1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
23 #include "llvm/Analysis/ScalarEvolutionExpander.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 #define DEBUG_TYPE "loop-utils"
37 
38 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
39                                         SmallPtrSetImpl<Instruction *> &Set) {
40   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
41     if (!Set.count(dyn_cast<Instruction>(*Use)))
42       return false;
43   return true;
44 }
45 
46 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
47   switch (Kind) {
48   default:
49     break;
50   case RK_IntegerAdd:
51   case RK_IntegerMult:
52   case RK_IntegerOr:
53   case RK_IntegerAnd:
54   case RK_IntegerXor:
55   case RK_IntegerMinMax:
56     return true;
57   }
58   return false;
59 }
60 
61 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
62   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
63 }
64 
65 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
66   switch (Kind) {
67   default:
68     break;
69   case RK_IntegerAdd:
70   case RK_IntegerMult:
71   case RK_FloatAdd:
72   case RK_FloatMult:
73     return true;
74   }
75   return false;
76 }
77 
78 Instruction *
79 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
80                                      SmallPtrSetImpl<Instruction *> &Visited,
81                                      SmallPtrSetImpl<Instruction *> &CI) {
82   if (!Phi->hasOneUse())
83     return Phi;
84 
85   const APInt *M = nullptr;
86   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
87 
88   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
89   // with a new integer type of the corresponding bit width.
90   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
91                            m_And(m_APInt(M), m_Instruction(I))))) {
92     int32_t Bits = (*M + 1).exactLogBase2();
93     if (Bits > 0) {
94       RT = IntegerType::get(Phi->getContext(), Bits);
95       Visited.insert(Phi);
96       CI.insert(J);
97       return J;
98     }
99   }
100   return Phi;
101 }
102 
103 bool RecurrenceDescriptor::getSourceExtensionKind(
104     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
105     SmallPtrSetImpl<Instruction *> &Visited,
106     SmallPtrSetImpl<Instruction *> &CI) {
107 
108   SmallVector<Instruction *, 8> Worklist;
109   bool FoundOneOperand = false;
110   unsigned DstSize = RT->getPrimitiveSizeInBits();
111   Worklist.push_back(Exit);
112 
113   // Traverse the instructions in the reduction expression, beginning with the
114   // exit value.
115   while (!Worklist.empty()) {
116     Instruction *I = Worklist.pop_back_val();
117     for (Use &U : I->operands()) {
118 
119       // Terminate the traversal if the operand is not an instruction, or we
120       // reach the starting value.
121       Instruction *J = dyn_cast<Instruction>(U.get());
122       if (!J || J == Start)
123         continue;
124 
125       // Otherwise, investigate the operation if it is also in the expression.
126       if (Visited.count(J)) {
127         Worklist.push_back(J);
128         continue;
129       }
130 
131       // If the operand is not in Visited, it is not a reduction operation, but
132       // it does feed into one. Make sure it is either a single-use sign- or
133       // zero-extend instruction.
134       CastInst *Cast = dyn_cast<CastInst>(J);
135       bool IsSExtInst = isa<SExtInst>(J);
136       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
137         return false;
138 
139       // Ensure the source type of the extend is no larger than the reduction
140       // type. It is not necessary for the types to be identical.
141       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
142       if (SrcSize > DstSize)
143         return false;
144 
145       // Furthermore, ensure that all such extends are of the same kind.
146       if (FoundOneOperand) {
147         if (IsSigned != IsSExtInst)
148           return false;
149       } else {
150         FoundOneOperand = true;
151         IsSigned = IsSExtInst;
152       }
153 
154       // Lastly, if the source type of the extend matches the reduction type,
155       // add the extend to CI so that we can avoid accounting for it in the
156       // cost model.
157       if (SrcSize == DstSize)
158         CI.insert(Cast);
159     }
160   }
161   return true;
162 }
163 
164 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
165                                            Loop *TheLoop, bool HasFunNoNaNAttr,
166                                            RecurrenceDescriptor &RedDes) {
167   if (Phi->getNumIncomingValues() != 2)
168     return false;
169 
170   // Reduction variables are only found in the loop header block.
171   if (Phi->getParent() != TheLoop->getHeader())
172     return false;
173 
174   // Obtain the reduction start value from the value that comes from the loop
175   // preheader.
176   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
177 
178   // ExitInstruction is the single value which is used outside the loop.
179   // We only allow for a single reduction value to be used outside the loop.
180   // This includes users of the reduction, variables (which form a cycle
181   // which ends in the phi node).
182   Instruction *ExitInstruction = nullptr;
183   // Indicates that we found a reduction operation in our scan.
184   bool FoundReduxOp = false;
185 
186   // We start with the PHI node and scan for all of the users of this
187   // instruction. All users must be instructions that can be used as reduction
188   // variables (such as ADD). We must have a single out-of-block user. The cycle
189   // must include the original PHI.
190   bool FoundStartPHI = false;
191 
192   // To recognize min/max patterns formed by a icmp select sequence, we store
193   // the number of instruction we saw from the recognized min/max pattern,
194   //  to make sure we only see exactly the two instructions.
195   unsigned NumCmpSelectPatternInst = 0;
196   InstDesc ReduxDesc(false, nullptr);
197 
198   // Data used for determining if the recurrence has been type-promoted.
199   Type *RecurrenceType = Phi->getType();
200   SmallPtrSet<Instruction *, 4> CastInsts;
201   Instruction *Start = Phi;
202   bool IsSigned = false;
203 
204   SmallPtrSet<Instruction *, 8> VisitedInsts;
205   SmallVector<Instruction *, 8> Worklist;
206 
207   // Return early if the recurrence kind does not match the type of Phi. If the
208   // recurrence kind is arithmetic, we attempt to look through AND operations
209   // resulting from the type promotion performed by InstCombine.  Vector
210   // operations are not limited to the legal integer widths, so we may be able
211   // to evaluate the reduction in the narrower width.
212   if (RecurrenceType->isFloatingPointTy()) {
213     if (!isFloatingPointRecurrenceKind(Kind))
214       return false;
215   } else {
216     if (!isIntegerRecurrenceKind(Kind))
217       return false;
218     if (isArithmeticRecurrenceKind(Kind))
219       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
220   }
221 
222   Worklist.push_back(Start);
223   VisitedInsts.insert(Start);
224 
225   // A value in the reduction can be used:
226   //  - By the reduction:
227   //      - Reduction operation:
228   //        - One use of reduction value (safe).
229   //        - Multiple use of reduction value (not safe).
230   //      - PHI:
231   //        - All uses of the PHI must be the reduction (safe).
232   //        - Otherwise, not safe.
233   //  - By instructions outside of the loop (safe).
234   //      * One value may have several outside users, but all outside
235   //        uses must be of the same value.
236   //  - By an instruction that is not part of the reduction (not safe).
237   //    This is either:
238   //      * An instruction type other than PHI or the reduction operation.
239   //      * A PHI in the header other than the initial PHI.
240   while (!Worklist.empty()) {
241     Instruction *Cur = Worklist.back();
242     Worklist.pop_back();
243 
244     // No Users.
245     // If the instruction has no users then this is a broken chain and can't be
246     // a reduction variable.
247     if (Cur->use_empty())
248       return false;
249 
250     bool IsAPhi = isa<PHINode>(Cur);
251 
252     // A header PHI use other than the original PHI.
253     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
254       return false;
255 
256     // Reductions of instructions such as Div, and Sub is only possible if the
257     // LHS is the reduction variable.
258     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
259         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
260         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
261       return false;
262 
263     // Any reduction instruction must be of one of the allowed kinds. We ignore
264     // the starting value (the Phi or an AND instruction if the Phi has been
265     // type-promoted).
266     if (Cur != Start) {
267       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
268       if (!ReduxDesc.isRecurrence())
269         return false;
270     }
271 
272     // A reduction operation must only have one use of the reduction value.
273     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
274         hasMultipleUsesOf(Cur, VisitedInsts))
275       return false;
276 
277     // All inputs to a PHI node must be a reduction value.
278     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
279       return false;
280 
281     if (Kind == RK_IntegerMinMax &&
282         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
283       ++NumCmpSelectPatternInst;
284     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
285       ++NumCmpSelectPatternInst;
286 
287     // Check  whether we found a reduction operator.
288     FoundReduxOp |= !IsAPhi && Cur != Start;
289 
290     // Process users of current instruction. Push non-PHI nodes after PHI nodes
291     // onto the stack. This way we are going to have seen all inputs to PHI
292     // nodes once we get to them.
293     SmallVector<Instruction *, 8> NonPHIs;
294     SmallVector<Instruction *, 8> PHIs;
295     for (User *U : Cur->users()) {
296       Instruction *UI = cast<Instruction>(U);
297 
298       // Check if we found the exit user.
299       BasicBlock *Parent = UI->getParent();
300       if (!TheLoop->contains(Parent)) {
301         // If we already know this instruction is used externally, move on to
302         // the next user.
303         if (ExitInstruction == Cur)
304           continue;
305 
306         // Exit if you find multiple values used outside or if the header phi
307         // node is being used. In this case the user uses the value of the
308         // previous iteration, in which case we would loose "VF-1" iterations of
309         // the reduction operation if we vectorize.
310         if (ExitInstruction != nullptr || Cur == Phi)
311           return false;
312 
313         // The instruction used by an outside user must be the last instruction
314         // before we feed back to the reduction phi. Otherwise, we loose VF-1
315         // operations on the value.
316         if (!is_contained(Phi->operands(), Cur))
317           return false;
318 
319         ExitInstruction = Cur;
320         continue;
321       }
322 
323       // Process instructions only once (termination). Each reduction cycle
324       // value must only be used once, except by phi nodes and min/max
325       // reductions which are represented as a cmp followed by a select.
326       InstDesc IgnoredVal(false, nullptr);
327       if (VisitedInsts.insert(UI).second) {
328         if (isa<PHINode>(UI))
329           PHIs.push_back(UI);
330         else
331           NonPHIs.push_back(UI);
332       } else if (!isa<PHINode>(UI) &&
333                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
334                    !isa<SelectInst>(UI)) ||
335                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
336         return false;
337 
338       // Remember that we completed the cycle.
339       if (UI == Phi)
340         FoundStartPHI = true;
341     }
342     Worklist.append(PHIs.begin(), PHIs.end());
343     Worklist.append(NonPHIs.begin(), NonPHIs.end());
344   }
345 
346   // This means we have seen one but not the other instruction of the
347   // pattern or more than just a select and cmp.
348   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
349       NumCmpSelectPatternInst != 2)
350     return false;
351 
352   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
353     return false;
354 
355   // If we think Phi may have been type-promoted, we also need to ensure that
356   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
357   // so, we will be able to evaluate the reduction in the narrower bit width.
358   if (Start != Phi)
359     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
360                                 IsSigned, VisitedInsts, CastInsts))
361       return false;
362 
363   // We found a reduction var if we have reached the original phi node and we
364   // only have a single instruction with out-of-loop users.
365 
366   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
367   // is saved as part of the RecurrenceDescriptor.
368 
369   // Save the description of this reduction variable.
370   RecurrenceDescriptor RD(
371       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
372       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
373   RedDes = RD;
374 
375   return true;
376 }
377 
378 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
379 /// pattern corresponding to a min(X, Y) or max(X, Y).
380 RecurrenceDescriptor::InstDesc
381 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
382 
383   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
384          "Expect a select instruction");
385   Instruction *Cmp = nullptr;
386   SelectInst *Select = nullptr;
387 
388   // We must handle the select(cmp()) as a single instruction. Advance to the
389   // select.
390   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
391     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
392       return InstDesc(false, I);
393     return InstDesc(Select, Prev.getMinMaxKind());
394   }
395 
396   // Only handle single use cases for now.
397   if (!(Select = dyn_cast<SelectInst>(I)))
398     return InstDesc(false, I);
399   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
400       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
401     return InstDesc(false, I);
402   if (!Cmp->hasOneUse())
403     return InstDesc(false, I);
404 
405   Value *CmpLeft;
406   Value *CmpRight;
407 
408   // Look for a min/max pattern.
409   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
410     return InstDesc(Select, MRK_UIntMin);
411   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
412     return InstDesc(Select, MRK_UIntMax);
413   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
414     return InstDesc(Select, MRK_SIntMax);
415   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
416     return InstDesc(Select, MRK_SIntMin);
417   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
418     return InstDesc(Select, MRK_FloatMin);
419   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
420     return InstDesc(Select, MRK_FloatMax);
421   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
422     return InstDesc(Select, MRK_FloatMin);
423   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
424     return InstDesc(Select, MRK_FloatMax);
425 
426   return InstDesc(false, I);
427 }
428 
429 RecurrenceDescriptor::InstDesc
430 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
431                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
432   bool FP = I->getType()->isFloatingPointTy();
433   Instruction *UAI = Prev.getUnsafeAlgebraInst();
434   if (!UAI && FP && !I->hasUnsafeAlgebra())
435     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
436 
437   switch (I->getOpcode()) {
438   default:
439     return InstDesc(false, I);
440   case Instruction::PHI:
441     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
442   case Instruction::Sub:
443   case Instruction::Add:
444     return InstDesc(Kind == RK_IntegerAdd, I);
445   case Instruction::Mul:
446     return InstDesc(Kind == RK_IntegerMult, I);
447   case Instruction::And:
448     return InstDesc(Kind == RK_IntegerAnd, I);
449   case Instruction::Or:
450     return InstDesc(Kind == RK_IntegerOr, I);
451   case Instruction::Xor:
452     return InstDesc(Kind == RK_IntegerXor, I);
453   case Instruction::FMul:
454     return InstDesc(Kind == RK_FloatMult, I, UAI);
455   case Instruction::FSub:
456   case Instruction::FAdd:
457     return InstDesc(Kind == RK_FloatAdd, I, UAI);
458   case Instruction::FCmp:
459   case Instruction::ICmp:
460   case Instruction::Select:
461     if (Kind != RK_IntegerMinMax &&
462         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
463       return InstDesc(false, I);
464     return isMinMaxSelectCmpPattern(I, Prev);
465   }
466 }
467 
468 bool RecurrenceDescriptor::hasMultipleUsesOf(
469     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
470   unsigned NumUses = 0;
471   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
472        ++Use) {
473     if (Insts.count(dyn_cast<Instruction>(*Use)))
474       ++NumUses;
475     if (NumUses > 1)
476       return true;
477   }
478 
479   return false;
480 }
481 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
482                                           RecurrenceDescriptor &RedDes) {
483 
484   BasicBlock *Header = TheLoop->getHeader();
485   Function &F = *Header->getParent();
486   bool HasFunNoNaNAttr =
487       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
488 
489   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
490     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
491     return true;
492   }
493   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
494     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
495     return true;
496   }
497   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
498     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
499     return true;
500   }
501   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
502     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
503     return true;
504   }
505   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
506     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
507     return true;
508   }
509   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
510                       RedDes)) {
511     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
512     return true;
513   }
514   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
515     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
516     return true;
517   }
518   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
519     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
520     return true;
521   }
522   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
523     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
524     return true;
525   }
526   // Not a reduction of known type.
527   return false;
528 }
529 
530 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
531                                                   DominatorTree *DT) {
532 
533   // Ensure the phi node is in the loop header and has two incoming values.
534   if (Phi->getParent() != TheLoop->getHeader() ||
535       Phi->getNumIncomingValues() != 2)
536     return false;
537 
538   // Ensure the loop has a preheader and a single latch block. The loop
539   // vectorizer will need the latch to set up the next iteration of the loop.
540   auto *Preheader = TheLoop->getLoopPreheader();
541   auto *Latch = TheLoop->getLoopLatch();
542   if (!Preheader || !Latch)
543     return false;
544 
545   // Ensure the phi node's incoming blocks are the loop preheader and latch.
546   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
547       Phi->getBasicBlockIndex(Latch) < 0)
548     return false;
549 
550   // Get the previous value. The previous value comes from the latch edge while
551   // the initial value comes form the preheader edge.
552   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
553   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
554     return false;
555 
556   // Ensure every user of the phi node is dominated by the previous value. The
557   // dominance requirement ensures the loop vectorizer will not need to
558   // vectorize the initial value prior to the first iteration of the loop.
559   for (User *U : Phi->users())
560     if (auto *I = dyn_cast<Instruction>(U))
561       if (!DT->dominates(Previous, I))
562         return false;
563 
564   return true;
565 }
566 
567 /// This function returns the identity element (or neutral element) for
568 /// the operation K.
569 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
570                                                       Type *Tp) {
571   switch (K) {
572   case RK_IntegerXor:
573   case RK_IntegerAdd:
574   case RK_IntegerOr:
575     // Adding, Xoring, Oring zero to a number does not change it.
576     return ConstantInt::get(Tp, 0);
577   case RK_IntegerMult:
578     // Multiplying a number by 1 does not change it.
579     return ConstantInt::get(Tp, 1);
580   case RK_IntegerAnd:
581     // AND-ing a number with an all-1 value does not change it.
582     return ConstantInt::get(Tp, -1, true);
583   case RK_FloatMult:
584     // Multiplying a number by 1 does not change it.
585     return ConstantFP::get(Tp, 1.0L);
586   case RK_FloatAdd:
587     // Adding zero to a number does not change it.
588     return ConstantFP::get(Tp, 0.0L);
589   default:
590     llvm_unreachable("Unknown recurrence kind");
591   }
592 }
593 
594 /// This function translates the recurrence kind to an LLVM binary operator.
595 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
596   switch (Kind) {
597   case RK_IntegerAdd:
598     return Instruction::Add;
599   case RK_IntegerMult:
600     return Instruction::Mul;
601   case RK_IntegerOr:
602     return Instruction::Or;
603   case RK_IntegerAnd:
604     return Instruction::And;
605   case RK_IntegerXor:
606     return Instruction::Xor;
607   case RK_FloatMult:
608     return Instruction::FMul;
609   case RK_FloatAdd:
610     return Instruction::FAdd;
611   case RK_IntegerMinMax:
612     return Instruction::ICmp;
613   case RK_FloatMinMax:
614     return Instruction::FCmp;
615   default:
616     llvm_unreachable("Unknown recurrence operation");
617   }
618 }
619 
620 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
621                                             MinMaxRecurrenceKind RK,
622                                             Value *Left, Value *Right) {
623   CmpInst::Predicate P = CmpInst::ICMP_NE;
624   switch (RK) {
625   default:
626     llvm_unreachable("Unknown min/max recurrence kind");
627   case MRK_UIntMin:
628     P = CmpInst::ICMP_ULT;
629     break;
630   case MRK_UIntMax:
631     P = CmpInst::ICMP_UGT;
632     break;
633   case MRK_SIntMin:
634     P = CmpInst::ICMP_SLT;
635     break;
636   case MRK_SIntMax:
637     P = CmpInst::ICMP_SGT;
638     break;
639   case MRK_FloatMin:
640     P = CmpInst::FCMP_OLT;
641     break;
642   case MRK_FloatMax:
643     P = CmpInst::FCMP_OGT;
644     break;
645   }
646 
647   // We only match FP sequences with unsafe algebra, so we can unconditionally
648   // set it on any generated instructions.
649   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
650   FastMathFlags FMF;
651   FMF.setUnsafeAlgebra();
652   Builder.setFastMathFlags(FMF);
653 
654   Value *Cmp;
655   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
656     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
657   else
658     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
659 
660   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
661   return Select;
662 }
663 
664 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
665                                          const SCEV *Step, BinaryOperator *BOp)
666   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
667   assert(IK != IK_NoInduction && "Not an induction");
668 
669   // Start value type should match the induction kind and the value
670   // itself should not be null.
671   assert(StartValue && "StartValue is null");
672   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
673          "StartValue is not a pointer for pointer induction");
674   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
675          "StartValue is not an integer for integer induction");
676 
677   // Check the Step Value. It should be non-zero integer value.
678   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
679          "Step value is zero");
680 
681   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
682          "Step value should be constant for pointer induction");
683   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
684          "StepValue is not an integer");
685 
686   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
687          "StepValue is not FP for FpInduction");
688   assert((IK != IK_FpInduction || (InductionBinOp &&
689           (InductionBinOp->getOpcode() == Instruction::FAdd ||
690            InductionBinOp->getOpcode() == Instruction::FSub))) &&
691          "Binary opcode should be specified for FP induction");
692 }
693 
694 int InductionDescriptor::getConsecutiveDirection() const {
695   ConstantInt *ConstStep = getConstIntStepValue();
696   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
697     return ConstStep->getSExtValue();
698   return 0;
699 }
700 
701 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
702   if (isa<SCEVConstant>(Step))
703     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
704   return nullptr;
705 }
706 
707 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
708                                       ScalarEvolution *SE,
709                                       const DataLayout& DL) const {
710 
711   SCEVExpander Exp(*SE, DL, "induction");
712   assert(Index->getType() == Step->getType() &&
713          "Index type does not match StepValue type");
714   switch (IK) {
715   case IK_IntInduction: {
716     assert(Index->getType() == StartValue->getType() &&
717            "Index type does not match StartValue type");
718 
719     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
720     // and calculate (Start + Index * Step) for all cases, without
721     // special handling for "isOne" and "isMinusOne".
722     // But in the real life the result code getting worse. We mix SCEV
723     // expressions and ADD/SUB operations and receive redundant
724     // intermediate values being calculated in different ways and
725     // Instcombine is unable to reduce them all.
726 
727     if (getConstIntStepValue() &&
728         getConstIntStepValue()->isMinusOne())
729       return B.CreateSub(StartValue, Index);
730     if (getConstIntStepValue() &&
731         getConstIntStepValue()->isOne())
732       return B.CreateAdd(StartValue, Index);
733     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
734                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
735     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
736   }
737   case IK_PtrInduction: {
738     assert(isa<SCEVConstant>(Step) &&
739            "Expected constant step for pointer induction");
740     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
741     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
742     return B.CreateGEP(nullptr, StartValue, Index);
743   }
744   case IK_FpInduction: {
745     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
746     assert(InductionBinOp &&
747            (InductionBinOp->getOpcode() == Instruction::FAdd ||
748             InductionBinOp->getOpcode() == Instruction::FSub) &&
749            "Original bin op should be defined for FP induction");
750 
751     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
752 
753     // Floating point operations had to be 'fast' to enable the induction.
754     FastMathFlags Flags;
755     Flags.setUnsafeAlgebra();
756 
757     Value *MulExp = B.CreateFMul(StepValue, Index);
758     if (isa<Instruction>(MulExp))
759       // We have to check, the MulExp may be a constant.
760       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
761 
762     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
763                                MulExp, "induction");
764     if (isa<Instruction>(BOp))
765       cast<Instruction>(BOp)->setFastMathFlags(Flags);
766 
767     return BOp;
768   }
769   case IK_NoInduction:
770     return nullptr;
771   }
772   llvm_unreachable("invalid enum");
773 }
774 
775 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
776                                            ScalarEvolution *SE,
777                                            InductionDescriptor &D) {
778 
779   // Here we only handle FP induction variables.
780   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
781 
782   if (TheLoop->getHeader() != Phi->getParent())
783     return false;
784 
785   // The loop may have multiple entrances or multiple exits; we can analyze
786   // this phi if it has a unique entry value and a unique backedge value.
787   if (Phi->getNumIncomingValues() != 2)
788     return false;
789   Value *BEValue = nullptr, *StartValue = nullptr;
790   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
791     BEValue = Phi->getIncomingValue(0);
792     StartValue = Phi->getIncomingValue(1);
793   } else {
794     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
795            "Unexpected Phi node in the loop");
796     BEValue = Phi->getIncomingValue(1);
797     StartValue = Phi->getIncomingValue(0);
798   }
799 
800   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
801   if (!BOp)
802     return false;
803 
804   Value *Addend = nullptr;
805   if (BOp->getOpcode() == Instruction::FAdd) {
806     if (BOp->getOperand(0) == Phi)
807       Addend = BOp->getOperand(1);
808     else if (BOp->getOperand(1) == Phi)
809       Addend = BOp->getOperand(0);
810   } else if (BOp->getOpcode() == Instruction::FSub)
811     if (BOp->getOperand(0) == Phi)
812       Addend = BOp->getOperand(1);
813 
814   if (!Addend)
815     return false;
816 
817   // The addend should be loop invariant
818   if (auto *I = dyn_cast<Instruction>(Addend))
819     if (TheLoop->contains(I))
820       return false;
821 
822   // FP Step has unknown SCEV
823   const SCEV *Step = SE->getUnknown(Addend);
824   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
825   return true;
826 }
827 
828 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
829                                          PredicatedScalarEvolution &PSE,
830                                          InductionDescriptor &D,
831                                          bool Assume) {
832   Type *PhiTy = Phi->getType();
833 
834   // Handle integer and pointer inductions variables.
835   // Now we handle also FP induction but not trying to make a
836   // recurrent expression from the PHI node in-place.
837 
838   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
839       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
840     return false;
841 
842   if (PhiTy->isFloatingPointTy())
843     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
844 
845   const SCEV *PhiScev = PSE.getSCEV(Phi);
846   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
847 
848   // We need this expression to be an AddRecExpr.
849   if (Assume && !AR)
850     AR = PSE.getAsAddRec(Phi);
851 
852   if (!AR) {
853     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
854     return false;
855   }
856 
857   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
858 }
859 
860 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
861                                          ScalarEvolution *SE,
862                                          InductionDescriptor &D,
863                                          const SCEV *Expr) {
864   Type *PhiTy = Phi->getType();
865   // We only handle integer and pointer inductions variables.
866   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
867     return false;
868 
869   // Check that the PHI is consecutive.
870   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
871   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
872 
873   if (!AR) {
874     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
875     return false;
876   }
877 
878   if (AR->getLoop() != TheLoop) {
879     // FIXME: We should treat this as a uniform. Unfortunately, we
880     // don't currently know how to handled uniform PHIs.
881     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
882     return false;
883   }
884 
885   Value *StartValue =
886     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
887   const SCEV *Step = AR->getStepRecurrence(*SE);
888   // Calculate the pointer stride and check if it is consecutive.
889   // The stride may be a constant or a loop invariant integer value.
890   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
891   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
892     return false;
893 
894   if (PhiTy->isIntegerTy()) {
895     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
896     return true;
897   }
898 
899   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
900   // Pointer induction should be a constant.
901   if (!ConstStep)
902     return false;
903 
904   ConstantInt *CV = ConstStep->getValue();
905   Type *PointerElementType = PhiTy->getPointerElementType();
906   // The pointer stride cannot be determined if the pointer element type is not
907   // sized.
908   if (!PointerElementType->isSized())
909     return false;
910 
911   const DataLayout &DL = Phi->getModule()->getDataLayout();
912   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
913   if (!Size)
914     return false;
915 
916   int64_t CVSize = CV->getSExtValue();
917   if (CVSize % Size)
918     return false;
919   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
920                                     true /* signed */);
921   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
922   return true;
923 }
924 
925 /// \brief Returns the instructions that use values defined in the loop.
926 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
927   SmallVector<Instruction *, 8> UsedOutside;
928 
929   for (auto *Block : L->getBlocks())
930     // FIXME: I believe that this could use copy_if if the Inst reference could
931     // be adapted into a pointer.
932     for (auto &Inst : *Block) {
933       auto Users = Inst.users();
934       if (any_of(Users, [&](User *U) {
935             auto *Use = cast<Instruction>(U);
936             return !L->contains(Use->getParent());
937           }))
938         UsedOutside.push_back(&Inst);
939     }
940 
941   return UsedOutside;
942 }
943 
944 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
945   // By definition, all loop passes need the LoopInfo analysis and the
946   // Dominator tree it depends on. Because they all participate in the loop
947   // pass manager, they must also preserve these.
948   AU.addRequired<DominatorTreeWrapperPass>();
949   AU.addPreserved<DominatorTreeWrapperPass>();
950   AU.addRequired<LoopInfoWrapperPass>();
951   AU.addPreserved<LoopInfoWrapperPass>();
952 
953   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
954   // here because users shouldn't directly get them from this header.
955   extern char &LoopSimplifyID;
956   extern char &LCSSAID;
957   AU.addRequiredID(LoopSimplifyID);
958   AU.addPreservedID(LoopSimplifyID);
959   AU.addRequiredID(LCSSAID);
960   AU.addPreservedID(LCSSAID);
961   // This is used in the LPPassManager to perform LCSSA verification on passes
962   // which preserve lcssa form
963   AU.addRequired<LCSSAVerificationPass>();
964   AU.addPreserved<LCSSAVerificationPass>();
965 
966   // Loop passes are designed to run inside of a loop pass manager which means
967   // that any function analyses they require must be required by the first loop
968   // pass in the manager (so that it is computed before the loop pass manager
969   // runs) and preserved by all loop pasess in the manager. To make this
970   // reasonably robust, the set needed for most loop passes is maintained here.
971   // If your loop pass requires an analysis not listed here, you will need to
972   // carefully audit the loop pass manager nesting structure that results.
973   AU.addRequired<AAResultsWrapperPass>();
974   AU.addPreserved<AAResultsWrapperPass>();
975   AU.addPreserved<BasicAAWrapperPass>();
976   AU.addPreserved<GlobalsAAWrapperPass>();
977   AU.addPreserved<SCEVAAWrapperPass>();
978   AU.addRequired<ScalarEvolutionWrapperPass>();
979   AU.addPreserved<ScalarEvolutionWrapperPass>();
980 }
981 
982 /// Manually defined generic "LoopPass" dependency initialization. This is used
983 /// to initialize the exact set of passes from above in \c
984 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
985 /// with:
986 ///
987 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
988 ///
989 /// As-if "LoopPass" were a pass.
990 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
991   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
992   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
993   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
994   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
995   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
996   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
997   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
998   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
999   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1000 }
1001 
1002 /// \brief Find string metadata for loop
1003 ///
1004 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1005 /// operand or null otherwise.  If the string metadata is not found return
1006 /// Optional's not-a-value.
1007 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1008                                                             StringRef Name) {
1009   MDNode *LoopID = TheLoop->getLoopID();
1010   // Return none if LoopID is false.
1011   if (!LoopID)
1012     return None;
1013 
1014   // First operand should refer to the loop id itself.
1015   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1016   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1017 
1018   // Iterate over LoopID operands and look for MDString Metadata
1019   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1020     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1021     if (!MD)
1022       continue;
1023     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1024     if (!S)
1025       continue;
1026     // Return true if MDString holds expected MetaData.
1027     if (Name.equals(S->getString()))
1028       switch (MD->getNumOperands()) {
1029       case 1:
1030         return nullptr;
1031       case 2:
1032         return &MD->getOperand(1);
1033       default:
1034         llvm_unreachable("loop metadata has 0 or 1 operand");
1035       }
1036   }
1037   return None;
1038 }
1039 
1040 /// Returns true if the instruction in a loop is guaranteed to execute at least
1041 /// once.
1042 bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1043                                  const DominatorTree *DT, const Loop *CurLoop,
1044                                  const LoopSafetyInfo *SafetyInfo) {
1045   // We have to check to make sure that the instruction dominates all
1046   // of the exit blocks.  If it doesn't, then there is a path out of the loop
1047   // which does not execute this instruction, so we can't hoist it.
1048 
1049   // If the instruction is in the header block for the loop (which is very
1050   // common), it is always guaranteed to dominate the exit blocks.  Since this
1051   // is a common case, and can save some work, check it now.
1052   if (Inst.getParent() == CurLoop->getHeader())
1053     // If there's a throw in the header block, we can't guarantee we'll reach
1054     // Inst.
1055     return !SafetyInfo->HeaderMayThrow;
1056 
1057   // Somewhere in this loop there is an instruction which may throw and make us
1058   // exit the loop.
1059   if (SafetyInfo->MayThrow)
1060     return false;
1061 
1062   // Get the exit blocks for the current loop.
1063   SmallVector<BasicBlock *, 8> ExitBlocks;
1064   CurLoop->getExitBlocks(ExitBlocks);
1065 
1066   // Verify that the block dominates each of the exit blocks of the loop.
1067   for (BasicBlock *ExitBlock : ExitBlocks)
1068     if (!DT->dominates(Inst.getParent(), ExitBlock))
1069       return false;
1070 
1071   // As a degenerate case, if the loop is statically infinite then we haven't
1072   // proven anything since there are no exit blocks.
1073   if (ExitBlocks.empty())
1074     return false;
1075 
1076   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1077   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
1078   // just a special case of this.)
1079   return true;
1080 }
1081 
1082 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1083   // Only support loops with a unique exiting block, and a latch.
1084   if (!L->getExitingBlock())
1085     return None;
1086 
1087   // Get the branch weights for the the loop's backedge.
1088   BranchInst *LatchBR =
1089       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1090   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1091     return None;
1092 
1093   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1094           LatchBR->getSuccessor(1) == L->getHeader()) &&
1095          "At least one edge out of the latch must go to the header");
1096 
1097   // To estimate the number of times the loop body was executed, we want to
1098   // know the number of times the backedge was taken, vs. the number of times
1099   // we exited the loop.
1100   uint64_t TrueVal, FalseVal;
1101   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1102     return None;
1103 
1104   if (!TrueVal || !FalseVal)
1105     return 0;
1106 
1107   // Divide the count of the backedge by the count of the edge exiting the loop,
1108   // rounding to nearest.
1109   if (LatchBR->getSuccessor(0) == L->getHeader())
1110     return (TrueVal + (FalseVal / 2)) / FalseVal;
1111   else
1112     return (FalseVal + (TrueVal / 2)) / TrueVal;
1113 }
1114