1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DomTreeUpdater.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 
40 using namespace llvm;
41 using namespace llvm::PatternMatch;
42 
43 #define DEBUG_TYPE "loop-utils"
44 
45 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
46                                         SmallPtrSetImpl<Instruction *> &Set) {
47   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
48     if (!Set.count(dyn_cast<Instruction>(*Use)))
49       return false;
50   return true;
51 }
52 
53 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
54   switch (Kind) {
55   default:
56     break;
57   case RK_IntegerAdd:
58   case RK_IntegerMult:
59   case RK_IntegerOr:
60   case RK_IntegerAnd:
61   case RK_IntegerXor:
62   case RK_IntegerMinMax:
63     return true;
64   }
65   return false;
66 }
67 
68 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
69   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
70 }
71 
72 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
73   switch (Kind) {
74   default:
75     break;
76   case RK_IntegerAdd:
77   case RK_IntegerMult:
78   case RK_FloatAdd:
79   case RK_FloatMult:
80     return true;
81   }
82   return false;
83 }
84 
85 /// Determines if Phi may have been type-promoted. If Phi has a single user
86 /// that ANDs the Phi with a type mask, return the user. RT is updated to
87 /// account for the narrower bit width represented by the mask, and the AND
88 /// instruction is added to CI.
89 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
90                                    SmallPtrSetImpl<Instruction *> &Visited,
91                                    SmallPtrSetImpl<Instruction *> &CI) {
92   if (!Phi->hasOneUse())
93     return Phi;
94 
95   const APInt *M = nullptr;
96   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
97 
98   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
99   // with a new integer type of the corresponding bit width.
100   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
101     int32_t Bits = (*M + 1).exactLogBase2();
102     if (Bits > 0) {
103       RT = IntegerType::get(Phi->getContext(), Bits);
104       Visited.insert(Phi);
105       CI.insert(J);
106       return J;
107     }
108   }
109   return Phi;
110 }
111 
112 /// Compute the minimal bit width needed to represent a reduction whose exit
113 /// instruction is given by Exit.
114 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
115                                                      DemandedBits *DB,
116                                                      AssumptionCache *AC,
117                                                      DominatorTree *DT) {
118   bool IsSigned = false;
119   const DataLayout &DL = Exit->getModule()->getDataLayout();
120   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
121 
122   if (DB) {
123     // Use the demanded bits analysis to determine the bits that are live out
124     // of the exit instruction, rounding up to the nearest power of two. If the
125     // use of demanded bits results in a smaller bit width, we know the value
126     // must be positive (i.e., IsSigned = false), because if this were not the
127     // case, the sign bit would have been demanded.
128     auto Mask = DB->getDemandedBits(Exit);
129     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
130   }
131 
132   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
133     // If demanded bits wasn't able to limit the bit width, we can try to use
134     // value tracking instead. This can be the case, for example, if the value
135     // may be negative.
136     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
137     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
138     MaxBitWidth = NumTypeBits - NumSignBits;
139     KnownBits Bits = computeKnownBits(Exit, DL);
140     if (!Bits.isNonNegative()) {
141       // If the value is not known to be non-negative, we set IsSigned to true,
142       // meaning that we will use sext instructions instead of zext
143       // instructions to restore the original type.
144       IsSigned = true;
145       if (!Bits.isNegative())
146         // If the value is not known to be negative, we don't known what the
147         // upper bit is, and therefore, we don't know what kind of extend we
148         // will need. In this case, just increase the bit width by one bit and
149         // use sext.
150         ++MaxBitWidth;
151     }
152   }
153   if (!isPowerOf2_64(MaxBitWidth))
154     MaxBitWidth = NextPowerOf2(MaxBitWidth);
155 
156   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
157                         IsSigned);
158 }
159 
160 /// Collect cast instructions that can be ignored in the vectorizer's cost
161 /// model, given a reduction exit value and the minimal type in which the
162 /// reduction can be represented.
163 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
164                                  Type *RecurrenceType,
165                                  SmallPtrSetImpl<Instruction *> &Casts) {
166 
167   SmallVector<Instruction *, 8> Worklist;
168   SmallPtrSet<Instruction *, 8> Visited;
169   Worklist.push_back(Exit);
170 
171   while (!Worklist.empty()) {
172     Instruction *Val = Worklist.pop_back_val();
173     Visited.insert(Val);
174     if (auto *Cast = dyn_cast<CastInst>(Val))
175       if (Cast->getSrcTy() == RecurrenceType) {
176         // If the source type of a cast instruction is equal to the recurrence
177         // type, it will be eliminated, and should be ignored in the vectorizer
178         // cost model.
179         Casts.insert(Cast);
180         continue;
181       }
182 
183     // Add all operands to the work list if they are loop-varying values that
184     // we haven't yet visited.
185     for (Value *O : cast<User>(Val)->operands())
186       if (auto *I = dyn_cast<Instruction>(O))
187         if (TheLoop->contains(I) && !Visited.count(I))
188           Worklist.push_back(I);
189   }
190 }
191 
192 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
193                                            Loop *TheLoop, bool HasFunNoNaNAttr,
194                                            RecurrenceDescriptor &RedDes,
195                                            DemandedBits *DB,
196                                            AssumptionCache *AC,
197                                            DominatorTree *DT) {
198   if (Phi->getNumIncomingValues() != 2)
199     return false;
200 
201   // Reduction variables are only found in the loop header block.
202   if (Phi->getParent() != TheLoop->getHeader())
203     return false;
204 
205   // Obtain the reduction start value from the value that comes from the loop
206   // preheader.
207   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
208 
209   // ExitInstruction is the single value which is used outside the loop.
210   // We only allow for a single reduction value to be used outside the loop.
211   // This includes users of the reduction, variables (which form a cycle
212   // which ends in the phi node).
213   Instruction *ExitInstruction = nullptr;
214   // Indicates that we found a reduction operation in our scan.
215   bool FoundReduxOp = false;
216 
217   // We start with the PHI node and scan for all of the users of this
218   // instruction. All users must be instructions that can be used as reduction
219   // variables (such as ADD). We must have a single out-of-block user. The cycle
220   // must include the original PHI.
221   bool FoundStartPHI = false;
222 
223   // To recognize min/max patterns formed by a icmp select sequence, we store
224   // the number of instruction we saw from the recognized min/max pattern,
225   //  to make sure we only see exactly the two instructions.
226   unsigned NumCmpSelectPatternInst = 0;
227   InstDesc ReduxDesc(false, nullptr);
228 
229   // Data used for determining if the recurrence has been type-promoted.
230   Type *RecurrenceType = Phi->getType();
231   SmallPtrSet<Instruction *, 4> CastInsts;
232   Instruction *Start = Phi;
233   bool IsSigned = false;
234 
235   SmallPtrSet<Instruction *, 8> VisitedInsts;
236   SmallVector<Instruction *, 8> Worklist;
237 
238   // Return early if the recurrence kind does not match the type of Phi. If the
239   // recurrence kind is arithmetic, we attempt to look through AND operations
240   // resulting from the type promotion performed by InstCombine.  Vector
241   // operations are not limited to the legal integer widths, so we may be able
242   // to evaluate the reduction in the narrower width.
243   if (RecurrenceType->isFloatingPointTy()) {
244     if (!isFloatingPointRecurrenceKind(Kind))
245       return false;
246   } else {
247     if (!isIntegerRecurrenceKind(Kind))
248       return false;
249     if (isArithmeticRecurrenceKind(Kind))
250       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
251   }
252 
253   Worklist.push_back(Start);
254   VisitedInsts.insert(Start);
255 
256   // A value in the reduction can be used:
257   //  - By the reduction:
258   //      - Reduction operation:
259   //        - One use of reduction value (safe).
260   //        - Multiple use of reduction value (not safe).
261   //      - PHI:
262   //        - All uses of the PHI must be the reduction (safe).
263   //        - Otherwise, not safe.
264   //  - By instructions outside of the loop (safe).
265   //      * One value may have several outside users, but all outside
266   //        uses must be of the same value.
267   //  - By an instruction that is not part of the reduction (not safe).
268   //    This is either:
269   //      * An instruction type other than PHI or the reduction operation.
270   //      * A PHI in the header other than the initial PHI.
271   while (!Worklist.empty()) {
272     Instruction *Cur = Worklist.back();
273     Worklist.pop_back();
274 
275     // No Users.
276     // If the instruction has no users then this is a broken chain and can't be
277     // a reduction variable.
278     if (Cur->use_empty())
279       return false;
280 
281     bool IsAPhi = isa<PHINode>(Cur);
282 
283     // A header PHI use other than the original PHI.
284     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
285       return false;
286 
287     // Reductions of instructions such as Div, and Sub is only possible if the
288     // LHS is the reduction variable.
289     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
290         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
291         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
292       return false;
293 
294     // Any reduction instruction must be of one of the allowed kinds. We ignore
295     // the starting value (the Phi or an AND instruction if the Phi has been
296     // type-promoted).
297     if (Cur != Start) {
298       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
299       if (!ReduxDesc.isRecurrence())
300         return false;
301     }
302 
303     // A reduction operation must only have one use of the reduction value.
304     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
305         hasMultipleUsesOf(Cur, VisitedInsts))
306       return false;
307 
308     // All inputs to a PHI node must be a reduction value.
309     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
310       return false;
311 
312     if (Kind == RK_IntegerMinMax &&
313         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
314       ++NumCmpSelectPatternInst;
315     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
316       ++NumCmpSelectPatternInst;
317 
318     // Check  whether we found a reduction operator.
319     FoundReduxOp |= !IsAPhi && Cur != Start;
320 
321     // Process users of current instruction. Push non-PHI nodes after PHI nodes
322     // onto the stack. This way we are going to have seen all inputs to PHI
323     // nodes once we get to them.
324     SmallVector<Instruction *, 8> NonPHIs;
325     SmallVector<Instruction *, 8> PHIs;
326     for (User *U : Cur->users()) {
327       Instruction *UI = cast<Instruction>(U);
328 
329       // Check if we found the exit user.
330       BasicBlock *Parent = UI->getParent();
331       if (!TheLoop->contains(Parent)) {
332         // If we already know this instruction is used externally, move on to
333         // the next user.
334         if (ExitInstruction == Cur)
335           continue;
336 
337         // Exit if you find multiple values used outside or if the header phi
338         // node is being used. In this case the user uses the value of the
339         // previous iteration, in which case we would loose "VF-1" iterations of
340         // the reduction operation if we vectorize.
341         if (ExitInstruction != nullptr || Cur == Phi)
342           return false;
343 
344         // The instruction used by an outside user must be the last instruction
345         // before we feed back to the reduction phi. Otherwise, we loose VF-1
346         // operations on the value.
347         if (!is_contained(Phi->operands(), Cur))
348           return false;
349 
350         ExitInstruction = Cur;
351         continue;
352       }
353 
354       // Process instructions only once (termination). Each reduction cycle
355       // value must only be used once, except by phi nodes and min/max
356       // reductions which are represented as a cmp followed by a select.
357       InstDesc IgnoredVal(false, nullptr);
358       if (VisitedInsts.insert(UI).second) {
359         if (isa<PHINode>(UI))
360           PHIs.push_back(UI);
361         else
362           NonPHIs.push_back(UI);
363       } else if (!isa<PHINode>(UI) &&
364                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
365                    !isa<SelectInst>(UI)) ||
366                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
367         return false;
368 
369       // Remember that we completed the cycle.
370       if (UI == Phi)
371         FoundStartPHI = true;
372     }
373     Worklist.append(PHIs.begin(), PHIs.end());
374     Worklist.append(NonPHIs.begin(), NonPHIs.end());
375   }
376 
377   // This means we have seen one but not the other instruction of the
378   // pattern or more than just a select and cmp.
379   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
380       NumCmpSelectPatternInst != 2)
381     return false;
382 
383   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
384     return false;
385 
386   if (Start != Phi) {
387     // If the starting value is not the same as the phi node, we speculatively
388     // looked through an 'and' instruction when evaluating a potential
389     // arithmetic reduction to determine if it may have been type-promoted.
390     //
391     // We now compute the minimal bit width that is required to represent the
392     // reduction. If this is the same width that was indicated by the 'and', we
393     // can represent the reduction in the smaller type. The 'and' instruction
394     // will be eliminated since it will essentially be a cast instruction that
395     // can be ignore in the cost model. If we compute a different type than we
396     // did when evaluating the 'and', the 'and' will not be eliminated, and we
397     // will end up with different kinds of operations in the recurrence
398     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
399     // the case.
400     //
401     // The vectorizer relies on InstCombine to perform the actual
402     // type-shrinking. It does this by inserting instructions to truncate the
403     // exit value of the reduction to the width indicated by RecurrenceType and
404     // then extend this value back to the original width. If IsSigned is false,
405     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
406     // used.
407     //
408     // TODO: We should not rely on InstCombine to rewrite the reduction in the
409     //       smaller type. We should just generate a correctly typed expression
410     //       to begin with.
411     Type *ComputedType;
412     std::tie(ComputedType, IsSigned) =
413         computeRecurrenceType(ExitInstruction, DB, AC, DT);
414     if (ComputedType != RecurrenceType)
415       return false;
416 
417     // The recurrence expression will be represented in a narrower type. If
418     // there are any cast instructions that will be unnecessary, collect them
419     // in CastInsts. Note that the 'and' instruction was already included in
420     // this list.
421     //
422     // TODO: A better way to represent this may be to tag in some way all the
423     //       instructions that are a part of the reduction. The vectorizer cost
424     //       model could then apply the recurrence type to these instructions,
425     //       without needing a white list of instructions to ignore.
426     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
427   }
428 
429   // We found a reduction var if we have reached the original phi node and we
430   // only have a single instruction with out-of-loop users.
431 
432   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
433   // is saved as part of the RecurrenceDescriptor.
434 
435   // Save the description of this reduction variable.
436   RecurrenceDescriptor RD(
437       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
438       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
439   RedDes = RD;
440 
441   return true;
442 }
443 
444 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
445 /// pattern corresponding to a min(X, Y) or max(X, Y).
446 RecurrenceDescriptor::InstDesc
447 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
448 
449   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
450          "Expect a select instruction");
451   Instruction *Cmp = nullptr;
452   SelectInst *Select = nullptr;
453 
454   // We must handle the select(cmp()) as a single instruction. Advance to the
455   // select.
456   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
457     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
458       return InstDesc(false, I);
459     return InstDesc(Select, Prev.getMinMaxKind());
460   }
461 
462   // Only handle single use cases for now.
463   if (!(Select = dyn_cast<SelectInst>(I)))
464     return InstDesc(false, I);
465   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
466       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
467     return InstDesc(false, I);
468   if (!Cmp->hasOneUse())
469     return InstDesc(false, I);
470 
471   Value *CmpLeft;
472   Value *CmpRight;
473 
474   // Look for a min/max pattern.
475   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
476     return InstDesc(Select, MRK_UIntMin);
477   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
478     return InstDesc(Select, MRK_UIntMax);
479   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
480     return InstDesc(Select, MRK_SIntMax);
481   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
482     return InstDesc(Select, MRK_SIntMin);
483   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
484     return InstDesc(Select, MRK_FloatMin);
485   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
486     return InstDesc(Select, MRK_FloatMax);
487   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
488     return InstDesc(Select, MRK_FloatMin);
489   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
490     return InstDesc(Select, MRK_FloatMax);
491 
492   return InstDesc(false, I);
493 }
494 
495 RecurrenceDescriptor::InstDesc
496 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
497                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
498   bool FP = I->getType()->isFloatingPointTy();
499   Instruction *UAI = Prev.getUnsafeAlgebraInst();
500   if (!UAI && FP && !I->isFast())
501     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
502 
503   switch (I->getOpcode()) {
504   default:
505     return InstDesc(false, I);
506   case Instruction::PHI:
507     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
508   case Instruction::Sub:
509   case Instruction::Add:
510     return InstDesc(Kind == RK_IntegerAdd, I);
511   case Instruction::Mul:
512     return InstDesc(Kind == RK_IntegerMult, I);
513   case Instruction::And:
514     return InstDesc(Kind == RK_IntegerAnd, I);
515   case Instruction::Or:
516     return InstDesc(Kind == RK_IntegerOr, I);
517   case Instruction::Xor:
518     return InstDesc(Kind == RK_IntegerXor, I);
519   case Instruction::FMul:
520     return InstDesc(Kind == RK_FloatMult, I, UAI);
521   case Instruction::FSub:
522   case Instruction::FAdd:
523     return InstDesc(Kind == RK_FloatAdd, I, UAI);
524   case Instruction::FCmp:
525   case Instruction::ICmp:
526   case Instruction::Select:
527     if (Kind != RK_IntegerMinMax &&
528         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
529       return InstDesc(false, I);
530     return isMinMaxSelectCmpPattern(I, Prev);
531   }
532 }
533 
534 bool RecurrenceDescriptor::hasMultipleUsesOf(
535     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
536   unsigned NumUses = 0;
537   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
538        ++Use) {
539     if (Insts.count(dyn_cast<Instruction>(*Use)))
540       ++NumUses;
541     if (NumUses > 1)
542       return true;
543   }
544 
545   return false;
546 }
547 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
548                                           RecurrenceDescriptor &RedDes,
549                                           DemandedBits *DB, AssumptionCache *AC,
550                                           DominatorTree *DT) {
551 
552   BasicBlock *Header = TheLoop->getHeader();
553   Function &F = *Header->getParent();
554   bool HasFunNoNaNAttr =
555       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
556 
557   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
558                       AC, DT)) {
559     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
560     return true;
561   }
562   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
563                       AC, DT)) {
564     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
565     return true;
566   }
567   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
568                       AC, DT)) {
569     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
570     return true;
571   }
572   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
573                       AC, DT)) {
574     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
575     return true;
576   }
577   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
578                       AC, DT)) {
579     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
580     return true;
581   }
582   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
583                       DB, AC, DT)) {
584     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
585     return true;
586   }
587   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
588                       AC, DT)) {
589     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
590     return true;
591   }
592   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
593                       AC, DT)) {
594     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
595     return true;
596   }
597   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
598                       AC, DT)) {
599     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
600                       << "\n");
601     return true;
602   }
603   // Not a reduction of known type.
604   return false;
605 }
606 
607 bool RecurrenceDescriptor::isFirstOrderRecurrence(
608     PHINode *Phi, Loop *TheLoop,
609     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
610 
611   // Ensure the phi node is in the loop header and has two incoming values.
612   if (Phi->getParent() != TheLoop->getHeader() ||
613       Phi->getNumIncomingValues() != 2)
614     return false;
615 
616   // Ensure the loop has a preheader and a single latch block. The loop
617   // vectorizer will need the latch to set up the next iteration of the loop.
618   auto *Preheader = TheLoop->getLoopPreheader();
619   auto *Latch = TheLoop->getLoopLatch();
620   if (!Preheader || !Latch)
621     return false;
622 
623   // Ensure the phi node's incoming blocks are the loop preheader and latch.
624   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
625       Phi->getBasicBlockIndex(Latch) < 0)
626     return false;
627 
628   // Get the previous value. The previous value comes from the latch edge while
629   // the initial value comes form the preheader edge.
630   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
631   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
632       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
633     return false;
634 
635   // Ensure every user of the phi node is dominated by the previous value.
636   // The dominance requirement ensures the loop vectorizer will not need to
637   // vectorize the initial value prior to the first iteration of the loop.
638   // TODO: Consider extending this sinking to handle other kinds of instructions
639   // and expressions, beyond sinking a single cast past Previous.
640   if (Phi->hasOneUse()) {
641     auto *I = Phi->user_back();
642     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
643         DT->dominates(Previous, I->user_back())) {
644       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
645         SinkAfter[I] = Previous;
646       return true;
647     }
648   }
649 
650   for (User *U : Phi->users())
651     if (auto *I = dyn_cast<Instruction>(U)) {
652       if (!DT->dominates(Previous, I))
653         return false;
654     }
655 
656   return true;
657 }
658 
659 /// This function returns the identity element (or neutral element) for
660 /// the operation K.
661 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
662                                                       Type *Tp) {
663   switch (K) {
664   case RK_IntegerXor:
665   case RK_IntegerAdd:
666   case RK_IntegerOr:
667     // Adding, Xoring, Oring zero to a number does not change it.
668     return ConstantInt::get(Tp, 0);
669   case RK_IntegerMult:
670     // Multiplying a number by 1 does not change it.
671     return ConstantInt::get(Tp, 1);
672   case RK_IntegerAnd:
673     // AND-ing a number with an all-1 value does not change it.
674     return ConstantInt::get(Tp, -1, true);
675   case RK_FloatMult:
676     // Multiplying a number by 1 does not change it.
677     return ConstantFP::get(Tp, 1.0L);
678   case RK_FloatAdd:
679     // Adding zero to a number does not change it.
680     return ConstantFP::get(Tp, 0.0L);
681   default:
682     llvm_unreachable("Unknown recurrence kind");
683   }
684 }
685 
686 /// This function translates the recurrence kind to an LLVM binary operator.
687 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
688   switch (Kind) {
689   case RK_IntegerAdd:
690     return Instruction::Add;
691   case RK_IntegerMult:
692     return Instruction::Mul;
693   case RK_IntegerOr:
694     return Instruction::Or;
695   case RK_IntegerAnd:
696     return Instruction::And;
697   case RK_IntegerXor:
698     return Instruction::Xor;
699   case RK_FloatMult:
700     return Instruction::FMul;
701   case RK_FloatAdd:
702     return Instruction::FAdd;
703   case RK_IntegerMinMax:
704     return Instruction::ICmp;
705   case RK_FloatMinMax:
706     return Instruction::FCmp;
707   default:
708     llvm_unreachable("Unknown recurrence operation");
709   }
710 }
711 
712 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
713                                             MinMaxRecurrenceKind RK,
714                                             Value *Left, Value *Right) {
715   CmpInst::Predicate P = CmpInst::ICMP_NE;
716   switch (RK) {
717   default:
718     llvm_unreachable("Unknown min/max recurrence kind");
719   case MRK_UIntMin:
720     P = CmpInst::ICMP_ULT;
721     break;
722   case MRK_UIntMax:
723     P = CmpInst::ICMP_UGT;
724     break;
725   case MRK_SIntMin:
726     P = CmpInst::ICMP_SLT;
727     break;
728   case MRK_SIntMax:
729     P = CmpInst::ICMP_SGT;
730     break;
731   case MRK_FloatMin:
732     P = CmpInst::FCMP_OLT;
733     break;
734   case MRK_FloatMax:
735     P = CmpInst::FCMP_OGT;
736     break;
737   }
738 
739   // We only match FP sequences that are 'fast', so we can unconditionally
740   // set it on any generated instructions.
741   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
742   FastMathFlags FMF;
743   FMF.setFast();
744   Builder.setFastMathFlags(FMF);
745 
746   Value *Cmp;
747   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
748     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
749   else
750     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
751 
752   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
753   return Select;
754 }
755 
756 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
757                                          const SCEV *Step, BinaryOperator *BOp,
758                                          SmallVectorImpl<Instruction *> *Casts)
759   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
760   assert(IK != IK_NoInduction && "Not an induction");
761 
762   // Start value type should match the induction kind and the value
763   // itself should not be null.
764   assert(StartValue && "StartValue is null");
765   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
766          "StartValue is not a pointer for pointer induction");
767   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
768          "StartValue is not an integer for integer induction");
769 
770   // Check the Step Value. It should be non-zero integer value.
771   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
772          "Step value is zero");
773 
774   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
775          "Step value should be constant for pointer induction");
776   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
777          "StepValue is not an integer");
778 
779   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
780          "StepValue is not FP for FpInduction");
781   assert((IK != IK_FpInduction || (InductionBinOp &&
782           (InductionBinOp->getOpcode() == Instruction::FAdd ||
783            InductionBinOp->getOpcode() == Instruction::FSub))) &&
784          "Binary opcode should be specified for FP induction");
785 
786   if (Casts) {
787     for (auto &Inst : *Casts) {
788       RedundantCasts.push_back(Inst);
789     }
790   }
791 }
792 
793 int InductionDescriptor::getConsecutiveDirection() const {
794   ConstantInt *ConstStep = getConstIntStepValue();
795   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
796     return ConstStep->getSExtValue();
797   return 0;
798 }
799 
800 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
801   if (isa<SCEVConstant>(Step))
802     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
803   return nullptr;
804 }
805 
806 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
807                                       ScalarEvolution *SE,
808                                       const DataLayout& DL) const {
809 
810   SCEVExpander Exp(*SE, DL, "induction");
811   assert(Index->getType() == Step->getType() &&
812          "Index type does not match StepValue type");
813   switch (IK) {
814   case IK_IntInduction: {
815     assert(Index->getType() == StartValue->getType() &&
816            "Index type does not match StartValue type");
817 
818     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
819     // and calculate (Start + Index * Step) for all cases, without
820     // special handling for "isOne" and "isMinusOne".
821     // But in the real life the result code getting worse. We mix SCEV
822     // expressions and ADD/SUB operations and receive redundant
823     // intermediate values being calculated in different ways and
824     // Instcombine is unable to reduce them all.
825 
826     if (getConstIntStepValue() &&
827         getConstIntStepValue()->isMinusOne())
828       return B.CreateSub(StartValue, Index);
829     if (getConstIntStepValue() &&
830         getConstIntStepValue()->isOne())
831       return B.CreateAdd(StartValue, Index);
832     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
833                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
834     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
835   }
836   case IK_PtrInduction: {
837     assert(isa<SCEVConstant>(Step) &&
838            "Expected constant step for pointer induction");
839     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
840     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
841     return B.CreateGEP(nullptr, StartValue, Index);
842   }
843   case IK_FpInduction: {
844     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
845     assert(InductionBinOp &&
846            (InductionBinOp->getOpcode() == Instruction::FAdd ||
847             InductionBinOp->getOpcode() == Instruction::FSub) &&
848            "Original bin op should be defined for FP induction");
849 
850     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
851 
852     // Floating point operations had to be 'fast' to enable the induction.
853     FastMathFlags Flags;
854     Flags.setFast();
855 
856     Value *MulExp = B.CreateFMul(StepValue, Index);
857     if (isa<Instruction>(MulExp))
858       // We have to check, the MulExp may be a constant.
859       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
860 
861     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
862                                MulExp, "induction");
863     if (isa<Instruction>(BOp))
864       cast<Instruction>(BOp)->setFastMathFlags(Flags);
865 
866     return BOp;
867   }
868   case IK_NoInduction:
869     return nullptr;
870   }
871   llvm_unreachable("invalid enum");
872 }
873 
874 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
875                                            ScalarEvolution *SE,
876                                            InductionDescriptor &D) {
877 
878   // Here we only handle FP induction variables.
879   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
880 
881   if (TheLoop->getHeader() != Phi->getParent())
882     return false;
883 
884   // The loop may have multiple entrances or multiple exits; we can analyze
885   // this phi if it has a unique entry value and a unique backedge value.
886   if (Phi->getNumIncomingValues() != 2)
887     return false;
888   Value *BEValue = nullptr, *StartValue = nullptr;
889   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
890     BEValue = Phi->getIncomingValue(0);
891     StartValue = Phi->getIncomingValue(1);
892   } else {
893     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
894            "Unexpected Phi node in the loop");
895     BEValue = Phi->getIncomingValue(1);
896     StartValue = Phi->getIncomingValue(0);
897   }
898 
899   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
900   if (!BOp)
901     return false;
902 
903   Value *Addend = nullptr;
904   if (BOp->getOpcode() == Instruction::FAdd) {
905     if (BOp->getOperand(0) == Phi)
906       Addend = BOp->getOperand(1);
907     else if (BOp->getOperand(1) == Phi)
908       Addend = BOp->getOperand(0);
909   } else if (BOp->getOpcode() == Instruction::FSub)
910     if (BOp->getOperand(0) == Phi)
911       Addend = BOp->getOperand(1);
912 
913   if (!Addend)
914     return false;
915 
916   // The addend should be loop invariant
917   if (auto *I = dyn_cast<Instruction>(Addend))
918     if (TheLoop->contains(I))
919       return false;
920 
921   // FP Step has unknown SCEV
922   const SCEV *Step = SE->getUnknown(Addend);
923   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
924   return true;
925 }
926 
927 /// This function is called when we suspect that the update-chain of a phi node
928 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
929 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
930 /// predicate P under which the SCEV expression for the phi can be the
931 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
932 /// cast instructions that are involved in the update-chain of this induction.
933 /// A caller that adds the required runtime predicate can be free to drop these
934 /// cast instructions, and compute the phi using \p AR (instead of some scev
935 /// expression with casts).
936 ///
937 /// For example, without a predicate the scev expression can take the following
938 /// form:
939 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
940 ///
941 /// It corresponds to the following IR sequence:
942 /// %for.body:
943 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
944 ///   %casted_phi = "ExtTrunc i64 %x"
945 ///   %add = add i64 %casted_phi, %step
946 ///
947 /// where %x is given in \p PN,
948 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
949 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
950 /// several forms, for example, such as:
951 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
952 /// or:
953 ///   ExtTrunc2:    %t = shl %x, m
954 ///                 %casted_phi = ashr %t, m
955 ///
956 /// If we are able to find such sequence, we return the instructions
957 /// we found, namely %casted_phi and the instructions on its use-def chain up
958 /// to the phi (not including the phi).
959 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
960                                     const SCEVUnknown *PhiScev,
961                                     const SCEVAddRecExpr *AR,
962                                     SmallVectorImpl<Instruction *> &CastInsts) {
963 
964   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
965   auto *PN = cast<PHINode>(PhiScev->getValue());
966   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
967   const Loop *L = AR->getLoop();
968 
969   // Find any cast instructions that participate in the def-use chain of
970   // PhiScev in the loop.
971   // FORNOW/TODO: We currently expect the def-use chain to include only
972   // two-operand instructions, where one of the operands is an invariant.
973   // createAddRecFromPHIWithCasts() currently does not support anything more
974   // involved than that, so we keep the search simple. This can be
975   // extended/generalized as needed.
976 
977   auto getDef = [&](const Value *Val) -> Value * {
978     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
979     if (!BinOp)
980       return nullptr;
981     Value *Op0 = BinOp->getOperand(0);
982     Value *Op1 = BinOp->getOperand(1);
983     Value *Def = nullptr;
984     if (L->isLoopInvariant(Op0))
985       Def = Op1;
986     else if (L->isLoopInvariant(Op1))
987       Def = Op0;
988     return Def;
989   };
990 
991   // Look for the instruction that defines the induction via the
992   // loop backedge.
993   BasicBlock *Latch = L->getLoopLatch();
994   if (!Latch)
995     return false;
996   Value *Val = PN->getIncomingValueForBlock(Latch);
997   if (!Val)
998     return false;
999 
1000   // Follow the def-use chain until the induction phi is reached.
1001   // If on the way we encounter a Value that has the same SCEV Expr as the
1002   // phi node, we can consider the instructions we visit from that point
1003   // as part of the cast-sequence that can be ignored.
1004   bool InCastSequence = false;
1005   auto *Inst = dyn_cast<Instruction>(Val);
1006   while (Val != PN) {
1007     // If we encountered a phi node other than PN, or if we left the loop,
1008     // we bail out.
1009     if (!Inst || !L->contains(Inst)) {
1010       return false;
1011     }
1012     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1013     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1014       InCastSequence = true;
1015     if (InCastSequence) {
1016       // Only the last instruction in the cast sequence is expected to have
1017       // uses outside the induction def-use chain.
1018       if (!CastInsts.empty())
1019         if (!Inst->hasOneUse())
1020           return false;
1021       CastInsts.push_back(Inst);
1022     }
1023     Val = getDef(Val);
1024     if (!Val)
1025       return false;
1026     Inst = dyn_cast<Instruction>(Val);
1027   }
1028 
1029   return InCastSequence;
1030 }
1031 
1032 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1033                                          PredicatedScalarEvolution &PSE,
1034                                          InductionDescriptor &D,
1035                                          bool Assume) {
1036   Type *PhiTy = Phi->getType();
1037 
1038   // Handle integer and pointer inductions variables.
1039   // Now we handle also FP induction but not trying to make a
1040   // recurrent expression from the PHI node in-place.
1041 
1042   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
1043       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1044     return false;
1045 
1046   if (PhiTy->isFloatingPointTy())
1047     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1048 
1049   const SCEV *PhiScev = PSE.getSCEV(Phi);
1050   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1051 
1052   // We need this expression to be an AddRecExpr.
1053   if (Assume && !AR)
1054     AR = PSE.getAsAddRec(Phi);
1055 
1056   if (!AR) {
1057     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1058     return false;
1059   }
1060 
1061   // Record any Cast instructions that participate in the induction update
1062   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1063   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1064   // only after enabling Assume with PSCEV, this means we may have encountered
1065   // cast instructions that required adding a runtime check in order to
1066   // guarantee the correctness of the AddRecurence respresentation of the
1067   // induction.
1068   if (PhiScev != AR && SymbolicPhi) {
1069     SmallVector<Instruction *, 2> Casts;
1070     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1071       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1072   }
1073 
1074   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1075 }
1076 
1077 bool InductionDescriptor::isInductionPHI(
1078     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1079     InductionDescriptor &D, const SCEV *Expr,
1080     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1081   Type *PhiTy = Phi->getType();
1082   // We only handle integer and pointer inductions variables.
1083   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1084     return false;
1085 
1086   // Check that the PHI is consecutive.
1087   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1088   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1089 
1090   if (!AR) {
1091     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1092     return false;
1093   }
1094 
1095   if (AR->getLoop() != TheLoop) {
1096     // FIXME: We should treat this as a uniform. Unfortunately, we
1097     // don't currently know how to handled uniform PHIs.
1098     LLVM_DEBUG(
1099         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1100     return false;
1101   }
1102 
1103   Value *StartValue =
1104     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1105   const SCEV *Step = AR->getStepRecurrence(*SE);
1106   // Calculate the pointer stride and check if it is consecutive.
1107   // The stride may be a constant or a loop invariant integer value.
1108   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1109   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1110     return false;
1111 
1112   if (PhiTy->isIntegerTy()) {
1113     D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
1114                             CastsToIgnore);
1115     return true;
1116   }
1117 
1118   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1119   // Pointer induction should be a constant.
1120   if (!ConstStep)
1121     return false;
1122 
1123   ConstantInt *CV = ConstStep->getValue();
1124   Type *PointerElementType = PhiTy->getPointerElementType();
1125   // The pointer stride cannot be determined if the pointer element type is not
1126   // sized.
1127   if (!PointerElementType->isSized())
1128     return false;
1129 
1130   const DataLayout &DL = Phi->getModule()->getDataLayout();
1131   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1132   if (!Size)
1133     return false;
1134 
1135   int64_t CVSize = CV->getSExtValue();
1136   if (CVSize % Size)
1137     return false;
1138   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
1139                                     true /* signed */);
1140   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
1141   return true;
1142 }
1143 
1144 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
1145                                    bool PreserveLCSSA) {
1146   bool Changed = false;
1147 
1148   // We re-use a vector for the in-loop predecesosrs.
1149   SmallVector<BasicBlock *, 4> InLoopPredecessors;
1150 
1151   auto RewriteExit = [&](BasicBlock *BB) {
1152     assert(InLoopPredecessors.empty() &&
1153            "Must start with an empty predecessors list!");
1154     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
1155 
1156     // See if there are any non-loop predecessors of this exit block and
1157     // keep track of the in-loop predecessors.
1158     bool IsDedicatedExit = true;
1159     for (auto *PredBB : predecessors(BB))
1160       if (L->contains(PredBB)) {
1161         if (isa<IndirectBrInst>(PredBB->getTerminator()))
1162           // We cannot rewrite exiting edges from an indirectbr.
1163           return false;
1164 
1165         InLoopPredecessors.push_back(PredBB);
1166       } else {
1167         IsDedicatedExit = false;
1168       }
1169 
1170     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
1171 
1172     // Nothing to do if this is already a dedicated exit.
1173     if (IsDedicatedExit)
1174       return false;
1175 
1176     auto *NewExitBB = SplitBlockPredecessors(
1177         BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA);
1178 
1179     if (!NewExitBB)
1180       LLVM_DEBUG(
1181           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
1182                  << *L << "\n");
1183     else
1184       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
1185                         << NewExitBB->getName() << "\n");
1186     return true;
1187   };
1188 
1189   // Walk the exit blocks directly rather than building up a data structure for
1190   // them, but only visit each one once.
1191   SmallPtrSet<BasicBlock *, 4> Visited;
1192   for (auto *BB : L->blocks())
1193     for (auto *SuccBB : successors(BB)) {
1194       // We're looking for exit blocks so skip in-loop successors.
1195       if (L->contains(SuccBB))
1196         continue;
1197 
1198       // Visit each exit block exactly once.
1199       if (!Visited.insert(SuccBB).second)
1200         continue;
1201 
1202       Changed |= RewriteExit(SuccBB);
1203     }
1204 
1205   return Changed;
1206 }
1207 
1208 /// Returns the instructions that use values defined in the loop.
1209 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1210   SmallVector<Instruction *, 8> UsedOutside;
1211 
1212   for (auto *Block : L->getBlocks())
1213     // FIXME: I believe that this could use copy_if if the Inst reference could
1214     // be adapted into a pointer.
1215     for (auto &Inst : *Block) {
1216       auto Users = Inst.users();
1217       if (any_of(Users, [&](User *U) {
1218             auto *Use = cast<Instruction>(U);
1219             return !L->contains(Use->getParent());
1220           }))
1221         UsedOutside.push_back(&Inst);
1222     }
1223 
1224   return UsedOutside;
1225 }
1226 
1227 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1228   // By definition, all loop passes need the LoopInfo analysis and the
1229   // Dominator tree it depends on. Because they all participate in the loop
1230   // pass manager, they must also preserve these.
1231   AU.addRequired<DominatorTreeWrapperPass>();
1232   AU.addPreserved<DominatorTreeWrapperPass>();
1233   AU.addRequired<LoopInfoWrapperPass>();
1234   AU.addPreserved<LoopInfoWrapperPass>();
1235 
1236   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1237   // here because users shouldn't directly get them from this header.
1238   extern char &LoopSimplifyID;
1239   extern char &LCSSAID;
1240   AU.addRequiredID(LoopSimplifyID);
1241   AU.addPreservedID(LoopSimplifyID);
1242   AU.addRequiredID(LCSSAID);
1243   AU.addPreservedID(LCSSAID);
1244   // This is used in the LPPassManager to perform LCSSA verification on passes
1245   // which preserve lcssa form
1246   AU.addRequired<LCSSAVerificationPass>();
1247   AU.addPreserved<LCSSAVerificationPass>();
1248 
1249   // Loop passes are designed to run inside of a loop pass manager which means
1250   // that any function analyses they require must be required by the first loop
1251   // pass in the manager (so that it is computed before the loop pass manager
1252   // runs) and preserved by all loop pasess in the manager. To make this
1253   // reasonably robust, the set needed for most loop passes is maintained here.
1254   // If your loop pass requires an analysis not listed here, you will need to
1255   // carefully audit the loop pass manager nesting structure that results.
1256   AU.addRequired<AAResultsWrapperPass>();
1257   AU.addPreserved<AAResultsWrapperPass>();
1258   AU.addPreserved<BasicAAWrapperPass>();
1259   AU.addPreserved<GlobalsAAWrapperPass>();
1260   AU.addPreserved<SCEVAAWrapperPass>();
1261   AU.addRequired<ScalarEvolutionWrapperPass>();
1262   AU.addPreserved<ScalarEvolutionWrapperPass>();
1263 }
1264 
1265 /// Manually defined generic "LoopPass" dependency initialization. This is used
1266 /// to initialize the exact set of passes from above in \c
1267 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1268 /// with:
1269 ///
1270 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
1271 ///
1272 /// As-if "LoopPass" were a pass.
1273 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1274   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1275   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1276   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1277   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1278   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1279   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1280   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1281   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1282   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1283 }
1284 
1285 /// Find string metadata for loop
1286 ///
1287 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1288 /// operand or null otherwise.  If the string metadata is not found return
1289 /// Optional's not-a-value.
1290 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1291                                                             StringRef Name) {
1292   MDNode *LoopID = TheLoop->getLoopID();
1293   // Return none if LoopID is false.
1294   if (!LoopID)
1295     return None;
1296 
1297   // First operand should refer to the loop id itself.
1298   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1299   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1300 
1301   // Iterate over LoopID operands and look for MDString Metadata
1302   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1303     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1304     if (!MD)
1305       continue;
1306     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1307     if (!S)
1308       continue;
1309     // Return true if MDString holds expected MetaData.
1310     if (Name.equals(S->getString()))
1311       switch (MD->getNumOperands()) {
1312       case 1:
1313         return nullptr;
1314       case 2:
1315         return &MD->getOperand(1);
1316       default:
1317         llvm_unreachable("loop metadata has 0 or 1 operand");
1318       }
1319   }
1320   return None;
1321 }
1322 
1323 /// Does a BFS from a given node to all of its children inside a given loop.
1324 /// The returned vector of nodes includes the starting point.
1325 SmallVector<DomTreeNode *, 16>
1326 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
1327   SmallVector<DomTreeNode *, 16> Worklist;
1328   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
1329     // Only include subregions in the top level loop.
1330     BasicBlock *BB = DTN->getBlock();
1331     if (CurLoop->contains(BB))
1332       Worklist.push_back(DTN);
1333   };
1334 
1335   AddRegionToWorklist(N);
1336 
1337   for (size_t I = 0; I < Worklist.size(); I++)
1338     for (DomTreeNode *Child : Worklist[I]->getChildren())
1339       AddRegionToWorklist(Child);
1340 
1341   return Worklist;
1342 }
1343 
1344 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
1345                           ScalarEvolution *SE = nullptr,
1346                           LoopInfo *LI = nullptr) {
1347   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
1348   auto *Preheader = L->getLoopPreheader();
1349   assert(Preheader && "Preheader should exist!");
1350 
1351   // Now that we know the removal is safe, remove the loop by changing the
1352   // branch from the preheader to go to the single exit block.
1353   //
1354   // Because we're deleting a large chunk of code at once, the sequence in which
1355   // we remove things is very important to avoid invalidation issues.
1356 
1357   // Tell ScalarEvolution that the loop is deleted. Do this before
1358   // deleting the loop so that ScalarEvolution can look at the loop
1359   // to determine what it needs to clean up.
1360   if (SE)
1361     SE->forgetLoop(L);
1362 
1363   auto *ExitBlock = L->getUniqueExitBlock();
1364   assert(ExitBlock && "Should have a unique exit block!");
1365   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
1366 
1367   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1368   assert(OldBr && "Preheader must end with a branch");
1369   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
1370   // Connect the preheader to the exit block. Keep the old edge to the header
1371   // around to perform the dominator tree update in two separate steps
1372   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
1373   // preheader -> header.
1374   //
1375   //
1376   // 0.  Preheader          1.  Preheader           2.  Preheader
1377   //        |                    |   |                   |
1378   //        V                    |   V                   |
1379   //      Header <--\            | Header <--\           | Header <--\
1380   //       |  |     |            |  |  |     |           |  |  |     |
1381   //       |  V     |            |  |  V     |           |  |  V     |
1382   //       | Body --/            |  | Body --/           |  | Body --/
1383   //       V                     V  V                    V  V
1384   //      Exit                   Exit                    Exit
1385   //
1386   // By doing this is two separate steps we can perform the dominator tree
1387   // update without using the batch update API.
1388   //
1389   // Even when the loop is never executed, we cannot remove the edge from the
1390   // source block to the exit block. Consider the case where the unexecuted loop
1391   // branches back to an outer loop. If we deleted the loop and removed the edge
1392   // coming to this inner loop, this will break the outer loop structure (by
1393   // deleting the backedge of the outer loop). If the outer loop is indeed a
1394   // non-loop, it will be deleted in a future iteration of loop deletion pass.
1395   IRBuilder<> Builder(OldBr);
1396   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
1397   // Remove the old branch. The conditional branch becomes a new terminator.
1398   OldBr->eraseFromParent();
1399 
1400   // Rewrite phis in the exit block to get their inputs from the Preheader
1401   // instead of the exiting block.
1402   for (PHINode &P : ExitBlock->phis()) {
1403     // Set the zero'th element of Phi to be from the preheader and remove all
1404     // other incoming values. Given the loop has dedicated exits, all other
1405     // incoming values must be from the exiting blocks.
1406     int PredIndex = 0;
1407     P.setIncomingBlock(PredIndex, Preheader);
1408     // Removes all incoming values from all other exiting blocks (including
1409     // duplicate values from an exiting block).
1410     // Nuke all entries except the zero'th entry which is the preheader entry.
1411     // NOTE! We need to remove Incoming Values in the reverse order as done
1412     // below, to keep the indices valid for deletion (removeIncomingValues
1413     // updates getNumIncomingValues and shifts all values down into the operand
1414     // being deleted).
1415     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
1416       P.removeIncomingValue(e - i, false);
1417 
1418     assert((P.getNumIncomingValues() == 1 &&
1419             P.getIncomingBlock(PredIndex) == Preheader) &&
1420            "Should have exactly one value and that's from the preheader!");
1421   }
1422 
1423   // Disconnect the loop body by branching directly to its exit.
1424   Builder.SetInsertPoint(Preheader->getTerminator());
1425   Builder.CreateBr(ExitBlock);
1426   // Remove the old branch.
1427   Preheader->getTerminator()->eraseFromParent();
1428 
1429   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1430   if (DT) {
1431     // Update the dominator tree by informing it about the new edge from the
1432     // preheader to the exit.
1433     DTU.insertEdge(Preheader, ExitBlock);
1434     // Inform the dominator tree about the removed edge.
1435     DTU.deleteEdge(Preheader, L->getHeader());
1436   }
1437 
1438   // Given LCSSA form is satisfied, we should not have users of instructions
1439   // within the dead loop outside of the loop. However, LCSSA doesn't take
1440   // unreachable uses into account. We handle them here.
1441   // We could do it after drop all references (in this case all users in the
1442   // loop will be already eliminated and we have less work to do but according
1443   // to API doc of User::dropAllReferences only valid operation after dropping
1444   // references, is deletion. So let's substitute all usages of
1445   // instruction from the loop with undef value of corresponding type first.
1446   for (auto *Block : L->blocks())
1447     for (Instruction &I : *Block) {
1448       auto *Undef = UndefValue::get(I.getType());
1449       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
1450         Use &U = *UI;
1451         ++UI;
1452         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
1453           if (L->contains(Usr->getParent()))
1454             continue;
1455         // If we have a DT then we can check that uses outside a loop only in
1456         // unreachable block.
1457         if (DT)
1458           assert(!DT->isReachableFromEntry(U) &&
1459                  "Unexpected user in reachable block");
1460         U.set(Undef);
1461       }
1462     }
1463 
1464   // Remove the block from the reference counting scheme, so that we can
1465   // delete it freely later.
1466   for (auto *Block : L->blocks())
1467     Block->dropAllReferences();
1468 
1469   if (LI) {
1470     // Erase the instructions and the blocks without having to worry
1471     // about ordering because we already dropped the references.
1472     // NOTE: This iteration is safe because erasing the block does not remove
1473     // its entry from the loop's block list.  We do that in the next section.
1474     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
1475          LpI != LpE; ++LpI)
1476       (*LpI)->eraseFromParent();
1477 
1478     // Finally, the blocks from loopinfo.  This has to happen late because
1479     // otherwise our loop iterators won't work.
1480 
1481     SmallPtrSet<BasicBlock *, 8> blocks;
1482     blocks.insert(L->block_begin(), L->block_end());
1483     for (BasicBlock *BB : blocks)
1484       LI->removeBlock(BB);
1485 
1486     // The last step is to update LoopInfo now that we've eliminated this loop.
1487     LI->erase(L);
1488   }
1489 }
1490 
1491 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1492   // Only support loops with a unique exiting block, and a latch.
1493   if (!L->getExitingBlock())
1494     return None;
1495 
1496   // Get the branch weights for the loop's backedge.
1497   BranchInst *LatchBR =
1498       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1499   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1500     return None;
1501 
1502   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1503           LatchBR->getSuccessor(1) == L->getHeader()) &&
1504          "At least one edge out of the latch must go to the header");
1505 
1506   // To estimate the number of times the loop body was executed, we want to
1507   // know the number of times the backedge was taken, vs. the number of times
1508   // we exited the loop.
1509   uint64_t TrueVal, FalseVal;
1510   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1511     return None;
1512 
1513   if (!TrueVal || !FalseVal)
1514     return 0;
1515 
1516   // Divide the count of the backedge by the count of the edge exiting the loop,
1517   // rounding to nearest.
1518   if (LatchBR->getSuccessor(0) == L->getHeader())
1519     return (TrueVal + (FalseVal / 2)) / FalseVal;
1520   else
1521     return (FalseVal + (TrueVal / 2)) / TrueVal;
1522 }
1523 
1524 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
1525                                               ScalarEvolution &SE) {
1526   Loop *OuterL = InnerLoop->getParentLoop();
1527   if (!OuterL)
1528     return true;
1529 
1530   // Get the backedge taken count for the inner loop
1531   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1532   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
1533   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
1534       !InnerLoopBECountSC->getType()->isIntegerTy())
1535     return false;
1536 
1537   // Get whether count is invariant to the outer loop
1538   ScalarEvolution::LoopDisposition LD =
1539       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
1540   if (LD != ScalarEvolution::LoopInvariant)
1541     return false;
1542 
1543   return true;
1544 }
1545 
1546 /// Adds a 'fast' flag to floating point operations.
1547 static Value *addFastMathFlag(Value *V) {
1548   if (isa<FPMathOperator>(V)) {
1549     FastMathFlags Flags;
1550     Flags.setFast();
1551     cast<Instruction>(V)->setFastMathFlags(Flags);
1552   }
1553   return V;
1554 }
1555 
1556 // Helper to generate an ordered reduction.
1557 Value *
1558 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
1559                           unsigned Op,
1560                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1561                           ArrayRef<Value *> RedOps) {
1562   unsigned VF = Src->getType()->getVectorNumElements();
1563 
1564   // Extract and apply reduction ops in ascending order:
1565   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1566   Value *Result = Acc;
1567   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1568     Value *Ext =
1569         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1570 
1571     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1572       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1573                                    "bin.rdx");
1574     } else {
1575       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1576              "Invalid min/max");
1577       Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result,
1578                                                     Ext);
1579     }
1580 
1581     if (!RedOps.empty())
1582       propagateIRFlags(Result, RedOps);
1583   }
1584 
1585   return Result;
1586 }
1587 
1588 // Helper to generate a log2 shuffle reduction.
1589 Value *
1590 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1591                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1592                           ArrayRef<Value *> RedOps) {
1593   unsigned VF = Src->getType()->getVectorNumElements();
1594   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1595   // and vector ops, reducing the set of values being computed by half each
1596   // round.
1597   assert(isPowerOf2_32(VF) &&
1598          "Reduction emission only supported for pow2 vectors!");
1599   Value *TmpVec = Src;
1600   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1601   for (unsigned i = VF; i != 1; i >>= 1) {
1602     // Move the upper half of the vector to the lower half.
1603     for (unsigned j = 0; j != i / 2; ++j)
1604       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1605 
1606     // Fill the rest of the mask with undef.
1607     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1608               UndefValue::get(Builder.getInt32Ty()));
1609 
1610     Value *Shuf = Builder.CreateShuffleVector(
1611         TmpVec, UndefValue::get(TmpVec->getType()),
1612         ConstantVector::get(ShuffleMask), "rdx.shuf");
1613 
1614     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1615       // Floating point operations had to be 'fast' to enable the reduction.
1616       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1617                                                    TmpVec, Shuf, "bin.rdx"));
1618     } else {
1619       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1620              "Invalid min/max");
1621       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1622                                                     Shuf);
1623     }
1624     if (!RedOps.empty())
1625       propagateIRFlags(TmpVec, RedOps);
1626   }
1627   // The result is in the first element of the vector.
1628   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1629 }
1630 
1631 /// Create a simple vector reduction specified by an opcode and some
1632 /// flags (if generating min/max reductions).
1633 Value *llvm::createSimpleTargetReduction(
1634     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1635     Value *Src, TargetTransformInfo::ReductionFlags Flags,
1636     ArrayRef<Value *> RedOps) {
1637   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1638 
1639   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1640   std::function<Value*()> BuildFunc;
1641   using RD = RecurrenceDescriptor;
1642   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1643   // TODO: Support creating ordered reductions.
1644   FastMathFlags FMFFast;
1645   FMFFast.setFast();
1646 
1647   switch (Opcode) {
1648   case Instruction::Add:
1649     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1650     break;
1651   case Instruction::Mul:
1652     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1653     break;
1654   case Instruction::And:
1655     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1656     break;
1657   case Instruction::Or:
1658     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1659     break;
1660   case Instruction::Xor:
1661     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1662     break;
1663   case Instruction::FAdd:
1664     BuildFunc = [&]() {
1665       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1666       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1667       return Rdx;
1668     };
1669     break;
1670   case Instruction::FMul:
1671     BuildFunc = [&]() {
1672       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1673       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1674       return Rdx;
1675     };
1676     break;
1677   case Instruction::ICmp:
1678     if (Flags.IsMaxOp) {
1679       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1680       BuildFunc = [&]() {
1681         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1682       };
1683     } else {
1684       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1685       BuildFunc = [&]() {
1686         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1687       };
1688     }
1689     break;
1690   case Instruction::FCmp:
1691     if (Flags.IsMaxOp) {
1692       MinMaxKind = RD::MRK_FloatMax;
1693       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1694     } else {
1695       MinMaxKind = RD::MRK_FloatMin;
1696       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1697     }
1698     break;
1699   default:
1700     llvm_unreachable("Unhandled opcode");
1701     break;
1702   }
1703   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1704     return BuildFunc();
1705   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1706 }
1707 
1708 /// Create a vector reduction using a given recurrence descriptor.
1709 Value *llvm::createTargetReduction(IRBuilder<> &B,
1710                                    const TargetTransformInfo *TTI,
1711                                    RecurrenceDescriptor &Desc, Value *Src,
1712                                    bool NoNaN) {
1713   // TODO: Support in-order reductions based on the recurrence descriptor.
1714   using RD = RecurrenceDescriptor;
1715   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1716   TargetTransformInfo::ReductionFlags Flags;
1717   Flags.NoNaN = NoNaN;
1718   switch (RecKind) {
1719   case RD::RK_FloatAdd:
1720     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1721   case RD::RK_FloatMult:
1722     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1723   case RD::RK_IntegerAdd:
1724     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1725   case RD::RK_IntegerMult:
1726     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1727   case RD::RK_IntegerAnd:
1728     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1729   case RD::RK_IntegerOr:
1730     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1731   case RD::RK_IntegerXor:
1732     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1733   case RD::RK_IntegerMinMax: {
1734     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1735     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1736     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1737     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1738   }
1739   case RD::RK_FloatMinMax: {
1740     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1741     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1742   }
1743   default:
1744     llvm_unreachable("Unhandled RecKind");
1745   }
1746 }
1747 
1748 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1749   auto *VecOp = dyn_cast<Instruction>(I);
1750   if (!VecOp)
1751     return;
1752   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1753                                             : dyn_cast<Instruction>(OpValue);
1754   if (!Intersection)
1755     return;
1756   const unsigned Opcode = Intersection->getOpcode();
1757   VecOp->copyIRFlags(Intersection);
1758   for (auto *V : VL) {
1759     auto *Instr = dyn_cast<Instruction>(V);
1760     if (!Instr)
1761       continue;
1762     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1763       VecOp->andIRFlags(V);
1764   }
1765 }
1766