1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<bool> ForceReductionIntrinsic(
58     "force-reduction-intrinsics", cl::Hidden,
59     cl::desc("Force creating reduction intrinsics for testing."),
60     cl::init(false));
61 
62 #define DEBUG_TYPE "loop-utils"
63 
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 
67 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
68                                    MemorySSAUpdater *MSSAU,
69                                    bool PreserveLCSSA) {
70   bool Changed = false;
71 
72   // We re-use a vector for the in-loop predecesosrs.
73   SmallVector<BasicBlock *, 4> InLoopPredecessors;
74 
75   auto RewriteExit = [&](BasicBlock *BB) {
76     assert(InLoopPredecessors.empty() &&
77            "Must start with an empty predecessors list!");
78     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
79 
80     // See if there are any non-loop predecessors of this exit block and
81     // keep track of the in-loop predecessors.
82     bool IsDedicatedExit = true;
83     for (auto *PredBB : predecessors(BB))
84       if (L->contains(PredBB)) {
85         if (isa<IndirectBrInst>(PredBB->getTerminator()))
86           // We cannot rewrite exiting edges from an indirectbr.
87           return false;
88         if (isa<CallBrInst>(PredBB->getTerminator()))
89           // We cannot rewrite exiting edges from a callbr.
90           return false;
91 
92         InLoopPredecessors.push_back(PredBB);
93       } else {
94         IsDedicatedExit = false;
95       }
96 
97     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
98 
99     // Nothing to do if this is already a dedicated exit.
100     if (IsDedicatedExit)
101       return false;
102 
103     auto *NewExitBB = SplitBlockPredecessors(
104         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
105 
106     if (!NewExitBB)
107       LLVM_DEBUG(
108           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
109                  << *L << "\n");
110     else
111       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
112                         << NewExitBB->getName() << "\n");
113     return true;
114   };
115 
116   // Walk the exit blocks directly rather than building up a data structure for
117   // them, but only visit each one once.
118   SmallPtrSet<BasicBlock *, 4> Visited;
119   for (auto *BB : L->blocks())
120     for (auto *SuccBB : successors(BB)) {
121       // We're looking for exit blocks so skip in-loop successors.
122       if (L->contains(SuccBB))
123         continue;
124 
125       // Visit each exit block exactly once.
126       if (!Visited.insert(SuccBB).second)
127         continue;
128 
129       Changed |= RewriteExit(SuccBB);
130     }
131 
132   return Changed;
133 }
134 
135 /// Returns the instructions that use values defined in the loop.
136 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
137   SmallVector<Instruction *, 8> UsedOutside;
138 
139   for (auto *Block : L->getBlocks())
140     // FIXME: I believe that this could use copy_if if the Inst reference could
141     // be adapted into a pointer.
142     for (auto &Inst : *Block) {
143       auto Users = Inst.users();
144       if (any_of(Users, [&](User *U) {
145             auto *Use = cast<Instruction>(U);
146             return !L->contains(Use->getParent());
147           }))
148         UsedOutside.push_back(&Inst);
149     }
150 
151   return UsedOutside;
152 }
153 
154 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
155   // By definition, all loop passes need the LoopInfo analysis and the
156   // Dominator tree it depends on. Because they all participate in the loop
157   // pass manager, they must also preserve these.
158   AU.addRequired<DominatorTreeWrapperPass>();
159   AU.addPreserved<DominatorTreeWrapperPass>();
160   AU.addRequired<LoopInfoWrapperPass>();
161   AU.addPreserved<LoopInfoWrapperPass>();
162 
163   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
164   // here because users shouldn't directly get them from this header.
165   extern char &LoopSimplifyID;
166   extern char &LCSSAID;
167   AU.addRequiredID(LoopSimplifyID);
168   AU.addPreservedID(LoopSimplifyID);
169   AU.addRequiredID(LCSSAID);
170   AU.addPreservedID(LCSSAID);
171   // This is used in the LPPassManager to perform LCSSA verification on passes
172   // which preserve lcssa form
173   AU.addRequired<LCSSAVerificationPass>();
174   AU.addPreserved<LCSSAVerificationPass>();
175 
176   // Loop passes are designed to run inside of a loop pass manager which means
177   // that any function analyses they require must be required by the first loop
178   // pass in the manager (so that it is computed before the loop pass manager
179   // runs) and preserved by all loop pasess in the manager. To make this
180   // reasonably robust, the set needed for most loop passes is maintained here.
181   // If your loop pass requires an analysis not listed here, you will need to
182   // carefully audit the loop pass manager nesting structure that results.
183   AU.addRequired<AAResultsWrapperPass>();
184   AU.addPreserved<AAResultsWrapperPass>();
185   AU.addPreserved<BasicAAWrapperPass>();
186   AU.addPreserved<GlobalsAAWrapperPass>();
187   AU.addPreserved<SCEVAAWrapperPass>();
188   AU.addRequired<ScalarEvolutionWrapperPass>();
189   AU.addPreserved<ScalarEvolutionWrapperPass>();
190   // FIXME: When all loop passes preserve MemorySSA, it can be required and
191   // preserved here instead of the individual handling in each pass.
192 }
193 
194 /// Manually defined generic "LoopPass" dependency initialization. This is used
195 /// to initialize the exact set of passes from above in \c
196 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
197 /// with:
198 ///
199 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
200 ///
201 /// As-if "LoopPass" were a pass.
202 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
203   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
206   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
208   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
209   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
210   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
211   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
212   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
213 }
214 
215 /// Create MDNode for input string.
216 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
217   LLVMContext &Context = TheLoop->getHeader()->getContext();
218   Metadata *MDs[] = {
219       MDString::get(Context, Name),
220       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
221   return MDNode::get(Context, MDs);
222 }
223 
224 /// Set input string into loop metadata by keeping other values intact.
225 /// If the string is already in loop metadata update value if it is
226 /// different.
227 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
228                                    unsigned V) {
229   SmallVector<Metadata *, 4> MDs(1);
230   // If the loop already has metadata, retain it.
231   MDNode *LoopID = TheLoop->getLoopID();
232   if (LoopID) {
233     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
234       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
235       // If it is of form key = value, try to parse it.
236       if (Node->getNumOperands() == 2) {
237         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
238         if (S && S->getString().equals(StringMD)) {
239           ConstantInt *IntMD =
240               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
241           if (IntMD && IntMD->getSExtValue() == V)
242             // It is already in place. Do nothing.
243             return;
244           // We need to update the value, so just skip it here and it will
245           // be added after copying other existed nodes.
246           continue;
247         }
248       }
249       MDs.push_back(Node);
250     }
251   }
252   // Add new metadata.
253   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
254   // Replace current metadata node with new one.
255   LLVMContext &Context = TheLoop->getHeader()->getContext();
256   MDNode *NewLoopID = MDNode::get(Context, MDs);
257   // Set operand 0 to refer to the loop id itself.
258   NewLoopID->replaceOperandWith(0, NewLoopID);
259   TheLoop->setLoopID(NewLoopID);
260 }
261 
262 /// Find string metadata for loop
263 ///
264 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
265 /// operand or null otherwise.  If the string metadata is not found return
266 /// Optional's not-a-value.
267 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
268                                                             StringRef Name) {
269   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
270   if (!MD)
271     return None;
272   switch (MD->getNumOperands()) {
273   case 1:
274     return nullptr;
275   case 2:
276     return &MD->getOperand(1);
277   default:
278     llvm_unreachable("loop metadata has 0 or 1 operand");
279   }
280 }
281 
282 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
283                                                    StringRef Name) {
284   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
285   if (!MD)
286     return None;
287   switch (MD->getNumOperands()) {
288   case 1:
289     // When the value is absent it is interpreted as 'attribute set'.
290     return true;
291   case 2:
292     if (ConstantInt *IntMD =
293             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
294       return IntMD->getZExtValue();
295     return true;
296   }
297   llvm_unreachable("unexpected number of options");
298 }
299 
300 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
301   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
302 }
303 
304 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
305                                                       StringRef Name) {
306   const MDOperand *AttrMD =
307       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
308   if (!AttrMD)
309     return None;
310 
311   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
312   if (!IntMD)
313     return None;
314 
315   return IntMD->getSExtValue();
316 }
317 
318 Optional<MDNode *> llvm::makeFollowupLoopID(
319     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
320     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
321   if (!OrigLoopID) {
322     if (AlwaysNew)
323       return nullptr;
324     return None;
325   }
326 
327   assert(OrigLoopID->getOperand(0) == OrigLoopID);
328 
329   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
330   bool InheritSomeAttrs =
331       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
332   SmallVector<Metadata *, 8> MDs;
333   MDs.push_back(nullptr);
334 
335   bool Changed = false;
336   if (InheritAllAttrs || InheritSomeAttrs) {
337     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
338       MDNode *Op = cast<MDNode>(Existing.get());
339 
340       auto InheritThisAttribute = [InheritSomeAttrs,
341                                    InheritOptionsExceptPrefix](MDNode *Op) {
342         if (!InheritSomeAttrs)
343           return false;
344 
345         // Skip malformatted attribute metadata nodes.
346         if (Op->getNumOperands() == 0)
347           return true;
348         Metadata *NameMD = Op->getOperand(0).get();
349         if (!isa<MDString>(NameMD))
350           return true;
351         StringRef AttrName = cast<MDString>(NameMD)->getString();
352 
353         // Do not inherit excluded attributes.
354         return !AttrName.startswith(InheritOptionsExceptPrefix);
355       };
356 
357       if (InheritThisAttribute(Op))
358         MDs.push_back(Op);
359       else
360         Changed = true;
361     }
362   } else {
363     // Modified if we dropped at least one attribute.
364     Changed = OrigLoopID->getNumOperands() > 1;
365   }
366 
367   bool HasAnyFollowup = false;
368   for (StringRef OptionName : FollowupOptions) {
369     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
370     if (!FollowupNode)
371       continue;
372 
373     HasAnyFollowup = true;
374     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
375       MDs.push_back(Option.get());
376       Changed = true;
377     }
378   }
379 
380   // Attributes of the followup loop not specified explicity, so signal to the
381   // transformation pass to add suitable attributes.
382   if (!AlwaysNew && !HasAnyFollowup)
383     return None;
384 
385   // If no attributes were added or remove, the previous loop Id can be reused.
386   if (!AlwaysNew && !Changed)
387     return OrigLoopID;
388 
389   // No attributes is equivalent to having no !llvm.loop metadata at all.
390   if (MDs.size() == 1)
391     return nullptr;
392 
393   // Build the new loop ID.
394   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
395   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
396   return FollowupLoopID;
397 }
398 
399 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
400   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
401 }
402 
403 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
404   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
405 }
406 
407 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
408   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
409     return TM_SuppressedByUser;
410 
411   Optional<int> Count =
412       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
413   if (Count.hasValue())
414     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
415 
416   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
417     return TM_ForcedByUser;
418 
419   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
420     return TM_ForcedByUser;
421 
422   if (hasDisableAllTransformsHint(L))
423     return TM_Disable;
424 
425   return TM_Unspecified;
426 }
427 
428 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
429   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
430     return TM_SuppressedByUser;
431 
432   Optional<int> Count =
433       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
434   if (Count.hasValue())
435     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
436 
437   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
438     return TM_ForcedByUser;
439 
440   if (hasDisableAllTransformsHint(L))
441     return TM_Disable;
442 
443   return TM_Unspecified;
444 }
445 
446 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
447   Optional<bool> Enable =
448       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
449 
450   if (Enable == false)
451     return TM_SuppressedByUser;
452 
453   Optional<int> VectorizeWidth =
454       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
455   Optional<int> InterleaveCount =
456       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
457 
458   // 'Forcing' vector width and interleave count to one effectively disables
459   // this tranformation.
460   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
461     return TM_SuppressedByUser;
462 
463   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
464     return TM_Disable;
465 
466   if (Enable == true)
467     return TM_ForcedByUser;
468 
469   if (VectorizeWidth == 1 && InterleaveCount == 1)
470     return TM_Disable;
471 
472   if (VectorizeWidth > 1 || InterleaveCount > 1)
473     return TM_Enable;
474 
475   if (hasDisableAllTransformsHint(L))
476     return TM_Disable;
477 
478   return TM_Unspecified;
479 }
480 
481 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
482   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
483     return TM_ForcedByUser;
484 
485   if (hasDisableAllTransformsHint(L))
486     return TM_Disable;
487 
488   return TM_Unspecified;
489 }
490 
491 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
492   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
493     return TM_SuppressedByUser;
494 
495   if (hasDisableAllTransformsHint(L))
496     return TM_Disable;
497 
498   return TM_Unspecified;
499 }
500 
501 /// Does a BFS from a given node to all of its children inside a given loop.
502 /// The returned vector of nodes includes the starting point.
503 SmallVector<DomTreeNode *, 16>
504 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
505   SmallVector<DomTreeNode *, 16> Worklist;
506   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
507     // Only include subregions in the top level loop.
508     BasicBlock *BB = DTN->getBlock();
509     if (CurLoop->contains(BB))
510       Worklist.push_back(DTN);
511   };
512 
513   AddRegionToWorklist(N);
514 
515   for (size_t I = 0; I < Worklist.size(); I++) {
516     for (DomTreeNode *Child : Worklist[I]->children())
517       AddRegionToWorklist(Child);
518   }
519 
520   return Worklist;
521 }
522 
523 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
524                           LoopInfo *LI, MemorySSA *MSSA) {
525   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
526   auto *Preheader = L->getLoopPreheader();
527   assert(Preheader && "Preheader should exist!");
528 
529   std::unique_ptr<MemorySSAUpdater> MSSAU;
530   if (MSSA)
531     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
532 
533   // Now that we know the removal is safe, remove the loop by changing the
534   // branch from the preheader to go to the single exit block.
535   //
536   // Because we're deleting a large chunk of code at once, the sequence in which
537   // we remove things is very important to avoid invalidation issues.
538 
539   // Tell ScalarEvolution that the loop is deleted. Do this before
540   // deleting the loop so that ScalarEvolution can look at the loop
541   // to determine what it needs to clean up.
542   if (SE)
543     SE->forgetLoop(L);
544 
545   auto *ExitBlock = L->getUniqueExitBlock();
546   assert(ExitBlock && "Should have a unique exit block!");
547   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
548 
549   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
550   assert(OldBr && "Preheader must end with a branch");
551   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
552   // Connect the preheader to the exit block. Keep the old edge to the header
553   // around to perform the dominator tree update in two separate steps
554   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
555   // preheader -> header.
556   //
557   //
558   // 0.  Preheader          1.  Preheader           2.  Preheader
559   //        |                    |   |                   |
560   //        V                    |   V                   |
561   //      Header <--\            | Header <--\           | Header <--\
562   //       |  |     |            |  |  |     |           |  |  |     |
563   //       |  V     |            |  |  V     |           |  |  V     |
564   //       | Body --/            |  | Body --/           |  | Body --/
565   //       V                     V  V                    V  V
566   //      Exit                   Exit                    Exit
567   //
568   // By doing this is two separate steps we can perform the dominator tree
569   // update without using the batch update API.
570   //
571   // Even when the loop is never executed, we cannot remove the edge from the
572   // source block to the exit block. Consider the case where the unexecuted loop
573   // branches back to an outer loop. If we deleted the loop and removed the edge
574   // coming to this inner loop, this will break the outer loop structure (by
575   // deleting the backedge of the outer loop). If the outer loop is indeed a
576   // non-loop, it will be deleted in a future iteration of loop deletion pass.
577   IRBuilder<> Builder(OldBr);
578   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
579   // Remove the old branch. The conditional branch becomes a new terminator.
580   OldBr->eraseFromParent();
581 
582   // Rewrite phis in the exit block to get their inputs from the Preheader
583   // instead of the exiting block.
584   for (PHINode &P : ExitBlock->phis()) {
585     // Set the zero'th element of Phi to be from the preheader and remove all
586     // other incoming values. Given the loop has dedicated exits, all other
587     // incoming values must be from the exiting blocks.
588     int PredIndex = 0;
589     P.setIncomingBlock(PredIndex, Preheader);
590     // Removes all incoming values from all other exiting blocks (including
591     // duplicate values from an exiting block).
592     // Nuke all entries except the zero'th entry which is the preheader entry.
593     // NOTE! We need to remove Incoming Values in the reverse order as done
594     // below, to keep the indices valid for deletion (removeIncomingValues
595     // updates getNumIncomingValues and shifts all values down into the operand
596     // being deleted).
597     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
598       P.removeIncomingValue(e - i, false);
599 
600     assert((P.getNumIncomingValues() == 1 &&
601             P.getIncomingBlock(PredIndex) == Preheader) &&
602            "Should have exactly one value and that's from the preheader!");
603   }
604 
605   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
606   if (DT) {
607     DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
608     if (MSSA) {
609       MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT);
610       if (VerifyMemorySSA)
611         MSSA->verifyMemorySSA();
612     }
613   }
614 
615   // Disconnect the loop body by branching directly to its exit.
616   Builder.SetInsertPoint(Preheader->getTerminator());
617   Builder.CreateBr(ExitBlock);
618   // Remove the old branch.
619   Preheader->getTerminator()->eraseFromParent();
620 
621   if (DT) {
622     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
623     if (MSSA) {
624       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
625                           *DT);
626       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
627                                                    L->block_end());
628       MSSAU->removeBlocks(DeadBlockSet);
629       if (VerifyMemorySSA)
630         MSSA->verifyMemorySSA();
631     }
632   }
633 
634   // Use a map to unique and a vector to guarantee deterministic ordering.
635   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
636   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
637 
638   // Given LCSSA form is satisfied, we should not have users of instructions
639   // within the dead loop outside of the loop. However, LCSSA doesn't take
640   // unreachable uses into account. We handle them here.
641   // We could do it after drop all references (in this case all users in the
642   // loop will be already eliminated and we have less work to do but according
643   // to API doc of User::dropAllReferences only valid operation after dropping
644   // references, is deletion. So let's substitute all usages of
645   // instruction from the loop with undef value of corresponding type first.
646   for (auto *Block : L->blocks())
647     for (Instruction &I : *Block) {
648       auto *Undef = UndefValue::get(I.getType());
649       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
650         Use &U = *UI;
651         ++UI;
652         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
653           if (L->contains(Usr->getParent()))
654             continue;
655         // If we have a DT then we can check that uses outside a loop only in
656         // unreachable block.
657         if (DT)
658           assert(!DT->isReachableFromEntry(U) &&
659                  "Unexpected user in reachable block");
660         U.set(Undef);
661       }
662       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
663       if (!DVI)
664         continue;
665       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
666       if (Key != DeadDebugSet.end())
667         continue;
668       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
669       DeadDebugInst.push_back(DVI);
670     }
671 
672   // After the loop has been deleted all the values defined and modified
673   // inside the loop are going to be unavailable.
674   // Since debug values in the loop have been deleted, inserting an undef
675   // dbg.value truncates the range of any dbg.value before the loop where the
676   // loop used to be. This is particularly important for constant values.
677   DIBuilder DIB(*ExitBlock->getModule());
678   Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
679   assert(InsertDbgValueBefore &&
680          "There should be a non-PHI instruction in exit block, else these "
681          "instructions will have no parent.");
682   for (auto *DVI : DeadDebugInst)
683     DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
684                                 DVI->getVariable(), DVI->getExpression(),
685                                 DVI->getDebugLoc(), InsertDbgValueBefore);
686 
687   // Remove the block from the reference counting scheme, so that we can
688   // delete it freely later.
689   for (auto *Block : L->blocks())
690     Block->dropAllReferences();
691 
692   if (MSSA && VerifyMemorySSA)
693     MSSA->verifyMemorySSA();
694 
695   if (LI) {
696     // Erase the instructions and the blocks without having to worry
697     // about ordering because we already dropped the references.
698     // NOTE: This iteration is safe because erasing the block does not remove
699     // its entry from the loop's block list.  We do that in the next section.
700     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
701          LpI != LpE; ++LpI)
702       (*LpI)->eraseFromParent();
703 
704     // Finally, the blocks from loopinfo.  This has to happen late because
705     // otherwise our loop iterators won't work.
706 
707     SmallPtrSet<BasicBlock *, 8> blocks;
708     blocks.insert(L->block_begin(), L->block_end());
709     for (BasicBlock *BB : blocks)
710       LI->removeBlock(BB);
711 
712     // The last step is to update LoopInfo now that we've eliminated this loop.
713     // Note: LoopInfo::erase remove the given loop and relink its subloops with
714     // its parent. While removeLoop/removeChildLoop remove the given loop but
715     // not relink its subloops, which is what we want.
716     if (Loop *ParentLoop = L->getParentLoop()) {
717       Loop::iterator I = find(*ParentLoop, L);
718       assert(I != ParentLoop->end() && "Couldn't find loop");
719       ParentLoop->removeChildLoop(I);
720     } else {
721       Loop::iterator I = find(*LI, L);
722       assert(I != LI->end() && "Couldn't find loop");
723       LI->removeLoop(I);
724     }
725     LI->destroy(L);
726   }
727 
728 #ifndef NDEBUG
729   if (SE)
730     SE->verify();
731 #endif
732 }
733 
734 /// Checks if \p L has single exit through latch block except possibly
735 /// "deoptimizing" exits. Returns branch instruction terminating the loop
736 /// latch if above check is successful, nullptr otherwise.
737 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
738   BasicBlock *Latch = L->getLoopLatch();
739   if (!Latch)
740     return nullptr;
741 
742   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
743   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
744     return nullptr;
745 
746   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
747           LatchBR->getSuccessor(1) == L->getHeader()) &&
748          "At least one edge out of the latch must go to the header");
749 
750   SmallVector<BasicBlock *, 4> ExitBlocks;
751   L->getUniqueNonLatchExitBlocks(ExitBlocks);
752   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
753         return !EB->getTerminatingDeoptimizeCall();
754       }))
755     return nullptr;
756 
757   return LatchBR;
758 }
759 
760 Optional<unsigned>
761 llvm::getLoopEstimatedTripCount(Loop *L,
762                                 unsigned *EstimatedLoopInvocationWeight) {
763   // Support loops with an exiting latch and other existing exists only
764   // deoptimize.
765   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
766   if (!LatchBranch)
767     return None;
768 
769   // To estimate the number of times the loop body was executed, we want to
770   // know the number of times the backedge was taken, vs. the number of times
771   // we exited the loop.
772   uint64_t BackedgeTakenWeight, LatchExitWeight;
773   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
774     return None;
775 
776   if (LatchBranch->getSuccessor(0) != L->getHeader())
777     std::swap(BackedgeTakenWeight, LatchExitWeight);
778 
779   if (!LatchExitWeight)
780     return None;
781 
782   if (EstimatedLoopInvocationWeight)
783     *EstimatedLoopInvocationWeight = LatchExitWeight;
784 
785   // Estimated backedge taken count is a ratio of the backedge taken weight by
786   // the weight of the edge exiting the loop, rounded to nearest.
787   uint64_t BackedgeTakenCount =
788       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
789   // Estimated trip count is one plus estimated backedge taken count.
790   return BackedgeTakenCount + 1;
791 }
792 
793 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
794                                      unsigned EstimatedloopInvocationWeight) {
795   // Support loops with an exiting latch and other existing exists only
796   // deoptimize.
797   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
798   if (!LatchBranch)
799     return false;
800 
801   // Calculate taken and exit weights.
802   unsigned LatchExitWeight = 0;
803   unsigned BackedgeTakenWeight = 0;
804 
805   if (EstimatedTripCount > 0) {
806     LatchExitWeight = EstimatedloopInvocationWeight;
807     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
808   }
809 
810   // Make a swap if back edge is taken when condition is "false".
811   if (LatchBranch->getSuccessor(0) != L->getHeader())
812     std::swap(BackedgeTakenWeight, LatchExitWeight);
813 
814   MDBuilder MDB(LatchBranch->getContext());
815 
816   // Set/Update profile metadata.
817   LatchBranch->setMetadata(
818       LLVMContext::MD_prof,
819       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
820 
821   return true;
822 }
823 
824 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
825                                               ScalarEvolution &SE) {
826   Loop *OuterL = InnerLoop->getParentLoop();
827   if (!OuterL)
828     return true;
829 
830   // Get the backedge taken count for the inner loop
831   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
832   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
833   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
834       !InnerLoopBECountSC->getType()->isIntegerTy())
835     return false;
836 
837   // Get whether count is invariant to the outer loop
838   ScalarEvolution::LoopDisposition LD =
839       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
840   if (LD != ScalarEvolution::LoopInvariant)
841     return false;
842 
843   return true;
844 }
845 
846 Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
847                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
848                             Value *Left, Value *Right) {
849   CmpInst::Predicate P = CmpInst::ICMP_NE;
850   switch (RK) {
851   default:
852     llvm_unreachable("Unknown min/max recurrence kind");
853   case RecurrenceDescriptor::MRK_UIntMin:
854     P = CmpInst::ICMP_ULT;
855     break;
856   case RecurrenceDescriptor::MRK_UIntMax:
857     P = CmpInst::ICMP_UGT;
858     break;
859   case RecurrenceDescriptor::MRK_SIntMin:
860     P = CmpInst::ICMP_SLT;
861     break;
862   case RecurrenceDescriptor::MRK_SIntMax:
863     P = CmpInst::ICMP_SGT;
864     break;
865   case RecurrenceDescriptor::MRK_FloatMin:
866     P = CmpInst::FCMP_OLT;
867     break;
868   case RecurrenceDescriptor::MRK_FloatMax:
869     P = CmpInst::FCMP_OGT;
870     break;
871   }
872 
873   // We only match FP sequences that are 'fast', so we can unconditionally
874   // set it on any generated instructions.
875   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
876   FastMathFlags FMF;
877   FMF.setFast();
878   Builder.setFastMathFlags(FMF);
879   Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
880   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
881   return Select;
882 }
883 
884 // Helper to generate an ordered reduction.
885 Value *
886 llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
887                           unsigned Op,
888                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
889                           ArrayRef<Value *> RedOps) {
890   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
891 
892   // Extract and apply reduction ops in ascending order:
893   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
894   Value *Result = Acc;
895   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
896     Value *Ext =
897         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
898 
899     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
900       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
901                                    "bin.rdx");
902     } else {
903       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
904              "Invalid min/max");
905       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
906     }
907 
908     if (!RedOps.empty())
909       propagateIRFlags(Result, RedOps);
910   }
911 
912   return Result;
913 }
914 
915 // Helper to generate a log2 shuffle reduction.
916 Value *
917 llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
918                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
919                           ArrayRef<Value *> RedOps) {
920   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
921   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
922   // and vector ops, reducing the set of values being computed by half each
923   // round.
924   assert(isPowerOf2_32(VF) &&
925          "Reduction emission only supported for pow2 vectors!");
926   Value *TmpVec = Src;
927   SmallVector<int, 32> ShuffleMask(VF);
928   for (unsigned i = VF; i != 1; i >>= 1) {
929     // Move the upper half of the vector to the lower half.
930     for (unsigned j = 0; j != i / 2; ++j)
931       ShuffleMask[j] = i / 2 + j;
932 
933     // Fill the rest of the mask with undef.
934     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
935 
936     Value *Shuf = Builder.CreateShuffleVector(
937         TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf");
938 
939     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
940       // The builder propagates its fast-math-flags setting.
941       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
942                                    "bin.rdx");
943     } else {
944       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
945              "Invalid min/max");
946       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
947     }
948     if (!RedOps.empty())
949       propagateIRFlags(TmpVec, RedOps);
950 
951     // We may compute the reassociated scalar ops in a way that does not
952     // preserve nsw/nuw etc. Conservatively, drop those flags.
953     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
954       ReductionInst->dropPoisonGeneratingFlags();
955   }
956   // The result is in the first element of the vector.
957   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
958 }
959 
960 /// Create a simple vector reduction specified by an opcode and some
961 /// flags (if generating min/max reductions).
962 Value *llvm::createSimpleTargetReduction(
963     IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
964     Value *Src, TargetTransformInfo::ReductionFlags Flags,
965     ArrayRef<Value *> RedOps) {
966   auto *SrcVTy = cast<VectorType>(Src->getType());
967 
968   std::function<Value *()> BuildFunc;
969   using RD = RecurrenceDescriptor;
970   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
971 
972   switch (Opcode) {
973   case Instruction::Add:
974     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
975     break;
976   case Instruction::Mul:
977     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
978     break;
979   case Instruction::And:
980     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
981     break;
982   case Instruction::Or:
983     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
984     break;
985   case Instruction::Xor:
986     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
987     break;
988   case Instruction::FAdd:
989     BuildFunc = [&]() {
990       auto Rdx = Builder.CreateFAddReduce(
991           Constant::getNullValue(SrcVTy->getElementType()), Src);
992       return Rdx;
993     };
994     break;
995   case Instruction::FMul:
996     BuildFunc = [&]() {
997       Type *Ty = SrcVTy->getElementType();
998       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
999       return Rdx;
1000     };
1001     break;
1002   case Instruction::ICmp:
1003     if (Flags.IsMaxOp) {
1004       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1005       BuildFunc = [&]() {
1006         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1007       };
1008     } else {
1009       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1010       BuildFunc = [&]() {
1011         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1012       };
1013     }
1014     break;
1015   case Instruction::FCmp:
1016     if (Flags.IsMaxOp) {
1017       MinMaxKind = RD::MRK_FloatMax;
1018       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1019     } else {
1020       MinMaxKind = RD::MRK_FloatMin;
1021       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1022     }
1023     break;
1024   default:
1025     llvm_unreachable("Unhandled opcode");
1026     break;
1027   }
1028   if (ForceReductionIntrinsic ||
1029       TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1030     return BuildFunc();
1031   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1032 }
1033 
1034 /// Create a vector reduction using a given recurrence descriptor.
1035 Value *llvm::createTargetReduction(IRBuilderBase &B,
1036                                    const TargetTransformInfo *TTI,
1037                                    RecurrenceDescriptor &Desc, Value *Src,
1038                                    bool NoNaN) {
1039   // TODO: Support in-order reductions based on the recurrence descriptor.
1040   using RD = RecurrenceDescriptor;
1041   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1042   TargetTransformInfo::ReductionFlags Flags;
1043   Flags.NoNaN = NoNaN;
1044 
1045   // All ops in the reduction inherit fast-math-flags from the recurrence
1046   // descriptor.
1047   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1048   B.setFastMathFlags(Desc.getFastMathFlags());
1049 
1050   switch (RecKind) {
1051   case RD::RK_FloatAdd:
1052     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1053   case RD::RK_FloatMult:
1054     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1055   case RD::RK_IntegerAdd:
1056     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1057   case RD::RK_IntegerMult:
1058     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1059   case RD::RK_IntegerAnd:
1060     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1061   case RD::RK_IntegerOr:
1062     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1063   case RD::RK_IntegerXor:
1064     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1065   case RD::RK_IntegerMinMax: {
1066     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1067     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1068     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1069     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1070   }
1071   case RD::RK_FloatMinMax: {
1072     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1073     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1074   }
1075   default:
1076     llvm_unreachable("Unhandled RecKind");
1077   }
1078 }
1079 
1080 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1081   auto *VecOp = dyn_cast<Instruction>(I);
1082   if (!VecOp)
1083     return;
1084   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1085                                             : dyn_cast<Instruction>(OpValue);
1086   if (!Intersection)
1087     return;
1088   const unsigned Opcode = Intersection->getOpcode();
1089   VecOp->copyIRFlags(Intersection);
1090   for (auto *V : VL) {
1091     auto *Instr = dyn_cast<Instruction>(V);
1092     if (!Instr)
1093       continue;
1094     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1095       VecOp->andIRFlags(V);
1096   }
1097 }
1098 
1099 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1100                                  ScalarEvolution &SE) {
1101   const SCEV *Zero = SE.getZero(S->getType());
1102   return SE.isAvailableAtLoopEntry(S, L) &&
1103          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1104 }
1105 
1106 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1107                                     ScalarEvolution &SE) {
1108   const SCEV *Zero = SE.getZero(S->getType());
1109   return SE.isAvailableAtLoopEntry(S, L) &&
1110          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1111 }
1112 
1113 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1114                              bool Signed) {
1115   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1116   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1117     APInt::getMinValue(BitWidth);
1118   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1119   return SE.isAvailableAtLoopEntry(S, L) &&
1120          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1121                                      SE.getConstant(Min));
1122 }
1123 
1124 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1125                              bool Signed) {
1126   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1127   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1128     APInt::getMaxValue(BitWidth);
1129   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1130   return SE.isAvailableAtLoopEntry(S, L) &&
1131          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1132                                      SE.getConstant(Max));
1133 }
1134 
1135 //===----------------------------------------------------------------------===//
1136 // rewriteLoopExitValues - Optimize IV users outside the loop.
1137 // As a side effect, reduces the amount of IV processing within the loop.
1138 //===----------------------------------------------------------------------===//
1139 
1140 // Return true if the SCEV expansion generated by the rewriter can replace the
1141 // original value. SCEV guarantees that it produces the same value, but the way
1142 // it is produced may be illegal IR.  Ideally, this function will only be
1143 // called for verification.
1144 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1145   // If an SCEV expression subsumed multiple pointers, its expansion could
1146   // reassociate the GEP changing the base pointer. This is illegal because the
1147   // final address produced by a GEP chain must be inbounds relative to its
1148   // underlying object. Otherwise basic alias analysis, among other things,
1149   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1150   // producing an expression involving multiple pointers. Until then, we must
1151   // bail out here.
1152   //
1153   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1154   // because it understands lcssa phis while SCEV does not.
1155   Value *FromPtr = FromVal;
1156   Value *ToPtr = ToVal;
1157   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1158     FromPtr = GEP->getPointerOperand();
1159 
1160   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1161     ToPtr = GEP->getPointerOperand();
1162 
1163   if (FromPtr != FromVal || ToPtr != ToVal) {
1164     // Quickly check the common case
1165     if (FromPtr == ToPtr)
1166       return true;
1167 
1168     // SCEV may have rewritten an expression that produces the GEP's pointer
1169     // operand. That's ok as long as the pointer operand has the same base
1170     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1171     // base of a recurrence. This handles the case in which SCEV expansion
1172     // converts a pointer type recurrence into a nonrecurrent pointer base
1173     // indexed by an integer recurrence.
1174 
1175     // If the GEP base pointer is a vector of pointers, abort.
1176     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1177       return false;
1178 
1179     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1180     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1181     if (FromBase == ToBase)
1182       return true;
1183 
1184     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1185                       << *FromBase << " != " << *ToBase << "\n");
1186 
1187     return false;
1188   }
1189   return true;
1190 }
1191 
1192 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1193   SmallPtrSet<const Instruction *, 8> Visited;
1194   SmallVector<const Instruction *, 8> WorkList;
1195   Visited.insert(I);
1196   WorkList.push_back(I);
1197   while (!WorkList.empty()) {
1198     const Instruction *Curr = WorkList.pop_back_val();
1199     // This use is outside the loop, nothing to do.
1200     if (!L->contains(Curr))
1201       continue;
1202     // Do we assume it is a "hard" use which will not be eliminated easily?
1203     if (Curr->mayHaveSideEffects())
1204       return true;
1205     // Otherwise, add all its users to worklist.
1206     for (auto U : Curr->users()) {
1207       auto *UI = cast<Instruction>(U);
1208       if (Visited.insert(UI).second)
1209         WorkList.push_back(UI);
1210     }
1211   }
1212   return false;
1213 }
1214 
1215 // Collect information about PHI nodes which can be transformed in
1216 // rewriteLoopExitValues.
1217 struct RewritePhi {
1218   PHINode *PN;               // For which PHI node is this replacement?
1219   unsigned Ith;              // For which incoming value?
1220   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1221   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1222   bool HighCost;               // Is this expansion a high-cost?
1223 
1224   Value *Expansion = nullptr;
1225   bool ValidRewrite = false;
1226 
1227   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1228              bool H)
1229       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1230         HighCost(H) {}
1231 };
1232 
1233 // Check whether it is possible to delete the loop after rewriting exit
1234 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1235 // aggressively.
1236 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1237   BasicBlock *Preheader = L->getLoopPreheader();
1238   // If there is no preheader, the loop will not be deleted.
1239   if (!Preheader)
1240     return false;
1241 
1242   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1243   // We obviate multiple ExitingBlocks case for simplicity.
1244   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1245   // after exit value rewriting, we can enhance the logic here.
1246   SmallVector<BasicBlock *, 4> ExitingBlocks;
1247   L->getExitingBlocks(ExitingBlocks);
1248   SmallVector<BasicBlock *, 8> ExitBlocks;
1249   L->getUniqueExitBlocks(ExitBlocks);
1250   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1251     return false;
1252 
1253   BasicBlock *ExitBlock = ExitBlocks[0];
1254   BasicBlock::iterator BI = ExitBlock->begin();
1255   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1256     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1257 
1258     // If the Incoming value of P is found in RewritePhiSet, we know it
1259     // could be rewritten to use a loop invariant value in transformation
1260     // phase later. Skip it in the loop invariant check below.
1261     bool found = false;
1262     for (const RewritePhi &Phi : RewritePhiSet) {
1263       if (!Phi.ValidRewrite)
1264         continue;
1265       unsigned i = Phi.Ith;
1266       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1267         found = true;
1268         break;
1269       }
1270     }
1271 
1272     Instruction *I;
1273     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1274       if (!L->hasLoopInvariantOperands(I))
1275         return false;
1276 
1277     ++BI;
1278   }
1279 
1280   for (auto *BB : L->blocks())
1281     if (llvm::any_of(*BB, [](Instruction &I) {
1282           return I.mayHaveSideEffects();
1283         }))
1284       return false;
1285 
1286   return true;
1287 }
1288 
1289 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1290                                 ScalarEvolution *SE,
1291                                 const TargetTransformInfo *TTI,
1292                                 SCEVExpander &Rewriter, DominatorTree *DT,
1293                                 ReplaceExitVal ReplaceExitValue,
1294                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1295   // Check a pre-condition.
1296   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1297          "Indvars did not preserve LCSSA!");
1298 
1299   SmallVector<BasicBlock*, 8> ExitBlocks;
1300   L->getUniqueExitBlocks(ExitBlocks);
1301 
1302   SmallVector<RewritePhi, 8> RewritePhiSet;
1303   // Find all values that are computed inside the loop, but used outside of it.
1304   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1305   // the exit blocks of the loop to find them.
1306   for (BasicBlock *ExitBB : ExitBlocks) {
1307     // If there are no PHI nodes in this exit block, then no values defined
1308     // inside the loop are used on this path, skip it.
1309     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1310     if (!PN) continue;
1311 
1312     unsigned NumPreds = PN->getNumIncomingValues();
1313 
1314     // Iterate over all of the PHI nodes.
1315     BasicBlock::iterator BBI = ExitBB->begin();
1316     while ((PN = dyn_cast<PHINode>(BBI++))) {
1317       if (PN->use_empty())
1318         continue; // dead use, don't replace it
1319 
1320       if (!SE->isSCEVable(PN->getType()))
1321         continue;
1322 
1323       // It's necessary to tell ScalarEvolution about this explicitly so that
1324       // it can walk the def-use list and forget all SCEVs, as it may not be
1325       // watching the PHI itself. Once the new exit value is in place, there
1326       // may not be a def-use connection between the loop and every instruction
1327       // which got a SCEVAddRecExpr for that loop.
1328       SE->forgetValue(PN);
1329 
1330       // Iterate over all of the values in all the PHI nodes.
1331       for (unsigned i = 0; i != NumPreds; ++i) {
1332         // If the value being merged in is not integer or is not defined
1333         // in the loop, skip it.
1334         Value *InVal = PN->getIncomingValue(i);
1335         if (!isa<Instruction>(InVal))
1336           continue;
1337 
1338         // If this pred is for a subloop, not L itself, skip it.
1339         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1340           continue; // The Block is in a subloop, skip it.
1341 
1342         // Check that InVal is defined in the loop.
1343         Instruction *Inst = cast<Instruction>(InVal);
1344         if (!L->contains(Inst))
1345           continue;
1346 
1347         // Okay, this instruction has a user outside of the current loop
1348         // and varies predictably *inside* the loop.  Evaluate the value it
1349         // contains when the loop exits, if possible.  We prefer to start with
1350         // expressions which are true for all exits (so as to maximize
1351         // expression reuse by the SCEVExpander), but resort to per-exit
1352         // evaluation if that fails.
1353         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1354         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1355             !SE->isLoopInvariant(ExitValue, L) ||
1356             !isSafeToExpand(ExitValue, *SE)) {
1357           // TODO: This should probably be sunk into SCEV in some way; maybe a
1358           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1359           // most SCEV expressions and other recurrence types (e.g. shift
1360           // recurrences).  Is there existing code we can reuse?
1361           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1362           if (isa<SCEVCouldNotCompute>(ExitCount))
1363             continue;
1364           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1365             if (AddRec->getLoop() == L)
1366               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1367           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1368               !SE->isLoopInvariant(ExitValue, L) ||
1369               !isSafeToExpand(ExitValue, *SE))
1370             continue;
1371         }
1372 
1373         // Computing the value outside of the loop brings no benefit if it is
1374         // definitely used inside the loop in a way which can not be optimized
1375         // away. Avoid doing so unless we know we have a value which computes
1376         // the ExitValue already. TODO: This should be merged into SCEV
1377         // expander to leverage its knowledge of existing expressions.
1378         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1379             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1380           continue;
1381 
1382         // Check if expansions of this SCEV would count as being high cost.
1383         bool HighCost = Rewriter.isHighCostExpansion(
1384             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1385 
1386         // Note that we must not perform expansions until after
1387         // we query *all* the costs, because if we perform temporary expansion
1388         // inbetween, one that we might not intend to keep, said expansion
1389         // *may* affect cost calculation of the the next SCEV's we'll query,
1390         // and next SCEV may errneously get smaller cost.
1391 
1392         // Collect all the candidate PHINodes to be rewritten.
1393         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1394       }
1395     }
1396   }
1397 
1398   // Now that we've done preliminary filtering and billed all the SCEV's,
1399   // we can perform the last sanity check - the expansion must be valid.
1400   for (RewritePhi &Phi : RewritePhiSet) {
1401     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1402                                            Phi.ExpansionPoint);
1403 
1404     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1405                       << *(Phi.Expansion) << '\n'
1406                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1407 
1408     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1409     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1410     if (!Phi.ValidRewrite) {
1411       DeadInsts.push_back(Phi.Expansion);
1412       continue;
1413     }
1414 
1415 #ifndef NDEBUG
1416     // If we reuse an instruction from a loop which is neither L nor one of
1417     // its containing loops, we end up breaking LCSSA form for this loop by
1418     // creating a new use of its instruction.
1419     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1420       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1421         if (EVL != L)
1422           assert(EVL->contains(L) && "LCSSA breach detected!");
1423 #endif
1424   }
1425 
1426   // TODO: after isValidRewrite() is an assertion, evaluate whether
1427   // it is beneficial to change how we calculate high-cost:
1428   // if we have SCEV 'A' which we know we will expand, should we calculate
1429   // the cost of other SCEV's after expanding SCEV 'A',
1430   // thus potentially giving cost bonus to those other SCEV's?
1431 
1432   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1433   int NumReplaced = 0;
1434 
1435   // Transformation.
1436   for (const RewritePhi &Phi : RewritePhiSet) {
1437     if (!Phi.ValidRewrite)
1438       continue;
1439 
1440     PHINode *PN = Phi.PN;
1441     Value *ExitVal = Phi.Expansion;
1442 
1443     // Only do the rewrite when the ExitValue can be expanded cheaply.
1444     // If LoopCanBeDel is true, rewrite exit value aggressively.
1445     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1446       DeadInsts.push_back(ExitVal);
1447       continue;
1448     }
1449 
1450     NumReplaced++;
1451     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1452     PN->setIncomingValue(Phi.Ith, ExitVal);
1453 
1454     // If this instruction is dead now, delete it. Don't do it now to avoid
1455     // invalidating iterators.
1456     if (isInstructionTriviallyDead(Inst, TLI))
1457       DeadInsts.push_back(Inst);
1458 
1459     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1460     if (PN->getNumIncomingValues() == 1 &&
1461         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1462       PN->replaceAllUsesWith(ExitVal);
1463       PN->eraseFromParent();
1464     }
1465   }
1466 
1467   // The insertion point instruction may have been deleted; clear it out
1468   // so that the rewriter doesn't trip over it later.
1469   Rewriter.clearInsertPoint();
1470   return NumReplaced;
1471 }
1472 
1473 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1474 /// \p OrigLoop.
1475 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1476                                         Loop *RemainderLoop, uint64_t UF) {
1477   assert(UF > 0 && "Zero unrolled factor is not supported");
1478   assert(UnrolledLoop != RemainderLoop &&
1479          "Unrolled and Remainder loops are expected to distinct");
1480 
1481   // Get number of iterations in the original scalar loop.
1482   unsigned OrigLoopInvocationWeight = 0;
1483   Optional<unsigned> OrigAverageTripCount =
1484       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1485   if (!OrigAverageTripCount)
1486     return;
1487 
1488   // Calculate number of iterations in unrolled loop.
1489   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1490   // Calculate number of iterations for remainder loop.
1491   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1492 
1493   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1494                             OrigLoopInvocationWeight);
1495   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1496                             OrigLoopInvocationWeight);
1497 }
1498 
1499 /// Utility that implements appending of loops onto a worklist.
1500 /// Loops are added in preorder (analogous for reverse postorder for trees),
1501 /// and the worklist is processed LIFO.
1502 template <typename RangeT>
1503 void llvm::appendReversedLoopsToWorklist(
1504     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1505   // We use an internal worklist to build up the preorder traversal without
1506   // recursion.
1507   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1508 
1509   // We walk the initial sequence of loops in reverse because we generally want
1510   // to visit defs before uses and the worklist is LIFO.
1511   for (Loop *RootL : Loops) {
1512     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1513     assert(PreOrderWorklist.empty() &&
1514            "Must start with an empty preorder walk worklist.");
1515     PreOrderWorklist.push_back(RootL);
1516     do {
1517       Loop *L = PreOrderWorklist.pop_back_val();
1518       PreOrderWorklist.append(L->begin(), L->end());
1519       PreOrderLoops.push_back(L);
1520     } while (!PreOrderWorklist.empty());
1521 
1522     Worklist.insert(std::move(PreOrderLoops));
1523     PreOrderLoops.clear();
1524   }
1525 }
1526 
1527 template <typename RangeT>
1528 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1529                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1530   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1531 }
1532 
1533 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1534     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1535 
1536 template void
1537 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1538                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1539 
1540 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1541                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1542   appendReversedLoopsToWorklist(LI, Worklist);
1543 }
1544 
1545 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1546                       LoopInfo *LI, LPPassManager *LPM) {
1547   Loop &New = *LI->AllocateLoop();
1548   if (PL)
1549     PL->addChildLoop(&New);
1550   else
1551     LI->addTopLevelLoop(&New);
1552 
1553   if (LPM)
1554     LPM->addLoop(New);
1555 
1556   // Add all of the blocks in L to the new loop.
1557   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1558        I != E; ++I)
1559     if (LI->getLoopFor(*I) == L)
1560       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1561 
1562   // Add all of the subloops to the new loop.
1563   for (Loop *I : *L)
1564     cloneLoop(I, &New, VM, LI, LPM);
1565 
1566   return &New;
1567 }
1568 
1569 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1570 /// need to use value-handles because SCEV expansion can invalidate previously
1571 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1572 /// a previous one.
1573 struct PointerBounds {
1574   TrackingVH<Value> Start;
1575   TrackingVH<Value> End;
1576 };
1577 
1578 /// Expand code for the lower and upper bound of the pointer group \p CG
1579 /// in \p TheLoop.  \return the values for the bounds.
1580 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1581                                   Loop *TheLoop, Instruction *Loc,
1582                                   SCEVExpander &Exp, ScalarEvolution *SE) {
1583   // TODO: Add helper to retrieve pointers to CG.
1584   Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1585   const SCEV *Sc = SE->getSCEV(Ptr);
1586 
1587   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1588   LLVMContext &Ctx = Loc->getContext();
1589 
1590   // Use this type for pointer arithmetic.
1591   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1592 
1593   if (SE->isLoopInvariant(Sc, TheLoop)) {
1594     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1595                       << *Ptr << "\n");
1596     // Ptr could be in the loop body. If so, expand a new one at the correct
1597     // location.
1598     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1599     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1600                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1601                         : Ptr;
1602     // We must return a half-open range, which means incrementing Sc.
1603     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1604     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1605     return {NewPtr, NewPtrPlusOne};
1606   } else {
1607     Value *Start = nullptr, *End = nullptr;
1608     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1609     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1610     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1611     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1612                       << "\n");
1613     return {Start, End};
1614   }
1615 }
1616 
1617 /// Turns a collection of checks into a collection of expanded upper and
1618 /// lower bounds for both pointers in the check.
1619 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1620 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1621              Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1622   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1623 
1624   // Here we're relying on the SCEV Expander's cache to only emit code for the
1625   // same bounds once.
1626   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1627             [&](const RuntimePointerCheck &Check) {
1628               PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1629                             Second =
1630                                 expandBounds(Check.second, L, Loc, Exp, SE);
1631               return std::make_pair(First, Second);
1632             });
1633 
1634   return ChecksWithBounds;
1635 }
1636 
1637 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1638     Instruction *Loc, Loop *TheLoop,
1639     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1640     ScalarEvolution *SE) {
1641   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1642   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1643   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1644   SCEVExpander Exp(*SE, DL, "induction");
1645   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1646 
1647   LLVMContext &Ctx = Loc->getContext();
1648   Instruction *FirstInst = nullptr;
1649   IRBuilder<> ChkBuilder(Loc);
1650   // Our instructions might fold to a constant.
1651   Value *MemoryRuntimeCheck = nullptr;
1652 
1653   // FIXME: this helper is currently a duplicate of the one in
1654   // LoopVectorize.cpp.
1655   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1656                          Instruction *Loc) -> Instruction * {
1657     if (FirstInst)
1658       return FirstInst;
1659     if (Instruction *I = dyn_cast<Instruction>(V))
1660       return I->getParent() == Loc->getParent() ? I : nullptr;
1661     return nullptr;
1662   };
1663 
1664   for (const auto &Check : ExpandedChecks) {
1665     const PointerBounds &A = Check.first, &B = Check.second;
1666     // Check if two pointers (A and B) conflict where conflict is computed as:
1667     // start(A) <= end(B) && start(B) <= end(A)
1668     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1669     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1670 
1671     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1672            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1673            "Trying to bounds check pointers with different address spaces");
1674 
1675     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1676     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1677 
1678     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1679     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1680     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1681     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1682 
1683     // [A|B].Start points to the first accessed byte under base [A|B].
1684     // [A|B].End points to the last accessed byte, plus one.
1685     // There is no conflict when the intervals are disjoint:
1686     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1687     //
1688     // bound0 = (B.Start < A.End)
1689     // bound1 = (A.Start < B.End)
1690     //  IsConflict = bound0 & bound1
1691     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1692     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1693     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1694     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1695     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1696     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1697     if (MemoryRuntimeCheck) {
1698       IsConflict =
1699           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1700       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1701     }
1702     MemoryRuntimeCheck = IsConflict;
1703   }
1704 
1705   if (!MemoryRuntimeCheck)
1706     return std::make_pair(nullptr, nullptr);
1707 
1708   // We have to do this trickery because the IRBuilder might fold the check to a
1709   // constant expression in which case there is no Instruction anchored in a
1710   // the block.
1711   Instruction *Check =
1712       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1713   ChkBuilder.Insert(Check, "memcheck.conflict");
1714   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1715   return std::make_pair(FirstInst, Check);
1716 }
1717