1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<bool> ForceReductionIntrinsic(
58     "force-reduction-intrinsics", cl::Hidden,
59     cl::desc("Force creating reduction intrinsics for testing."),
60     cl::init(false));
61 
62 #define DEBUG_TYPE "loop-utils"
63 
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
67 
68 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
69                                    MemorySSAUpdater *MSSAU,
70                                    bool PreserveLCSSA) {
71   bool Changed = false;
72 
73   // We re-use a vector for the in-loop predecesosrs.
74   SmallVector<BasicBlock *, 4> InLoopPredecessors;
75 
76   auto RewriteExit = [&](BasicBlock *BB) {
77     assert(InLoopPredecessors.empty() &&
78            "Must start with an empty predecessors list!");
79     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
80 
81     // See if there are any non-loop predecessors of this exit block and
82     // keep track of the in-loop predecessors.
83     bool IsDedicatedExit = true;
84     for (auto *PredBB : predecessors(BB))
85       if (L->contains(PredBB)) {
86         if (isa<IndirectBrInst>(PredBB->getTerminator()))
87           // We cannot rewrite exiting edges from an indirectbr.
88           return false;
89         if (isa<CallBrInst>(PredBB->getTerminator()))
90           // We cannot rewrite exiting edges from a callbr.
91           return false;
92 
93         InLoopPredecessors.push_back(PredBB);
94       } else {
95         IsDedicatedExit = false;
96       }
97 
98     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
99 
100     // Nothing to do if this is already a dedicated exit.
101     if (IsDedicatedExit)
102       return false;
103 
104     auto *NewExitBB = SplitBlockPredecessors(
105         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
106 
107     if (!NewExitBB)
108       LLVM_DEBUG(
109           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
110                  << *L << "\n");
111     else
112       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
113                         << NewExitBB->getName() << "\n");
114     return true;
115   };
116 
117   // Walk the exit blocks directly rather than building up a data structure for
118   // them, but only visit each one once.
119   SmallPtrSet<BasicBlock *, 4> Visited;
120   for (auto *BB : L->blocks())
121     for (auto *SuccBB : successors(BB)) {
122       // We're looking for exit blocks so skip in-loop successors.
123       if (L->contains(SuccBB))
124         continue;
125 
126       // Visit each exit block exactly once.
127       if (!Visited.insert(SuccBB).second)
128         continue;
129 
130       Changed |= RewriteExit(SuccBB);
131     }
132 
133   return Changed;
134 }
135 
136 /// Returns the instructions that use values defined in the loop.
137 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
138   SmallVector<Instruction *, 8> UsedOutside;
139 
140   for (auto *Block : L->getBlocks())
141     // FIXME: I believe that this could use copy_if if the Inst reference could
142     // be adapted into a pointer.
143     for (auto &Inst : *Block) {
144       auto Users = Inst.users();
145       if (any_of(Users, [&](User *U) {
146             auto *Use = cast<Instruction>(U);
147             return !L->contains(Use->getParent());
148           }))
149         UsedOutside.push_back(&Inst);
150     }
151 
152   return UsedOutside;
153 }
154 
155 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
156   // By definition, all loop passes need the LoopInfo analysis and the
157   // Dominator tree it depends on. Because they all participate in the loop
158   // pass manager, they must also preserve these.
159   AU.addRequired<DominatorTreeWrapperPass>();
160   AU.addPreserved<DominatorTreeWrapperPass>();
161   AU.addRequired<LoopInfoWrapperPass>();
162   AU.addPreserved<LoopInfoWrapperPass>();
163 
164   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
165   // here because users shouldn't directly get them from this header.
166   extern char &LoopSimplifyID;
167   extern char &LCSSAID;
168   AU.addRequiredID(LoopSimplifyID);
169   AU.addPreservedID(LoopSimplifyID);
170   AU.addRequiredID(LCSSAID);
171   AU.addPreservedID(LCSSAID);
172   // This is used in the LPPassManager to perform LCSSA verification on passes
173   // which preserve lcssa form
174   AU.addRequired<LCSSAVerificationPass>();
175   AU.addPreserved<LCSSAVerificationPass>();
176 
177   // Loop passes are designed to run inside of a loop pass manager which means
178   // that any function analyses they require must be required by the first loop
179   // pass in the manager (so that it is computed before the loop pass manager
180   // runs) and preserved by all loop pasess in the manager. To make this
181   // reasonably robust, the set needed for most loop passes is maintained here.
182   // If your loop pass requires an analysis not listed here, you will need to
183   // carefully audit the loop pass manager nesting structure that results.
184   AU.addRequired<AAResultsWrapperPass>();
185   AU.addPreserved<AAResultsWrapperPass>();
186   AU.addPreserved<BasicAAWrapperPass>();
187   AU.addPreserved<GlobalsAAWrapperPass>();
188   AU.addPreserved<SCEVAAWrapperPass>();
189   AU.addRequired<ScalarEvolutionWrapperPass>();
190   AU.addPreserved<ScalarEvolutionWrapperPass>();
191   // FIXME: When all loop passes preserve MemorySSA, it can be required and
192   // preserved here instead of the individual handling in each pass.
193 }
194 
195 /// Manually defined generic "LoopPass" dependency initialization. This is used
196 /// to initialize the exact set of passes from above in \c
197 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
198 /// with:
199 ///
200 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
201 ///
202 /// As-if "LoopPass" were a pass.
203 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
204   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
206   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
207   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
208   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
209   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
210   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
211   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
212   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
213   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
214 }
215 
216 /// Create MDNode for input string.
217 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
218   LLVMContext &Context = TheLoop->getHeader()->getContext();
219   Metadata *MDs[] = {
220       MDString::get(Context, Name),
221       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
222   return MDNode::get(Context, MDs);
223 }
224 
225 /// Set input string into loop metadata by keeping other values intact.
226 /// If the string is already in loop metadata update value if it is
227 /// different.
228 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
229                                    unsigned V) {
230   SmallVector<Metadata *, 4> MDs(1);
231   // If the loop already has metadata, retain it.
232   MDNode *LoopID = TheLoop->getLoopID();
233   if (LoopID) {
234     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
235       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
236       // If it is of form key = value, try to parse it.
237       if (Node->getNumOperands() == 2) {
238         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
239         if (S && S->getString().equals(StringMD)) {
240           ConstantInt *IntMD =
241               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
242           if (IntMD && IntMD->getSExtValue() == V)
243             // It is already in place. Do nothing.
244             return;
245           // We need to update the value, so just skip it here and it will
246           // be added after copying other existed nodes.
247           continue;
248         }
249       }
250       MDs.push_back(Node);
251     }
252   }
253   // Add new metadata.
254   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
255   // Replace current metadata node with new one.
256   LLVMContext &Context = TheLoop->getHeader()->getContext();
257   MDNode *NewLoopID = MDNode::get(Context, MDs);
258   // Set operand 0 to refer to the loop id itself.
259   NewLoopID->replaceOperandWith(0, NewLoopID);
260   TheLoop->setLoopID(NewLoopID);
261 }
262 
263 /// Find string metadata for loop
264 ///
265 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
266 /// operand or null otherwise.  If the string metadata is not found return
267 /// Optional's not-a-value.
268 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
269                                                             StringRef Name) {
270   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
271   if (!MD)
272     return None;
273   switch (MD->getNumOperands()) {
274   case 1:
275     return nullptr;
276   case 2:
277     return &MD->getOperand(1);
278   default:
279     llvm_unreachable("loop metadata has 0 or 1 operand");
280   }
281 }
282 
283 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
284                                                    StringRef Name) {
285   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
286   if (!MD)
287     return None;
288   switch (MD->getNumOperands()) {
289   case 1:
290     // When the value is absent it is interpreted as 'attribute set'.
291     return true;
292   case 2:
293     if (ConstantInt *IntMD =
294             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
295       return IntMD->getZExtValue();
296     return true;
297   }
298   llvm_unreachable("unexpected number of options");
299 }
300 
301 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
302   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
303 }
304 
305 Optional<ElementCount>
306 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
307   Optional<int> Width =
308       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
309 
310   if (Width.hasValue()) {
311     Optional<int> IsScalable = getOptionalIntLoopAttribute(
312         TheLoop, "llvm.loop.vectorize.scalable.enable");
313     return ElementCount::get(*Width,
314                              IsScalable.hasValue() ? *IsScalable : false);
315   }
316 
317   return None;
318 }
319 
320 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
321                                                       StringRef Name) {
322   const MDOperand *AttrMD =
323       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
324   if (!AttrMD)
325     return None;
326 
327   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
328   if (!IntMD)
329     return None;
330 
331   return IntMD->getSExtValue();
332 }
333 
334 Optional<MDNode *> llvm::makeFollowupLoopID(
335     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
336     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
337   if (!OrigLoopID) {
338     if (AlwaysNew)
339       return nullptr;
340     return None;
341   }
342 
343   assert(OrigLoopID->getOperand(0) == OrigLoopID);
344 
345   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
346   bool InheritSomeAttrs =
347       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
348   SmallVector<Metadata *, 8> MDs;
349   MDs.push_back(nullptr);
350 
351   bool Changed = false;
352   if (InheritAllAttrs || InheritSomeAttrs) {
353     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
354       MDNode *Op = cast<MDNode>(Existing.get());
355 
356       auto InheritThisAttribute = [InheritSomeAttrs,
357                                    InheritOptionsExceptPrefix](MDNode *Op) {
358         if (!InheritSomeAttrs)
359           return false;
360 
361         // Skip malformatted attribute metadata nodes.
362         if (Op->getNumOperands() == 0)
363           return true;
364         Metadata *NameMD = Op->getOperand(0).get();
365         if (!isa<MDString>(NameMD))
366           return true;
367         StringRef AttrName = cast<MDString>(NameMD)->getString();
368 
369         // Do not inherit excluded attributes.
370         return !AttrName.startswith(InheritOptionsExceptPrefix);
371       };
372 
373       if (InheritThisAttribute(Op))
374         MDs.push_back(Op);
375       else
376         Changed = true;
377     }
378   } else {
379     // Modified if we dropped at least one attribute.
380     Changed = OrigLoopID->getNumOperands() > 1;
381   }
382 
383   bool HasAnyFollowup = false;
384   for (StringRef OptionName : FollowupOptions) {
385     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
386     if (!FollowupNode)
387       continue;
388 
389     HasAnyFollowup = true;
390     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
391       MDs.push_back(Option.get());
392       Changed = true;
393     }
394   }
395 
396   // Attributes of the followup loop not specified explicity, so signal to the
397   // transformation pass to add suitable attributes.
398   if (!AlwaysNew && !HasAnyFollowup)
399     return None;
400 
401   // If no attributes were added or remove, the previous loop Id can be reused.
402   if (!AlwaysNew && !Changed)
403     return OrigLoopID;
404 
405   // No attributes is equivalent to having no !llvm.loop metadata at all.
406   if (MDs.size() == 1)
407     return nullptr;
408 
409   // Build the new loop ID.
410   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
411   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
412   return FollowupLoopID;
413 }
414 
415 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
416   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
417 }
418 
419 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
420   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
421 }
422 
423 bool llvm::hasMustProgress(const Loop *L) {
424   return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
425 }
426 
427 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
428   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
429     return TM_SuppressedByUser;
430 
431   Optional<int> Count =
432       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
433   if (Count.hasValue())
434     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
435 
436   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
437     return TM_ForcedByUser;
438 
439   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
440     return TM_ForcedByUser;
441 
442   if (hasDisableAllTransformsHint(L))
443     return TM_Disable;
444 
445   return TM_Unspecified;
446 }
447 
448 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
449   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
450     return TM_SuppressedByUser;
451 
452   Optional<int> Count =
453       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
454   if (Count.hasValue())
455     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
456 
457   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
458     return TM_ForcedByUser;
459 
460   if (hasDisableAllTransformsHint(L))
461     return TM_Disable;
462 
463   return TM_Unspecified;
464 }
465 
466 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
467   Optional<bool> Enable =
468       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
469 
470   if (Enable == false)
471     return TM_SuppressedByUser;
472 
473   Optional<ElementCount> VectorizeWidth =
474       getOptionalElementCountLoopAttribute(L);
475   Optional<int> InterleaveCount =
476       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
477 
478   // 'Forcing' vector width and interleave count to one effectively disables
479   // this tranformation.
480   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
481       InterleaveCount == 1)
482     return TM_SuppressedByUser;
483 
484   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
485     return TM_Disable;
486 
487   if (Enable == true)
488     return TM_ForcedByUser;
489 
490   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
491     return TM_Disable;
492 
493   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
494     return TM_Enable;
495 
496   if (hasDisableAllTransformsHint(L))
497     return TM_Disable;
498 
499   return TM_Unspecified;
500 }
501 
502 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
503   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
504     return TM_ForcedByUser;
505 
506   if (hasDisableAllTransformsHint(L))
507     return TM_Disable;
508 
509   return TM_Unspecified;
510 }
511 
512 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
513   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
514     return TM_SuppressedByUser;
515 
516   if (hasDisableAllTransformsHint(L))
517     return TM_Disable;
518 
519   return TM_Unspecified;
520 }
521 
522 /// Does a BFS from a given node to all of its children inside a given loop.
523 /// The returned vector of nodes includes the starting point.
524 SmallVector<DomTreeNode *, 16>
525 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
526   SmallVector<DomTreeNode *, 16> Worklist;
527   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
528     // Only include subregions in the top level loop.
529     BasicBlock *BB = DTN->getBlock();
530     if (CurLoop->contains(BB))
531       Worklist.push_back(DTN);
532   };
533 
534   AddRegionToWorklist(N);
535 
536   for (size_t I = 0; I < Worklist.size(); I++) {
537     for (DomTreeNode *Child : Worklist[I]->children())
538       AddRegionToWorklist(Child);
539   }
540 
541   return Worklist;
542 }
543 
544 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
545                           LoopInfo *LI, MemorySSA *MSSA) {
546   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
547   auto *Preheader = L->getLoopPreheader();
548   assert(Preheader && "Preheader should exist!");
549 
550   std::unique_ptr<MemorySSAUpdater> MSSAU;
551   if (MSSA)
552     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
553 
554   // Now that we know the removal is safe, remove the loop by changing the
555   // branch from the preheader to go to the single exit block.
556   //
557   // Because we're deleting a large chunk of code at once, the sequence in which
558   // we remove things is very important to avoid invalidation issues.
559 
560   // Tell ScalarEvolution that the loop is deleted. Do this before
561   // deleting the loop so that ScalarEvolution can look at the loop
562   // to determine what it needs to clean up.
563   if (SE)
564     SE->forgetLoop(L);
565 
566   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
567   assert(OldBr && "Preheader must end with a branch");
568   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
569   // Connect the preheader to the exit block. Keep the old edge to the header
570   // around to perform the dominator tree update in two separate steps
571   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
572   // preheader -> header.
573   //
574   //
575   // 0.  Preheader          1.  Preheader           2.  Preheader
576   //        |                    |   |                   |
577   //        V                    |   V                   |
578   //      Header <--\            | Header <--\           | Header <--\
579   //       |  |     |            |  |  |     |           |  |  |     |
580   //       |  V     |            |  |  V     |           |  |  V     |
581   //       | Body --/            |  | Body --/           |  | Body --/
582   //       V                     V  V                    V  V
583   //      Exit                   Exit                    Exit
584   //
585   // By doing this is two separate steps we can perform the dominator tree
586   // update without using the batch update API.
587   //
588   // Even when the loop is never executed, we cannot remove the edge from the
589   // source block to the exit block. Consider the case where the unexecuted loop
590   // branches back to an outer loop. If we deleted the loop and removed the edge
591   // coming to this inner loop, this will break the outer loop structure (by
592   // deleting the backedge of the outer loop). If the outer loop is indeed a
593   // non-loop, it will be deleted in a future iteration of loop deletion pass.
594   IRBuilder<> Builder(OldBr);
595 
596   auto *ExitBlock = L->getUniqueExitBlock();
597   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
598   if (ExitBlock) {
599     assert(ExitBlock && "Should have a unique exit block!");
600     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
601 
602     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
603     // Remove the old branch. The conditional branch becomes a new terminator.
604     OldBr->eraseFromParent();
605 
606     // Rewrite phis in the exit block to get their inputs from the Preheader
607     // instead of the exiting block.
608     for (PHINode &P : ExitBlock->phis()) {
609       // Set the zero'th element of Phi to be from the preheader and remove all
610       // other incoming values. Given the loop has dedicated exits, all other
611       // incoming values must be from the exiting blocks.
612       int PredIndex = 0;
613       P.setIncomingBlock(PredIndex, Preheader);
614       // Removes all incoming values from all other exiting blocks (including
615       // duplicate values from an exiting block).
616       // Nuke all entries except the zero'th entry which is the preheader entry.
617       // NOTE! We need to remove Incoming Values in the reverse order as done
618       // below, to keep the indices valid for deletion (removeIncomingValues
619       // updates getNumIncomingValues and shifts all values down into the
620       // operand being deleted).
621       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
622         P.removeIncomingValue(e - i, false);
623 
624       assert((P.getNumIncomingValues() == 1 &&
625               P.getIncomingBlock(PredIndex) == Preheader) &&
626              "Should have exactly one value and that's from the preheader!");
627     }
628 
629     if (DT) {
630       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
631       if (MSSA) {
632         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
633                             *DT);
634         if (VerifyMemorySSA)
635           MSSA->verifyMemorySSA();
636       }
637     }
638 
639     // Disconnect the loop body by branching directly to its exit.
640     Builder.SetInsertPoint(Preheader->getTerminator());
641     Builder.CreateBr(ExitBlock);
642     // Remove the old branch.
643     Preheader->getTerminator()->eraseFromParent();
644   } else {
645     assert(L->hasNoExitBlocks() &&
646            "Loop should have either zero or one exit blocks.");
647 
648     Builder.SetInsertPoint(OldBr);
649     Builder.CreateUnreachable();
650     Preheader->getTerminator()->eraseFromParent();
651   }
652 
653   if (DT) {
654     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
655     if (MSSA) {
656       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
657                           *DT);
658       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
659                                                    L->block_end());
660       MSSAU->removeBlocks(DeadBlockSet);
661       if (VerifyMemorySSA)
662         MSSA->verifyMemorySSA();
663     }
664   }
665 
666   // Use a map to unique and a vector to guarantee deterministic ordering.
667   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
668   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
669 
670   if (ExitBlock) {
671     // Given LCSSA form is satisfied, we should not have users of instructions
672     // within the dead loop outside of the loop. However, LCSSA doesn't take
673     // unreachable uses into account. We handle them here.
674     // We could do it after drop all references (in this case all users in the
675     // loop will be already eliminated and we have less work to do but according
676     // to API doc of User::dropAllReferences only valid operation after dropping
677     // references, is deletion. So let's substitute all usages of
678     // instruction from the loop with undef value of corresponding type first.
679     for (auto *Block : L->blocks())
680       for (Instruction &I : *Block) {
681         auto *Undef = UndefValue::get(I.getType());
682         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
683              UI != E;) {
684           Use &U = *UI;
685           ++UI;
686           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
687             if (L->contains(Usr->getParent()))
688               continue;
689           // If we have a DT then we can check that uses outside a loop only in
690           // unreachable block.
691           if (DT)
692             assert(!DT->isReachableFromEntry(U) &&
693                    "Unexpected user in reachable block");
694           U.set(Undef);
695         }
696         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
697         if (!DVI)
698           continue;
699         auto Key =
700             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
701         if (Key != DeadDebugSet.end())
702           continue;
703         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
704         DeadDebugInst.push_back(DVI);
705       }
706 
707     // After the loop has been deleted all the values defined and modified
708     // inside the loop are going to be unavailable.
709     // Since debug values in the loop have been deleted, inserting an undef
710     // dbg.value truncates the range of any dbg.value before the loop where the
711     // loop used to be. This is particularly important for constant values.
712     DIBuilder DIB(*ExitBlock->getModule());
713     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
714     assert(InsertDbgValueBefore &&
715            "There should be a non-PHI instruction in exit block, else these "
716            "instructions will have no parent.");
717     for (auto *DVI : DeadDebugInst)
718       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
719                                   DVI->getVariable(), DVI->getExpression(),
720                                   DVI->getDebugLoc(), InsertDbgValueBefore);
721   }
722 
723   // Remove the block from the reference counting scheme, so that we can
724   // delete it freely later.
725   for (auto *Block : L->blocks())
726     Block->dropAllReferences();
727 
728   if (MSSA && VerifyMemorySSA)
729     MSSA->verifyMemorySSA();
730 
731   if (LI) {
732     // Erase the instructions and the blocks without having to worry
733     // about ordering because we already dropped the references.
734     // NOTE: This iteration is safe because erasing the block does not remove
735     // its entry from the loop's block list.  We do that in the next section.
736     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
737          LpI != LpE; ++LpI)
738       (*LpI)->eraseFromParent();
739 
740     // Finally, the blocks from loopinfo.  This has to happen late because
741     // otherwise our loop iterators won't work.
742 
743     SmallPtrSet<BasicBlock *, 8> blocks;
744     blocks.insert(L->block_begin(), L->block_end());
745     for (BasicBlock *BB : blocks)
746       LI->removeBlock(BB);
747 
748     // The last step is to update LoopInfo now that we've eliminated this loop.
749     // Note: LoopInfo::erase remove the given loop and relink its subloops with
750     // its parent. While removeLoop/removeChildLoop remove the given loop but
751     // not relink its subloops, which is what we want.
752     if (Loop *ParentLoop = L->getParentLoop()) {
753       Loop::iterator I = find(*ParentLoop, L);
754       assert(I != ParentLoop->end() && "Couldn't find loop");
755       ParentLoop->removeChildLoop(I);
756     } else {
757       Loop::iterator I = find(*LI, L);
758       assert(I != LI->end() && "Couldn't find loop");
759       LI->removeLoop(I);
760     }
761     LI->destroy(L);
762   }
763 }
764 
765 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
766                              LoopInfo &LI, MemorySSA *MSSA) {
767 
768   assert(L->isOutermost() && "Can't yet preserve LCSSA for this case");
769   auto *Latch = L->getLoopLatch();
770   assert(Latch && "multiple latches not yet supported");
771   auto *Header = L->getHeader();
772 
773   SE.forgetLoop(L);
774 
775   // Note: By splitting the backedge, and then explicitly making it unreachable
776   // we gracefully handle corner cases such as non-bottom tested loops and the
777   // like.  We also have the benefit of being able to reuse existing well tested
778   // code.  It might be worth special casing the common bottom tested case at
779   // some point to avoid code churn.
780 
781   std::unique_ptr<MemorySSAUpdater> MSSAU;
782   if (MSSA)
783     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
784 
785   auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
786 
787   DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
788   (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false,
789                             /*PreserveLCSSA*/true, &DTU, MSSAU.get());
790 
791   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
792   // and blocks within the loop as needed.
793   LI.erase(L);
794 }
795 
796 
797 /// Checks if \p L has single exit through latch block except possibly
798 /// "deoptimizing" exits. Returns branch instruction terminating the loop
799 /// latch if above check is successful, nullptr otherwise.
800 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
801   BasicBlock *Latch = L->getLoopLatch();
802   if (!Latch)
803     return nullptr;
804 
805   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
806   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
807     return nullptr;
808 
809   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
810           LatchBR->getSuccessor(1) == L->getHeader()) &&
811          "At least one edge out of the latch must go to the header");
812 
813   SmallVector<BasicBlock *, 4> ExitBlocks;
814   L->getUniqueNonLatchExitBlocks(ExitBlocks);
815   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
816         return !EB->getTerminatingDeoptimizeCall();
817       }))
818     return nullptr;
819 
820   return LatchBR;
821 }
822 
823 Optional<unsigned>
824 llvm::getLoopEstimatedTripCount(Loop *L,
825                                 unsigned *EstimatedLoopInvocationWeight) {
826   // Support loops with an exiting latch and other existing exists only
827   // deoptimize.
828   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
829   if (!LatchBranch)
830     return None;
831 
832   // To estimate the number of times the loop body was executed, we want to
833   // know the number of times the backedge was taken, vs. the number of times
834   // we exited the loop.
835   uint64_t BackedgeTakenWeight, LatchExitWeight;
836   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
837     return None;
838 
839   if (LatchBranch->getSuccessor(0) != L->getHeader())
840     std::swap(BackedgeTakenWeight, LatchExitWeight);
841 
842   if (!LatchExitWeight)
843     return None;
844 
845   if (EstimatedLoopInvocationWeight)
846     *EstimatedLoopInvocationWeight = LatchExitWeight;
847 
848   // Estimated backedge taken count is a ratio of the backedge taken weight by
849   // the weight of the edge exiting the loop, rounded to nearest.
850   uint64_t BackedgeTakenCount =
851       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
852   // Estimated trip count is one plus estimated backedge taken count.
853   return BackedgeTakenCount + 1;
854 }
855 
856 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
857                                      unsigned EstimatedloopInvocationWeight) {
858   // Support loops with an exiting latch and other existing exists only
859   // deoptimize.
860   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
861   if (!LatchBranch)
862     return false;
863 
864   // Calculate taken and exit weights.
865   unsigned LatchExitWeight = 0;
866   unsigned BackedgeTakenWeight = 0;
867 
868   if (EstimatedTripCount > 0) {
869     LatchExitWeight = EstimatedloopInvocationWeight;
870     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
871   }
872 
873   // Make a swap if back edge is taken when condition is "false".
874   if (LatchBranch->getSuccessor(0) != L->getHeader())
875     std::swap(BackedgeTakenWeight, LatchExitWeight);
876 
877   MDBuilder MDB(LatchBranch->getContext());
878 
879   // Set/Update profile metadata.
880   LatchBranch->setMetadata(
881       LLVMContext::MD_prof,
882       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
883 
884   return true;
885 }
886 
887 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
888                                               ScalarEvolution &SE) {
889   Loop *OuterL = InnerLoop->getParentLoop();
890   if (!OuterL)
891     return true;
892 
893   // Get the backedge taken count for the inner loop
894   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
895   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
896   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
897       !InnerLoopBECountSC->getType()->isIntegerTy())
898     return false;
899 
900   // Get whether count is invariant to the outer loop
901   ScalarEvolution::LoopDisposition LD =
902       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
903   if (LD != ScalarEvolution::LoopInvariant)
904     return false;
905 
906   return true;
907 }
908 
909 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
910                             Value *Right) {
911   CmpInst::Predicate P = CmpInst::ICMP_NE;
912   switch (RK) {
913   default:
914     llvm_unreachable("Unknown min/max recurrence kind");
915   case RecurKind::UMin:
916     P = CmpInst::ICMP_ULT;
917     break;
918   case RecurKind::UMax:
919     P = CmpInst::ICMP_UGT;
920     break;
921   case RecurKind::SMin:
922     P = CmpInst::ICMP_SLT;
923     break;
924   case RecurKind::SMax:
925     P = CmpInst::ICMP_SGT;
926     break;
927   case RecurKind::FMin:
928     P = CmpInst::FCMP_OLT;
929     break;
930   case RecurKind::FMax:
931     P = CmpInst::FCMP_OGT;
932     break;
933   }
934 
935   // We only match FP sequences that are 'fast', so we can unconditionally
936   // set it on any generated instructions.
937   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
938   FastMathFlags FMF;
939   FMF.setFast();
940   Builder.setFastMathFlags(FMF);
941   Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
942   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
943   return Select;
944 }
945 
946 // Helper to generate an ordered reduction.
947 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
948                                  unsigned Op, RecurKind RdxKind,
949                                  ArrayRef<Value *> RedOps) {
950   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
951 
952   // Extract and apply reduction ops in ascending order:
953   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
954   Value *Result = Acc;
955   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
956     Value *Ext =
957         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
958 
959     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
960       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
961                                    "bin.rdx");
962     } else {
963       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
964              "Invalid min/max");
965       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
966     }
967 
968     if (!RedOps.empty())
969       propagateIRFlags(Result, RedOps);
970   }
971 
972   return Result;
973 }
974 
975 // Helper to generate a log2 shuffle reduction.
976 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
977                                  unsigned Op, RecurKind RdxKind,
978                                  ArrayRef<Value *> RedOps) {
979   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
980   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
981   // and vector ops, reducing the set of values being computed by half each
982   // round.
983   assert(isPowerOf2_32(VF) &&
984          "Reduction emission only supported for pow2 vectors!");
985   Value *TmpVec = Src;
986   SmallVector<int, 32> ShuffleMask(VF);
987   for (unsigned i = VF; i != 1; i >>= 1) {
988     // Move the upper half of the vector to the lower half.
989     for (unsigned j = 0; j != i / 2; ++j)
990       ShuffleMask[j] = i / 2 + j;
991 
992     // Fill the rest of the mask with undef.
993     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
994 
995     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
996 
997     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
998       // The builder propagates its fast-math-flags setting.
999       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1000                                    "bin.rdx");
1001     } else {
1002       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1003              "Invalid min/max");
1004       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1005     }
1006     if (!RedOps.empty())
1007       propagateIRFlags(TmpVec, RedOps);
1008 
1009     // We may compute the reassociated scalar ops in a way that does not
1010     // preserve nsw/nuw etc. Conservatively, drop those flags.
1011     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
1012       ReductionInst->dropPoisonGeneratingFlags();
1013   }
1014   // The result is in the first element of the vector.
1015   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1016 }
1017 
1018 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
1019                                          const TargetTransformInfo *TTI,
1020                                          Value *Src, RecurKind RdxKind,
1021                                          ArrayRef<Value *> RedOps) {
1022   unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
1023   TargetTransformInfo::ReductionFlags RdxFlags;
1024   RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax ||
1025                      RdxKind == RecurKind::FMax;
1026   RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
1027   if (!ForceReductionIntrinsic &&
1028       !TTI->useReductionIntrinsic(Opcode, Src->getType(), RdxFlags))
1029     return getShuffleReduction(Builder, Src, Opcode, RdxKind, RedOps);
1030 
1031   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1032   switch (RdxKind) {
1033   case RecurKind::Add:
1034     return Builder.CreateAddReduce(Src);
1035   case RecurKind::Mul:
1036     return Builder.CreateMulReduce(Src);
1037   case RecurKind::And:
1038     return Builder.CreateAndReduce(Src);
1039   case RecurKind::Or:
1040     return Builder.CreateOrReduce(Src);
1041   case RecurKind::Xor:
1042     return Builder.CreateXorReduce(Src);
1043   case RecurKind::FAdd:
1044     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1045                                     Src);
1046   case RecurKind::FMul:
1047     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1048   case RecurKind::SMax:
1049     return Builder.CreateIntMaxReduce(Src, true);
1050   case RecurKind::SMin:
1051     return Builder.CreateIntMinReduce(Src, true);
1052   case RecurKind::UMax:
1053     return Builder.CreateIntMaxReduce(Src, false);
1054   case RecurKind::UMin:
1055     return Builder.CreateIntMinReduce(Src, false);
1056   case RecurKind::FMax:
1057     return Builder.CreateFPMaxReduce(Src);
1058   case RecurKind::FMin:
1059     return Builder.CreateFPMinReduce(Src);
1060   default:
1061     llvm_unreachable("Unhandled opcode");
1062   }
1063 }
1064 
1065 Value *llvm::createTargetReduction(IRBuilderBase &B,
1066                                    const TargetTransformInfo *TTI,
1067                                    RecurrenceDescriptor &Desc, Value *Src) {
1068   // TODO: Support in-order reductions based on the recurrence descriptor.
1069   // All ops in the reduction inherit fast-math-flags from the recurrence
1070   // descriptor.
1071   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1072   B.setFastMathFlags(Desc.getFastMathFlags());
1073   return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
1074 }
1075 
1076 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1077   auto *VecOp = dyn_cast<Instruction>(I);
1078   if (!VecOp)
1079     return;
1080   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1081                                             : dyn_cast<Instruction>(OpValue);
1082   if (!Intersection)
1083     return;
1084   const unsigned Opcode = Intersection->getOpcode();
1085   VecOp->copyIRFlags(Intersection);
1086   for (auto *V : VL) {
1087     auto *Instr = dyn_cast<Instruction>(V);
1088     if (!Instr)
1089       continue;
1090     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1091       VecOp->andIRFlags(V);
1092   }
1093 }
1094 
1095 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1096                                  ScalarEvolution &SE) {
1097   const SCEV *Zero = SE.getZero(S->getType());
1098   return SE.isAvailableAtLoopEntry(S, L) &&
1099          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1100 }
1101 
1102 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1103                                     ScalarEvolution &SE) {
1104   const SCEV *Zero = SE.getZero(S->getType());
1105   return SE.isAvailableAtLoopEntry(S, L) &&
1106          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1107 }
1108 
1109 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1110                              bool Signed) {
1111   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1112   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1113     APInt::getMinValue(BitWidth);
1114   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1115   return SE.isAvailableAtLoopEntry(S, L) &&
1116          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1117                                      SE.getConstant(Min));
1118 }
1119 
1120 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1121                              bool Signed) {
1122   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1123   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1124     APInt::getMaxValue(BitWidth);
1125   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1126   return SE.isAvailableAtLoopEntry(S, L) &&
1127          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1128                                      SE.getConstant(Max));
1129 }
1130 
1131 //===----------------------------------------------------------------------===//
1132 // rewriteLoopExitValues - Optimize IV users outside the loop.
1133 // As a side effect, reduces the amount of IV processing within the loop.
1134 //===----------------------------------------------------------------------===//
1135 
1136 // Return true if the SCEV expansion generated by the rewriter can replace the
1137 // original value. SCEV guarantees that it produces the same value, but the way
1138 // it is produced may be illegal IR.  Ideally, this function will only be
1139 // called for verification.
1140 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1141   // If an SCEV expression subsumed multiple pointers, its expansion could
1142   // reassociate the GEP changing the base pointer. This is illegal because the
1143   // final address produced by a GEP chain must be inbounds relative to its
1144   // underlying object. Otherwise basic alias analysis, among other things,
1145   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1146   // producing an expression involving multiple pointers. Until then, we must
1147   // bail out here.
1148   //
1149   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1150   // because it understands lcssa phis while SCEV does not.
1151   Value *FromPtr = FromVal;
1152   Value *ToPtr = ToVal;
1153   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1154     FromPtr = GEP->getPointerOperand();
1155 
1156   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1157     ToPtr = GEP->getPointerOperand();
1158 
1159   if (FromPtr != FromVal || ToPtr != ToVal) {
1160     // Quickly check the common case
1161     if (FromPtr == ToPtr)
1162       return true;
1163 
1164     // SCEV may have rewritten an expression that produces the GEP's pointer
1165     // operand. That's ok as long as the pointer operand has the same base
1166     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1167     // base of a recurrence. This handles the case in which SCEV expansion
1168     // converts a pointer type recurrence into a nonrecurrent pointer base
1169     // indexed by an integer recurrence.
1170 
1171     // If the GEP base pointer is a vector of pointers, abort.
1172     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1173       return false;
1174 
1175     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1176     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1177     if (FromBase == ToBase)
1178       return true;
1179 
1180     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1181                       << *FromBase << " != " << *ToBase << "\n");
1182 
1183     return false;
1184   }
1185   return true;
1186 }
1187 
1188 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1189   SmallPtrSet<const Instruction *, 8> Visited;
1190   SmallVector<const Instruction *, 8> WorkList;
1191   Visited.insert(I);
1192   WorkList.push_back(I);
1193   while (!WorkList.empty()) {
1194     const Instruction *Curr = WorkList.pop_back_val();
1195     // This use is outside the loop, nothing to do.
1196     if (!L->contains(Curr))
1197       continue;
1198     // Do we assume it is a "hard" use which will not be eliminated easily?
1199     if (Curr->mayHaveSideEffects())
1200       return true;
1201     // Otherwise, add all its users to worklist.
1202     for (auto U : Curr->users()) {
1203       auto *UI = cast<Instruction>(U);
1204       if (Visited.insert(UI).second)
1205         WorkList.push_back(UI);
1206     }
1207   }
1208   return false;
1209 }
1210 
1211 // Collect information about PHI nodes which can be transformed in
1212 // rewriteLoopExitValues.
1213 struct RewritePhi {
1214   PHINode *PN;               // For which PHI node is this replacement?
1215   unsigned Ith;              // For which incoming value?
1216   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1217   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1218   bool HighCost;               // Is this expansion a high-cost?
1219 
1220   Value *Expansion = nullptr;
1221   bool ValidRewrite = false;
1222 
1223   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1224              bool H)
1225       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1226         HighCost(H) {}
1227 };
1228 
1229 // Check whether it is possible to delete the loop after rewriting exit
1230 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1231 // aggressively.
1232 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1233   BasicBlock *Preheader = L->getLoopPreheader();
1234   // If there is no preheader, the loop will not be deleted.
1235   if (!Preheader)
1236     return false;
1237 
1238   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1239   // We obviate multiple ExitingBlocks case for simplicity.
1240   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1241   // after exit value rewriting, we can enhance the logic here.
1242   SmallVector<BasicBlock *, 4> ExitingBlocks;
1243   L->getExitingBlocks(ExitingBlocks);
1244   SmallVector<BasicBlock *, 8> ExitBlocks;
1245   L->getUniqueExitBlocks(ExitBlocks);
1246   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1247     return false;
1248 
1249   BasicBlock *ExitBlock = ExitBlocks[0];
1250   BasicBlock::iterator BI = ExitBlock->begin();
1251   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1252     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1253 
1254     // If the Incoming value of P is found in RewritePhiSet, we know it
1255     // could be rewritten to use a loop invariant value in transformation
1256     // phase later. Skip it in the loop invariant check below.
1257     bool found = false;
1258     for (const RewritePhi &Phi : RewritePhiSet) {
1259       if (!Phi.ValidRewrite)
1260         continue;
1261       unsigned i = Phi.Ith;
1262       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1263         found = true;
1264         break;
1265       }
1266     }
1267 
1268     Instruction *I;
1269     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1270       if (!L->hasLoopInvariantOperands(I))
1271         return false;
1272 
1273     ++BI;
1274   }
1275 
1276   for (auto *BB : L->blocks())
1277     if (llvm::any_of(*BB, [](Instruction &I) {
1278           return I.mayHaveSideEffects();
1279         }))
1280       return false;
1281 
1282   return true;
1283 }
1284 
1285 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1286                                 ScalarEvolution *SE,
1287                                 const TargetTransformInfo *TTI,
1288                                 SCEVExpander &Rewriter, DominatorTree *DT,
1289                                 ReplaceExitVal ReplaceExitValue,
1290                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1291   // Check a pre-condition.
1292   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1293          "Indvars did not preserve LCSSA!");
1294 
1295   SmallVector<BasicBlock*, 8> ExitBlocks;
1296   L->getUniqueExitBlocks(ExitBlocks);
1297 
1298   SmallVector<RewritePhi, 8> RewritePhiSet;
1299   // Find all values that are computed inside the loop, but used outside of it.
1300   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1301   // the exit blocks of the loop to find them.
1302   for (BasicBlock *ExitBB : ExitBlocks) {
1303     // If there are no PHI nodes in this exit block, then no values defined
1304     // inside the loop are used on this path, skip it.
1305     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1306     if (!PN) continue;
1307 
1308     unsigned NumPreds = PN->getNumIncomingValues();
1309 
1310     // Iterate over all of the PHI nodes.
1311     BasicBlock::iterator BBI = ExitBB->begin();
1312     while ((PN = dyn_cast<PHINode>(BBI++))) {
1313       if (PN->use_empty())
1314         continue; // dead use, don't replace it
1315 
1316       if (!SE->isSCEVable(PN->getType()))
1317         continue;
1318 
1319       // It's necessary to tell ScalarEvolution about this explicitly so that
1320       // it can walk the def-use list and forget all SCEVs, as it may not be
1321       // watching the PHI itself. Once the new exit value is in place, there
1322       // may not be a def-use connection between the loop and every instruction
1323       // which got a SCEVAddRecExpr for that loop.
1324       SE->forgetValue(PN);
1325 
1326       // Iterate over all of the values in all the PHI nodes.
1327       for (unsigned i = 0; i != NumPreds; ++i) {
1328         // If the value being merged in is not integer or is not defined
1329         // in the loop, skip it.
1330         Value *InVal = PN->getIncomingValue(i);
1331         if (!isa<Instruction>(InVal))
1332           continue;
1333 
1334         // If this pred is for a subloop, not L itself, skip it.
1335         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1336           continue; // The Block is in a subloop, skip it.
1337 
1338         // Check that InVal is defined in the loop.
1339         Instruction *Inst = cast<Instruction>(InVal);
1340         if (!L->contains(Inst))
1341           continue;
1342 
1343         // Okay, this instruction has a user outside of the current loop
1344         // and varies predictably *inside* the loop.  Evaluate the value it
1345         // contains when the loop exits, if possible.  We prefer to start with
1346         // expressions which are true for all exits (so as to maximize
1347         // expression reuse by the SCEVExpander), but resort to per-exit
1348         // evaluation if that fails.
1349         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1350         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1351             !SE->isLoopInvariant(ExitValue, L) ||
1352             !isSafeToExpand(ExitValue, *SE)) {
1353           // TODO: This should probably be sunk into SCEV in some way; maybe a
1354           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1355           // most SCEV expressions and other recurrence types (e.g. shift
1356           // recurrences).  Is there existing code we can reuse?
1357           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1358           if (isa<SCEVCouldNotCompute>(ExitCount))
1359             continue;
1360           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1361             if (AddRec->getLoop() == L)
1362               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1363           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1364               !SE->isLoopInvariant(ExitValue, L) ||
1365               !isSafeToExpand(ExitValue, *SE))
1366             continue;
1367         }
1368 
1369         // Computing the value outside of the loop brings no benefit if it is
1370         // definitely used inside the loop in a way which can not be optimized
1371         // away. Avoid doing so unless we know we have a value which computes
1372         // the ExitValue already. TODO: This should be merged into SCEV
1373         // expander to leverage its knowledge of existing expressions.
1374         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1375             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1376           continue;
1377 
1378         // Check if expansions of this SCEV would count as being high cost.
1379         bool HighCost = Rewriter.isHighCostExpansion(
1380             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1381 
1382         // Note that we must not perform expansions until after
1383         // we query *all* the costs, because if we perform temporary expansion
1384         // inbetween, one that we might not intend to keep, said expansion
1385         // *may* affect cost calculation of the the next SCEV's we'll query,
1386         // and next SCEV may errneously get smaller cost.
1387 
1388         // Collect all the candidate PHINodes to be rewritten.
1389         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1390       }
1391     }
1392   }
1393 
1394   // Now that we've done preliminary filtering and billed all the SCEV's,
1395   // we can perform the last sanity check - the expansion must be valid.
1396   for (RewritePhi &Phi : RewritePhiSet) {
1397     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1398                                            Phi.ExpansionPoint);
1399 
1400     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1401                       << *(Phi.Expansion) << '\n'
1402                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1403 
1404     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1405     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1406     if (!Phi.ValidRewrite) {
1407       DeadInsts.push_back(Phi.Expansion);
1408       continue;
1409     }
1410 
1411 #ifndef NDEBUG
1412     // If we reuse an instruction from a loop which is neither L nor one of
1413     // its containing loops, we end up breaking LCSSA form for this loop by
1414     // creating a new use of its instruction.
1415     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1416       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1417         if (EVL != L)
1418           assert(EVL->contains(L) && "LCSSA breach detected!");
1419 #endif
1420   }
1421 
1422   // TODO: after isValidRewrite() is an assertion, evaluate whether
1423   // it is beneficial to change how we calculate high-cost:
1424   // if we have SCEV 'A' which we know we will expand, should we calculate
1425   // the cost of other SCEV's after expanding SCEV 'A',
1426   // thus potentially giving cost bonus to those other SCEV's?
1427 
1428   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1429   int NumReplaced = 0;
1430 
1431   // Transformation.
1432   for (const RewritePhi &Phi : RewritePhiSet) {
1433     if (!Phi.ValidRewrite)
1434       continue;
1435 
1436     PHINode *PN = Phi.PN;
1437     Value *ExitVal = Phi.Expansion;
1438 
1439     // Only do the rewrite when the ExitValue can be expanded cheaply.
1440     // If LoopCanBeDel is true, rewrite exit value aggressively.
1441     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1442       DeadInsts.push_back(ExitVal);
1443       continue;
1444     }
1445 
1446     NumReplaced++;
1447     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1448     PN->setIncomingValue(Phi.Ith, ExitVal);
1449 
1450     // If this instruction is dead now, delete it. Don't do it now to avoid
1451     // invalidating iterators.
1452     if (isInstructionTriviallyDead(Inst, TLI))
1453       DeadInsts.push_back(Inst);
1454 
1455     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1456     if (PN->getNumIncomingValues() == 1 &&
1457         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1458       PN->replaceAllUsesWith(ExitVal);
1459       PN->eraseFromParent();
1460     }
1461   }
1462 
1463   // The insertion point instruction may have been deleted; clear it out
1464   // so that the rewriter doesn't trip over it later.
1465   Rewriter.clearInsertPoint();
1466   return NumReplaced;
1467 }
1468 
1469 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1470 /// \p OrigLoop.
1471 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1472                                         Loop *RemainderLoop, uint64_t UF) {
1473   assert(UF > 0 && "Zero unrolled factor is not supported");
1474   assert(UnrolledLoop != RemainderLoop &&
1475          "Unrolled and Remainder loops are expected to distinct");
1476 
1477   // Get number of iterations in the original scalar loop.
1478   unsigned OrigLoopInvocationWeight = 0;
1479   Optional<unsigned> OrigAverageTripCount =
1480       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1481   if (!OrigAverageTripCount)
1482     return;
1483 
1484   // Calculate number of iterations in unrolled loop.
1485   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1486   // Calculate number of iterations for remainder loop.
1487   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1488 
1489   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1490                             OrigLoopInvocationWeight);
1491   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1492                             OrigLoopInvocationWeight);
1493 }
1494 
1495 /// Utility that implements appending of loops onto a worklist.
1496 /// Loops are added in preorder (analogous for reverse postorder for trees),
1497 /// and the worklist is processed LIFO.
1498 template <typename RangeT>
1499 void llvm::appendReversedLoopsToWorklist(
1500     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1501   // We use an internal worklist to build up the preorder traversal without
1502   // recursion.
1503   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1504 
1505   // We walk the initial sequence of loops in reverse because we generally want
1506   // to visit defs before uses and the worklist is LIFO.
1507   for (Loop *RootL : Loops) {
1508     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1509     assert(PreOrderWorklist.empty() &&
1510            "Must start with an empty preorder walk worklist.");
1511     PreOrderWorklist.push_back(RootL);
1512     do {
1513       Loop *L = PreOrderWorklist.pop_back_val();
1514       PreOrderWorklist.append(L->begin(), L->end());
1515       PreOrderLoops.push_back(L);
1516     } while (!PreOrderWorklist.empty());
1517 
1518     Worklist.insert(std::move(PreOrderLoops));
1519     PreOrderLoops.clear();
1520   }
1521 }
1522 
1523 template <typename RangeT>
1524 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1525                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1526   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1527 }
1528 
1529 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1530     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1531 
1532 template void
1533 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1534                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1535 
1536 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1537                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1538   appendReversedLoopsToWorklist(LI, Worklist);
1539 }
1540 
1541 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1542                       LoopInfo *LI, LPPassManager *LPM) {
1543   Loop &New = *LI->AllocateLoop();
1544   if (PL)
1545     PL->addChildLoop(&New);
1546   else
1547     LI->addTopLevelLoop(&New);
1548 
1549   if (LPM)
1550     LPM->addLoop(New);
1551 
1552   // Add all of the blocks in L to the new loop.
1553   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1554        I != E; ++I)
1555     if (LI->getLoopFor(*I) == L)
1556       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1557 
1558   // Add all of the subloops to the new loop.
1559   for (Loop *I : *L)
1560     cloneLoop(I, &New, VM, LI, LPM);
1561 
1562   return &New;
1563 }
1564 
1565 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1566 /// need to use value-handles because SCEV expansion can invalidate previously
1567 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1568 /// a previous one.
1569 struct PointerBounds {
1570   TrackingVH<Value> Start;
1571   TrackingVH<Value> End;
1572 };
1573 
1574 /// Expand code for the lower and upper bound of the pointer group \p CG
1575 /// in \p TheLoop.  \return the values for the bounds.
1576 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1577                                   Loop *TheLoop, Instruction *Loc,
1578                                   SCEVExpander &Exp, ScalarEvolution *SE) {
1579   // TODO: Add helper to retrieve pointers to CG.
1580   Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1581   const SCEV *Sc = SE->getSCEV(Ptr);
1582 
1583   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1584   LLVMContext &Ctx = Loc->getContext();
1585 
1586   // Use this type for pointer arithmetic.
1587   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1588 
1589   if (SE->isLoopInvariant(Sc, TheLoop)) {
1590     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1591                       << *Ptr << "\n");
1592     // Ptr could be in the loop body. If so, expand a new one at the correct
1593     // location.
1594     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1595     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1596                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1597                         : Ptr;
1598     // We must return a half-open range, which means incrementing Sc.
1599     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1600     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1601     return {NewPtr, NewPtrPlusOne};
1602   } else {
1603     Value *Start = nullptr, *End = nullptr;
1604     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1605     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1606     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1607     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1608                       << "\n");
1609     return {Start, End};
1610   }
1611 }
1612 
1613 /// Turns a collection of checks into a collection of expanded upper and
1614 /// lower bounds for both pointers in the check.
1615 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1616 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1617              Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1618   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1619 
1620   // Here we're relying on the SCEV Expander's cache to only emit code for the
1621   // same bounds once.
1622   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1623             [&](const RuntimePointerCheck &Check) {
1624               PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1625                             Second =
1626                                 expandBounds(Check.second, L, Loc, Exp, SE);
1627               return std::make_pair(First, Second);
1628             });
1629 
1630   return ChecksWithBounds;
1631 }
1632 
1633 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1634     Instruction *Loc, Loop *TheLoop,
1635     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1636     ScalarEvolution *SE) {
1637   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1638   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1639   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1640   SCEVExpander Exp(*SE, DL, "induction");
1641   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1642 
1643   LLVMContext &Ctx = Loc->getContext();
1644   Instruction *FirstInst = nullptr;
1645   IRBuilder<> ChkBuilder(Loc);
1646   // Our instructions might fold to a constant.
1647   Value *MemoryRuntimeCheck = nullptr;
1648 
1649   // FIXME: this helper is currently a duplicate of the one in
1650   // LoopVectorize.cpp.
1651   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1652                          Instruction *Loc) -> Instruction * {
1653     if (FirstInst)
1654       return FirstInst;
1655     if (Instruction *I = dyn_cast<Instruction>(V))
1656       return I->getParent() == Loc->getParent() ? I : nullptr;
1657     return nullptr;
1658   };
1659 
1660   for (const auto &Check : ExpandedChecks) {
1661     const PointerBounds &A = Check.first, &B = Check.second;
1662     // Check if two pointers (A and B) conflict where conflict is computed as:
1663     // start(A) <= end(B) && start(B) <= end(A)
1664     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1665     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1666 
1667     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1668            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1669            "Trying to bounds check pointers with different address spaces");
1670 
1671     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1672     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1673 
1674     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1675     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1676     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1677     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1678 
1679     // [A|B].Start points to the first accessed byte under base [A|B].
1680     // [A|B].End points to the last accessed byte, plus one.
1681     // There is no conflict when the intervals are disjoint:
1682     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1683     //
1684     // bound0 = (B.Start < A.End)
1685     // bound1 = (A.Start < B.End)
1686     //  IsConflict = bound0 & bound1
1687     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1688     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1689     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1690     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1691     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1692     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1693     if (MemoryRuntimeCheck) {
1694       IsConflict =
1695           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1696       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1697     }
1698     MemoryRuntimeCheck = IsConflict;
1699   }
1700 
1701   if (!MemoryRuntimeCheck)
1702     return std::make_pair(nullptr, nullptr);
1703 
1704   // We have to do this trickery because the IRBuilder might fold the check to a
1705   // constant expression in which case there is no Instruction anchored in a
1706   // the block.
1707   Instruction *Check =
1708       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1709   ChkBuilder.Insert(Check, "memcheck.conflict");
1710   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1711   return std::make_pair(FirstInst, Check);
1712 }
1713