1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<bool> ForceReductionIntrinsic(
58     "force-reduction-intrinsics", cl::Hidden,
59     cl::desc("Force creating reduction intrinsics for testing."),
60     cl::init(false));
61 
62 #define DEBUG_TYPE "loop-utils"
63 
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 
67 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
68                                    MemorySSAUpdater *MSSAU,
69                                    bool PreserveLCSSA) {
70   bool Changed = false;
71 
72   // We re-use a vector for the in-loop predecesosrs.
73   SmallVector<BasicBlock *, 4> InLoopPredecessors;
74 
75   auto RewriteExit = [&](BasicBlock *BB) {
76     assert(InLoopPredecessors.empty() &&
77            "Must start with an empty predecessors list!");
78     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
79 
80     // See if there are any non-loop predecessors of this exit block and
81     // keep track of the in-loop predecessors.
82     bool IsDedicatedExit = true;
83     for (auto *PredBB : predecessors(BB))
84       if (L->contains(PredBB)) {
85         if (isa<IndirectBrInst>(PredBB->getTerminator()))
86           // We cannot rewrite exiting edges from an indirectbr.
87           return false;
88         if (isa<CallBrInst>(PredBB->getTerminator()))
89           // We cannot rewrite exiting edges from a callbr.
90           return false;
91 
92         InLoopPredecessors.push_back(PredBB);
93       } else {
94         IsDedicatedExit = false;
95       }
96 
97     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
98 
99     // Nothing to do if this is already a dedicated exit.
100     if (IsDedicatedExit)
101       return false;
102 
103     auto *NewExitBB = SplitBlockPredecessors(
104         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
105 
106     if (!NewExitBB)
107       LLVM_DEBUG(
108           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
109                  << *L << "\n");
110     else
111       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
112                         << NewExitBB->getName() << "\n");
113     return true;
114   };
115 
116   // Walk the exit blocks directly rather than building up a data structure for
117   // them, but only visit each one once.
118   SmallPtrSet<BasicBlock *, 4> Visited;
119   for (auto *BB : L->blocks())
120     for (auto *SuccBB : successors(BB)) {
121       // We're looking for exit blocks so skip in-loop successors.
122       if (L->contains(SuccBB))
123         continue;
124 
125       // Visit each exit block exactly once.
126       if (!Visited.insert(SuccBB).second)
127         continue;
128 
129       Changed |= RewriteExit(SuccBB);
130     }
131 
132   return Changed;
133 }
134 
135 /// Returns the instructions that use values defined in the loop.
136 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
137   SmallVector<Instruction *, 8> UsedOutside;
138 
139   for (auto *Block : L->getBlocks())
140     // FIXME: I believe that this could use copy_if if the Inst reference could
141     // be adapted into a pointer.
142     for (auto &Inst : *Block) {
143       auto Users = Inst.users();
144       if (any_of(Users, [&](User *U) {
145             auto *Use = cast<Instruction>(U);
146             return !L->contains(Use->getParent());
147           }))
148         UsedOutside.push_back(&Inst);
149     }
150 
151   return UsedOutside;
152 }
153 
154 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
155   // By definition, all loop passes need the LoopInfo analysis and the
156   // Dominator tree it depends on. Because they all participate in the loop
157   // pass manager, they must also preserve these.
158   AU.addRequired<DominatorTreeWrapperPass>();
159   AU.addPreserved<DominatorTreeWrapperPass>();
160   AU.addRequired<LoopInfoWrapperPass>();
161   AU.addPreserved<LoopInfoWrapperPass>();
162 
163   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
164   // here because users shouldn't directly get them from this header.
165   extern char &LoopSimplifyID;
166   extern char &LCSSAID;
167   AU.addRequiredID(LoopSimplifyID);
168   AU.addPreservedID(LoopSimplifyID);
169   AU.addRequiredID(LCSSAID);
170   AU.addPreservedID(LCSSAID);
171   // This is used in the LPPassManager to perform LCSSA verification on passes
172   // which preserve lcssa form
173   AU.addRequired<LCSSAVerificationPass>();
174   AU.addPreserved<LCSSAVerificationPass>();
175 
176   // Loop passes are designed to run inside of a loop pass manager which means
177   // that any function analyses they require must be required by the first loop
178   // pass in the manager (so that it is computed before the loop pass manager
179   // runs) and preserved by all loop pasess in the manager. To make this
180   // reasonably robust, the set needed for most loop passes is maintained here.
181   // If your loop pass requires an analysis not listed here, you will need to
182   // carefully audit the loop pass manager nesting structure that results.
183   AU.addRequired<AAResultsWrapperPass>();
184   AU.addPreserved<AAResultsWrapperPass>();
185   AU.addPreserved<BasicAAWrapperPass>();
186   AU.addPreserved<GlobalsAAWrapperPass>();
187   AU.addPreserved<SCEVAAWrapperPass>();
188   AU.addRequired<ScalarEvolutionWrapperPass>();
189   AU.addPreserved<ScalarEvolutionWrapperPass>();
190   // FIXME: When all loop passes preserve MemorySSA, it can be required and
191   // preserved here instead of the individual handling in each pass.
192 }
193 
194 /// Manually defined generic "LoopPass" dependency initialization. This is used
195 /// to initialize the exact set of passes from above in \c
196 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
197 /// with:
198 ///
199 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
200 ///
201 /// As-if "LoopPass" were a pass.
202 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
203   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
206   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
208   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
209   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
210   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
211   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
212   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
213 }
214 
215 /// Create MDNode for input string.
216 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
217   LLVMContext &Context = TheLoop->getHeader()->getContext();
218   Metadata *MDs[] = {
219       MDString::get(Context, Name),
220       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
221   return MDNode::get(Context, MDs);
222 }
223 
224 /// Set input string into loop metadata by keeping other values intact.
225 /// If the string is already in loop metadata update value if it is
226 /// different.
227 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
228                                    unsigned V) {
229   SmallVector<Metadata *, 4> MDs(1);
230   // If the loop already has metadata, retain it.
231   MDNode *LoopID = TheLoop->getLoopID();
232   if (LoopID) {
233     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
234       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
235       // If it is of form key = value, try to parse it.
236       if (Node->getNumOperands() == 2) {
237         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
238         if (S && S->getString().equals(StringMD)) {
239           ConstantInt *IntMD =
240               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
241           if (IntMD && IntMD->getSExtValue() == V)
242             // It is already in place. Do nothing.
243             return;
244           // We need to update the value, so just skip it here and it will
245           // be added after copying other existed nodes.
246           continue;
247         }
248       }
249       MDs.push_back(Node);
250     }
251   }
252   // Add new metadata.
253   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
254   // Replace current metadata node with new one.
255   LLVMContext &Context = TheLoop->getHeader()->getContext();
256   MDNode *NewLoopID = MDNode::get(Context, MDs);
257   // Set operand 0 to refer to the loop id itself.
258   NewLoopID->replaceOperandWith(0, NewLoopID);
259   TheLoop->setLoopID(NewLoopID);
260 }
261 
262 /// Find string metadata for loop
263 ///
264 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
265 /// operand or null otherwise.  If the string metadata is not found return
266 /// Optional's not-a-value.
267 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
268                                                             StringRef Name) {
269   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
270   if (!MD)
271     return None;
272   switch (MD->getNumOperands()) {
273   case 1:
274     return nullptr;
275   case 2:
276     return &MD->getOperand(1);
277   default:
278     llvm_unreachable("loop metadata has 0 or 1 operand");
279   }
280 }
281 
282 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
283                                                    StringRef Name) {
284   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
285   if (!MD)
286     return None;
287   switch (MD->getNumOperands()) {
288   case 1:
289     // When the value is absent it is interpreted as 'attribute set'.
290     return true;
291   case 2:
292     if (ConstantInt *IntMD =
293             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
294       return IntMD->getZExtValue();
295     return true;
296   }
297   llvm_unreachable("unexpected number of options");
298 }
299 
300 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
301   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
302 }
303 
304 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
305                                                       StringRef Name) {
306   const MDOperand *AttrMD =
307       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
308   if (!AttrMD)
309     return None;
310 
311   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
312   if (!IntMD)
313     return None;
314 
315   return IntMD->getSExtValue();
316 }
317 
318 Optional<MDNode *> llvm::makeFollowupLoopID(
319     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
320     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
321   if (!OrigLoopID) {
322     if (AlwaysNew)
323       return nullptr;
324     return None;
325   }
326 
327   assert(OrigLoopID->getOperand(0) == OrigLoopID);
328 
329   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
330   bool InheritSomeAttrs =
331       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
332   SmallVector<Metadata *, 8> MDs;
333   MDs.push_back(nullptr);
334 
335   bool Changed = false;
336   if (InheritAllAttrs || InheritSomeAttrs) {
337     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
338       MDNode *Op = cast<MDNode>(Existing.get());
339 
340       auto InheritThisAttribute = [InheritSomeAttrs,
341                                    InheritOptionsExceptPrefix](MDNode *Op) {
342         if (!InheritSomeAttrs)
343           return false;
344 
345         // Skip malformatted attribute metadata nodes.
346         if (Op->getNumOperands() == 0)
347           return true;
348         Metadata *NameMD = Op->getOperand(0).get();
349         if (!isa<MDString>(NameMD))
350           return true;
351         StringRef AttrName = cast<MDString>(NameMD)->getString();
352 
353         // Do not inherit excluded attributes.
354         return !AttrName.startswith(InheritOptionsExceptPrefix);
355       };
356 
357       if (InheritThisAttribute(Op))
358         MDs.push_back(Op);
359       else
360         Changed = true;
361     }
362   } else {
363     // Modified if we dropped at least one attribute.
364     Changed = OrigLoopID->getNumOperands() > 1;
365   }
366 
367   bool HasAnyFollowup = false;
368   for (StringRef OptionName : FollowupOptions) {
369     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
370     if (!FollowupNode)
371       continue;
372 
373     HasAnyFollowup = true;
374     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
375       MDs.push_back(Option.get());
376       Changed = true;
377     }
378   }
379 
380   // Attributes of the followup loop not specified explicity, so signal to the
381   // transformation pass to add suitable attributes.
382   if (!AlwaysNew && !HasAnyFollowup)
383     return None;
384 
385   // If no attributes were added or remove, the previous loop Id can be reused.
386   if (!AlwaysNew && !Changed)
387     return OrigLoopID;
388 
389   // No attributes is equivalent to having no !llvm.loop metadata at all.
390   if (MDs.size() == 1)
391     return nullptr;
392 
393   // Build the new loop ID.
394   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
395   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
396   return FollowupLoopID;
397 }
398 
399 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
400   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
401 }
402 
403 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
404   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
405 }
406 
407 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
408   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
409     return TM_SuppressedByUser;
410 
411   Optional<int> Count =
412       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
413   if (Count.hasValue())
414     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
415 
416   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
417     return TM_ForcedByUser;
418 
419   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
420     return TM_ForcedByUser;
421 
422   if (hasDisableAllTransformsHint(L))
423     return TM_Disable;
424 
425   return TM_Unspecified;
426 }
427 
428 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
429   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
430     return TM_SuppressedByUser;
431 
432   Optional<int> Count =
433       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
434   if (Count.hasValue())
435     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
436 
437   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
438     return TM_ForcedByUser;
439 
440   if (hasDisableAllTransformsHint(L))
441     return TM_Disable;
442 
443   return TM_Unspecified;
444 }
445 
446 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
447   Optional<bool> Enable =
448       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
449 
450   if (Enable == false)
451     return TM_SuppressedByUser;
452 
453   Optional<int> VectorizeWidth =
454       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
455   Optional<int> InterleaveCount =
456       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
457 
458   // 'Forcing' vector width and interleave count to one effectively disables
459   // this tranformation.
460   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
461     return TM_SuppressedByUser;
462 
463   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
464     return TM_Disable;
465 
466   if (Enable == true)
467     return TM_ForcedByUser;
468 
469   if (VectorizeWidth == 1 && InterleaveCount == 1)
470     return TM_Disable;
471 
472   if (VectorizeWidth > 1 || InterleaveCount > 1)
473     return TM_Enable;
474 
475   if (hasDisableAllTransformsHint(L))
476     return TM_Disable;
477 
478   return TM_Unspecified;
479 }
480 
481 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
482   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
483     return TM_ForcedByUser;
484 
485   if (hasDisableAllTransformsHint(L))
486     return TM_Disable;
487 
488   return TM_Unspecified;
489 }
490 
491 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
492   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
493     return TM_SuppressedByUser;
494 
495   if (hasDisableAllTransformsHint(L))
496     return TM_Disable;
497 
498   return TM_Unspecified;
499 }
500 
501 /// Does a BFS from a given node to all of its children inside a given loop.
502 /// The returned vector of nodes includes the starting point.
503 SmallVector<DomTreeNode *, 16>
504 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
505   SmallVector<DomTreeNode *, 16> Worklist;
506   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
507     // Only include subregions in the top level loop.
508     BasicBlock *BB = DTN->getBlock();
509     if (CurLoop->contains(BB))
510       Worklist.push_back(DTN);
511   };
512 
513   AddRegionToWorklist(N);
514 
515   for (size_t I = 0; I < Worklist.size(); I++)
516     for (DomTreeNode *Child : Worklist[I]->getChildren())
517       AddRegionToWorklist(Child);
518 
519   return Worklist;
520 }
521 
522 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
523                           LoopInfo *LI, MemorySSA *MSSA) {
524   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
525   auto *Preheader = L->getLoopPreheader();
526   assert(Preheader && "Preheader should exist!");
527 
528   std::unique_ptr<MemorySSAUpdater> MSSAU;
529   if (MSSA)
530     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
531 
532   // Now that we know the removal is safe, remove the loop by changing the
533   // branch from the preheader to go to the single exit block.
534   //
535   // Because we're deleting a large chunk of code at once, the sequence in which
536   // we remove things is very important to avoid invalidation issues.
537 
538   // Tell ScalarEvolution that the loop is deleted. Do this before
539   // deleting the loop so that ScalarEvolution can look at the loop
540   // to determine what it needs to clean up.
541   if (SE)
542     SE->forgetLoop(L);
543 
544   auto *ExitBlock = L->getUniqueExitBlock();
545   assert(ExitBlock && "Should have a unique exit block!");
546   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
547 
548   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
549   assert(OldBr && "Preheader must end with a branch");
550   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
551   // Connect the preheader to the exit block. Keep the old edge to the header
552   // around to perform the dominator tree update in two separate steps
553   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
554   // preheader -> header.
555   //
556   //
557   // 0.  Preheader          1.  Preheader           2.  Preheader
558   //        |                    |   |                   |
559   //        V                    |   V                   |
560   //      Header <--\            | Header <--\           | Header <--\
561   //       |  |     |            |  |  |     |           |  |  |     |
562   //       |  V     |            |  |  V     |           |  |  V     |
563   //       | Body --/            |  | Body --/           |  | Body --/
564   //       V                     V  V                    V  V
565   //      Exit                   Exit                    Exit
566   //
567   // By doing this is two separate steps we can perform the dominator tree
568   // update without using the batch update API.
569   //
570   // Even when the loop is never executed, we cannot remove the edge from the
571   // source block to the exit block. Consider the case where the unexecuted loop
572   // branches back to an outer loop. If we deleted the loop and removed the edge
573   // coming to this inner loop, this will break the outer loop structure (by
574   // deleting the backedge of the outer loop). If the outer loop is indeed a
575   // non-loop, it will be deleted in a future iteration of loop deletion pass.
576   IRBuilder<> Builder(OldBr);
577   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
578   // Remove the old branch. The conditional branch becomes a new terminator.
579   OldBr->eraseFromParent();
580 
581   // Rewrite phis in the exit block to get their inputs from the Preheader
582   // instead of the exiting block.
583   for (PHINode &P : ExitBlock->phis()) {
584     // Set the zero'th element of Phi to be from the preheader and remove all
585     // other incoming values. Given the loop has dedicated exits, all other
586     // incoming values must be from the exiting blocks.
587     int PredIndex = 0;
588     P.setIncomingBlock(PredIndex, Preheader);
589     // Removes all incoming values from all other exiting blocks (including
590     // duplicate values from an exiting block).
591     // Nuke all entries except the zero'th entry which is the preheader entry.
592     // NOTE! We need to remove Incoming Values in the reverse order as done
593     // below, to keep the indices valid for deletion (removeIncomingValues
594     // updates getNumIncomingValues and shifts all values down into the operand
595     // being deleted).
596     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
597       P.removeIncomingValue(e - i, false);
598 
599     assert((P.getNumIncomingValues() == 1 &&
600             P.getIncomingBlock(PredIndex) == Preheader) &&
601            "Should have exactly one value and that's from the preheader!");
602   }
603 
604   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
605   if (DT) {
606     DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
607     if (MSSA) {
608       MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT);
609       if (VerifyMemorySSA)
610         MSSA->verifyMemorySSA();
611     }
612   }
613 
614   // Disconnect the loop body by branching directly to its exit.
615   Builder.SetInsertPoint(Preheader->getTerminator());
616   Builder.CreateBr(ExitBlock);
617   // Remove the old branch.
618   Preheader->getTerminator()->eraseFromParent();
619 
620   if (DT) {
621     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
622     if (MSSA) {
623       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
624                           *DT);
625       if (VerifyMemorySSA)
626         MSSA->verifyMemorySSA();
627       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
628                                                    L->block_end());
629       MSSAU->removeBlocks(DeadBlockSet);
630     }
631   }
632 
633   // Use a map to unique and a vector to guarantee deterministic ordering.
634   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
635   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
636 
637   // Given LCSSA form is satisfied, we should not have users of instructions
638   // within the dead loop outside of the loop. However, LCSSA doesn't take
639   // unreachable uses into account. We handle them here.
640   // We could do it after drop all references (in this case all users in the
641   // loop will be already eliminated and we have less work to do but according
642   // to API doc of User::dropAllReferences only valid operation after dropping
643   // references, is deletion. So let's substitute all usages of
644   // instruction from the loop with undef value of corresponding type first.
645   for (auto *Block : L->blocks())
646     for (Instruction &I : *Block) {
647       auto *Undef = UndefValue::get(I.getType());
648       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
649         Use &U = *UI;
650         ++UI;
651         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
652           if (L->contains(Usr->getParent()))
653             continue;
654         // If we have a DT then we can check that uses outside a loop only in
655         // unreachable block.
656         if (DT)
657           assert(!DT->isReachableFromEntry(U) &&
658                  "Unexpected user in reachable block");
659         U.set(Undef);
660       }
661       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
662       if (!DVI)
663         continue;
664       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
665       if (Key != DeadDebugSet.end())
666         continue;
667       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
668       DeadDebugInst.push_back(DVI);
669     }
670 
671   // After the loop has been deleted all the values defined and modified
672   // inside the loop are going to be unavailable.
673   // Since debug values in the loop have been deleted, inserting an undef
674   // dbg.value truncates the range of any dbg.value before the loop where the
675   // loop used to be. This is particularly important for constant values.
676   DIBuilder DIB(*ExitBlock->getModule());
677   Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
678   assert(InsertDbgValueBefore &&
679          "There should be a non-PHI instruction in exit block, else these "
680          "instructions will have no parent.");
681   for (auto *DVI : DeadDebugInst)
682     DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
683                                 DVI->getVariable(), DVI->getExpression(),
684                                 DVI->getDebugLoc(), InsertDbgValueBefore);
685 
686   // Remove the block from the reference counting scheme, so that we can
687   // delete it freely later.
688   for (auto *Block : L->blocks())
689     Block->dropAllReferences();
690 
691   if (MSSA && VerifyMemorySSA)
692     MSSA->verifyMemorySSA();
693 
694   if (LI) {
695     // Erase the instructions and the blocks without having to worry
696     // about ordering because we already dropped the references.
697     // NOTE: This iteration is safe because erasing the block does not remove
698     // its entry from the loop's block list.  We do that in the next section.
699     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
700          LpI != LpE; ++LpI)
701       (*LpI)->eraseFromParent();
702 
703     // Finally, the blocks from loopinfo.  This has to happen late because
704     // otherwise our loop iterators won't work.
705 
706     SmallPtrSet<BasicBlock *, 8> blocks;
707     blocks.insert(L->block_begin(), L->block_end());
708     for (BasicBlock *BB : blocks)
709       LI->removeBlock(BB);
710 
711     // The last step is to update LoopInfo now that we've eliminated this loop.
712     // Note: LoopInfo::erase remove the given loop and relink its subloops with
713     // its parent. While removeLoop/removeChildLoop remove the given loop but
714     // not relink its subloops, which is what we want.
715     if (Loop *ParentLoop = L->getParentLoop()) {
716       Loop::iterator I = find(ParentLoop->begin(), ParentLoop->end(), L);
717       assert(I != ParentLoop->end() && "Couldn't find loop");
718       ParentLoop->removeChildLoop(I);
719     } else {
720       Loop::iterator I = find(LI->begin(), LI->end(), L);
721       assert(I != LI->end() && "Couldn't find loop");
722       LI->removeLoop(I);
723     }
724     LI->destroy(L);
725   }
726 }
727 
728 /// Checks if \p L has single exit through latch block except possibly
729 /// "deoptimizing" exits. Returns branch instruction terminating the loop
730 /// latch if above check is successful, nullptr otherwise.
731 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
732   BasicBlock *Latch = L->getLoopLatch();
733   if (!Latch)
734     return nullptr;
735 
736   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
737   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
738     return nullptr;
739 
740   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
741           LatchBR->getSuccessor(1) == L->getHeader()) &&
742          "At least one edge out of the latch must go to the header");
743 
744   SmallVector<BasicBlock *, 4> ExitBlocks;
745   L->getUniqueNonLatchExitBlocks(ExitBlocks);
746   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
747         return !EB->getTerminatingDeoptimizeCall();
748       }))
749     return nullptr;
750 
751   return LatchBR;
752 }
753 
754 Optional<unsigned>
755 llvm::getLoopEstimatedTripCount(Loop *L,
756                                 unsigned *EstimatedLoopInvocationWeight) {
757   // Support loops with an exiting latch and other existing exists only
758   // deoptimize.
759   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
760   if (!LatchBranch)
761     return None;
762 
763   // To estimate the number of times the loop body was executed, we want to
764   // know the number of times the backedge was taken, vs. the number of times
765   // we exited the loop.
766   uint64_t BackedgeTakenWeight, LatchExitWeight;
767   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
768     return None;
769 
770   if (LatchBranch->getSuccessor(0) != L->getHeader())
771     std::swap(BackedgeTakenWeight, LatchExitWeight);
772 
773   if (!LatchExitWeight)
774     return None;
775 
776   if (EstimatedLoopInvocationWeight)
777     *EstimatedLoopInvocationWeight = LatchExitWeight;
778 
779   // Estimated backedge taken count is a ratio of the backedge taken weight by
780   // the weight of the edge exiting the loop, rounded to nearest.
781   uint64_t BackedgeTakenCount =
782       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
783   // Estimated trip count is one plus estimated backedge taken count.
784   return BackedgeTakenCount + 1;
785 }
786 
787 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
788                                      unsigned EstimatedloopInvocationWeight) {
789   // Support loops with an exiting latch and other existing exists only
790   // deoptimize.
791   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
792   if (!LatchBranch)
793     return false;
794 
795   // Calculate taken and exit weights.
796   unsigned LatchExitWeight = 0;
797   unsigned BackedgeTakenWeight = 0;
798 
799   if (EstimatedTripCount > 0) {
800     LatchExitWeight = EstimatedloopInvocationWeight;
801     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
802   }
803 
804   // Make a swap if back edge is taken when condition is "false".
805   if (LatchBranch->getSuccessor(0) != L->getHeader())
806     std::swap(BackedgeTakenWeight, LatchExitWeight);
807 
808   MDBuilder MDB(LatchBranch->getContext());
809 
810   // Set/Update profile metadata.
811   LatchBranch->setMetadata(
812       LLVMContext::MD_prof,
813       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
814 
815   return true;
816 }
817 
818 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
819                                               ScalarEvolution &SE) {
820   Loop *OuterL = InnerLoop->getParentLoop();
821   if (!OuterL)
822     return true;
823 
824   // Get the backedge taken count for the inner loop
825   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
826   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
827   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
828       !InnerLoopBECountSC->getType()->isIntegerTy())
829     return false;
830 
831   // Get whether count is invariant to the outer loop
832   ScalarEvolution::LoopDisposition LD =
833       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
834   if (LD != ScalarEvolution::LoopInvariant)
835     return false;
836 
837   return true;
838 }
839 
840 Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
841                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
842                             Value *Left, Value *Right) {
843   CmpInst::Predicate P = CmpInst::ICMP_NE;
844   switch (RK) {
845   default:
846     llvm_unreachable("Unknown min/max recurrence kind");
847   case RecurrenceDescriptor::MRK_UIntMin:
848     P = CmpInst::ICMP_ULT;
849     break;
850   case RecurrenceDescriptor::MRK_UIntMax:
851     P = CmpInst::ICMP_UGT;
852     break;
853   case RecurrenceDescriptor::MRK_SIntMin:
854     P = CmpInst::ICMP_SLT;
855     break;
856   case RecurrenceDescriptor::MRK_SIntMax:
857     P = CmpInst::ICMP_SGT;
858     break;
859   case RecurrenceDescriptor::MRK_FloatMin:
860     P = CmpInst::FCMP_OLT;
861     break;
862   case RecurrenceDescriptor::MRK_FloatMax:
863     P = CmpInst::FCMP_OGT;
864     break;
865   }
866 
867   // We only match FP sequences that are 'fast', so we can unconditionally
868   // set it on any generated instructions.
869   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
870   FastMathFlags FMF;
871   FMF.setFast();
872   Builder.setFastMathFlags(FMF);
873 
874   Value *Cmp;
875   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
876       RK == RecurrenceDescriptor::MRK_FloatMax)
877     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
878   else
879     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
880 
881   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
882   return Select;
883 }
884 
885 // Helper to generate an ordered reduction.
886 Value *
887 llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
888                           unsigned Op,
889                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
890                           ArrayRef<Value *> RedOps) {
891   unsigned VF = cast<VectorType>(Src->getType())->getNumElements();
892 
893   // Extract and apply reduction ops in ascending order:
894   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
895   Value *Result = Acc;
896   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
897     Value *Ext =
898         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
899 
900     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
901       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
902                                    "bin.rdx");
903     } else {
904       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
905              "Invalid min/max");
906       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
907     }
908 
909     if (!RedOps.empty())
910       propagateIRFlags(Result, RedOps);
911   }
912 
913   return Result;
914 }
915 
916 // Helper to generate a log2 shuffle reduction.
917 Value *
918 llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
919                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
920                           ArrayRef<Value *> RedOps) {
921   unsigned VF = cast<VectorType>(Src->getType())->getNumElements();
922   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
923   // and vector ops, reducing the set of values being computed by half each
924   // round.
925   assert(isPowerOf2_32(VF) &&
926          "Reduction emission only supported for pow2 vectors!");
927   Value *TmpVec = Src;
928   SmallVector<int, 32> ShuffleMask(VF);
929   for (unsigned i = VF; i != 1; i >>= 1) {
930     // Move the upper half of the vector to the lower half.
931     for (unsigned j = 0; j != i / 2; ++j)
932       ShuffleMask[j] = i / 2 + j;
933 
934     // Fill the rest of the mask with undef.
935     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
936 
937     Value *Shuf = Builder.CreateShuffleVector(
938         TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf");
939 
940     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
941       // The builder propagates its fast-math-flags setting.
942       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
943                                    "bin.rdx");
944     } else {
945       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
946              "Invalid min/max");
947       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
948     }
949     if (!RedOps.empty())
950       propagateIRFlags(TmpVec, RedOps);
951 
952     // We may compute the reassociated scalar ops in a way that does not
953     // preserve nsw/nuw etc. Conservatively, drop those flags.
954     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
955       ReductionInst->dropPoisonGeneratingFlags();
956   }
957   // The result is in the first element of the vector.
958   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
959 }
960 
961 /// Create a simple vector reduction specified by an opcode and some
962 /// flags (if generating min/max reductions).
963 Value *llvm::createSimpleTargetReduction(
964     IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
965     Value *Src, TargetTransformInfo::ReductionFlags Flags,
966     ArrayRef<Value *> RedOps) {
967   auto *SrcVTy = cast<VectorType>(Src->getType());
968 
969   std::function<Value *()> BuildFunc;
970   using RD = RecurrenceDescriptor;
971   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
972 
973   switch (Opcode) {
974   case Instruction::Add:
975     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
976     break;
977   case Instruction::Mul:
978     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
979     break;
980   case Instruction::And:
981     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
982     break;
983   case Instruction::Or:
984     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
985     break;
986   case Instruction::Xor:
987     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
988     break;
989   case Instruction::FAdd:
990     BuildFunc = [&]() {
991       auto Rdx = Builder.CreateFAddReduce(
992           Constant::getNullValue(SrcVTy->getElementType()), Src);
993       return Rdx;
994     };
995     break;
996   case Instruction::FMul:
997     BuildFunc = [&]() {
998       Type *Ty = SrcVTy->getElementType();
999       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
1000       return Rdx;
1001     };
1002     break;
1003   case Instruction::ICmp:
1004     if (Flags.IsMaxOp) {
1005       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1006       BuildFunc = [&]() {
1007         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1008       };
1009     } else {
1010       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1011       BuildFunc = [&]() {
1012         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1013       };
1014     }
1015     break;
1016   case Instruction::FCmp:
1017     if (Flags.IsMaxOp) {
1018       MinMaxKind = RD::MRK_FloatMax;
1019       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1020     } else {
1021       MinMaxKind = RD::MRK_FloatMin;
1022       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1023     }
1024     break;
1025   default:
1026     llvm_unreachable("Unhandled opcode");
1027     break;
1028   }
1029   if (ForceReductionIntrinsic ||
1030       TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1031     return BuildFunc();
1032   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1033 }
1034 
1035 /// Create a vector reduction using a given recurrence descriptor.
1036 Value *llvm::createTargetReduction(IRBuilderBase &B,
1037                                    const TargetTransformInfo *TTI,
1038                                    RecurrenceDescriptor &Desc, Value *Src,
1039                                    bool NoNaN) {
1040   // TODO: Support in-order reductions based on the recurrence descriptor.
1041   using RD = RecurrenceDescriptor;
1042   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1043   TargetTransformInfo::ReductionFlags Flags;
1044   Flags.NoNaN = NoNaN;
1045 
1046   // All ops in the reduction inherit fast-math-flags from the recurrence
1047   // descriptor.
1048   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1049   B.setFastMathFlags(Desc.getFastMathFlags());
1050 
1051   switch (RecKind) {
1052   case RD::RK_FloatAdd:
1053     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1054   case RD::RK_FloatMult:
1055     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1056   case RD::RK_IntegerAdd:
1057     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1058   case RD::RK_IntegerMult:
1059     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1060   case RD::RK_IntegerAnd:
1061     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1062   case RD::RK_IntegerOr:
1063     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1064   case RD::RK_IntegerXor:
1065     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1066   case RD::RK_IntegerMinMax: {
1067     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1068     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1069     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1070     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1071   }
1072   case RD::RK_FloatMinMax: {
1073     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1074     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1075   }
1076   default:
1077     llvm_unreachable("Unhandled RecKind");
1078   }
1079 }
1080 
1081 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1082   auto *VecOp = dyn_cast<Instruction>(I);
1083   if (!VecOp)
1084     return;
1085   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1086                                             : dyn_cast<Instruction>(OpValue);
1087   if (!Intersection)
1088     return;
1089   const unsigned Opcode = Intersection->getOpcode();
1090   VecOp->copyIRFlags(Intersection);
1091   for (auto *V : VL) {
1092     auto *Instr = dyn_cast<Instruction>(V);
1093     if (!Instr)
1094       continue;
1095     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1096       VecOp->andIRFlags(V);
1097   }
1098 }
1099 
1100 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1101                                  ScalarEvolution &SE) {
1102   const SCEV *Zero = SE.getZero(S->getType());
1103   return SE.isAvailableAtLoopEntry(S, L) &&
1104          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1105 }
1106 
1107 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1108                                     ScalarEvolution &SE) {
1109   const SCEV *Zero = SE.getZero(S->getType());
1110   return SE.isAvailableAtLoopEntry(S, L) &&
1111          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1112 }
1113 
1114 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1115                              bool Signed) {
1116   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1117   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1118     APInt::getMinValue(BitWidth);
1119   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1120   return SE.isAvailableAtLoopEntry(S, L) &&
1121          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1122                                      SE.getConstant(Min));
1123 }
1124 
1125 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1126                              bool Signed) {
1127   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1128   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1129     APInt::getMaxValue(BitWidth);
1130   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1131   return SE.isAvailableAtLoopEntry(S, L) &&
1132          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1133                                      SE.getConstant(Max));
1134 }
1135 
1136 //===----------------------------------------------------------------------===//
1137 // rewriteLoopExitValues - Optimize IV users outside the loop.
1138 // As a side effect, reduces the amount of IV processing within the loop.
1139 //===----------------------------------------------------------------------===//
1140 
1141 // Return true if the SCEV expansion generated by the rewriter can replace the
1142 // original value. SCEV guarantees that it produces the same value, but the way
1143 // it is produced may be illegal IR.  Ideally, this function will only be
1144 // called for verification.
1145 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1146   // If an SCEV expression subsumed multiple pointers, its expansion could
1147   // reassociate the GEP changing the base pointer. This is illegal because the
1148   // final address produced by a GEP chain must be inbounds relative to its
1149   // underlying object. Otherwise basic alias analysis, among other things,
1150   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1151   // producing an expression involving multiple pointers. Until then, we must
1152   // bail out here.
1153   //
1154   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
1155   // because it understands lcssa phis while SCEV does not.
1156   Value *FromPtr = FromVal;
1157   Value *ToPtr = ToVal;
1158   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1159     FromPtr = GEP->getPointerOperand();
1160 
1161   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1162     ToPtr = GEP->getPointerOperand();
1163 
1164   if (FromPtr != FromVal || ToPtr != ToVal) {
1165     // Quickly check the common case
1166     if (FromPtr == ToPtr)
1167       return true;
1168 
1169     // SCEV may have rewritten an expression that produces the GEP's pointer
1170     // operand. That's ok as long as the pointer operand has the same base
1171     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
1172     // base of a recurrence. This handles the case in which SCEV expansion
1173     // converts a pointer type recurrence into a nonrecurrent pointer base
1174     // indexed by an integer recurrence.
1175 
1176     // If the GEP base pointer is a vector of pointers, abort.
1177     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1178       return false;
1179 
1180     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1181     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1182     if (FromBase == ToBase)
1183       return true;
1184 
1185     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1186                       << *FromBase << " != " << *ToBase << "\n");
1187 
1188     return false;
1189   }
1190   return true;
1191 }
1192 
1193 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1194   SmallPtrSet<const Instruction *, 8> Visited;
1195   SmallVector<const Instruction *, 8> WorkList;
1196   Visited.insert(I);
1197   WorkList.push_back(I);
1198   while (!WorkList.empty()) {
1199     const Instruction *Curr = WorkList.pop_back_val();
1200     // This use is outside the loop, nothing to do.
1201     if (!L->contains(Curr))
1202       continue;
1203     // Do we assume it is a "hard" use which will not be eliminated easily?
1204     if (Curr->mayHaveSideEffects())
1205       return true;
1206     // Otherwise, add all its users to worklist.
1207     for (auto U : Curr->users()) {
1208       auto *UI = cast<Instruction>(U);
1209       if (Visited.insert(UI).second)
1210         WorkList.push_back(UI);
1211     }
1212   }
1213   return false;
1214 }
1215 
1216 // Collect information about PHI nodes which can be transformed in
1217 // rewriteLoopExitValues.
1218 struct RewritePhi {
1219   PHINode *PN;
1220   unsigned Ith;   // Ith incoming value.
1221   Value *Val;     // Exit value after expansion.
1222   bool HighCost;  // High Cost when expansion.
1223 
1224   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
1225       : PN(P), Ith(I), Val(V), HighCost(H) {}
1226 };
1227 
1228 // Check whether it is possible to delete the loop after rewriting exit
1229 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1230 // aggressively.
1231 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1232   BasicBlock *Preheader = L->getLoopPreheader();
1233   // If there is no preheader, the loop will not be deleted.
1234   if (!Preheader)
1235     return false;
1236 
1237   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1238   // We obviate multiple ExitingBlocks case for simplicity.
1239   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1240   // after exit value rewriting, we can enhance the logic here.
1241   SmallVector<BasicBlock *, 4> ExitingBlocks;
1242   L->getExitingBlocks(ExitingBlocks);
1243   SmallVector<BasicBlock *, 8> ExitBlocks;
1244   L->getUniqueExitBlocks(ExitBlocks);
1245   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1246     return false;
1247 
1248   BasicBlock *ExitBlock = ExitBlocks[0];
1249   BasicBlock::iterator BI = ExitBlock->begin();
1250   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1251     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1252 
1253     // If the Incoming value of P is found in RewritePhiSet, we know it
1254     // could be rewritten to use a loop invariant value in transformation
1255     // phase later. Skip it in the loop invariant check below.
1256     bool found = false;
1257     for (const RewritePhi &Phi : RewritePhiSet) {
1258       unsigned i = Phi.Ith;
1259       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1260         found = true;
1261         break;
1262       }
1263     }
1264 
1265     Instruction *I;
1266     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1267       if (!L->hasLoopInvariantOperands(I))
1268         return false;
1269 
1270     ++BI;
1271   }
1272 
1273   for (auto *BB : L->blocks())
1274     if (llvm::any_of(*BB, [](Instruction &I) {
1275           return I.mayHaveSideEffects();
1276         }))
1277       return false;
1278 
1279   return true;
1280 }
1281 
1282 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1283                                 ScalarEvolution *SE,
1284                                 const TargetTransformInfo *TTI,
1285                                 SCEVExpander &Rewriter, DominatorTree *DT,
1286                                 ReplaceExitVal ReplaceExitValue,
1287                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1288   // Check a pre-condition.
1289   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1290          "Indvars did not preserve LCSSA!");
1291 
1292   SmallVector<BasicBlock*, 8> ExitBlocks;
1293   L->getUniqueExitBlocks(ExitBlocks);
1294 
1295   SmallVector<RewritePhi, 8> RewritePhiSet;
1296   // Find all values that are computed inside the loop, but used outside of it.
1297   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1298   // the exit blocks of the loop to find them.
1299   for (BasicBlock *ExitBB : ExitBlocks) {
1300     // If there are no PHI nodes in this exit block, then no values defined
1301     // inside the loop are used on this path, skip it.
1302     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1303     if (!PN) continue;
1304 
1305     unsigned NumPreds = PN->getNumIncomingValues();
1306 
1307     // Iterate over all of the PHI nodes.
1308     BasicBlock::iterator BBI = ExitBB->begin();
1309     while ((PN = dyn_cast<PHINode>(BBI++))) {
1310       if (PN->use_empty())
1311         continue; // dead use, don't replace it
1312 
1313       if (!SE->isSCEVable(PN->getType()))
1314         continue;
1315 
1316       // It's necessary to tell ScalarEvolution about this explicitly so that
1317       // it can walk the def-use list and forget all SCEVs, as it may not be
1318       // watching the PHI itself. Once the new exit value is in place, there
1319       // may not be a def-use connection between the loop and every instruction
1320       // which got a SCEVAddRecExpr for that loop.
1321       SE->forgetValue(PN);
1322 
1323       // Iterate over all of the values in all the PHI nodes.
1324       for (unsigned i = 0; i != NumPreds; ++i) {
1325         // If the value being merged in is not integer or is not defined
1326         // in the loop, skip it.
1327         Value *InVal = PN->getIncomingValue(i);
1328         if (!isa<Instruction>(InVal))
1329           continue;
1330 
1331         // If this pred is for a subloop, not L itself, skip it.
1332         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1333           continue; // The Block is in a subloop, skip it.
1334 
1335         // Check that InVal is defined in the loop.
1336         Instruction *Inst = cast<Instruction>(InVal);
1337         if (!L->contains(Inst))
1338           continue;
1339 
1340         // Okay, this instruction has a user outside of the current loop
1341         // and varies predictably *inside* the loop.  Evaluate the value it
1342         // contains when the loop exits, if possible.  We prefer to start with
1343         // expressions which are true for all exits (so as to maximize
1344         // expression reuse by the SCEVExpander), but resort to per-exit
1345         // evaluation if that fails.
1346         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1347         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1348             !SE->isLoopInvariant(ExitValue, L) ||
1349             !isSafeToExpand(ExitValue, *SE)) {
1350           // TODO: This should probably be sunk into SCEV in some way; maybe a
1351           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1352           // most SCEV expressions and other recurrence types (e.g. shift
1353           // recurrences).  Is there existing code we can reuse?
1354           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1355           if (isa<SCEVCouldNotCompute>(ExitCount))
1356             continue;
1357           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1358             if (AddRec->getLoop() == L)
1359               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1360           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1361               !SE->isLoopInvariant(ExitValue, L) ||
1362               !isSafeToExpand(ExitValue, *SE))
1363             continue;
1364         }
1365 
1366         // Computing the value outside of the loop brings no benefit if it is
1367         // definitely used inside the loop in a way which can not be optimized
1368         // away. Avoid doing so unless we know we have a value which computes
1369         // the ExitValue already. TODO: This should be merged into SCEV
1370         // expander to leverage its knowledge of existing expressions.
1371         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1372             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1373           continue;
1374 
1375         bool HighCost = Rewriter.isHighCostExpansion(
1376             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1377         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
1378 
1379         LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1380                           << *ExitVal << '\n' << "  LoopVal = " << *Inst
1381                           << "\n");
1382 
1383         if (!isValidRewrite(SE, Inst, ExitVal)) {
1384           DeadInsts.push_back(ExitVal);
1385           continue;
1386         }
1387 
1388 #ifndef NDEBUG
1389         // If we reuse an instruction from a loop which is neither L nor one of
1390         // its containing loops, we end up breaking LCSSA form for this loop by
1391         // creating a new use of its instruction.
1392         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1393           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1394             if (EVL != L)
1395               assert(EVL->contains(L) && "LCSSA breach detected!");
1396 #endif
1397 
1398         // Collect all the candidate PHINodes to be rewritten.
1399         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
1400       }
1401     }
1402   }
1403 
1404   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1405   int NumReplaced = 0;
1406 
1407   // Transformation.
1408   for (const RewritePhi &Phi : RewritePhiSet) {
1409     PHINode *PN = Phi.PN;
1410     Value *ExitVal = Phi.Val;
1411 
1412     // Only do the rewrite when the ExitValue can be expanded cheaply.
1413     // If LoopCanBeDel is true, rewrite exit value aggressively.
1414     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1415       DeadInsts.push_back(ExitVal);
1416       continue;
1417     }
1418 
1419     NumReplaced++;
1420     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1421     PN->setIncomingValue(Phi.Ith, ExitVal);
1422 
1423     // If this instruction is dead now, delete it. Don't do it now to avoid
1424     // invalidating iterators.
1425     if (isInstructionTriviallyDead(Inst, TLI))
1426       DeadInsts.push_back(Inst);
1427 
1428     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1429     if (PN->getNumIncomingValues() == 1 &&
1430         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1431       PN->replaceAllUsesWith(ExitVal);
1432       PN->eraseFromParent();
1433     }
1434   }
1435 
1436   // The insertion point instruction may have been deleted; clear it out
1437   // so that the rewriter doesn't trip over it later.
1438   Rewriter.clearInsertPoint();
1439   return NumReplaced;
1440 }
1441 
1442 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1443 /// \p OrigLoop.
1444 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1445                                         Loop *RemainderLoop, uint64_t UF) {
1446   assert(UF > 0 && "Zero unrolled factor is not supported");
1447   assert(UnrolledLoop != RemainderLoop &&
1448          "Unrolled and Remainder loops are expected to distinct");
1449 
1450   // Get number of iterations in the original scalar loop.
1451   unsigned OrigLoopInvocationWeight = 0;
1452   Optional<unsigned> OrigAverageTripCount =
1453       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1454   if (!OrigAverageTripCount)
1455     return;
1456 
1457   // Calculate number of iterations in unrolled loop.
1458   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1459   // Calculate number of iterations for remainder loop.
1460   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1461 
1462   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1463                             OrigLoopInvocationWeight);
1464   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1465                             OrigLoopInvocationWeight);
1466 }
1467 
1468 /// Utility that implements appending of loops onto a worklist.
1469 /// Loops are added in preorder (analogous for reverse postorder for trees),
1470 /// and the worklist is processed LIFO.
1471 template <typename RangeT>
1472 void llvm::appendReversedLoopsToWorklist(
1473     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1474   // We use an internal worklist to build up the preorder traversal without
1475   // recursion.
1476   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1477 
1478   // We walk the initial sequence of loops in reverse because we generally want
1479   // to visit defs before uses and the worklist is LIFO.
1480   for (Loop *RootL : Loops) {
1481     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1482     assert(PreOrderWorklist.empty() &&
1483            "Must start with an empty preorder walk worklist.");
1484     PreOrderWorklist.push_back(RootL);
1485     do {
1486       Loop *L = PreOrderWorklist.pop_back_val();
1487       PreOrderWorklist.append(L->begin(), L->end());
1488       PreOrderLoops.push_back(L);
1489     } while (!PreOrderWorklist.empty());
1490 
1491     Worklist.insert(std::move(PreOrderLoops));
1492     PreOrderLoops.clear();
1493   }
1494 }
1495 
1496 template <typename RangeT>
1497 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1498                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1499   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1500 }
1501 
1502 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1503     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1504 
1505 template void
1506 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1507                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1508 
1509 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1510                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1511   appendReversedLoopsToWorklist(LI, Worklist);
1512 }
1513 
1514 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1515                       LoopInfo *LI, LPPassManager *LPM) {
1516   Loop &New = *LI->AllocateLoop();
1517   if (PL)
1518     PL->addChildLoop(&New);
1519   else
1520     LI->addTopLevelLoop(&New);
1521 
1522   if (LPM)
1523     LPM->addLoop(New);
1524 
1525   // Add all of the blocks in L to the new loop.
1526   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1527        I != E; ++I)
1528     if (LI->getLoopFor(*I) == L)
1529       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1530 
1531   // Add all of the subloops to the new loop.
1532   for (Loop *I : *L)
1533     cloneLoop(I, &New, VM, LI, LPM);
1534 
1535   return &New;
1536 }
1537 
1538 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1539 /// need to use value-handles because SCEV expansion can invalidate previously
1540 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1541 /// a previous one.
1542 struct PointerBounds {
1543   TrackingVH<Value> Start;
1544   TrackingVH<Value> End;
1545 };
1546 
1547 /// Expand code for the lower and upper bound of the pointer group \p CG
1548 /// in \p TheLoop.  \return the values for the bounds.
1549 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1550                                   Loop *TheLoop, Instruction *Loc,
1551                                   SCEVExpander &Exp, ScalarEvolution *SE) {
1552   // TODO: Add helper to retrieve pointers to CG.
1553   Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1554   const SCEV *Sc = SE->getSCEV(Ptr);
1555 
1556   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1557   LLVMContext &Ctx = Loc->getContext();
1558 
1559   // Use this type for pointer arithmetic.
1560   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1561 
1562   if (SE->isLoopInvariant(Sc, TheLoop)) {
1563     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1564                       << *Ptr << "\n");
1565     // Ptr could be in the loop body. If so, expand a new one at the correct
1566     // location.
1567     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1568     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1569                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1570                         : Ptr;
1571     // We must return a half-open range, which means incrementing Sc.
1572     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1573     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1574     return {NewPtr, NewPtrPlusOne};
1575   } else {
1576     Value *Start = nullptr, *End = nullptr;
1577     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1578     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1579     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1580     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1581                       << "\n");
1582     return {Start, End};
1583   }
1584 }
1585 
1586 /// Turns a collection of checks into a collection of expanded upper and
1587 /// lower bounds for both pointers in the check.
1588 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1589 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1590              Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1591   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1592 
1593   // Here we're relying on the SCEV Expander's cache to only emit code for the
1594   // same bounds once.
1595   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1596             [&](const RuntimePointerCheck &Check) {
1597               PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1598                             Second =
1599                                 expandBounds(Check.second, L, Loc, Exp, SE);
1600               return std::make_pair(First, Second);
1601             });
1602 
1603   return ChecksWithBounds;
1604 }
1605 
1606 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1607     Instruction *Loc, Loop *TheLoop,
1608     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1609     ScalarEvolution *SE) {
1610   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1611   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1612   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1613   SCEVExpander Exp(*SE, DL, "induction");
1614   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1615 
1616   LLVMContext &Ctx = Loc->getContext();
1617   Instruction *FirstInst = nullptr;
1618   IRBuilder<> ChkBuilder(Loc);
1619   // Our instructions might fold to a constant.
1620   Value *MemoryRuntimeCheck = nullptr;
1621 
1622   // FIXME: this helper is currently a duplicate of the one in
1623   // LoopVectorize.cpp.
1624   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1625                          Instruction *Loc) -> Instruction * {
1626     if (FirstInst)
1627       return FirstInst;
1628     if (Instruction *I = dyn_cast<Instruction>(V))
1629       return I->getParent() == Loc->getParent() ? I : nullptr;
1630     return nullptr;
1631   };
1632 
1633   for (const auto &Check : ExpandedChecks) {
1634     const PointerBounds &A = Check.first, &B = Check.second;
1635     // Check if two pointers (A and B) conflict where conflict is computed as:
1636     // start(A) <= end(B) && start(B) <= end(A)
1637     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1638     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1639 
1640     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1641            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1642            "Trying to bounds check pointers with different address spaces");
1643 
1644     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1645     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1646 
1647     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1648     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1649     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1650     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1651 
1652     // [A|B].Start points to the first accessed byte under base [A|B].
1653     // [A|B].End points to the last accessed byte, plus one.
1654     // There is no conflict when the intervals are disjoint:
1655     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1656     //
1657     // bound0 = (B.Start < A.End)
1658     // bound1 = (A.Start < B.End)
1659     //  IsConflict = bound0 & bound1
1660     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1661     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1662     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1663     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1664     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1665     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1666     if (MemoryRuntimeCheck) {
1667       IsConflict =
1668           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1669       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1670     }
1671     MemoryRuntimeCheck = IsConflict;
1672   }
1673 
1674   if (!MemoryRuntimeCheck)
1675     return std::make_pair(nullptr, nullptr);
1676 
1677   // We have to do this trickery because the IRBuilder might fold the check to a
1678   // constant expression in which case there is no Instruction anchored in a
1679   // the block.
1680   Instruction *Check =
1681       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1682   ChkBuilder.Insert(Check, "memcheck.conflict");
1683   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1684   return std::make_pair(FirstInst, Check);
1685 }
1686