1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 #define DEBUG_TYPE "loop-utils"
58 
59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
61 
62 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
63                                    MemorySSAUpdater *MSSAU,
64                                    bool PreserveLCSSA) {
65   bool Changed = false;
66 
67   // We re-use a vector for the in-loop predecesosrs.
68   SmallVector<BasicBlock *, 4> InLoopPredecessors;
69 
70   auto RewriteExit = [&](BasicBlock *BB) {
71     assert(InLoopPredecessors.empty() &&
72            "Must start with an empty predecessors list!");
73     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
74 
75     // See if there are any non-loop predecessors of this exit block and
76     // keep track of the in-loop predecessors.
77     bool IsDedicatedExit = true;
78     for (auto *PredBB : predecessors(BB))
79       if (L->contains(PredBB)) {
80         if (isa<IndirectBrInst>(PredBB->getTerminator()))
81           // We cannot rewrite exiting edges from an indirectbr.
82           return false;
83         if (isa<CallBrInst>(PredBB->getTerminator()))
84           // We cannot rewrite exiting edges from a callbr.
85           return false;
86 
87         InLoopPredecessors.push_back(PredBB);
88       } else {
89         IsDedicatedExit = false;
90       }
91 
92     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
93 
94     // Nothing to do if this is already a dedicated exit.
95     if (IsDedicatedExit)
96       return false;
97 
98     auto *NewExitBB = SplitBlockPredecessors(
99         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
100 
101     if (!NewExitBB)
102       LLVM_DEBUG(
103           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
104                  << *L << "\n");
105     else
106       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
107                         << NewExitBB->getName() << "\n");
108     return true;
109   };
110 
111   // Walk the exit blocks directly rather than building up a data structure for
112   // them, but only visit each one once.
113   SmallPtrSet<BasicBlock *, 4> Visited;
114   for (auto *BB : L->blocks())
115     for (auto *SuccBB : successors(BB)) {
116       // We're looking for exit blocks so skip in-loop successors.
117       if (L->contains(SuccBB))
118         continue;
119 
120       // Visit each exit block exactly once.
121       if (!Visited.insert(SuccBB).second)
122         continue;
123 
124       Changed |= RewriteExit(SuccBB);
125     }
126 
127   return Changed;
128 }
129 
130 /// Returns the instructions that use values defined in the loop.
131 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
132   SmallVector<Instruction *, 8> UsedOutside;
133 
134   for (auto *Block : L->getBlocks())
135     // FIXME: I believe that this could use copy_if if the Inst reference could
136     // be adapted into a pointer.
137     for (auto &Inst : *Block) {
138       auto Users = Inst.users();
139       if (any_of(Users, [&](User *U) {
140             auto *Use = cast<Instruction>(U);
141             return !L->contains(Use->getParent());
142           }))
143         UsedOutside.push_back(&Inst);
144     }
145 
146   return UsedOutside;
147 }
148 
149 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
150   // By definition, all loop passes need the LoopInfo analysis and the
151   // Dominator tree it depends on. Because they all participate in the loop
152   // pass manager, they must also preserve these.
153   AU.addRequired<DominatorTreeWrapperPass>();
154   AU.addPreserved<DominatorTreeWrapperPass>();
155   AU.addRequired<LoopInfoWrapperPass>();
156   AU.addPreserved<LoopInfoWrapperPass>();
157 
158   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
159   // here because users shouldn't directly get them from this header.
160   extern char &LoopSimplifyID;
161   extern char &LCSSAID;
162   AU.addRequiredID(LoopSimplifyID);
163   AU.addPreservedID(LoopSimplifyID);
164   AU.addRequiredID(LCSSAID);
165   AU.addPreservedID(LCSSAID);
166   // This is used in the LPPassManager to perform LCSSA verification on passes
167   // which preserve lcssa form
168   AU.addRequired<LCSSAVerificationPass>();
169   AU.addPreserved<LCSSAVerificationPass>();
170 
171   // Loop passes are designed to run inside of a loop pass manager which means
172   // that any function analyses they require must be required by the first loop
173   // pass in the manager (so that it is computed before the loop pass manager
174   // runs) and preserved by all loop pasess in the manager. To make this
175   // reasonably robust, the set needed for most loop passes is maintained here.
176   // If your loop pass requires an analysis not listed here, you will need to
177   // carefully audit the loop pass manager nesting structure that results.
178   AU.addRequired<AAResultsWrapperPass>();
179   AU.addPreserved<AAResultsWrapperPass>();
180   AU.addPreserved<BasicAAWrapperPass>();
181   AU.addPreserved<GlobalsAAWrapperPass>();
182   AU.addPreserved<SCEVAAWrapperPass>();
183   AU.addRequired<ScalarEvolutionWrapperPass>();
184   AU.addPreserved<ScalarEvolutionWrapperPass>();
185   // FIXME: When all loop passes preserve MemorySSA, it can be required and
186   // preserved here instead of the individual handling in each pass.
187 }
188 
189 /// Manually defined generic "LoopPass" dependency initialization. This is used
190 /// to initialize the exact set of passes from above in \c
191 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
192 /// with:
193 ///
194 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
195 ///
196 /// As-if "LoopPass" were a pass.
197 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
198   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
200   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
201   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
202   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
206   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
208 }
209 
210 /// Create MDNode for input string.
211 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
212   LLVMContext &Context = TheLoop->getHeader()->getContext();
213   Metadata *MDs[] = {
214       MDString::get(Context, Name),
215       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
216   return MDNode::get(Context, MDs);
217 }
218 
219 /// Set input string into loop metadata by keeping other values intact.
220 /// If the string is already in loop metadata update value if it is
221 /// different.
222 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
223                                    unsigned V) {
224   SmallVector<Metadata *, 4> MDs(1);
225   // If the loop already has metadata, retain it.
226   MDNode *LoopID = TheLoop->getLoopID();
227   if (LoopID) {
228     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
229       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
230       // If it is of form key = value, try to parse it.
231       if (Node->getNumOperands() == 2) {
232         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
233         if (S && S->getString().equals(StringMD)) {
234           ConstantInt *IntMD =
235               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
236           if (IntMD && IntMD->getSExtValue() == V)
237             // It is already in place. Do nothing.
238             return;
239           // We need to update the value, so just skip it here and it will
240           // be added after copying other existed nodes.
241           continue;
242         }
243       }
244       MDs.push_back(Node);
245     }
246   }
247   // Add new metadata.
248   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
249   // Replace current metadata node with new one.
250   LLVMContext &Context = TheLoop->getHeader()->getContext();
251   MDNode *NewLoopID = MDNode::get(Context, MDs);
252   // Set operand 0 to refer to the loop id itself.
253   NewLoopID->replaceOperandWith(0, NewLoopID);
254   TheLoop->setLoopID(NewLoopID);
255 }
256 
257 Optional<ElementCount>
258 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
259   Optional<int> Width =
260       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
261 
262   if (Width.hasValue()) {
263     Optional<int> IsScalable = getOptionalIntLoopAttribute(
264         TheLoop, "llvm.loop.vectorize.scalable.enable");
265     return ElementCount::get(*Width, IsScalable.getValueOr(false));
266   }
267 
268   return None;
269 }
270 
271 Optional<MDNode *> llvm::makeFollowupLoopID(
272     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
273     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
274   if (!OrigLoopID) {
275     if (AlwaysNew)
276       return nullptr;
277     return None;
278   }
279 
280   assert(OrigLoopID->getOperand(0) == OrigLoopID);
281 
282   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
283   bool InheritSomeAttrs =
284       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
285   SmallVector<Metadata *, 8> MDs;
286   MDs.push_back(nullptr);
287 
288   bool Changed = false;
289   if (InheritAllAttrs || InheritSomeAttrs) {
290     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
291       MDNode *Op = cast<MDNode>(Existing.get());
292 
293       auto InheritThisAttribute = [InheritSomeAttrs,
294                                    InheritOptionsExceptPrefix](MDNode *Op) {
295         if (!InheritSomeAttrs)
296           return false;
297 
298         // Skip malformatted attribute metadata nodes.
299         if (Op->getNumOperands() == 0)
300           return true;
301         Metadata *NameMD = Op->getOperand(0).get();
302         if (!isa<MDString>(NameMD))
303           return true;
304         StringRef AttrName = cast<MDString>(NameMD)->getString();
305 
306         // Do not inherit excluded attributes.
307         return !AttrName.startswith(InheritOptionsExceptPrefix);
308       };
309 
310       if (InheritThisAttribute(Op))
311         MDs.push_back(Op);
312       else
313         Changed = true;
314     }
315   } else {
316     // Modified if we dropped at least one attribute.
317     Changed = OrigLoopID->getNumOperands() > 1;
318   }
319 
320   bool HasAnyFollowup = false;
321   for (StringRef OptionName : FollowupOptions) {
322     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
323     if (!FollowupNode)
324       continue;
325 
326     HasAnyFollowup = true;
327     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
328       MDs.push_back(Option.get());
329       Changed = true;
330     }
331   }
332 
333   // Attributes of the followup loop not specified explicity, so signal to the
334   // transformation pass to add suitable attributes.
335   if (!AlwaysNew && !HasAnyFollowup)
336     return None;
337 
338   // If no attributes were added or remove, the previous loop Id can be reused.
339   if (!AlwaysNew && !Changed)
340     return OrigLoopID;
341 
342   // No attributes is equivalent to having no !llvm.loop metadata at all.
343   if (MDs.size() == 1)
344     return nullptr;
345 
346   // Build the new loop ID.
347   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
348   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
349   return FollowupLoopID;
350 }
351 
352 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
353   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
354 }
355 
356 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
357   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
358 }
359 
360 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
362     return TM_SuppressedByUser;
363 
364   Optional<int> Count =
365       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
366   if (Count.hasValue())
367     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
368 
369   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
370     return TM_ForcedByUser;
371 
372   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
373     return TM_ForcedByUser;
374 
375   if (hasDisableAllTransformsHint(L))
376     return TM_Disable;
377 
378   return TM_Unspecified;
379 }
380 
381 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
383     return TM_SuppressedByUser;
384 
385   Optional<int> Count =
386       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
387   if (Count.hasValue())
388     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
389 
390   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
391     return TM_ForcedByUser;
392 
393   if (hasDisableAllTransformsHint(L))
394     return TM_Disable;
395 
396   return TM_Unspecified;
397 }
398 
399 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
400   Optional<bool> Enable =
401       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
402 
403   if (Enable == false)
404     return TM_SuppressedByUser;
405 
406   Optional<ElementCount> VectorizeWidth =
407       getOptionalElementCountLoopAttribute(L);
408   Optional<int> InterleaveCount =
409       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
410 
411   // 'Forcing' vector width and interleave count to one effectively disables
412   // this tranformation.
413   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
414       InterleaveCount == 1)
415     return TM_SuppressedByUser;
416 
417   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
418     return TM_Disable;
419 
420   if (Enable == true)
421     return TM_ForcedByUser;
422 
423   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
424     return TM_Disable;
425 
426   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
427     return TM_Enable;
428 
429   if (hasDisableAllTransformsHint(L))
430     return TM_Disable;
431 
432   return TM_Unspecified;
433 }
434 
435 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
436   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
437     return TM_ForcedByUser;
438 
439   if (hasDisableAllTransformsHint(L))
440     return TM_Disable;
441 
442   return TM_Unspecified;
443 }
444 
445 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
446   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
447     return TM_SuppressedByUser;
448 
449   if (hasDisableAllTransformsHint(L))
450     return TM_Disable;
451 
452   return TM_Unspecified;
453 }
454 
455 /// Does a BFS from a given node to all of its children inside a given loop.
456 /// The returned vector of nodes includes the starting point.
457 SmallVector<DomTreeNode *, 16>
458 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
459   SmallVector<DomTreeNode *, 16> Worklist;
460   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
461     // Only include subregions in the top level loop.
462     BasicBlock *BB = DTN->getBlock();
463     if (CurLoop->contains(BB))
464       Worklist.push_back(DTN);
465   };
466 
467   AddRegionToWorklist(N);
468 
469   for (size_t I = 0; I < Worklist.size(); I++) {
470     for (DomTreeNode *Child : Worklist[I]->children())
471       AddRegionToWorklist(Child);
472   }
473 
474   return Worklist;
475 }
476 
477 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
478                           LoopInfo *LI, MemorySSA *MSSA) {
479   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
480   auto *Preheader = L->getLoopPreheader();
481   assert(Preheader && "Preheader should exist!");
482 
483   std::unique_ptr<MemorySSAUpdater> MSSAU;
484   if (MSSA)
485     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
486 
487   // Now that we know the removal is safe, remove the loop by changing the
488   // branch from the preheader to go to the single exit block.
489   //
490   // Because we're deleting a large chunk of code at once, the sequence in which
491   // we remove things is very important to avoid invalidation issues.
492 
493   // Tell ScalarEvolution that the loop is deleted. Do this before
494   // deleting the loop so that ScalarEvolution can look at the loop
495   // to determine what it needs to clean up.
496   if (SE)
497     SE->forgetLoop(L);
498 
499   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
500   assert(OldBr && "Preheader must end with a branch");
501   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
502   // Connect the preheader to the exit block. Keep the old edge to the header
503   // around to perform the dominator tree update in two separate steps
504   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
505   // preheader -> header.
506   //
507   //
508   // 0.  Preheader          1.  Preheader           2.  Preheader
509   //        |                    |   |                   |
510   //        V                    |   V                   |
511   //      Header <--\            | Header <--\           | Header <--\
512   //       |  |     |            |  |  |     |           |  |  |     |
513   //       |  V     |            |  |  V     |           |  |  V     |
514   //       | Body --/            |  | Body --/           |  | Body --/
515   //       V                     V  V                    V  V
516   //      Exit                   Exit                    Exit
517   //
518   // By doing this is two separate steps we can perform the dominator tree
519   // update without using the batch update API.
520   //
521   // Even when the loop is never executed, we cannot remove the edge from the
522   // source block to the exit block. Consider the case where the unexecuted loop
523   // branches back to an outer loop. If we deleted the loop and removed the edge
524   // coming to this inner loop, this will break the outer loop structure (by
525   // deleting the backedge of the outer loop). If the outer loop is indeed a
526   // non-loop, it will be deleted in a future iteration of loop deletion pass.
527   IRBuilder<> Builder(OldBr);
528 
529   auto *ExitBlock = L->getUniqueExitBlock();
530   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
531   if (ExitBlock) {
532     assert(ExitBlock && "Should have a unique exit block!");
533     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
534 
535     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
536     // Remove the old branch. The conditional branch becomes a new terminator.
537     OldBr->eraseFromParent();
538 
539     // Rewrite phis in the exit block to get their inputs from the Preheader
540     // instead of the exiting block.
541     for (PHINode &P : ExitBlock->phis()) {
542       // Set the zero'th element of Phi to be from the preheader and remove all
543       // other incoming values. Given the loop has dedicated exits, all other
544       // incoming values must be from the exiting blocks.
545       int PredIndex = 0;
546       P.setIncomingBlock(PredIndex, Preheader);
547       // Removes all incoming values from all other exiting blocks (including
548       // duplicate values from an exiting block).
549       // Nuke all entries except the zero'th entry which is the preheader entry.
550       // NOTE! We need to remove Incoming Values in the reverse order as done
551       // below, to keep the indices valid for deletion (removeIncomingValues
552       // updates getNumIncomingValues and shifts all values down into the
553       // operand being deleted).
554       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
555         P.removeIncomingValue(e - i, false);
556 
557       assert((P.getNumIncomingValues() == 1 &&
558               P.getIncomingBlock(PredIndex) == Preheader) &&
559              "Should have exactly one value and that's from the preheader!");
560     }
561 
562     if (DT) {
563       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
564       if (MSSA) {
565         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
566                             *DT);
567         if (VerifyMemorySSA)
568           MSSA->verifyMemorySSA();
569       }
570     }
571 
572     // Disconnect the loop body by branching directly to its exit.
573     Builder.SetInsertPoint(Preheader->getTerminator());
574     Builder.CreateBr(ExitBlock);
575     // Remove the old branch.
576     Preheader->getTerminator()->eraseFromParent();
577   } else {
578     assert(L->hasNoExitBlocks() &&
579            "Loop should have either zero or one exit blocks.");
580 
581     Builder.SetInsertPoint(OldBr);
582     Builder.CreateUnreachable();
583     Preheader->getTerminator()->eraseFromParent();
584   }
585 
586   if (DT) {
587     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
588     if (MSSA) {
589       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
590                           *DT);
591       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
592                                                    L->block_end());
593       MSSAU->removeBlocks(DeadBlockSet);
594       if (VerifyMemorySSA)
595         MSSA->verifyMemorySSA();
596     }
597   }
598 
599   // Use a map to unique and a vector to guarantee deterministic ordering.
600   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
601   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
602 
603   if (ExitBlock) {
604     // Given LCSSA form is satisfied, we should not have users of instructions
605     // within the dead loop outside of the loop. However, LCSSA doesn't take
606     // unreachable uses into account. We handle them here.
607     // We could do it after drop all references (in this case all users in the
608     // loop will be already eliminated and we have less work to do but according
609     // to API doc of User::dropAllReferences only valid operation after dropping
610     // references, is deletion. So let's substitute all usages of
611     // instruction from the loop with undef value of corresponding type first.
612     for (auto *Block : L->blocks())
613       for (Instruction &I : *Block) {
614         auto *Undef = UndefValue::get(I.getType());
615         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
616              UI != E;) {
617           Use &U = *UI;
618           ++UI;
619           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
620             if (L->contains(Usr->getParent()))
621               continue;
622           // If we have a DT then we can check that uses outside a loop only in
623           // unreachable block.
624           if (DT)
625             assert(!DT->isReachableFromEntry(U) &&
626                    "Unexpected user in reachable block");
627           U.set(Undef);
628         }
629         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
630         if (!DVI)
631           continue;
632         auto Key =
633             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
634         if (Key != DeadDebugSet.end())
635           continue;
636         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
637         DeadDebugInst.push_back(DVI);
638       }
639 
640     // After the loop has been deleted all the values defined and modified
641     // inside the loop are going to be unavailable.
642     // Since debug values in the loop have been deleted, inserting an undef
643     // dbg.value truncates the range of any dbg.value before the loop where the
644     // loop used to be. This is particularly important for constant values.
645     DIBuilder DIB(*ExitBlock->getModule());
646     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
647     assert(InsertDbgValueBefore &&
648            "There should be a non-PHI instruction in exit block, else these "
649            "instructions will have no parent.");
650     for (auto *DVI : DeadDebugInst)
651       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
652                                   DVI->getVariable(), DVI->getExpression(),
653                                   DVI->getDebugLoc(), InsertDbgValueBefore);
654   }
655 
656   // Remove the block from the reference counting scheme, so that we can
657   // delete it freely later.
658   for (auto *Block : L->blocks())
659     Block->dropAllReferences();
660 
661   if (MSSA && VerifyMemorySSA)
662     MSSA->verifyMemorySSA();
663 
664   if (LI) {
665     // Erase the instructions and the blocks without having to worry
666     // about ordering because we already dropped the references.
667     // NOTE: This iteration is safe because erasing the block does not remove
668     // its entry from the loop's block list.  We do that in the next section.
669     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
670          LpI != LpE; ++LpI)
671       (*LpI)->eraseFromParent();
672 
673     // Finally, the blocks from loopinfo.  This has to happen late because
674     // otherwise our loop iterators won't work.
675 
676     SmallPtrSet<BasicBlock *, 8> blocks;
677     blocks.insert(L->block_begin(), L->block_end());
678     for (BasicBlock *BB : blocks)
679       LI->removeBlock(BB);
680 
681     // The last step is to update LoopInfo now that we've eliminated this loop.
682     // Note: LoopInfo::erase remove the given loop and relink its subloops with
683     // its parent. While removeLoop/removeChildLoop remove the given loop but
684     // not relink its subloops, which is what we want.
685     if (Loop *ParentLoop = L->getParentLoop()) {
686       Loop::iterator I = find(*ParentLoop, L);
687       assert(I != ParentLoop->end() && "Couldn't find loop");
688       ParentLoop->removeChildLoop(I);
689     } else {
690       Loop::iterator I = find(*LI, L);
691       assert(I != LI->end() && "Couldn't find loop");
692       LI->removeLoop(I);
693     }
694     LI->destroy(L);
695   }
696 }
697 
698 static Loop *getOutermostLoop(Loop *L) {
699   while (Loop *Parent = L->getParentLoop())
700     L = Parent;
701   return L;
702 }
703 
704 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
705                              LoopInfo &LI, MemorySSA *MSSA) {
706   auto *Latch = L->getLoopLatch();
707   assert(Latch && "multiple latches not yet supported");
708   auto *Header = L->getHeader();
709   Loop *OutermostLoop = getOutermostLoop(L);
710 
711   SE.forgetLoop(L);
712 
713   // Note: By splitting the backedge, and then explicitly making it unreachable
714   // we gracefully handle corner cases such as non-bottom tested loops and the
715   // like.  We also have the benefit of being able to reuse existing well tested
716   // code.  It might be worth special casing the common bottom tested case at
717   // some point to avoid code churn.
718 
719   std::unique_ptr<MemorySSAUpdater> MSSAU;
720   if (MSSA)
721     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
722 
723   auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
724 
725   DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
726   (void)changeToUnreachable(BackedgeBB->getTerminator(),
727                             /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
728 
729   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
730   // and blocks within the loop as needed.
731   LI.erase(L);
732 
733   // If the loop we broke had a parent, then changeToUnreachable might have
734   // caused a block to be removed from the parent loop (see loop_nest_lcssa
735   // test case in zero-btc.ll for an example), thus changing the parent's
736   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
737   // loop which might have a had a block removed.
738   if (OutermostLoop != L)
739     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
740 }
741 
742 
743 /// Checks if \p L has single exit through latch block except possibly
744 /// "deoptimizing" exits. Returns branch instruction terminating the loop
745 /// latch if above check is successful, nullptr otherwise.
746 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
747   BasicBlock *Latch = L->getLoopLatch();
748   if (!Latch)
749     return nullptr;
750 
751   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
752   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
753     return nullptr;
754 
755   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
756           LatchBR->getSuccessor(1) == L->getHeader()) &&
757          "At least one edge out of the latch must go to the header");
758 
759   SmallVector<BasicBlock *, 4> ExitBlocks;
760   L->getUniqueNonLatchExitBlocks(ExitBlocks);
761   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
762         return !EB->getTerminatingDeoptimizeCall();
763       }))
764     return nullptr;
765 
766   return LatchBR;
767 }
768 
769 Optional<unsigned>
770 llvm::getLoopEstimatedTripCount(Loop *L,
771                                 unsigned *EstimatedLoopInvocationWeight) {
772   // Support loops with an exiting latch and other existing exists only
773   // deoptimize.
774   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
775   if (!LatchBranch)
776     return None;
777 
778   // To estimate the number of times the loop body was executed, we want to
779   // know the number of times the backedge was taken, vs. the number of times
780   // we exited the loop.
781   uint64_t BackedgeTakenWeight, LatchExitWeight;
782   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
783     return None;
784 
785   if (LatchBranch->getSuccessor(0) != L->getHeader())
786     std::swap(BackedgeTakenWeight, LatchExitWeight);
787 
788   if (!LatchExitWeight)
789     return None;
790 
791   if (EstimatedLoopInvocationWeight)
792     *EstimatedLoopInvocationWeight = LatchExitWeight;
793 
794   // Estimated backedge taken count is a ratio of the backedge taken weight by
795   // the weight of the edge exiting the loop, rounded to nearest.
796   uint64_t BackedgeTakenCount =
797       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
798   // Estimated trip count is one plus estimated backedge taken count.
799   return BackedgeTakenCount + 1;
800 }
801 
802 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
803                                      unsigned EstimatedloopInvocationWeight) {
804   // Support loops with an exiting latch and other existing exists only
805   // deoptimize.
806   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
807   if (!LatchBranch)
808     return false;
809 
810   // Calculate taken and exit weights.
811   unsigned LatchExitWeight = 0;
812   unsigned BackedgeTakenWeight = 0;
813 
814   if (EstimatedTripCount > 0) {
815     LatchExitWeight = EstimatedloopInvocationWeight;
816     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
817   }
818 
819   // Make a swap if back edge is taken when condition is "false".
820   if (LatchBranch->getSuccessor(0) != L->getHeader())
821     std::swap(BackedgeTakenWeight, LatchExitWeight);
822 
823   MDBuilder MDB(LatchBranch->getContext());
824 
825   // Set/Update profile metadata.
826   LatchBranch->setMetadata(
827       LLVMContext::MD_prof,
828       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
829 
830   return true;
831 }
832 
833 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
834                                               ScalarEvolution &SE) {
835   Loop *OuterL = InnerLoop->getParentLoop();
836   if (!OuterL)
837     return true;
838 
839   // Get the backedge taken count for the inner loop
840   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
841   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
842   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
843       !InnerLoopBECountSC->getType()->isIntegerTy())
844     return false;
845 
846   // Get whether count is invariant to the outer loop
847   ScalarEvolution::LoopDisposition LD =
848       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
849   if (LD != ScalarEvolution::LoopInvariant)
850     return false;
851 
852   return true;
853 }
854 
855 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
856                             Value *Right) {
857   CmpInst::Predicate Pred;
858   switch (RK) {
859   default:
860     llvm_unreachable("Unknown min/max recurrence kind");
861   case RecurKind::UMin:
862     Pred = CmpInst::ICMP_ULT;
863     break;
864   case RecurKind::UMax:
865     Pred = CmpInst::ICMP_UGT;
866     break;
867   case RecurKind::SMin:
868     Pred = CmpInst::ICMP_SLT;
869     break;
870   case RecurKind::SMax:
871     Pred = CmpInst::ICMP_SGT;
872     break;
873   case RecurKind::FMin:
874     Pred = CmpInst::FCMP_OLT;
875     break;
876   case RecurKind::FMax:
877     Pred = CmpInst::FCMP_OGT;
878     break;
879   }
880 
881   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
882   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
883   return Select;
884 }
885 
886 // Helper to generate an ordered reduction.
887 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
888                                  unsigned Op, RecurKind RdxKind,
889                                  ArrayRef<Value *> RedOps) {
890   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
891 
892   // Extract and apply reduction ops in ascending order:
893   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
894   Value *Result = Acc;
895   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
896     Value *Ext =
897         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
898 
899     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
900       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
901                                    "bin.rdx");
902     } else {
903       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
904              "Invalid min/max");
905       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
906     }
907 
908     if (!RedOps.empty())
909       propagateIRFlags(Result, RedOps);
910   }
911 
912   return Result;
913 }
914 
915 // Helper to generate a log2 shuffle reduction.
916 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
917                                  unsigned Op, RecurKind RdxKind,
918                                  ArrayRef<Value *> RedOps) {
919   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
920   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
921   // and vector ops, reducing the set of values being computed by half each
922   // round.
923   assert(isPowerOf2_32(VF) &&
924          "Reduction emission only supported for pow2 vectors!");
925   Value *TmpVec = Src;
926   SmallVector<int, 32> ShuffleMask(VF);
927   for (unsigned i = VF; i != 1; i >>= 1) {
928     // Move the upper half of the vector to the lower half.
929     for (unsigned j = 0; j != i / 2; ++j)
930       ShuffleMask[j] = i / 2 + j;
931 
932     // Fill the rest of the mask with undef.
933     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
934 
935     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
936 
937     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
938       // The builder propagates its fast-math-flags setting.
939       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
940                                    "bin.rdx");
941     } else {
942       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
943              "Invalid min/max");
944       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
945     }
946     if (!RedOps.empty())
947       propagateIRFlags(TmpVec, RedOps);
948 
949     // We may compute the reassociated scalar ops in a way that does not
950     // preserve nsw/nuw etc. Conservatively, drop those flags.
951     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
952       ReductionInst->dropPoisonGeneratingFlags();
953   }
954   // The result is in the first element of the vector.
955   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
956 }
957 
958 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
959                                          const TargetTransformInfo *TTI,
960                                          Value *Src, RecurKind RdxKind,
961                                          ArrayRef<Value *> RedOps) {
962   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
963   switch (RdxKind) {
964   case RecurKind::Add:
965     return Builder.CreateAddReduce(Src);
966   case RecurKind::Mul:
967     return Builder.CreateMulReduce(Src);
968   case RecurKind::And:
969     return Builder.CreateAndReduce(Src);
970   case RecurKind::Or:
971     return Builder.CreateOrReduce(Src);
972   case RecurKind::Xor:
973     return Builder.CreateXorReduce(Src);
974   case RecurKind::FAdd:
975     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
976                                     Src);
977   case RecurKind::FMul:
978     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
979   case RecurKind::SMax:
980     return Builder.CreateIntMaxReduce(Src, true);
981   case RecurKind::SMin:
982     return Builder.CreateIntMinReduce(Src, true);
983   case RecurKind::UMax:
984     return Builder.CreateIntMaxReduce(Src, false);
985   case RecurKind::UMin:
986     return Builder.CreateIntMinReduce(Src, false);
987   case RecurKind::FMax:
988     return Builder.CreateFPMaxReduce(Src);
989   case RecurKind::FMin:
990     return Builder.CreateFPMinReduce(Src);
991   default:
992     llvm_unreachable("Unhandled opcode");
993   }
994 }
995 
996 Value *llvm::createTargetReduction(IRBuilderBase &B,
997                                    const TargetTransformInfo *TTI,
998                                    const RecurrenceDescriptor &Desc,
999                                    Value *Src) {
1000   // TODO: Support in-order reductions based on the recurrence descriptor.
1001   // All ops in the reduction inherit fast-math-flags from the recurrence
1002   // descriptor.
1003   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1004   B.setFastMathFlags(Desc.getFastMathFlags());
1005   return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
1006 }
1007 
1008 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1009                                     const RecurrenceDescriptor &Desc,
1010                                     Value *Src, Value *Start) {
1011   assert(Desc.getRecurrenceKind() == RecurKind::FAdd &&
1012          "Unexpected reduction kind");
1013   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1014   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1015 
1016   return B.CreateFAddReduce(Start, Src);
1017 }
1018 
1019 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1020   auto *VecOp = dyn_cast<Instruction>(I);
1021   if (!VecOp)
1022     return;
1023   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1024                                             : dyn_cast<Instruction>(OpValue);
1025   if (!Intersection)
1026     return;
1027   const unsigned Opcode = Intersection->getOpcode();
1028   VecOp->copyIRFlags(Intersection);
1029   for (auto *V : VL) {
1030     auto *Instr = dyn_cast<Instruction>(V);
1031     if (!Instr)
1032       continue;
1033     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1034       VecOp->andIRFlags(V);
1035   }
1036 }
1037 
1038 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1039                                  ScalarEvolution &SE) {
1040   const SCEV *Zero = SE.getZero(S->getType());
1041   return SE.isAvailableAtLoopEntry(S, L) &&
1042          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1043 }
1044 
1045 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1046                                     ScalarEvolution &SE) {
1047   const SCEV *Zero = SE.getZero(S->getType());
1048   return SE.isAvailableAtLoopEntry(S, L) &&
1049          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1050 }
1051 
1052 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1053                              bool Signed) {
1054   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1055   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1056     APInt::getMinValue(BitWidth);
1057   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1058   return SE.isAvailableAtLoopEntry(S, L) &&
1059          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1060                                      SE.getConstant(Min));
1061 }
1062 
1063 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1064                              bool Signed) {
1065   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1066   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1067     APInt::getMaxValue(BitWidth);
1068   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1069   return SE.isAvailableAtLoopEntry(S, L) &&
1070          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1071                                      SE.getConstant(Max));
1072 }
1073 
1074 //===----------------------------------------------------------------------===//
1075 // rewriteLoopExitValues - Optimize IV users outside the loop.
1076 // As a side effect, reduces the amount of IV processing within the loop.
1077 //===----------------------------------------------------------------------===//
1078 
1079 // Return true if the SCEV expansion generated by the rewriter can replace the
1080 // original value. SCEV guarantees that it produces the same value, but the way
1081 // it is produced may be illegal IR.  Ideally, this function will only be
1082 // called for verification.
1083 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1084   // If an SCEV expression subsumed multiple pointers, its expansion could
1085   // reassociate the GEP changing the base pointer. This is illegal because the
1086   // final address produced by a GEP chain must be inbounds relative to its
1087   // underlying object. Otherwise basic alias analysis, among other things,
1088   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1089   // producing an expression involving multiple pointers. Until then, we must
1090   // bail out here.
1091   //
1092   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1093   // because it understands lcssa phis while SCEV does not.
1094   Value *FromPtr = FromVal;
1095   Value *ToPtr = ToVal;
1096   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1097     FromPtr = GEP->getPointerOperand();
1098 
1099   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1100     ToPtr = GEP->getPointerOperand();
1101 
1102   if (FromPtr != FromVal || ToPtr != ToVal) {
1103     // Quickly check the common case
1104     if (FromPtr == ToPtr)
1105       return true;
1106 
1107     // SCEV may have rewritten an expression that produces the GEP's pointer
1108     // operand. That's ok as long as the pointer operand has the same base
1109     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1110     // base of a recurrence. This handles the case in which SCEV expansion
1111     // converts a pointer type recurrence into a nonrecurrent pointer base
1112     // indexed by an integer recurrence.
1113 
1114     // If the GEP base pointer is a vector of pointers, abort.
1115     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1116       return false;
1117 
1118     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1119     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1120     if (FromBase == ToBase)
1121       return true;
1122 
1123     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1124                       << *FromBase << " != " << *ToBase << "\n");
1125 
1126     return false;
1127   }
1128   return true;
1129 }
1130 
1131 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1132   SmallPtrSet<const Instruction *, 8> Visited;
1133   SmallVector<const Instruction *, 8> WorkList;
1134   Visited.insert(I);
1135   WorkList.push_back(I);
1136   while (!WorkList.empty()) {
1137     const Instruction *Curr = WorkList.pop_back_val();
1138     // This use is outside the loop, nothing to do.
1139     if (!L->contains(Curr))
1140       continue;
1141     // Do we assume it is a "hard" use which will not be eliminated easily?
1142     if (Curr->mayHaveSideEffects())
1143       return true;
1144     // Otherwise, add all its users to worklist.
1145     for (auto U : Curr->users()) {
1146       auto *UI = cast<Instruction>(U);
1147       if (Visited.insert(UI).second)
1148         WorkList.push_back(UI);
1149     }
1150   }
1151   return false;
1152 }
1153 
1154 // Collect information about PHI nodes which can be transformed in
1155 // rewriteLoopExitValues.
1156 struct RewritePhi {
1157   PHINode *PN;               // For which PHI node is this replacement?
1158   unsigned Ith;              // For which incoming value?
1159   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1160   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1161   bool HighCost;               // Is this expansion a high-cost?
1162 
1163   Value *Expansion = nullptr;
1164   bool ValidRewrite = false;
1165 
1166   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1167              bool H)
1168       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1169         HighCost(H) {}
1170 };
1171 
1172 // Check whether it is possible to delete the loop after rewriting exit
1173 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1174 // aggressively.
1175 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1176   BasicBlock *Preheader = L->getLoopPreheader();
1177   // If there is no preheader, the loop will not be deleted.
1178   if (!Preheader)
1179     return false;
1180 
1181   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1182   // We obviate multiple ExitingBlocks case for simplicity.
1183   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1184   // after exit value rewriting, we can enhance the logic here.
1185   SmallVector<BasicBlock *, 4> ExitingBlocks;
1186   L->getExitingBlocks(ExitingBlocks);
1187   SmallVector<BasicBlock *, 8> ExitBlocks;
1188   L->getUniqueExitBlocks(ExitBlocks);
1189   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1190     return false;
1191 
1192   BasicBlock *ExitBlock = ExitBlocks[0];
1193   BasicBlock::iterator BI = ExitBlock->begin();
1194   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1195     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1196 
1197     // If the Incoming value of P is found in RewritePhiSet, we know it
1198     // could be rewritten to use a loop invariant value in transformation
1199     // phase later. Skip it in the loop invariant check below.
1200     bool found = false;
1201     for (const RewritePhi &Phi : RewritePhiSet) {
1202       if (!Phi.ValidRewrite)
1203         continue;
1204       unsigned i = Phi.Ith;
1205       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1206         found = true;
1207         break;
1208       }
1209     }
1210 
1211     Instruction *I;
1212     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1213       if (!L->hasLoopInvariantOperands(I))
1214         return false;
1215 
1216     ++BI;
1217   }
1218 
1219   for (auto *BB : L->blocks())
1220     if (llvm::any_of(*BB, [](Instruction &I) {
1221           return I.mayHaveSideEffects();
1222         }))
1223       return false;
1224 
1225   return true;
1226 }
1227 
1228 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1229                                 ScalarEvolution *SE,
1230                                 const TargetTransformInfo *TTI,
1231                                 SCEVExpander &Rewriter, DominatorTree *DT,
1232                                 ReplaceExitVal ReplaceExitValue,
1233                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1234   // Check a pre-condition.
1235   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1236          "Indvars did not preserve LCSSA!");
1237 
1238   SmallVector<BasicBlock*, 8> ExitBlocks;
1239   L->getUniqueExitBlocks(ExitBlocks);
1240 
1241   SmallVector<RewritePhi, 8> RewritePhiSet;
1242   // Find all values that are computed inside the loop, but used outside of it.
1243   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1244   // the exit blocks of the loop to find them.
1245   for (BasicBlock *ExitBB : ExitBlocks) {
1246     // If there are no PHI nodes in this exit block, then no values defined
1247     // inside the loop are used on this path, skip it.
1248     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1249     if (!PN) continue;
1250 
1251     unsigned NumPreds = PN->getNumIncomingValues();
1252 
1253     // Iterate over all of the PHI nodes.
1254     BasicBlock::iterator BBI = ExitBB->begin();
1255     while ((PN = dyn_cast<PHINode>(BBI++))) {
1256       if (PN->use_empty())
1257         continue; // dead use, don't replace it
1258 
1259       if (!SE->isSCEVable(PN->getType()))
1260         continue;
1261 
1262       // It's necessary to tell ScalarEvolution about this explicitly so that
1263       // it can walk the def-use list and forget all SCEVs, as it may not be
1264       // watching the PHI itself. Once the new exit value is in place, there
1265       // may not be a def-use connection between the loop and every instruction
1266       // which got a SCEVAddRecExpr for that loop.
1267       SE->forgetValue(PN);
1268 
1269       // Iterate over all of the values in all the PHI nodes.
1270       for (unsigned i = 0; i != NumPreds; ++i) {
1271         // If the value being merged in is not integer or is not defined
1272         // in the loop, skip it.
1273         Value *InVal = PN->getIncomingValue(i);
1274         if (!isa<Instruction>(InVal))
1275           continue;
1276 
1277         // If this pred is for a subloop, not L itself, skip it.
1278         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1279           continue; // The Block is in a subloop, skip it.
1280 
1281         // Check that InVal is defined in the loop.
1282         Instruction *Inst = cast<Instruction>(InVal);
1283         if (!L->contains(Inst))
1284           continue;
1285 
1286         // Okay, this instruction has a user outside of the current loop
1287         // and varies predictably *inside* the loop.  Evaluate the value it
1288         // contains when the loop exits, if possible.  We prefer to start with
1289         // expressions which are true for all exits (so as to maximize
1290         // expression reuse by the SCEVExpander), but resort to per-exit
1291         // evaluation if that fails.
1292         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1293         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1294             !SE->isLoopInvariant(ExitValue, L) ||
1295             !isSafeToExpand(ExitValue, *SE)) {
1296           // TODO: This should probably be sunk into SCEV in some way; maybe a
1297           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1298           // most SCEV expressions and other recurrence types (e.g. shift
1299           // recurrences).  Is there existing code we can reuse?
1300           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1301           if (isa<SCEVCouldNotCompute>(ExitCount))
1302             continue;
1303           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1304             if (AddRec->getLoop() == L)
1305               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1306           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1307               !SE->isLoopInvariant(ExitValue, L) ||
1308               !isSafeToExpand(ExitValue, *SE))
1309             continue;
1310         }
1311 
1312         // Computing the value outside of the loop brings no benefit if it is
1313         // definitely used inside the loop in a way which can not be optimized
1314         // away. Avoid doing so unless we know we have a value which computes
1315         // the ExitValue already. TODO: This should be merged into SCEV
1316         // expander to leverage its knowledge of existing expressions.
1317         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1318             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1319           continue;
1320 
1321         // Check if expansions of this SCEV would count as being high cost.
1322         bool HighCost = Rewriter.isHighCostExpansion(
1323             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1324 
1325         // Note that we must not perform expansions until after
1326         // we query *all* the costs, because if we perform temporary expansion
1327         // inbetween, one that we might not intend to keep, said expansion
1328         // *may* affect cost calculation of the the next SCEV's we'll query,
1329         // and next SCEV may errneously get smaller cost.
1330 
1331         // Collect all the candidate PHINodes to be rewritten.
1332         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1333       }
1334     }
1335   }
1336 
1337   // Now that we've done preliminary filtering and billed all the SCEV's,
1338   // we can perform the last sanity check - the expansion must be valid.
1339   for (RewritePhi &Phi : RewritePhiSet) {
1340     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1341                                            Phi.ExpansionPoint);
1342 
1343     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1344                       << *(Phi.Expansion) << '\n'
1345                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1346 
1347     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1348     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1349     if (!Phi.ValidRewrite) {
1350       DeadInsts.push_back(Phi.Expansion);
1351       continue;
1352     }
1353 
1354 #ifndef NDEBUG
1355     // If we reuse an instruction from a loop which is neither L nor one of
1356     // its containing loops, we end up breaking LCSSA form for this loop by
1357     // creating a new use of its instruction.
1358     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1359       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1360         if (EVL != L)
1361           assert(EVL->contains(L) && "LCSSA breach detected!");
1362 #endif
1363   }
1364 
1365   // TODO: after isValidRewrite() is an assertion, evaluate whether
1366   // it is beneficial to change how we calculate high-cost:
1367   // if we have SCEV 'A' which we know we will expand, should we calculate
1368   // the cost of other SCEV's after expanding SCEV 'A',
1369   // thus potentially giving cost bonus to those other SCEV's?
1370 
1371   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1372   int NumReplaced = 0;
1373 
1374   // Transformation.
1375   for (const RewritePhi &Phi : RewritePhiSet) {
1376     if (!Phi.ValidRewrite)
1377       continue;
1378 
1379     PHINode *PN = Phi.PN;
1380     Value *ExitVal = Phi.Expansion;
1381 
1382     // Only do the rewrite when the ExitValue can be expanded cheaply.
1383     // If LoopCanBeDel is true, rewrite exit value aggressively.
1384     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1385       DeadInsts.push_back(ExitVal);
1386       continue;
1387     }
1388 
1389     NumReplaced++;
1390     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1391     PN->setIncomingValue(Phi.Ith, ExitVal);
1392 
1393     // If this instruction is dead now, delete it. Don't do it now to avoid
1394     // invalidating iterators.
1395     if (isInstructionTriviallyDead(Inst, TLI))
1396       DeadInsts.push_back(Inst);
1397 
1398     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1399     if (PN->getNumIncomingValues() == 1 &&
1400         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1401       PN->replaceAllUsesWith(ExitVal);
1402       PN->eraseFromParent();
1403     }
1404   }
1405 
1406   // The insertion point instruction may have been deleted; clear it out
1407   // so that the rewriter doesn't trip over it later.
1408   Rewriter.clearInsertPoint();
1409   return NumReplaced;
1410 }
1411 
1412 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1413 /// \p OrigLoop.
1414 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1415                                         Loop *RemainderLoop, uint64_t UF) {
1416   assert(UF > 0 && "Zero unrolled factor is not supported");
1417   assert(UnrolledLoop != RemainderLoop &&
1418          "Unrolled and Remainder loops are expected to distinct");
1419 
1420   // Get number of iterations in the original scalar loop.
1421   unsigned OrigLoopInvocationWeight = 0;
1422   Optional<unsigned> OrigAverageTripCount =
1423       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1424   if (!OrigAverageTripCount)
1425     return;
1426 
1427   // Calculate number of iterations in unrolled loop.
1428   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1429   // Calculate number of iterations for remainder loop.
1430   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1431 
1432   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1433                             OrigLoopInvocationWeight);
1434   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1435                             OrigLoopInvocationWeight);
1436 }
1437 
1438 /// Utility that implements appending of loops onto a worklist.
1439 /// Loops are added in preorder (analogous for reverse postorder for trees),
1440 /// and the worklist is processed LIFO.
1441 template <typename RangeT>
1442 void llvm::appendReversedLoopsToWorklist(
1443     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1444   // We use an internal worklist to build up the preorder traversal without
1445   // recursion.
1446   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1447 
1448   // We walk the initial sequence of loops in reverse because we generally want
1449   // to visit defs before uses and the worklist is LIFO.
1450   for (Loop *RootL : Loops) {
1451     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1452     assert(PreOrderWorklist.empty() &&
1453            "Must start with an empty preorder walk worklist.");
1454     PreOrderWorklist.push_back(RootL);
1455     do {
1456       Loop *L = PreOrderWorklist.pop_back_val();
1457       PreOrderWorklist.append(L->begin(), L->end());
1458       PreOrderLoops.push_back(L);
1459     } while (!PreOrderWorklist.empty());
1460 
1461     Worklist.insert(std::move(PreOrderLoops));
1462     PreOrderLoops.clear();
1463   }
1464 }
1465 
1466 template <typename RangeT>
1467 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1468                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1469   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1470 }
1471 
1472 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1473     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1474 
1475 template void
1476 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1477                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1478 
1479 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1480                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1481   appendReversedLoopsToWorklist(LI, Worklist);
1482 }
1483 
1484 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1485                       LoopInfo *LI, LPPassManager *LPM) {
1486   Loop &New = *LI->AllocateLoop();
1487   if (PL)
1488     PL->addChildLoop(&New);
1489   else
1490     LI->addTopLevelLoop(&New);
1491 
1492   if (LPM)
1493     LPM->addLoop(New);
1494 
1495   // Add all of the blocks in L to the new loop.
1496   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1497        I != E; ++I)
1498     if (LI->getLoopFor(*I) == L)
1499       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1500 
1501   // Add all of the subloops to the new loop.
1502   for (Loop *I : *L)
1503     cloneLoop(I, &New, VM, LI, LPM);
1504 
1505   return &New;
1506 }
1507 
1508 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1509 /// need to use value-handles because SCEV expansion can invalidate previously
1510 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1511 /// a previous one.
1512 struct PointerBounds {
1513   TrackingVH<Value> Start;
1514   TrackingVH<Value> End;
1515 };
1516 
1517 /// Expand code for the lower and upper bound of the pointer group \p CG
1518 /// in \p TheLoop.  \return the values for the bounds.
1519 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1520                                   Loop *TheLoop, Instruction *Loc,
1521                                   SCEVExpander &Exp) {
1522   LLVMContext &Ctx = Loc->getContext();
1523   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
1524 
1525   Value *Start = nullptr, *End = nullptr;
1526   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1527   Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1528   End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1529   LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1530   return {Start, End};
1531 }
1532 
1533 /// Turns a collection of checks into a collection of expanded upper and
1534 /// lower bounds for both pointers in the check.
1535 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1536 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1537              Instruction *Loc, SCEVExpander &Exp) {
1538   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1539 
1540   // Here we're relying on the SCEV Expander's cache to only emit code for the
1541   // same bounds once.
1542   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1543             [&](const RuntimePointerCheck &Check) {
1544               PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
1545                             Second = expandBounds(Check.second, L, Loc, Exp);
1546               return std::make_pair(First, Second);
1547             });
1548 
1549   return ChecksWithBounds;
1550 }
1551 
1552 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1553     Instruction *Loc, Loop *TheLoop,
1554     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1555     SCEVExpander &Exp) {
1556   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1557   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1558   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
1559 
1560   LLVMContext &Ctx = Loc->getContext();
1561   Instruction *FirstInst = nullptr;
1562   IRBuilder<> ChkBuilder(Loc);
1563   // Our instructions might fold to a constant.
1564   Value *MemoryRuntimeCheck = nullptr;
1565 
1566   // FIXME: this helper is currently a duplicate of the one in
1567   // LoopVectorize.cpp.
1568   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1569                          Instruction *Loc) -> Instruction * {
1570     if (FirstInst)
1571       return FirstInst;
1572     if (Instruction *I = dyn_cast<Instruction>(V))
1573       return I->getParent() == Loc->getParent() ? I : nullptr;
1574     return nullptr;
1575   };
1576 
1577   for (const auto &Check : ExpandedChecks) {
1578     const PointerBounds &A = Check.first, &B = Check.second;
1579     // Check if two pointers (A and B) conflict where conflict is computed as:
1580     // start(A) <= end(B) && start(B) <= end(A)
1581     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1582     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1583 
1584     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1585            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1586            "Trying to bounds check pointers with different address spaces");
1587 
1588     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1589     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1590 
1591     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1592     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1593     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1594     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1595 
1596     // [A|B].Start points to the first accessed byte under base [A|B].
1597     // [A|B].End points to the last accessed byte, plus one.
1598     // There is no conflict when the intervals are disjoint:
1599     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1600     //
1601     // bound0 = (B.Start < A.End)
1602     // bound1 = (A.Start < B.End)
1603     //  IsConflict = bound0 & bound1
1604     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1605     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1606     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1607     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1608     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1609     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1610     if (MemoryRuntimeCheck) {
1611       IsConflict =
1612           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1613       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1614     }
1615     MemoryRuntimeCheck = IsConflict;
1616   }
1617 
1618   if (!MemoryRuntimeCheck)
1619     return std::make_pair(nullptr, nullptr);
1620 
1621   // We have to do this trickery because the IRBuilder might fold the check to a
1622   // constant expression in which case there is no Instruction anchored in a
1623   // the block.
1624   Instruction *Check =
1625       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1626   ChkBuilder.Insert(Check, "memcheck.conflict");
1627   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1628   return std::make_pair(FirstInst, Check);
1629 }
1630 
1631 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
1632                                                       unsigned MSSAThreshold,
1633                                                       MemorySSA &MSSA,
1634                                                       AAResults &AA) {
1635   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1636   if (!TI || !TI->isConditional())
1637     return {};
1638 
1639   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1640   // The case with the condition outside the loop should already be handled
1641   // earlier.
1642   if (!CondI || !L.contains(CondI))
1643     return {};
1644 
1645   SmallVector<Instruction *> InstToDuplicate;
1646   InstToDuplicate.push_back(CondI);
1647 
1648   SmallVector<Value *, 4> WorkList;
1649   WorkList.append(CondI->op_begin(), CondI->op_end());
1650 
1651   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1652   SmallVector<MemoryLocation, 4> AccessedLocs;
1653   while (!WorkList.empty()) {
1654     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1655     if (!I || !L.contains(I))
1656       continue;
1657 
1658     // TODO: support additional instructions.
1659     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1660       return {};
1661 
1662     // Do not duplicate volatile and atomic loads.
1663     if (auto *LI = dyn_cast<LoadInst>(I))
1664       if (LI->isVolatile() || LI->isAtomic())
1665         return {};
1666 
1667     InstToDuplicate.push_back(I);
1668     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1669       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1670         // Queue the defining access to check for alias checks.
1671         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1672         AccessedLocs.push_back(MemoryLocation::get(I));
1673       } else {
1674         // MemoryDefs may clobber the location or may be atomic memory
1675         // operations. Bail out.
1676         return {};
1677       }
1678     }
1679     WorkList.append(I->op_begin(), I->op_end());
1680   }
1681 
1682   if (InstToDuplicate.empty())
1683     return {};
1684 
1685   SmallVector<BasicBlock *, 4> ExitingBlocks;
1686   L.getExitingBlocks(ExitingBlocks);
1687   auto HasNoClobbersOnPath =
1688       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1689        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1690                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1691       -> Optional<IVConditionInfo> {
1692     IVConditionInfo Info;
1693     // First, collect all blocks in the loop that are on a patch from Succ
1694     // to the header.
1695     SmallVector<BasicBlock *, 4> WorkList;
1696     WorkList.push_back(Succ);
1697     WorkList.push_back(Header);
1698     SmallPtrSet<BasicBlock *, 4> Seen;
1699     Seen.insert(Header);
1700     Info.PathIsNoop &=
1701         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1702 
1703     while (!WorkList.empty()) {
1704       BasicBlock *Current = WorkList.pop_back_val();
1705       if (!L.contains(Current))
1706         continue;
1707       const auto &SeenIns = Seen.insert(Current);
1708       if (!SeenIns.second)
1709         continue;
1710 
1711       Info.PathIsNoop &= all_of(
1712           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1713       WorkList.append(succ_begin(Current), succ_end(Current));
1714     }
1715 
1716     // Require at least 2 blocks on a path through the loop. This skips
1717     // paths that directly exit the loop.
1718     if (Seen.size() < 2)
1719       return {};
1720 
1721     // Next, check if there are any MemoryDefs that are on the path through
1722     // the loop (in the Seen set) and they may-alias any of the locations in
1723     // AccessedLocs. If that is the case, they may modify the condition and
1724     // partial unswitching is not possible.
1725     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1726     while (!AccessesToCheck.empty()) {
1727       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1728       auto SeenI = SeenAccesses.insert(Current);
1729       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1730         continue;
1731 
1732       // Bail out if exceeded the threshold.
1733       if (SeenAccesses.size() >= MSSAThreshold)
1734         return {};
1735 
1736       // MemoryUse are read-only accesses.
1737       if (isa<MemoryUse>(Current))
1738         continue;
1739 
1740       // For a MemoryDef, check if is aliases any of the location feeding
1741       // the original condition.
1742       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1743         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1744               return isModSet(
1745                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1746             }))
1747           return {};
1748       }
1749 
1750       for (Use &U : Current->uses())
1751         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1752     }
1753 
1754     // We could also allow loops with known trip counts without mustprogress,
1755     // but ScalarEvolution may not be available.
1756     Info.PathIsNoop &= isMustProgress(&L);
1757 
1758     // If the path is considered a no-op so far, check if it reaches a
1759     // single exit block without any phis. This ensures no values from the
1760     // loop are used outside of the loop.
1761     if (Info.PathIsNoop) {
1762       for (auto *Exiting : ExitingBlocks) {
1763         if (!Seen.contains(Exiting))
1764           continue;
1765         for (auto *Succ : successors(Exiting)) {
1766           if (L.contains(Succ))
1767             continue;
1768 
1769           Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
1770                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1771           if (!Info.PathIsNoop)
1772             break;
1773           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1774                  "cannot have multiple exit blocks");
1775           Info.ExitForPath = Succ;
1776         }
1777       }
1778     }
1779     if (!Info.ExitForPath)
1780       Info.PathIsNoop = false;
1781 
1782     Info.InstToDuplicate = InstToDuplicate;
1783     return Info;
1784   };
1785 
1786   // If we branch to the same successor, partial unswitching will not be
1787   // beneficial.
1788   if (TI->getSuccessor(0) == TI->getSuccessor(1))
1789     return {};
1790 
1791   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
1792                                       AccessesToCheck)) {
1793     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
1794     return Info;
1795   }
1796   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
1797                                       AccessesToCheck)) {
1798     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
1799     return Info;
1800   }
1801 
1802   return {};
1803 }
1804