1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/LoopUtils.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpander.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DomTreeUpdater.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "loop-utils" 46 47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 48 49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 50 bool PreserveLCSSA) { 51 bool Changed = false; 52 53 // We re-use a vector for the in-loop predecesosrs. 54 SmallVector<BasicBlock *, 4> InLoopPredecessors; 55 56 auto RewriteExit = [&](BasicBlock *BB) { 57 assert(InLoopPredecessors.empty() && 58 "Must start with an empty predecessors list!"); 59 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 60 61 // See if there are any non-loop predecessors of this exit block and 62 // keep track of the in-loop predecessors. 63 bool IsDedicatedExit = true; 64 for (auto *PredBB : predecessors(BB)) 65 if (L->contains(PredBB)) { 66 if (isa<IndirectBrInst>(PredBB->getTerminator())) 67 // We cannot rewrite exiting edges from an indirectbr. 68 return false; 69 70 InLoopPredecessors.push_back(PredBB); 71 } else { 72 IsDedicatedExit = false; 73 } 74 75 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 76 77 // Nothing to do if this is already a dedicated exit. 78 if (IsDedicatedExit) 79 return false; 80 81 auto *NewExitBB = SplitBlockPredecessors( 82 BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA); 83 84 if (!NewExitBB) 85 LLVM_DEBUG( 86 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 87 << *L << "\n"); 88 else 89 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 90 << NewExitBB->getName() << "\n"); 91 return true; 92 }; 93 94 // Walk the exit blocks directly rather than building up a data structure for 95 // them, but only visit each one once. 96 SmallPtrSet<BasicBlock *, 4> Visited; 97 for (auto *BB : L->blocks()) 98 for (auto *SuccBB : successors(BB)) { 99 // We're looking for exit blocks so skip in-loop successors. 100 if (L->contains(SuccBB)) 101 continue; 102 103 // Visit each exit block exactly once. 104 if (!Visited.insert(SuccBB).second) 105 continue; 106 107 Changed |= RewriteExit(SuccBB); 108 } 109 110 return Changed; 111 } 112 113 /// Returns the instructions that use values defined in the loop. 114 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 115 SmallVector<Instruction *, 8> UsedOutside; 116 117 for (auto *Block : L->getBlocks()) 118 // FIXME: I believe that this could use copy_if if the Inst reference could 119 // be adapted into a pointer. 120 for (auto &Inst : *Block) { 121 auto Users = Inst.users(); 122 if (any_of(Users, [&](User *U) { 123 auto *Use = cast<Instruction>(U); 124 return !L->contains(Use->getParent()); 125 })) 126 UsedOutside.push_back(&Inst); 127 } 128 129 return UsedOutside; 130 } 131 132 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 133 // By definition, all loop passes need the LoopInfo analysis and the 134 // Dominator tree it depends on. Because they all participate in the loop 135 // pass manager, they must also preserve these. 136 AU.addRequired<DominatorTreeWrapperPass>(); 137 AU.addPreserved<DominatorTreeWrapperPass>(); 138 AU.addRequired<LoopInfoWrapperPass>(); 139 AU.addPreserved<LoopInfoWrapperPass>(); 140 141 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 142 // here because users shouldn't directly get them from this header. 143 extern char &LoopSimplifyID; 144 extern char &LCSSAID; 145 AU.addRequiredID(LoopSimplifyID); 146 AU.addPreservedID(LoopSimplifyID); 147 AU.addRequiredID(LCSSAID); 148 AU.addPreservedID(LCSSAID); 149 // This is used in the LPPassManager to perform LCSSA verification on passes 150 // which preserve lcssa form 151 AU.addRequired<LCSSAVerificationPass>(); 152 AU.addPreserved<LCSSAVerificationPass>(); 153 154 // Loop passes are designed to run inside of a loop pass manager which means 155 // that any function analyses they require must be required by the first loop 156 // pass in the manager (so that it is computed before the loop pass manager 157 // runs) and preserved by all loop pasess in the manager. To make this 158 // reasonably robust, the set needed for most loop passes is maintained here. 159 // If your loop pass requires an analysis not listed here, you will need to 160 // carefully audit the loop pass manager nesting structure that results. 161 AU.addRequired<AAResultsWrapperPass>(); 162 AU.addPreserved<AAResultsWrapperPass>(); 163 AU.addPreserved<BasicAAWrapperPass>(); 164 AU.addPreserved<GlobalsAAWrapperPass>(); 165 AU.addPreserved<SCEVAAWrapperPass>(); 166 AU.addRequired<ScalarEvolutionWrapperPass>(); 167 AU.addPreserved<ScalarEvolutionWrapperPass>(); 168 } 169 170 /// Manually defined generic "LoopPass" dependency initialization. This is used 171 /// to initialize the exact set of passes from above in \c 172 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 173 /// with: 174 /// 175 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 176 /// 177 /// As-if "LoopPass" were a pass. 178 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 179 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 180 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 181 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 182 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 183 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 184 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 185 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 186 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 187 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 188 } 189 190 /// Find string metadata for loop 191 /// 192 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 193 /// operand or null otherwise. If the string metadata is not found return 194 /// Optional's not-a-value. 195 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 196 StringRef Name) { 197 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 198 if (!MD) 199 return None; 200 switch (MD->getNumOperands()) { 201 case 1: 202 return nullptr; 203 case 2: 204 return &MD->getOperand(1); 205 default: 206 llvm_unreachable("loop metadata has 0 or 1 operand"); 207 } 208 } 209 210 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 211 StringRef Name) { 212 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 213 if (!MD) 214 return None; 215 switch (MD->getNumOperands()) { 216 case 1: 217 // When the value is absent it is interpreted as 'attribute set'. 218 return true; 219 case 2: 220 return mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()); 221 } 222 llvm_unreachable("unexpected number of options"); 223 } 224 225 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 226 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 227 } 228 229 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 230 StringRef Name) { 231 const MDOperand *AttrMD = 232 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 233 if (!AttrMD) 234 return None; 235 236 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 237 if (!IntMD) 238 return None; 239 240 return IntMD->getSExtValue(); 241 } 242 243 Optional<MDNode *> llvm::makeFollowupLoopID( 244 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 245 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 246 if (!OrigLoopID) { 247 if (AlwaysNew) 248 return nullptr; 249 return None; 250 } 251 252 assert(OrigLoopID->getOperand(0) == OrigLoopID); 253 254 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 255 bool InheritSomeAttrs = 256 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 257 SmallVector<Metadata *, 8> MDs; 258 MDs.push_back(nullptr); 259 260 bool Changed = false; 261 if (InheritAllAttrs || InheritSomeAttrs) { 262 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 263 MDNode *Op = cast<MDNode>(Existing.get()); 264 265 auto InheritThisAttribute = [InheritSomeAttrs, 266 InheritOptionsExceptPrefix](MDNode *Op) { 267 if (!InheritSomeAttrs) 268 return false; 269 270 // Skip malformatted attribute metadata nodes. 271 if (Op->getNumOperands() == 0) 272 return true; 273 Metadata *NameMD = Op->getOperand(0).get(); 274 if (!isa<MDString>(NameMD)) 275 return true; 276 StringRef AttrName = cast<MDString>(NameMD)->getString(); 277 278 // Do not inherit excluded attributes. 279 return !AttrName.startswith(InheritOptionsExceptPrefix); 280 }; 281 282 if (InheritThisAttribute(Op)) 283 MDs.push_back(Op); 284 else 285 Changed = true; 286 } 287 } else { 288 // Modified if we dropped at least one attribute. 289 Changed = OrigLoopID->getNumOperands() > 1; 290 } 291 292 bool HasAnyFollowup = false; 293 for (StringRef OptionName : FollowupOptions) { 294 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 295 if (!FollowupNode) 296 continue; 297 298 HasAnyFollowup = true; 299 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 300 MDs.push_back(Option.get()); 301 Changed = true; 302 } 303 } 304 305 // Attributes of the followup loop not specified explicity, so signal to the 306 // transformation pass to add suitable attributes. 307 if (!AlwaysNew && !HasAnyFollowup) 308 return None; 309 310 // If no attributes were added or remove, the previous loop Id can be reused. 311 if (!AlwaysNew && !Changed) 312 return OrigLoopID; 313 314 // No attributes is equivalent to having no !llvm.loop metadata at all. 315 if (MDs.size() == 1) 316 return nullptr; 317 318 // Build the new loop ID. 319 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 320 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 321 return FollowupLoopID; 322 } 323 324 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 325 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 326 } 327 328 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 329 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 330 return TM_SuppressedByUser; 331 332 Optional<int> Count = 333 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 334 if (Count.hasValue()) 335 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 336 337 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 338 return TM_ForcedByUser; 339 340 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 341 return TM_ForcedByUser; 342 343 if (hasDisableAllTransformsHint(L)) 344 return TM_Disable; 345 346 return TM_Unspecified; 347 } 348 349 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 350 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 351 return TM_SuppressedByUser; 352 353 Optional<int> Count = 354 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 355 if (Count.hasValue()) 356 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 357 358 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 359 return TM_ForcedByUser; 360 361 if (hasDisableAllTransformsHint(L)) 362 return TM_Disable; 363 364 return TM_Unspecified; 365 } 366 367 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 368 Optional<bool> Enable = 369 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 370 371 if (Enable == false) 372 return TM_SuppressedByUser; 373 374 Optional<int> VectorizeWidth = 375 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 376 Optional<int> InterleaveCount = 377 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 378 379 if (Enable == true) { 380 // 'Forcing' vector width and interleave count to one effectively disables 381 // this tranformation. 382 if (VectorizeWidth == 1 && InterleaveCount == 1) 383 return TM_SuppressedByUser; 384 return TM_ForcedByUser; 385 } 386 387 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 388 return TM_Disable; 389 390 if (VectorizeWidth == 1 && InterleaveCount == 1) 391 return TM_Disable; 392 393 if (VectorizeWidth > 1 || InterleaveCount > 1) 394 return TM_Enable; 395 396 if (hasDisableAllTransformsHint(L)) 397 return TM_Disable; 398 399 return TM_Unspecified; 400 } 401 402 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 403 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 404 return TM_ForcedByUser; 405 406 if (hasDisableAllTransformsHint(L)) 407 return TM_Disable; 408 409 return TM_Unspecified; 410 } 411 412 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 413 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 414 return TM_SuppressedByUser; 415 416 if (hasDisableAllTransformsHint(L)) 417 return TM_Disable; 418 419 return TM_Unspecified; 420 } 421 422 /// Does a BFS from a given node to all of its children inside a given loop. 423 /// The returned vector of nodes includes the starting point. 424 SmallVector<DomTreeNode *, 16> 425 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 426 SmallVector<DomTreeNode *, 16> Worklist; 427 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 428 // Only include subregions in the top level loop. 429 BasicBlock *BB = DTN->getBlock(); 430 if (CurLoop->contains(BB)) 431 Worklist.push_back(DTN); 432 }; 433 434 AddRegionToWorklist(N); 435 436 for (size_t I = 0; I < Worklist.size(); I++) 437 for (DomTreeNode *Child : Worklist[I]->getChildren()) 438 AddRegionToWorklist(Child); 439 440 return Worklist; 441 } 442 443 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 444 ScalarEvolution *SE = nullptr, 445 LoopInfo *LI = nullptr) { 446 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 447 auto *Preheader = L->getLoopPreheader(); 448 assert(Preheader && "Preheader should exist!"); 449 450 // Now that we know the removal is safe, remove the loop by changing the 451 // branch from the preheader to go to the single exit block. 452 // 453 // Because we're deleting a large chunk of code at once, the sequence in which 454 // we remove things is very important to avoid invalidation issues. 455 456 // Tell ScalarEvolution that the loop is deleted. Do this before 457 // deleting the loop so that ScalarEvolution can look at the loop 458 // to determine what it needs to clean up. 459 if (SE) 460 SE->forgetLoop(L); 461 462 auto *ExitBlock = L->getUniqueExitBlock(); 463 assert(ExitBlock && "Should have a unique exit block!"); 464 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 465 466 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 467 assert(OldBr && "Preheader must end with a branch"); 468 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 469 // Connect the preheader to the exit block. Keep the old edge to the header 470 // around to perform the dominator tree update in two separate steps 471 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 472 // preheader -> header. 473 // 474 // 475 // 0. Preheader 1. Preheader 2. Preheader 476 // | | | | 477 // V | V | 478 // Header <--\ | Header <--\ | Header <--\ 479 // | | | | | | | | | | | 480 // | V | | | V | | | V | 481 // | Body --/ | | Body --/ | | Body --/ 482 // V V V V V 483 // Exit Exit Exit 484 // 485 // By doing this is two separate steps we can perform the dominator tree 486 // update without using the batch update API. 487 // 488 // Even when the loop is never executed, we cannot remove the edge from the 489 // source block to the exit block. Consider the case where the unexecuted loop 490 // branches back to an outer loop. If we deleted the loop and removed the edge 491 // coming to this inner loop, this will break the outer loop structure (by 492 // deleting the backedge of the outer loop). If the outer loop is indeed a 493 // non-loop, it will be deleted in a future iteration of loop deletion pass. 494 IRBuilder<> Builder(OldBr); 495 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 496 // Remove the old branch. The conditional branch becomes a new terminator. 497 OldBr->eraseFromParent(); 498 499 // Rewrite phis in the exit block to get their inputs from the Preheader 500 // instead of the exiting block. 501 for (PHINode &P : ExitBlock->phis()) { 502 // Set the zero'th element of Phi to be from the preheader and remove all 503 // other incoming values. Given the loop has dedicated exits, all other 504 // incoming values must be from the exiting blocks. 505 int PredIndex = 0; 506 P.setIncomingBlock(PredIndex, Preheader); 507 // Removes all incoming values from all other exiting blocks (including 508 // duplicate values from an exiting block). 509 // Nuke all entries except the zero'th entry which is the preheader entry. 510 // NOTE! We need to remove Incoming Values in the reverse order as done 511 // below, to keep the indices valid for deletion (removeIncomingValues 512 // updates getNumIncomingValues and shifts all values down into the operand 513 // being deleted). 514 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 515 P.removeIncomingValue(e - i, false); 516 517 assert((P.getNumIncomingValues() == 1 && 518 P.getIncomingBlock(PredIndex) == Preheader) && 519 "Should have exactly one value and that's from the preheader!"); 520 } 521 522 // Disconnect the loop body by branching directly to its exit. 523 Builder.SetInsertPoint(Preheader->getTerminator()); 524 Builder.CreateBr(ExitBlock); 525 // Remove the old branch. 526 Preheader->getTerminator()->eraseFromParent(); 527 528 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 529 if (DT) { 530 // Update the dominator tree by informing it about the new edge from the 531 // preheader to the exit. 532 DTU.insertEdge(Preheader, ExitBlock); 533 // Inform the dominator tree about the removed edge. 534 DTU.deleteEdge(Preheader, L->getHeader()); 535 } 536 537 // Use a map to unique and a vector to guarantee deterministic ordering. 538 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 539 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 540 541 // Given LCSSA form is satisfied, we should not have users of instructions 542 // within the dead loop outside of the loop. However, LCSSA doesn't take 543 // unreachable uses into account. We handle them here. 544 // We could do it after drop all references (in this case all users in the 545 // loop will be already eliminated and we have less work to do but according 546 // to API doc of User::dropAllReferences only valid operation after dropping 547 // references, is deletion. So let's substitute all usages of 548 // instruction from the loop with undef value of corresponding type first. 549 for (auto *Block : L->blocks()) 550 for (Instruction &I : *Block) { 551 auto *Undef = UndefValue::get(I.getType()); 552 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 553 Use &U = *UI; 554 ++UI; 555 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 556 if (L->contains(Usr->getParent())) 557 continue; 558 // If we have a DT then we can check that uses outside a loop only in 559 // unreachable block. 560 if (DT) 561 assert(!DT->isReachableFromEntry(U) && 562 "Unexpected user in reachable block"); 563 U.set(Undef); 564 } 565 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 566 if (!DVI) 567 continue; 568 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 569 if (Key != DeadDebugSet.end()) 570 continue; 571 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 572 DeadDebugInst.push_back(DVI); 573 } 574 575 // After the loop has been deleted all the values defined and modified 576 // inside the loop are going to be unavailable. 577 // Since debug values in the loop have been deleted, inserting an undef 578 // dbg.value truncates the range of any dbg.value before the loop where the 579 // loop used to be. This is particularly important for constant values. 580 DIBuilder DIB(*ExitBlock->getModule()); 581 for (auto *DVI : DeadDebugInst) 582 DIB.insertDbgValueIntrinsic( 583 UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(), 584 DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI()); 585 586 // Remove the block from the reference counting scheme, so that we can 587 // delete it freely later. 588 for (auto *Block : L->blocks()) 589 Block->dropAllReferences(); 590 591 if (LI) { 592 // Erase the instructions and the blocks without having to worry 593 // about ordering because we already dropped the references. 594 // NOTE: This iteration is safe because erasing the block does not remove 595 // its entry from the loop's block list. We do that in the next section. 596 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 597 LpI != LpE; ++LpI) 598 (*LpI)->eraseFromParent(); 599 600 // Finally, the blocks from loopinfo. This has to happen late because 601 // otherwise our loop iterators won't work. 602 603 SmallPtrSet<BasicBlock *, 8> blocks; 604 blocks.insert(L->block_begin(), L->block_end()); 605 for (BasicBlock *BB : blocks) 606 LI->removeBlock(BB); 607 608 // The last step is to update LoopInfo now that we've eliminated this loop. 609 LI->erase(L); 610 } 611 } 612 613 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 614 // Only support loops with a unique exiting block, and a latch. 615 if (!L->getExitingBlock()) 616 return None; 617 618 // Get the branch weights for the loop's backedge. 619 BranchInst *LatchBR = 620 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 621 if (!LatchBR || LatchBR->getNumSuccessors() != 2) 622 return None; 623 624 assert((LatchBR->getSuccessor(0) == L->getHeader() || 625 LatchBR->getSuccessor(1) == L->getHeader()) && 626 "At least one edge out of the latch must go to the header"); 627 628 // To estimate the number of times the loop body was executed, we want to 629 // know the number of times the backedge was taken, vs. the number of times 630 // we exited the loop. 631 uint64_t TrueVal, FalseVal; 632 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 633 return None; 634 635 if (!TrueVal || !FalseVal) 636 return 0; 637 638 // Divide the count of the backedge by the count of the edge exiting the loop, 639 // rounding to nearest. 640 if (LatchBR->getSuccessor(0) == L->getHeader()) 641 return (TrueVal + (FalseVal / 2)) / FalseVal; 642 else 643 return (FalseVal + (TrueVal / 2)) / TrueVal; 644 } 645 646 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 647 ScalarEvolution &SE) { 648 Loop *OuterL = InnerLoop->getParentLoop(); 649 if (!OuterL) 650 return true; 651 652 // Get the backedge taken count for the inner loop 653 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 654 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 655 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 656 !InnerLoopBECountSC->getType()->isIntegerTy()) 657 return false; 658 659 // Get whether count is invariant to the outer loop 660 ScalarEvolution::LoopDisposition LD = 661 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 662 if (LD != ScalarEvolution::LoopInvariant) 663 return false; 664 665 return true; 666 } 667 668 /// Adds a 'fast' flag to floating point operations. 669 static Value *addFastMathFlag(Value *V) { 670 if (isa<FPMathOperator>(V)) { 671 FastMathFlags Flags; 672 Flags.setFast(); 673 cast<Instruction>(V)->setFastMathFlags(Flags); 674 } 675 return V; 676 } 677 678 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 679 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 680 Value *Left, Value *Right) { 681 CmpInst::Predicate P = CmpInst::ICMP_NE; 682 switch (RK) { 683 default: 684 llvm_unreachable("Unknown min/max recurrence kind"); 685 case RecurrenceDescriptor::MRK_UIntMin: 686 P = CmpInst::ICMP_ULT; 687 break; 688 case RecurrenceDescriptor::MRK_UIntMax: 689 P = CmpInst::ICMP_UGT; 690 break; 691 case RecurrenceDescriptor::MRK_SIntMin: 692 P = CmpInst::ICMP_SLT; 693 break; 694 case RecurrenceDescriptor::MRK_SIntMax: 695 P = CmpInst::ICMP_SGT; 696 break; 697 case RecurrenceDescriptor::MRK_FloatMin: 698 P = CmpInst::FCMP_OLT; 699 break; 700 case RecurrenceDescriptor::MRK_FloatMax: 701 P = CmpInst::FCMP_OGT; 702 break; 703 } 704 705 // We only match FP sequences that are 'fast', so we can unconditionally 706 // set it on any generated instructions. 707 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 708 FastMathFlags FMF; 709 FMF.setFast(); 710 Builder.setFastMathFlags(FMF); 711 712 Value *Cmp; 713 if (RK == RecurrenceDescriptor::MRK_FloatMin || 714 RK == RecurrenceDescriptor::MRK_FloatMax) 715 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 716 else 717 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 718 719 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 720 return Select; 721 } 722 723 // Helper to generate an ordered reduction. 724 Value * 725 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 726 unsigned Op, 727 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 728 ArrayRef<Value *> RedOps) { 729 unsigned VF = Src->getType()->getVectorNumElements(); 730 731 // Extract and apply reduction ops in ascending order: 732 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 733 Value *Result = Acc; 734 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 735 Value *Ext = 736 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 737 738 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 739 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 740 "bin.rdx"); 741 } else { 742 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 743 "Invalid min/max"); 744 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 745 } 746 747 if (!RedOps.empty()) 748 propagateIRFlags(Result, RedOps); 749 } 750 751 return Result; 752 } 753 754 // Helper to generate a log2 shuffle reduction. 755 Value * 756 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 757 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 758 ArrayRef<Value *> RedOps) { 759 unsigned VF = Src->getType()->getVectorNumElements(); 760 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 761 // and vector ops, reducing the set of values being computed by half each 762 // round. 763 assert(isPowerOf2_32(VF) && 764 "Reduction emission only supported for pow2 vectors!"); 765 Value *TmpVec = Src; 766 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 767 for (unsigned i = VF; i != 1; i >>= 1) { 768 // Move the upper half of the vector to the lower half. 769 for (unsigned j = 0; j != i / 2; ++j) 770 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 771 772 // Fill the rest of the mask with undef. 773 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 774 UndefValue::get(Builder.getInt32Ty())); 775 776 Value *Shuf = Builder.CreateShuffleVector( 777 TmpVec, UndefValue::get(TmpVec->getType()), 778 ConstantVector::get(ShuffleMask), "rdx.shuf"); 779 780 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 781 // Floating point operations had to be 'fast' to enable the reduction. 782 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 783 TmpVec, Shuf, "bin.rdx")); 784 } else { 785 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 786 "Invalid min/max"); 787 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 788 } 789 if (!RedOps.empty()) 790 propagateIRFlags(TmpVec, RedOps); 791 } 792 // The result is in the first element of the vector. 793 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 794 } 795 796 /// Create a simple vector reduction specified by an opcode and some 797 /// flags (if generating min/max reductions). 798 Value *llvm::createSimpleTargetReduction( 799 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 800 Value *Src, TargetTransformInfo::ReductionFlags Flags, 801 ArrayRef<Value *> RedOps) { 802 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 803 804 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 805 std::function<Value *()> BuildFunc; 806 using RD = RecurrenceDescriptor; 807 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 808 // TODO: Support creating ordered reductions. 809 FastMathFlags FMFFast; 810 FMFFast.setFast(); 811 812 switch (Opcode) { 813 case Instruction::Add: 814 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 815 break; 816 case Instruction::Mul: 817 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 818 break; 819 case Instruction::And: 820 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 821 break; 822 case Instruction::Or: 823 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 824 break; 825 case Instruction::Xor: 826 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 827 break; 828 case Instruction::FAdd: 829 BuildFunc = [&]() { 830 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 831 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 832 return Rdx; 833 }; 834 break; 835 case Instruction::FMul: 836 BuildFunc = [&]() { 837 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 838 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 839 return Rdx; 840 }; 841 break; 842 case Instruction::ICmp: 843 if (Flags.IsMaxOp) { 844 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 845 BuildFunc = [&]() { 846 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 847 }; 848 } else { 849 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 850 BuildFunc = [&]() { 851 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 852 }; 853 } 854 break; 855 case Instruction::FCmp: 856 if (Flags.IsMaxOp) { 857 MinMaxKind = RD::MRK_FloatMax; 858 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 859 } else { 860 MinMaxKind = RD::MRK_FloatMin; 861 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 862 } 863 break; 864 default: 865 llvm_unreachable("Unhandled opcode"); 866 break; 867 } 868 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 869 return BuildFunc(); 870 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 871 } 872 873 /// Create a vector reduction using a given recurrence descriptor. 874 Value *llvm::createTargetReduction(IRBuilder<> &B, 875 const TargetTransformInfo *TTI, 876 RecurrenceDescriptor &Desc, Value *Src, 877 bool NoNaN) { 878 // TODO: Support in-order reductions based on the recurrence descriptor. 879 using RD = RecurrenceDescriptor; 880 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 881 TargetTransformInfo::ReductionFlags Flags; 882 Flags.NoNaN = NoNaN; 883 switch (RecKind) { 884 case RD::RK_FloatAdd: 885 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 886 case RD::RK_FloatMult: 887 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 888 case RD::RK_IntegerAdd: 889 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 890 case RD::RK_IntegerMult: 891 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 892 case RD::RK_IntegerAnd: 893 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 894 case RD::RK_IntegerOr: 895 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 896 case RD::RK_IntegerXor: 897 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 898 case RD::RK_IntegerMinMax: { 899 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 900 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 901 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 902 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 903 } 904 case RD::RK_FloatMinMax: { 905 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 906 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 907 } 908 default: 909 llvm_unreachable("Unhandled RecKind"); 910 } 911 } 912 913 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 914 auto *VecOp = dyn_cast<Instruction>(I); 915 if (!VecOp) 916 return; 917 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 918 : dyn_cast<Instruction>(OpValue); 919 if (!Intersection) 920 return; 921 const unsigned Opcode = Intersection->getOpcode(); 922 VecOp->copyIRFlags(Intersection); 923 for (auto *V : VL) { 924 auto *Instr = dyn_cast<Instruction>(V); 925 if (!Instr) 926 continue; 927 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 928 VecOp->andIRFlags(V); 929 } 930 } 931