SE) {
872   Loop *OuterL = InnerLoop->getParentLoop();
873   if (!OuterL)
874     return true;
875 
876   // Get the backedge taken count for the inner loop
877   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
878   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
879   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
880       !InnerLoopBECountSC->getType()->isIntegerTy())
881     return false;
882 
883   // Get whether count is invariant to the outer loop
884   ScalarEvolution::LoopDisposition LD =
885       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
886   if (LD != ScalarEvolution::LoopInvariant)
887     return false;
888 
889   return true;
890 }
891 
892 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
893   switch (RK) {
894   default:
895     llvm_unreachable("Unknown min/max recurrence kind");
896   case RecurKind::UMin:
897     return CmpInst::ICMP_ULT;
898   case RecurKind::UMax:
899     return CmpInst::ICMP_UGT;
900   case RecurKind::SMin:
901     return CmpInst::ICMP_SLT;
902   case RecurKind::SMax:
903     return CmpInst::ICMP_SGT;
904   case RecurKind::FMin:
905     return CmpInst::FCMP_OLT;
906   case RecurKind::FMax:
907     return CmpInst::FCMP_OGT;
908   }
909 }
910 
911 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal,
912                                RecurKind RK, Value *Left, Value *Right) {
913   if (auto VTy = dyn_cast<VectorType>(Left->getType()))
914     StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
915   Value *Cmp =
916       Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
917   return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
918 }
919 
920 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
921                             Value *Right) {
922   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
923   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
924   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
925   return Select;
926 }
927 
928 // Helper to generate an ordered reduction.
929 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
930                                  unsigned Op, RecurKind RdxKind,
931                                  ArrayRef<Value *> RedOps) {
932   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
933 
934   // Extract and apply reduction ops in ascending order:
935   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
936   Value *Result = Acc;
937   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
938     Value *Ext =
939         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
940 
941     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
942       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
943                                    "bin.rdx");
944     } else {
945       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
946              "Invalid min/max");
947       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
948     }
949 
950     if (!RedOps.empty())
951       propagateIRFlags(Result, RedOps);
952   }
953 
954   return Result;
955 }
956 
957 // Helper to generate a log2 shuffle reduction.
958 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
959                                  unsigned Op, RecurKind RdxKind,
960                                  ArrayRef<Value *> RedOps) {
961   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
962   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
963   // and vector ops, reducing the set of values being computed by half each
964   // round.
965   assert(isPowerOf2_32(VF) &&
966          "Reduction emission only supported for pow2 vectors!");
967   Value *TmpVec = Src;
968   SmallVector<int, 32> ShuffleMask(VF);
969   for (unsigned i = VF; i != 1; i >>= 1) {
970     // Move the upper half of the vector to the lower half.
971     for (unsigned j = 0; j != i / 2; ++j)
972       ShuffleMask[j] = i / 2 + j;
973 
974     // Fill the rest of the mask with undef.
975     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
976 
977     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
978 
979     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
980       // The builder propagates its fast-math-flags setting.
981       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
982                                    "bin.rdx");
983     } else {
984       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
985              "Invalid min/max");
986       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
987     }
988     if (!RedOps.empty())
989       propagateIRFlags(TmpVec, RedOps);
990 
991     // We may compute the reassociated scalar ops in a way that does not
992     // preserve nsw/nuw etc. Conservatively, drop those flags.
993     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
994       ReductionInst->dropPoisonGeneratingFlags();
995   }
996   // The result is in the first element of the vector.
997   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
998 }
999 
1000 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder,
1001                                             const TargetTransformInfo *TTI,
1002                                             Value *Src,
1003                                             const RecurrenceDescriptor &Desc,
1004                                             PHINode *OrigPhi) {
1005   assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind(
1006              Desc.getRecurrenceKind()) &&
1007          "Unexpected reduction kind");
1008   Value *InitVal = Desc.getRecurrenceStartValue();
1009   Value *NewVal = nullptr;
1010 
1011   // First use the original phi to determine the new value we're trying to
1012   // select from in the loop.
1013   SelectInst *SI = nullptr;
1014   for (auto *U : OrigPhi->users()) {
1015     if ((SI = dyn_cast<SelectInst>(U)))
1016       break;
1017   }
1018   assert(SI && "One user of the original phi should be a select");
1019 
1020   if (SI->getTrueValue() == OrigPhi)
1021     NewVal = SI->getFalseValue();
1022   else {
1023     assert(SI->getFalseValue() == OrigPhi &&
1024            "At least one input to the select should be the original Phi");
1025     NewVal = SI->getTrueValue();
1026   }
1027 
1028   // Create a splat vector with the new value and compare this to the vector
1029   // we want to reduce.
1030   ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1031   Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1032   Value *Cmp =
1033       Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1034 
1035   // If any predicate is true it means that we want to select the new value.
1036   Cmp = Builder.CreateOrReduce(Cmp);
1037   return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1038 }
1039 
1040 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
1041                                          const TargetTransformInfo *TTI,
1042                                          Value *Src, RecurKind RdxKind,
1043                                          ArrayRef<Value *> RedOps) {
1044   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1045   switch (RdxKind) {
1046   case RecurKind::Add:
1047     return Builder.CreateAddReduce(Src);
1048   case RecurKind::Mul:
1049     return Builder.CreateMulReduce(Src);
1050   case RecurKind::And:
1051     return Builder.CreateAndReduce(Src);
1052   case RecurKind::Or:
1053     return Builder.CreateOrReduce(Src);
1054   case RecurKind::Xor:
1055     return Builder.CreateXorReduce(Src);
1056   case RecurKind::FAdd:
1057     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1058                                     Src);
1059   case RecurKind::FMul:
1060     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1061   case RecurKind::SMax:
1062     return Builder.CreateIntMaxReduce(Src, true);
1063   case RecurKind::SMin:
1064     return Builder.CreateIntMinReduce(Src, true);
1065   case RecurKind::UMax:
1066     return Builder.CreateIntMaxReduce(Src, false);
1067   case RecurKind::UMin:
1068     return Builder.CreateIntMinReduce(Src, false);
1069   case RecurKind::FMax:
1070     return Builder.CreateFPMaxReduce(Src);
1071   case RecurKind::FMin:
1072     return Builder.CreateFPMinReduce(Src);
1073   default:
1074     llvm_unreachable("Unhandled opcode");
1075   }
1076 }
1077 
1078 Value *llvm::createTargetReduction(IRBuilderBase &B,
1079                                    const TargetTransformInfo *TTI,
1080                                    const RecurrenceDescriptor &Desc, Value *Src,
1081                                    PHINode *OrigPhi) {
1082   // TODO: Support in-order reductions based on the recurrence descriptor.
1083   // All ops in the reduction inherit fast-math-flags from the recurrence
1084   // descriptor.
1085   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1086   B.setFastMathFlags(Desc.getFastMathFlags());
1087 
1088   RecurKind RK = Desc.getRecurrenceKind();
1089   if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
1090     return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi);
1091 
1092   return createSimpleTargetReduction(B, TTI, Src, RK);
1093 }
1094 
1095 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1096                                     const RecurrenceDescriptor &Desc,
1097                                     Value *Src, Value *Start) {
1098   assert(Desc.getRecurrenceKind() == RecurKind::FAdd &&
1099          "Unexpected reduction kind");
1100   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1101   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1102 
1103   return B.CreateFAddReduce(Start, Src);
1104 }
1105 
1106 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1107   auto *VecOp = dyn_cast<Instruction>(I);
1108   if (!VecOp)
1109     return;
1110   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1111                                             : dyn_cast<Instruction>(OpValue);
1112   if (!Intersection)
1113     return;
1114   const unsigned Opcode = Intersection->getOpcode();
1115   VecOp->copyIRFlags(Intersection);
1116   for (auto *V : VL) {
1117     auto *Instr = dyn_cast<Instruction>(V);
1118     if (!Instr)
1119       continue;
1120     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1121       VecOp->andIRFlags(V);
1122   }
1123 }
1124 
1125 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1126                                  ScalarEvolution &SE) {
1127   const SCEV *Zero = SE.getZero(S->getType());
1128   return SE.isAvailableAtLoopEntry(S, L) &&
1129          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1130 }
1131 
1132 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1133                                     ScalarEvolution &SE) {
1134   const SCEV *Zero = SE.getZero(S->getType());
1135   return SE.isAvailableAtLoopEntry(S, L) &&
1136          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1137 }
1138 
1139 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1140                              bool Signed) {
1141   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1142   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1143     APInt::getMinValue(BitWidth);
1144   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1145   return SE.isAvailableAtLoopEntry(S, L) &&
1146          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1147                                      SE.getConstant(Min));
1148 }
1149 
1150 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1151                              bool Signed) {
1152   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1153   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1154     APInt::getMaxValue(BitWidth);
1155   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1156   return SE.isAvailableAtLoopEntry(S, L) &&
1157          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1158                                      SE.getConstant(Max));
1159 }
1160 
1161 //===----------------------------------------------------------------------===//
1162 // rewriteLoopExitValues - Optimize IV users outside the loop.
1163 // As a side effect, reduces the amount of IV processing within the loop.
1164 //===----------------------------------------------------------------------===//
1165 
1166 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1167   SmallPtrSet<const Instruction *, 8> Visited;
1168   SmallVector<const Instruction *, 8> WorkList;
1169   Visited.insert(I);
1170   WorkList.push_back(I);
1171   while (!WorkList.empty()) {
1172     const Instruction *Curr = WorkList.pop_back_val();
1173     // This use is outside the loop, nothing to do.
1174     if (!L->contains(Curr))
1175       continue;
1176     // Do we assume it is a "hard" use which will not be eliminated easily?
1177     if (Curr->mayHaveSideEffects())
1178       return true;
1179     // Otherwise, add all its users to worklist.
1180     for (auto U : Curr->users()) {
1181       auto *UI = cast<Instruction>(U);
1182       if (Visited.insert(UI).second)
1183         WorkList.push_back(UI);
1184     }
1185   }
1186   return false;
1187 }
1188 
1189 // Collect information about PHI nodes which can be transformed in
1190 // rewriteLoopExitValues.
1191 struct RewritePhi {
1192   PHINode *PN;               // For which PHI node is this replacement?
1193   unsigned Ith;              // For which incoming value?
1194   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1195   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1196   bool HighCost;               // Is this expansion a high-cost?
1197 
1198   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1199              bool H)
1200       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1201         HighCost(H) {}
1202 };
1203 
1204 // Check whether it is possible to delete the loop after rewriting exit
1205 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1206 // aggressively.
1207 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1208   BasicBlock *Preheader = L->getLoopPreheader();
1209   // If there is no preheader, the loop will not be deleted.
1210   if (!Preheader)
1211     return false;
1212 
1213   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1214   // We obviate multiple ExitingBlocks case for simplicity.
1215   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1216   // after exit value rewriting, we can enhance the logic here.
1217   SmallVector<BasicBlock *, 4> ExitingBlocks;
1218   L->getExitingBlocks(ExitingBlocks);
1219   SmallVector<BasicBlock *, 8> ExitBlocks;
1220   L->getUniqueExitBlocks(ExitBlocks);
1221   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1222     return false;
1223 
1224   BasicBlock *ExitBlock = ExitBlocks[0];
1225   BasicBlock::iterator BI = ExitBlock->begin();
1226   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1227     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1228 
1229     // If the Incoming value of P is found in RewritePhiSet, we know it
1230     // could be rewritten to use a loop invariant value in transformation
1231     // phase later. Skip it in the loop invariant check below.
1232     bool found = false;
1233     for (const RewritePhi &Phi : RewritePhiSet) {
1234       unsigned i = Phi.Ith;
1235       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1236         found = true;
1237         break;
1238       }
1239     }
1240 
1241     Instruction *I;
1242     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1243       if (!L->hasLoopInvariantOperands(I))
1244         return false;
1245 
1246     ++BI;
1247   }
1248 
1249   for (auto *BB : L->blocks())
1250     if (llvm::any_of(*BB, [](Instruction &I) {
1251           return I.mayHaveSideEffects();
1252         }))
1253       return false;
1254 
1255   return true;
1256 }
1257 
1258 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1259                                 ScalarEvolution *SE,
1260                                 const TargetTransformInfo *TTI,
1261                                 SCEVExpander &Rewriter, DominatorTree *DT,
1262                                 ReplaceExitVal ReplaceExitValue,
1263                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1264   // Check a pre-condition.
1265   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1266          "Indvars did not preserve LCSSA!");
1267 
1268   SmallVector<BasicBlock*, 8> ExitBlocks;
1269   L->getUniqueExitBlocks(ExitBlocks);
1270 
1271   SmallVector<RewritePhi, 8> RewritePhiSet;
1272   // Find all values that are computed inside the loop, but used outside of it.
1273   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1274   // the exit blocks of the loop to find them.
1275   for (BasicBlock *ExitBB : ExitBlocks) {
1276     // If there are no PHI nodes in this exit block, then no values defined
1277     // inside the loop are used on this path, skip it.
1278     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1279     if (!PN) continue;
1280 
1281     unsigned NumPreds = PN->getNumIncomingValues();
1282 
1283     // Iterate over all of the PHI nodes.
1284     BasicBlock::iterator BBI = ExitBB->begin();
1285     while ((PN = dyn_cast<PHINode>(BBI++))) {
1286       if (PN->use_empty())
1287         continue; // dead use, don't replace it
1288 
1289       if (!SE->isSCEVable(PN->getType()))
1290         continue;
1291 
1292       // It's necessary to tell ScalarEvolution about this explicitly so that
1293       // it can walk the def-use list and forget all SCEVs, as it may not be
1294       // watching the PHI itself. Once the new exit value is in place, there
1295       // may not be a def-use connection between the loop and every instruction
1296       // which got a SCEVAddRecExpr for that loop.
1297       SE->forgetValue(PN);
1298 
1299       // Iterate over all of the values in all the PHI nodes.
1300       for (unsigned i = 0; i != NumPreds; ++i) {
1301         // If the value being merged in is not integer or is not defined
1302         // in the loop, skip it.
1303         Value *InVal = PN->getIncomingValue(i);
1304         if (!isa<Instruction>(InVal))
1305           continue;
1306 
1307         // If this pred is for a subloop, not L itself, skip it.
1308         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1309           continue; // The Block is in a subloop, skip it.
1310 
1311         // Check that InVal is defined in the loop.
1312         Instruction *Inst = cast<Instruction>(InVal);
1313         if (!L->contains(Inst))
1314           continue;
1315 
1316         // Okay, this instruction has a user outside of the current loop
1317         // and varies predictably *inside* the loop.  Evaluate the value it
1318         // contains when the loop exits, if possible.  We prefer to start with
1319         // expressions which are true for all exits (so as to maximize
1320         // expression reuse by the SCEVExpander), but resort to per-exit
1321         // evaluation if that fails.
1322         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1323         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1324             !SE->isLoopInvariant(ExitValue, L) ||
1325             !isSafeToExpand(ExitValue, *SE)) {
1326           // TODO: This should probably be sunk into SCEV in some way; maybe a
1327           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1328           // most SCEV expressions and other recurrence types (e.g. shift
1329           // recurrences).  Is there existing code we can reuse?
1330           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1331           if (isa<SCEVCouldNotCompute>(ExitCount))
1332             continue;
1333           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1334             if (AddRec->getLoop() == L)
1335               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1336           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1337               !SE->isLoopInvariant(ExitValue, L) ||
1338               !isSafeToExpand(ExitValue, *SE))
1339             continue;
1340         }
1341 
1342         // Computing the value outside of the loop brings no benefit if it is
1343         // definitely used inside the loop in a way which can not be optimized
1344         // away. Avoid doing so unless we know we have a value which computes
1345         // the ExitValue already. TODO: This should be merged into SCEV
1346         // expander to leverage its knowledge of existing expressions.
1347         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1348             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1349           continue;
1350 
1351         // Check if expansions of this SCEV would count as being high cost.
1352         bool HighCost = Rewriter.isHighCostExpansion(
1353             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1354 
1355         // Note that we must not perform expansions until after
1356         // we query *all* the costs, because if we perform temporary expansion
1357         // inbetween, one that we might not intend to keep, said expansion
1358         // *may* affect cost calculation of the the next SCEV's we'll query,
1359         // and next SCEV may errneously get smaller cost.
1360 
1361         // Collect all the candidate PHINodes to be rewritten.
1362         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1363       }
1364     }
1365   }
1366 
1367   // TODO: evaluate whether it is beneficial to change how we calculate
1368   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1369   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1370   // potentially giving cost bonus to those other SCEV's?
1371 
1372   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1373   int NumReplaced = 0;
1374 
1375   // Transformation.
1376   for (const RewritePhi &Phi : RewritePhiSet) {
1377     PHINode *PN = Phi.PN;
1378 
1379     // Only do the rewrite when the ExitValue can be expanded cheaply.
1380     // If LoopCanBeDel is true, rewrite exit value aggressively.
1381     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost)
1382       continue;
1383 
1384     Value *ExitVal = Rewriter.expandCodeFor(
1385         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1386 
1387     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1388                       << '\n'
1389                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1390 
1391 #ifndef NDEBUG
1392     // If we reuse an instruction from a loop which is neither L nor one of
1393     // its containing loops, we end up breaking LCSSA form for this loop by
1394     // creating a new use of its instruction.
1395     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1396       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1397         if (EVL != L)
1398           assert(EVL->contains(L) && "LCSSA breach detected!");
1399 #endif
1400 
1401     NumReplaced++;
1402     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1403     PN->setIncomingValue(Phi.Ith, ExitVal);
1404 
1405     // If this instruction is dead now, delete it. Don't do it now to avoid
1406     // invalidating iterators.
1407     if (isInstructionTriviallyDead(Inst, TLI))
1408       DeadInsts.push_back(Inst);
1409 
1410     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1411     if (PN->getNumIncomingValues() == 1 &&
1412         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1413       PN->replaceAllUsesWith(ExitVal);
1414       PN->eraseFromParent();
1415     }
1416   }
1417 
1418   // The insertion point instruction may have been deleted; clear it out
1419   // so that the rewriter doesn't trip over it later.
1420   Rewriter.clearInsertPoint();
1421   return NumReplaced;
1422 }
1423 
1424 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1425 /// \p OrigLoop.
1426 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1427                                         Loop *RemainderLoop, uint64_t UF) {
1428   assert(UF > 0 && "Zero unrolled factor is not supported");
1429   assert(UnrolledLoop != RemainderLoop &&
1430          "Unrolled and Remainder loops are expected to distinct");
1431 
1432   // Get number of iterations in the original scalar loop.
1433   unsigned OrigLoopInvocationWeight = 0;
1434   Optional<unsigned> OrigAverageTripCount =
1435       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1436   if (!OrigAverageTripCount)
1437     return;
1438 
1439   // Calculate number of iterations in unrolled loop.
1440   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1441   // Calculate number of iterations for remainder loop.
1442   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1443 
1444   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1445                             OrigLoopInvocationWeight);
1446   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1447                             OrigLoopInvocationWeight);
1448 }
1449 
1450 /// Utility that implements appending of loops onto a worklist.
1451 /// Loops are added in preorder (analogous for reverse postorder for trees),
1452 /// and the worklist is processed LIFO.
1453 template <typename RangeT>
1454 void llvm::appendReversedLoopsToWorklist(
1455     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1456   // We use an internal worklist to build up the preorder traversal without
1457   // recursion.
1458   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1459 
1460   // We walk the initial sequence of loops in reverse because we generally want
1461   // to visit defs before uses and the worklist is LIFO.
1462   for (Loop *RootL : Loops) {
1463     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1464     assert(PreOrderWorklist.empty() &&
1465            "Must start with an empty preorder walk worklist.");
1466     PreOrderWorklist.push_back(RootL);
1467     do {
1468       Loop *L = PreOrderWorklist.pop_back_val();
1469       PreOrderWorklist.append(L->begin(), L->end());
1470       PreOrderLoops.push_back(L);
1471     } while (!PreOrderWorklist.empty());
1472 
1473     Worklist.insert(std::move(PreOrderLoops));
1474     PreOrderLoops.clear();
1475   }
1476 }
1477 
1478 template <typename RangeT>
1479 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1480                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1481   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1482 }
1483 
1484 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1485     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1486 
1487 template void
1488 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1489                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1490 
1491 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1492                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1493   appendReversedLoopsToWorklist(LI, Worklist);
1494 }
1495 
1496 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1497                       LoopInfo *LI, LPPassManager *LPM) {
1498   Loop &New = *LI->AllocateLoop();
1499   if (PL)
1500     PL->addChildLoop(&New);
1501   else
1502     LI->addTopLevelLoop(&New);
1503 
1504   if (LPM)
1505     LPM->addLoop(New);
1506 
1507   // Add all of the blocks in L to the new loop.
1508   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1509        I != E; ++I)
1510     if (LI->getLoopFor(*I) == L)
1511       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1512 
1513   // Add all of the subloops to the new loop.
1514   for (Loop *I : *L)
1515     cloneLoop(I, &New, VM, LI, LPM);
1516 
1517   return &New;
1518 }
1519 
1520 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1521 /// need to use value-handles because SCEV expansion can invalidate previously
1522 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1523 /// a previous one.
1524 struct PointerBounds {
1525   TrackingVH<Value> Start;
1526   TrackingVH<Value> End;
1527 };
1528 
1529 /// Expand code for the lower and upper bound of the pointer group \p CG
1530 /// in \p TheLoop.  \return the values for the bounds.
1531 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1532                                   Loop *TheLoop, Instruction *Loc,
1533                                   SCEVExpander &Exp) {
1534   LLVMContext &Ctx = Loc->getContext();
1535   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
1536 
1537   Value *Start = nullptr, *End = nullptr;
1538   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1539   Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1540   End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1541   LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1542   return {Start, End};
1543 }
1544 
1545 /// Turns a collection of checks into a collection of expanded upper and
1546 /// lower bounds for both pointers in the check.
1547 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1548 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1549              Instruction *Loc, SCEVExpander &Exp) {
1550   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1551 
1552   // Here we're relying on the SCEV Expander's cache to only emit code for the
1553   // same bounds once.
1554   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1555             [&](const RuntimePointerCheck &Check) {
1556               PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
1557                             Second = expandBounds(Check.second, L, Loc, Exp);
1558               return std::make_pair(First, Second);
1559             });
1560 
1561   return ChecksWithBounds;
1562 }
1563 
1564 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1565     Instruction *Loc, Loop *TheLoop,
1566     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1567     SCEVExpander &Exp) {
1568   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1569   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1570   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
1571 
1572   LLVMContext &Ctx = Loc->getContext();
1573   Instruction *FirstInst = nullptr;
1574   IRBuilder<> ChkBuilder(Loc);
1575   // Our instructions might fold to a constant.
1576   Value *MemoryRuntimeCheck = nullptr;
1577 
1578   // FIXME: this helper is currently a duplicate of the one in
1579   // LoopVectorize.cpp.
1580   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1581                          Instruction *Loc) -> Instruction * {
1582     if (FirstInst)
1583       return FirstInst;
1584     if (Instruction *I = dyn_cast<Instruction>(V))
1585       return I->getParent() == Loc->getParent() ? I : nullptr;
1586     return nullptr;
1587   };
1588 
1589   for (const auto &Check : ExpandedChecks) {
1590     const PointerBounds &A = Check.first, &B = Check.second;
1591     // Check if two pointers (A and B) conflict where conflict is computed as:
1592     // start(A) <= end(B) && start(B) <= end(A)
1593     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1594     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1595 
1596     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1597            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1598            "Trying to bounds check pointers with different address spaces");
1599 
1600     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1601     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1602 
1603     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1604     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1605     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1606     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1607 
1608     // [A|B].Start points to the first accessed byte under base [A|B].
1609     // [A|B].End points to the last accessed byte, plus one.
1610     // There is no conflict when the intervals are disjoint:
1611     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1612     //
1613     // bound0 = (B.Start < A.End)
1614     // bound1 = (A.Start < B.End)
1615     //  IsConflict = bound0 & bound1
1616     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1617     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1618     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1619     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1620     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1621     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1622     if (MemoryRuntimeCheck) {
1623       IsConflict =
1624           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1625       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1626     }
1627     MemoryRuntimeCheck = IsConflict;
1628   }
1629 
1630   if (!MemoryRuntimeCheck)
1631     return std::make_pair(nullptr, nullptr);
1632 
1633   // We have to do this trickery because the IRBuilder might fold the check to a
1634   // constant expression in which case there is no Instruction anchored in a
1635   // the block.
1636   Instruction *Check =
1637       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1638   ChkBuilder.Insert(Check, "memcheck.conflict");
1639   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1640   return std::make_pair(FirstInst, Check);
1641 }
1642 
1643 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
1644                                                       unsigned MSSAThreshold,
1645                                                       MemorySSA &MSSA,
1646                                                       AAResults &AA) {
1647   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1648   if (!TI || !TI->isConditional())
1649     return {};
1650 
1651   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1652   // The case with the condition outside the loop should already be handled
1653   // earlier.
1654   if (!CondI || !L.contains(CondI))
1655     return {};
1656 
1657   SmallVector<Instruction *> InstToDuplicate;
1658   InstToDuplicate.push_back(CondI);
1659 
1660   SmallVector<Value *, 4> WorkList;
1661   WorkList.append(CondI->op_begin(), CondI->op_end());
1662 
1663   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1664   SmallVector<MemoryLocation, 4> AccessedLocs;
1665   while (!WorkList.empty()) {
1666     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1667     if (!I || !L.contains(I))
1668       continue;
1669 
1670     // TODO: support additional instructions.
1671     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1672       return {};
1673 
1674     // Do not duplicate volatile and atomic loads.
1675     if (auto *LI = dyn_cast<LoadInst>(I))
1676       if (LI->isVolatile() || LI->isAtomic())
1677         return {};
1678 
1679     InstToDuplicate.push_back(I);
1680     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1681       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1682         // Queue the defining access to check for alias checks.
1683         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1684         AccessedLocs.push_back(MemoryLocation::get(I));
1685       } else {
1686         // MemoryDefs may clobber the location or may be atomic memory
1687         // operations. Bail out.
1688         return {};
1689       }
1690     }
1691     WorkList.append(I->op_begin(), I->op_end());
1692   }
1693 
1694   if (InstToDuplicate.empty())
1695     return {};
1696 
1697   SmallVector<BasicBlock *, 4> ExitingBlocks;
1698   L.getExitingBlocks(ExitingBlocks);
1699   auto HasNoClobbersOnPath =
1700       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1701        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1702                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1703       -> Optional<IVConditionInfo> {
1704     IVConditionInfo Info;
1705     // First, collect all blocks in the loop that are on a patch from Succ
1706     // to the header.
1707     SmallVector<BasicBlock *, 4> WorkList;
1708     WorkList.push_back(Succ);
1709     WorkList.push_back(Header);
1710     SmallPtrSet<BasicBlock *, 4> Seen;
1711     Seen.insert(Header);
1712     Info.PathIsNoop &=
1713         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1714 
1715     while (!WorkList.empty()) {
1716       BasicBlock *Current = WorkList.pop_back_val();
1717       if (!L.contains(Current))
1718         continue;
1719       const auto &SeenIns = Seen.insert(Current);
1720       if (!SeenIns.second)
1721         continue;
1722 
1723       Info.PathIsNoop &= all_of(
1724           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1725       WorkList.append(succ_begin(Current), succ_end(Current));
1726     }
1727 
1728     // Require at least 2 blocks on a path through the loop. This skips
1729     // paths that directly exit the loop.
1730     if (Seen.size() < 2)
1731       return {};
1732 
1733     // Next, check if there are any MemoryDefs that are on the path through
1734     // the loop (in the Seen set) and they may-alias any of the locations in
1735     // AccessedLocs. If that is the case, they may modify the condition and
1736     // partial unswitching is not possible.
1737     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1738     while (!AccessesToCheck.empty()) {
1739       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1740       auto SeenI = SeenAccesses.insert(Current);
1741       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1742         continue;
1743 
1744       // Bail out if exceeded the threshold.
1745       if (SeenAccesses.size() >= MSSAThreshold)
1746         return {};
1747 
1748       // MemoryUse are read-only accesses.
1749       if (isa<MemoryUse>(Current))
1750         continue;
1751 
1752       // For a MemoryDef, check if is aliases any of the location feeding
1753       // the original condition.
1754       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1755         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1756               return isModSet(
1757                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1758             }))
1759           return {};
1760       }
1761 
1762       for (Use &U : Current->uses())
1763         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1764     }
1765 
1766     // We could also allow loops with known trip counts without mustprogress,
1767     // but ScalarEvolution may not be available.
1768     Info.PathIsNoop &= isMustProgress(&L);
1769 
1770     // If the path is considered a no-op so far, check if it reaches a
1771     // single exit block without any phis. This ensures no values from the
1772     // loop are used outside of the loop.
1773     if (Info.PathIsNoop) {
1774       for (auto *Exiting : ExitingBlocks) {
1775         if (!Seen.contains(Exiting))
1776           continue;
1777         for (auto *Succ : successors(Exiting)) {
1778           if (L.contains(Succ))
1779             continue;
1780 
1781           Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
1782                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1783           if (!Info.PathIsNoop)
1784             break;
1785           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1786                  "cannot have multiple exit blocks");
1787           Info.ExitForPath = Succ;
1788         }
1789       }
1790     }
1791     if (!Info.ExitForPath)
1792       Info.PathIsNoop = false;
1793 
1794     Info.InstToDuplicate = InstToDuplicate;
1795     return Info;
1796   };
1797 
1798   // If we branch to the same successor, partial unswitching will not be
1799   // beneficial.
1800   if (TI->getSuccessor(0) == TI->getSuccessor(1))
1801     return {};
1802 
1803   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
1804                                       AccessesToCheck)) {
1805     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
1806     return Info;
1807   }
1808   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
1809                                       AccessesToCheck)) {
1810     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
1811     return Info;
1812   }
1813 
1814   return {};
1815 }
1816