1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstSimplifyFolder.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48 
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51 
52 #define DEBUG_TYPE "loop-utils"
53 
54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
56 
57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
58                                    MemorySSAUpdater *MSSAU,
59                                    bool PreserveLCSSA) {
60   bool Changed = false;
61 
62   // We re-use a vector for the in-loop predecesosrs.
63   SmallVector<BasicBlock *, 4> InLoopPredecessors;
64 
65   auto RewriteExit = [&](BasicBlock *BB) {
66     assert(InLoopPredecessors.empty() &&
67            "Must start with an empty predecessors list!");
68     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
69 
70     // See if there are any non-loop predecessors of this exit block and
71     // keep track of the in-loop predecessors.
72     bool IsDedicatedExit = true;
73     for (auto *PredBB : predecessors(BB))
74       if (L->contains(PredBB)) {
75         if (isa<IndirectBrInst>(PredBB->getTerminator()))
76           // We cannot rewrite exiting edges from an indirectbr.
77           return false;
78         if (isa<CallBrInst>(PredBB->getTerminator()))
79           // We cannot rewrite exiting edges from a callbr.
80           return false;
81 
82         InLoopPredecessors.push_back(PredBB);
83       } else {
84         IsDedicatedExit = false;
85       }
86 
87     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
88 
89     // Nothing to do if this is already a dedicated exit.
90     if (IsDedicatedExit)
91       return false;
92 
93     auto *NewExitBB = SplitBlockPredecessors(
94         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
95 
96     if (!NewExitBB)
97       LLVM_DEBUG(
98           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
99                  << *L << "\n");
100     else
101       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
102                         << NewExitBB->getName() << "\n");
103     return true;
104   };
105 
106   // Walk the exit blocks directly rather than building up a data structure for
107   // them, but only visit each one once.
108   SmallPtrSet<BasicBlock *, 4> Visited;
109   for (auto *BB : L->blocks())
110     for (auto *SuccBB : successors(BB)) {
111       // We're looking for exit blocks so skip in-loop successors.
112       if (L->contains(SuccBB))
113         continue;
114 
115       // Visit each exit block exactly once.
116       if (!Visited.insert(SuccBB).second)
117         continue;
118 
119       Changed |= RewriteExit(SuccBB);
120     }
121 
122   return Changed;
123 }
124 
125 /// Returns the instructions that use values defined in the loop.
126 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
127   SmallVector<Instruction *, 8> UsedOutside;
128 
129   for (auto *Block : L->getBlocks())
130     // FIXME: I believe that this could use copy_if if the Inst reference could
131     // be adapted into a pointer.
132     for (auto &Inst : *Block) {
133       auto Users = Inst.users();
134       if (any_of(Users, [&](User *U) {
135             auto *Use = cast<Instruction>(U);
136             return !L->contains(Use->getParent());
137           }))
138         UsedOutside.push_back(&Inst);
139     }
140 
141   return UsedOutside;
142 }
143 
144 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
145   // By definition, all loop passes need the LoopInfo analysis and the
146   // Dominator tree it depends on. Because they all participate in the loop
147   // pass manager, they must also preserve these.
148   AU.addRequired<DominatorTreeWrapperPass>();
149   AU.addPreserved<DominatorTreeWrapperPass>();
150   AU.addRequired<LoopInfoWrapperPass>();
151   AU.addPreserved<LoopInfoWrapperPass>();
152 
153   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
154   // here because users shouldn't directly get them from this header.
155   extern char &LoopSimplifyID;
156   extern char &LCSSAID;
157   AU.addRequiredID(LoopSimplifyID);
158   AU.addPreservedID(LoopSimplifyID);
159   AU.addRequiredID(LCSSAID);
160   AU.addPreservedID(LCSSAID);
161   // This is used in the LPPassManager to perform LCSSA verification on passes
162   // which preserve lcssa form
163   AU.addRequired<LCSSAVerificationPass>();
164   AU.addPreserved<LCSSAVerificationPass>();
165 
166   // Loop passes are designed to run inside of a loop pass manager which means
167   // that any function analyses they require must be required by the first loop
168   // pass in the manager (so that it is computed before the loop pass manager
169   // runs) and preserved by all loop pasess in the manager. To make this
170   // reasonably robust, the set needed for most loop passes is maintained here.
171   // If your loop pass requires an analysis not listed here, you will need to
172   // carefully audit the loop pass manager nesting structure that results.
173   AU.addRequired<AAResultsWrapperPass>();
174   AU.addPreserved<AAResultsWrapperPass>();
175   AU.addPreserved<BasicAAWrapperPass>();
176   AU.addPreserved<GlobalsAAWrapperPass>();
177   AU.addPreserved<SCEVAAWrapperPass>();
178   AU.addRequired<ScalarEvolutionWrapperPass>();
179   AU.addPreserved<ScalarEvolutionWrapperPass>();
180   // FIXME: When all loop passes preserve MemorySSA, it can be required and
181   // preserved here instead of the individual handling in each pass.
182 }
183 
184 /// Manually defined generic "LoopPass" dependency initialization. This is used
185 /// to initialize the exact set of passes from above in \c
186 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
187 /// with:
188 ///
189 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
190 ///
191 /// As-if "LoopPass" were a pass.
192 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
193   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
194   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
195   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
196   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
197   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
198   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
200   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
201   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
202   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
203 }
204 
205 /// Create MDNode for input string.
206 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
207   LLVMContext &Context = TheLoop->getHeader()->getContext();
208   Metadata *MDs[] = {
209       MDString::get(Context, Name),
210       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
211   return MDNode::get(Context, MDs);
212 }
213 
214 /// Set input string into loop metadata by keeping other values intact.
215 /// If the string is already in loop metadata update value if it is
216 /// different.
217 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
218                                    unsigned V) {
219   SmallVector<Metadata *, 4> MDs(1);
220   // If the loop already has metadata, retain it.
221   MDNode *LoopID = TheLoop->getLoopID();
222   if (LoopID) {
223     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
224       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
225       // If it is of form key = value, try to parse it.
226       if (Node->getNumOperands() == 2) {
227         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
228         if (S && S->getString().equals(StringMD)) {
229           ConstantInt *IntMD =
230               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
231           if (IntMD && IntMD->getSExtValue() == V)
232             // It is already in place. Do nothing.
233             return;
234           // We need to update the value, so just skip it here and it will
235           // be added after copying other existed nodes.
236           continue;
237         }
238       }
239       MDs.push_back(Node);
240     }
241   }
242   // Add new metadata.
243   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
244   // Replace current metadata node with new one.
245   LLVMContext &Context = TheLoop->getHeader()->getContext();
246   MDNode *NewLoopID = MDNode::get(Context, MDs);
247   // Set operand 0 to refer to the loop id itself.
248   NewLoopID->replaceOperandWith(0, NewLoopID);
249   TheLoop->setLoopID(NewLoopID);
250 }
251 
252 Optional<ElementCount>
253 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
254   Optional<int> Width =
255       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
256 
257   if (Width.hasValue()) {
258     Optional<int> IsScalable = getOptionalIntLoopAttribute(
259         TheLoop, "llvm.loop.vectorize.scalable.enable");
260     return ElementCount::get(*Width, IsScalable.getValueOr(false));
261   }
262 
263   return None;
264 }
265 
266 Optional<MDNode *> llvm::makeFollowupLoopID(
267     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
268     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
269   if (!OrigLoopID) {
270     if (AlwaysNew)
271       return nullptr;
272     return None;
273   }
274 
275   assert(OrigLoopID->getOperand(0) == OrigLoopID);
276 
277   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
278   bool InheritSomeAttrs =
279       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
280   SmallVector<Metadata *, 8> MDs;
281   MDs.push_back(nullptr);
282 
283   bool Changed = false;
284   if (InheritAllAttrs || InheritSomeAttrs) {
285     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
286       MDNode *Op = cast<MDNode>(Existing.get());
287 
288       auto InheritThisAttribute = [InheritSomeAttrs,
289                                    InheritOptionsExceptPrefix](MDNode *Op) {
290         if (!InheritSomeAttrs)
291           return false;
292 
293         // Skip malformatted attribute metadata nodes.
294         if (Op->getNumOperands() == 0)
295           return true;
296         Metadata *NameMD = Op->getOperand(0).get();
297         if (!isa<MDString>(NameMD))
298           return true;
299         StringRef AttrName = cast<MDString>(NameMD)->getString();
300 
301         // Do not inherit excluded attributes.
302         return !AttrName.startswith(InheritOptionsExceptPrefix);
303       };
304 
305       if (InheritThisAttribute(Op))
306         MDs.push_back(Op);
307       else
308         Changed = true;
309     }
310   } else {
311     // Modified if we dropped at least one attribute.
312     Changed = OrigLoopID->getNumOperands() > 1;
313   }
314 
315   bool HasAnyFollowup = false;
316   for (StringRef OptionName : FollowupOptions) {
317     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
318     if (!FollowupNode)
319       continue;
320 
321     HasAnyFollowup = true;
322     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
323       MDs.push_back(Option.get());
324       Changed = true;
325     }
326   }
327 
328   // Attributes of the followup loop not specified explicity, so signal to the
329   // transformation pass to add suitable attributes.
330   if (!AlwaysNew && !HasAnyFollowup)
331     return None;
332 
333   // If no attributes were added or remove, the previous loop Id can be reused.
334   if (!AlwaysNew && !Changed)
335     return OrigLoopID;
336 
337   // No attributes is equivalent to having no !llvm.loop metadata at all.
338   if (MDs.size() == 1)
339     return nullptr;
340 
341   // Build the new loop ID.
342   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
343   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
344   return FollowupLoopID;
345 }
346 
347 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
348   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
349 }
350 
351 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
352   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
353 }
354 
355 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
356   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
357     return TM_SuppressedByUser;
358 
359   Optional<int> Count =
360       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
361   if (Count.hasValue())
362     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
363 
364   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
365     return TM_ForcedByUser;
366 
367   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
368     return TM_ForcedByUser;
369 
370   if (hasDisableAllTransformsHint(L))
371     return TM_Disable;
372 
373   return TM_Unspecified;
374 }
375 
376 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
377   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
378     return TM_SuppressedByUser;
379 
380   Optional<int> Count =
381       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
382   if (Count.hasValue())
383     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
384 
385   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
386     return TM_ForcedByUser;
387 
388   if (hasDisableAllTransformsHint(L))
389     return TM_Disable;
390 
391   return TM_Unspecified;
392 }
393 
394 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
395   Optional<bool> Enable =
396       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
397 
398   if (Enable == false)
399     return TM_SuppressedByUser;
400 
401   Optional<ElementCount> VectorizeWidth =
402       getOptionalElementCountLoopAttribute(L);
403   Optional<int> InterleaveCount =
404       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
405 
406   // 'Forcing' vector width and interleave count to one effectively disables
407   // this tranformation.
408   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
409       InterleaveCount == 1)
410     return TM_SuppressedByUser;
411 
412   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
413     return TM_Disable;
414 
415   if (Enable == true)
416     return TM_ForcedByUser;
417 
418   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
419     return TM_Disable;
420 
421   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
422     return TM_Enable;
423 
424   if (hasDisableAllTransformsHint(L))
425     return TM_Disable;
426 
427   return TM_Unspecified;
428 }
429 
430 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
431   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
432     return TM_ForcedByUser;
433 
434   if (hasDisableAllTransformsHint(L))
435     return TM_Disable;
436 
437   return TM_Unspecified;
438 }
439 
440 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
441   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
442     return TM_SuppressedByUser;
443 
444   if (hasDisableAllTransformsHint(L))
445     return TM_Disable;
446 
447   return TM_Unspecified;
448 }
449 
450 /// Does a BFS from a given node to all of its children inside a given loop.
451 /// The returned vector of nodes includes the starting point.
452 SmallVector<DomTreeNode *, 16>
453 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
454   SmallVector<DomTreeNode *, 16> Worklist;
455   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
456     // Only include subregions in the top level loop.
457     BasicBlock *BB = DTN->getBlock();
458     if (CurLoop->contains(BB))
459       Worklist.push_back(DTN);
460   };
461 
462   AddRegionToWorklist(N);
463 
464   for (size_t I = 0; I < Worklist.size(); I++) {
465     for (DomTreeNode *Child : Worklist[I]->children())
466       AddRegionToWorklist(Child);
467   }
468 
469   return Worklist;
470 }
471 
472 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
473                           LoopInfo *LI, MemorySSA *MSSA) {
474   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
475   auto *Preheader = L->getLoopPreheader();
476   assert(Preheader && "Preheader should exist!");
477 
478   std::unique_ptr<MemorySSAUpdater> MSSAU;
479   if (MSSA)
480     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
481 
482   // Now that we know the removal is safe, remove the loop by changing the
483   // branch from the preheader to go to the single exit block.
484   //
485   // Because we're deleting a large chunk of code at once, the sequence in which
486   // we remove things is very important to avoid invalidation issues.
487 
488   // Tell ScalarEvolution that the loop is deleted. Do this before
489   // deleting the loop so that ScalarEvolution can look at the loop
490   // to determine what it needs to clean up.
491   if (SE)
492     SE->forgetLoop(L);
493 
494   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
495   assert(OldBr && "Preheader must end with a branch");
496   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
497   // Connect the preheader to the exit block. Keep the old edge to the header
498   // around to perform the dominator tree update in two separate steps
499   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
500   // preheader -> header.
501   //
502   //
503   // 0.  Preheader          1.  Preheader           2.  Preheader
504   //        |                    |   |                   |
505   //        V                    |   V                   |
506   //      Header <--\            | Header <--\           | Header <--\
507   //       |  |     |            |  |  |     |           |  |  |     |
508   //       |  V     |            |  |  V     |           |  |  V     |
509   //       | Body --/            |  | Body --/           |  | Body --/
510   //       V                     V  V                    V  V
511   //      Exit                   Exit                    Exit
512   //
513   // By doing this is two separate steps we can perform the dominator tree
514   // update without using the batch update API.
515   //
516   // Even when the loop is never executed, we cannot remove the edge from the
517   // source block to the exit block. Consider the case where the unexecuted loop
518   // branches back to an outer loop. If we deleted the loop and removed the edge
519   // coming to this inner loop, this will break the outer loop structure (by
520   // deleting the backedge of the outer loop). If the outer loop is indeed a
521   // non-loop, it will be deleted in a future iteration of loop deletion pass.
522   IRBuilder<> Builder(OldBr);
523 
524   auto *ExitBlock = L->getUniqueExitBlock();
525   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
526   if (ExitBlock) {
527     assert(ExitBlock && "Should have a unique exit block!");
528     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
529 
530     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
531     // Remove the old branch. The conditional branch becomes a new terminator.
532     OldBr->eraseFromParent();
533 
534     // Rewrite phis in the exit block to get their inputs from the Preheader
535     // instead of the exiting block.
536     for (PHINode &P : ExitBlock->phis()) {
537       // Set the zero'th element of Phi to be from the preheader and remove all
538       // other incoming values. Given the loop has dedicated exits, all other
539       // incoming values must be from the exiting blocks.
540       int PredIndex = 0;
541       P.setIncomingBlock(PredIndex, Preheader);
542       // Removes all incoming values from all other exiting blocks (including
543       // duplicate values from an exiting block).
544       // Nuke all entries except the zero'th entry which is the preheader entry.
545       // NOTE! We need to remove Incoming Values in the reverse order as done
546       // below, to keep the indices valid for deletion (removeIncomingValues
547       // updates getNumIncomingValues and shifts all values down into the
548       // operand being deleted).
549       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
550         P.removeIncomingValue(e - i, false);
551 
552       assert((P.getNumIncomingValues() == 1 &&
553               P.getIncomingBlock(PredIndex) == Preheader) &&
554              "Should have exactly one value and that's from the preheader!");
555     }
556 
557     if (DT) {
558       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
559       if (MSSA) {
560         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
561                             *DT);
562         if (VerifyMemorySSA)
563           MSSA->verifyMemorySSA();
564       }
565     }
566 
567     // Disconnect the loop body by branching directly to its exit.
568     Builder.SetInsertPoint(Preheader->getTerminator());
569     Builder.CreateBr(ExitBlock);
570     // Remove the old branch.
571     Preheader->getTerminator()->eraseFromParent();
572   } else {
573     assert(L->hasNoExitBlocks() &&
574            "Loop should have either zero or one exit blocks.");
575 
576     Builder.SetInsertPoint(OldBr);
577     Builder.CreateUnreachable();
578     Preheader->getTerminator()->eraseFromParent();
579   }
580 
581   if (DT) {
582     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
583     if (MSSA) {
584       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
585                           *DT);
586       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
587                                                    L->block_end());
588       MSSAU->removeBlocks(DeadBlockSet);
589       if (VerifyMemorySSA)
590         MSSA->verifyMemorySSA();
591     }
592   }
593 
594   // Use a map to unique and a vector to guarantee deterministic ordering.
595   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
596   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
597 
598   if (ExitBlock) {
599     // Given LCSSA form is satisfied, we should not have users of instructions
600     // within the dead loop outside of the loop. However, LCSSA doesn't take
601     // unreachable uses into account. We handle them here.
602     // We could do it after drop all references (in this case all users in the
603     // loop will be already eliminated and we have less work to do but according
604     // to API doc of User::dropAllReferences only valid operation after dropping
605     // references, is deletion. So let's substitute all usages of
606     // instruction from the loop with undef value of corresponding type first.
607     for (auto *Block : L->blocks())
608       for (Instruction &I : *Block) {
609         auto *Undef = UndefValue::get(I.getType());
610         for (Use &U : llvm::make_early_inc_range(I.uses())) {
611           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
612             if (L->contains(Usr->getParent()))
613               continue;
614           // If we have a DT then we can check that uses outside a loop only in
615           // unreachable block.
616           if (DT)
617             assert(!DT->isReachableFromEntry(U) &&
618                    "Unexpected user in reachable block");
619           U.set(Undef);
620         }
621         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
622         if (!DVI)
623           continue;
624         auto Key =
625             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
626         if (Key != DeadDebugSet.end())
627           continue;
628         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
629         DeadDebugInst.push_back(DVI);
630       }
631 
632     // After the loop has been deleted all the values defined and modified
633     // inside the loop are going to be unavailable.
634     // Since debug values in the loop have been deleted, inserting an undef
635     // dbg.value truncates the range of any dbg.value before the loop where the
636     // loop used to be. This is particularly important for constant values.
637     DIBuilder DIB(*ExitBlock->getModule());
638     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
639     assert(InsertDbgValueBefore &&
640            "There should be a non-PHI instruction in exit block, else these "
641            "instructions will have no parent.");
642     for (auto *DVI : DeadDebugInst)
643       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
644                                   DVI->getVariable(), DVI->getExpression(),
645                                   DVI->getDebugLoc(), InsertDbgValueBefore);
646   }
647 
648   // Remove the block from the reference counting scheme, so that we can
649   // delete it freely later.
650   for (auto *Block : L->blocks())
651     Block->dropAllReferences();
652 
653   if (MSSA && VerifyMemorySSA)
654     MSSA->verifyMemorySSA();
655 
656   if (LI) {
657     // Erase the instructions and the blocks without having to worry
658     // about ordering because we already dropped the references.
659     // NOTE: This iteration is safe because erasing the block does not remove
660     // its entry from the loop's block list.  We do that in the next section.
661     for (BasicBlock *BB : L->blocks())
662       BB->eraseFromParent();
663 
664     // Finally, the blocks from loopinfo.  This has to happen late because
665     // otherwise our loop iterators won't work.
666 
667     SmallPtrSet<BasicBlock *, 8> blocks;
668     blocks.insert(L->block_begin(), L->block_end());
669     for (BasicBlock *BB : blocks)
670       LI->removeBlock(BB);
671 
672     // The last step is to update LoopInfo now that we've eliminated this loop.
673     // Note: LoopInfo::erase remove the given loop and relink its subloops with
674     // its parent. While removeLoop/removeChildLoop remove the given loop but
675     // not relink its subloops, which is what we want.
676     if (Loop *ParentLoop = L->getParentLoop()) {
677       Loop::iterator I = find(*ParentLoop, L);
678       assert(I != ParentLoop->end() && "Couldn't find loop");
679       ParentLoop->removeChildLoop(I);
680     } else {
681       Loop::iterator I = find(*LI, L);
682       assert(I != LI->end() && "Couldn't find loop");
683       LI->removeLoop(I);
684     }
685     LI->destroy(L);
686   }
687 }
688 
689 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
690                              LoopInfo &LI, MemorySSA *MSSA) {
691   auto *Latch = L->getLoopLatch();
692   assert(Latch && "multiple latches not yet supported");
693   auto *Header = L->getHeader();
694   Loop *OutermostLoop = L->getOutermostLoop();
695 
696   SE.forgetLoop(L);
697 
698   std::unique_ptr<MemorySSAUpdater> MSSAU;
699   if (MSSA)
700     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
701 
702   // Update the CFG and domtree.  We chose to special case a couple of
703   // of common cases for code quality and test readability reasons.
704   [&]() -> void {
705     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
706       if (!BI->isConditional()) {
707         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
708         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
709                                   MSSAU.get());
710         return;
711       }
712 
713       // Conditional latch/exit - note that latch can be shared by inner
714       // and outer loop so the other target doesn't need to an exit
715       if (L->isLoopExiting(Latch)) {
716         // TODO: Generalize ConstantFoldTerminator so that it can be used
717         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
718         // LCSSA: header is an exit block of a preceeding sibling loop w/o
719         // dedicated exits.)
720         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
721         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
722 
723         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
724         Header->removePredecessor(Latch, true);
725 
726         IRBuilder<> Builder(BI);
727         auto *NewBI = Builder.CreateBr(ExitBB);
728         // Transfer the metadata to the new branch instruction (minus the
729         // loop info since this is no longer a loop)
730         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
731                                   LLVMContext::MD_annotation});
732 
733         BI->eraseFromParent();
734         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
735         if (MSSA)
736           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
737         return;
738       }
739     }
740 
741     // General case.  By splitting the backedge, and then explicitly making it
742     // unreachable we gracefully handle corner cases such as switch and invoke
743     // termiantors.
744     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
745 
746     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
747     (void)changeToUnreachable(BackedgeBB->getTerminator(),
748                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
749   }();
750 
751   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
752   // and blocks within the loop as needed.
753   LI.erase(L);
754 
755   // If the loop we broke had a parent, then changeToUnreachable might have
756   // caused a block to be removed from the parent loop (see loop_nest_lcssa
757   // test case in zero-btc.ll for an example), thus changing the parent's
758   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
759   // loop which might have a had a block removed.
760   if (OutermostLoop != L)
761     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
762 }
763 
764 
765 /// Checks if \p L has an exiting latch branch.  There may also be other
766 /// exiting blocks.  Returns branch instruction terminating the loop
767 /// latch if above check is successful, nullptr otherwise.
768 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
769   BasicBlock *Latch = L->getLoopLatch();
770   if (!Latch)
771     return nullptr;
772 
773   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
774   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
775     return nullptr;
776 
777   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
778           LatchBR->getSuccessor(1) == L->getHeader()) &&
779          "At least one edge out of the latch must go to the header");
780 
781   return LatchBR;
782 }
783 
784 /// Return the estimated trip count for any exiting branch which dominates
785 /// the loop latch.
786 static Optional<uint64_t>
787 getEstimatedTripCount(BranchInst *ExitingBranch, Loop *L,
788                       uint64_t &OrigExitWeight) {
789   // To estimate the number of times the loop body was executed, we want to
790   // know the number of times the backedge was taken, vs. the number of times
791   // we exited the loop.
792   uint64_t LoopWeight, ExitWeight;
793   if (!ExitingBranch->extractProfMetadata(LoopWeight, ExitWeight))
794     return None;
795 
796   if (L->contains(ExitingBranch->getSuccessor(1)))
797     std::swap(LoopWeight, ExitWeight);
798 
799   if (!ExitWeight)
800     // Don't have a way to return predicated infinite
801     return None;
802 
803   OrigExitWeight = ExitWeight;
804 
805   // Estimated exit count is a ratio of the loop weight by the weight of the
806   // edge exiting the loop, rounded to nearest.
807   uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
808   // Estimated trip count is one plus estimated exit count.
809   return ExitCount + 1;
810 }
811 
812 Optional<unsigned>
813 llvm::getLoopEstimatedTripCount(Loop *L,
814                                 unsigned *EstimatedLoopInvocationWeight) {
815   // Currently we take the estimate exit count only from the loop latch,
816   // ignoring other exiting blocks.  This can overestimate the trip count
817   // if we exit through another exit, but can never underestimate it.
818   // TODO: incorporate information from other exits
819   if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
820     uint64_t ExitWeight;
821     if (Optional<uint64_t> EstTripCount =
822         getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
823       if (EstimatedLoopInvocationWeight)
824         *EstimatedLoopInvocationWeight = ExitWeight;
825       return *EstTripCount;
826     }
827   }
828   return None;
829 }
830 
831 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
832                                      unsigned EstimatedloopInvocationWeight) {
833   // At the moment, we currently support changing the estimate trip count of
834   // the latch branch only.  We could extend this API to manipulate estimated
835   // trip counts for any exit.
836   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
837   if (!LatchBranch)
838     return false;
839 
840   // Calculate taken and exit weights.
841   unsigned LatchExitWeight = 0;
842   unsigned BackedgeTakenWeight = 0;
843 
844   if (EstimatedTripCount > 0) {
845     LatchExitWeight = EstimatedloopInvocationWeight;
846     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
847   }
848 
849   // Make a swap if back edge is taken when condition is "false".
850   if (LatchBranch->getSuccessor(0) != L->getHeader())
851     std::swap(BackedgeTakenWeight, LatchExitWeight);
852 
853   MDBuilder MDB(LatchBranch->getContext());
854 
855   // Set/Update profile metadata.
856   LatchBranch->setMetadata(
857       LLVMContext::MD_prof,
858       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
859 
860   return true;
861 }
862 
863 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
864                                               ScalarEvolution &SE) {
865   Loop *OuterL = InnerLoop->getParentLoop();
866   if (!OuterL)
867     return true;
868 
869   // Get the backedge taken count for the inner loop
870   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
871   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
872   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
873       !InnerLoopBECountSC->getType()->isIntegerTy())
874     return false;
875 
876   // Get whether count is invariant to the outer loop
877   ScalarEvolution::LoopDisposition LD =
878       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
879   if (LD != ScalarEvolution::LoopInvariant)
880     return false;
881 
882   return true;
883 }
884 
885 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
886   switch (RK) {
887   default:
888     llvm_unreachable("Unknown min/max recurrence kind");
889   case RecurKind::UMin:
890     return CmpInst::ICMP_ULT;
891   case RecurKind::UMax:
892     return CmpInst::ICMP_UGT;
893   case RecurKind::SMin:
894     return CmpInst::ICMP_SLT;
895   case RecurKind::SMax:
896     return CmpInst::ICMP_SGT;
897   case RecurKind::FMin:
898     return CmpInst::FCMP_OLT;
899   case RecurKind::FMax:
900     return CmpInst::FCMP_OGT;
901   }
902 }
903 
904 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal,
905                                RecurKind RK, Value *Left, Value *Right) {
906   if (auto VTy = dyn_cast<VectorType>(Left->getType()))
907     StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
908   Value *Cmp =
909       Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
910   return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
911 }
912 
913 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
914                             Value *Right) {
915   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
916   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
917   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
918   return Select;
919 }
920 
921 // Helper to generate an ordered reduction.
922 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
923                                  unsigned Op, RecurKind RdxKind) {
924   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
925 
926   // Extract and apply reduction ops in ascending order:
927   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
928   Value *Result = Acc;
929   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
930     Value *Ext =
931         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
932 
933     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
934       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
935                                    "bin.rdx");
936     } else {
937       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
938              "Invalid min/max");
939       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
940     }
941   }
942 
943   return Result;
944 }
945 
946 // Helper to generate a log2 shuffle reduction.
947 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
948                                  unsigned Op, RecurKind RdxKind) {
949   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
950   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
951   // and vector ops, reducing the set of values being computed by half each
952   // round.
953   assert(isPowerOf2_32(VF) &&
954          "Reduction emission only supported for pow2 vectors!");
955   // Note: fast-math-flags flags are controlled by the builder configuration
956   // and are assumed to apply to all generated arithmetic instructions.  Other
957   // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
958   // of the builder configuration, and since they're not passed explicitly,
959   // will never be relevant here.  Note that it would be generally unsound to
960   // propagate these from an intrinsic call to the expansion anyways as we/
961   // change the order of operations.
962   Value *TmpVec = Src;
963   SmallVector<int, 32> ShuffleMask(VF);
964   for (unsigned i = VF; i != 1; i >>= 1) {
965     // Move the upper half of the vector to the lower half.
966     for (unsigned j = 0; j != i / 2; ++j)
967       ShuffleMask[j] = i / 2 + j;
968 
969     // Fill the rest of the mask with undef.
970     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
971 
972     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
973 
974     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
975       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
976                                    "bin.rdx");
977     } else {
978       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
979              "Invalid min/max");
980       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
981     }
982   }
983   // The result is in the first element of the vector.
984   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
985 }
986 
987 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder,
988                                             const TargetTransformInfo *TTI,
989                                             Value *Src,
990                                             const RecurrenceDescriptor &Desc,
991                                             PHINode *OrigPhi) {
992   assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind(
993              Desc.getRecurrenceKind()) &&
994          "Unexpected reduction kind");
995   Value *InitVal = Desc.getRecurrenceStartValue();
996   Value *NewVal = nullptr;
997 
998   // First use the original phi to determine the new value we're trying to
999   // select from in the loop.
1000   SelectInst *SI = nullptr;
1001   for (auto *U : OrigPhi->users()) {
1002     if ((SI = dyn_cast<SelectInst>(U)))
1003       break;
1004   }
1005   assert(SI && "One user of the original phi should be a select");
1006 
1007   if (SI->getTrueValue() == OrigPhi)
1008     NewVal = SI->getFalseValue();
1009   else {
1010     assert(SI->getFalseValue() == OrigPhi &&
1011            "At least one input to the select should be the original Phi");
1012     NewVal = SI->getTrueValue();
1013   }
1014 
1015   // Create a splat vector with the new value and compare this to the vector
1016   // we want to reduce.
1017   ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1018   Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1019   Value *Cmp =
1020       Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1021 
1022   // If any predicate is true it means that we want to select the new value.
1023   Cmp = Builder.CreateOrReduce(Cmp);
1024   return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1025 }
1026 
1027 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
1028                                          const TargetTransformInfo *TTI,
1029                                          Value *Src, RecurKind RdxKind) {
1030   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1031   switch (RdxKind) {
1032   case RecurKind::Add:
1033     return Builder.CreateAddReduce(Src);
1034   case RecurKind::Mul:
1035     return Builder.CreateMulReduce(Src);
1036   case RecurKind::And:
1037     return Builder.CreateAndReduce(Src);
1038   case RecurKind::Or:
1039     return Builder.CreateOrReduce(Src);
1040   case RecurKind::Xor:
1041     return Builder.CreateXorReduce(Src);
1042   case RecurKind::FMulAdd:
1043   case RecurKind::FAdd:
1044     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1045                                     Src);
1046   case RecurKind::FMul:
1047     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1048   case RecurKind::SMax:
1049     return Builder.CreateIntMaxReduce(Src, true);
1050   case RecurKind::SMin:
1051     return Builder.CreateIntMinReduce(Src, true);
1052   case RecurKind::UMax:
1053     return Builder.CreateIntMaxReduce(Src, false);
1054   case RecurKind::UMin:
1055     return Builder.CreateIntMinReduce(Src, false);
1056   case RecurKind::FMax:
1057     return Builder.CreateFPMaxReduce(Src);
1058   case RecurKind::FMin:
1059     return Builder.CreateFPMinReduce(Src);
1060   default:
1061     llvm_unreachable("Unhandled opcode");
1062   }
1063 }
1064 
1065 Value *llvm::createTargetReduction(IRBuilderBase &B,
1066                                    const TargetTransformInfo *TTI,
1067                                    const RecurrenceDescriptor &Desc, Value *Src,
1068                                    PHINode *OrigPhi) {
1069   // TODO: Support in-order reductions based on the recurrence descriptor.
1070   // All ops in the reduction inherit fast-math-flags from the recurrence
1071   // descriptor.
1072   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1073   B.setFastMathFlags(Desc.getFastMathFlags());
1074 
1075   RecurKind RK = Desc.getRecurrenceKind();
1076   if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
1077     return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi);
1078 
1079   return createSimpleTargetReduction(B, TTI, Src, RK);
1080 }
1081 
1082 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1083                                     const RecurrenceDescriptor &Desc,
1084                                     Value *Src, Value *Start) {
1085   assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1086           Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1087          "Unexpected reduction kind");
1088   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1089   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1090 
1091   return B.CreateFAddReduce(Start, Src);
1092 }
1093 
1094 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
1095                             bool IncludeWrapFlags) {
1096   auto *VecOp = dyn_cast<Instruction>(I);
1097   if (!VecOp)
1098     return;
1099   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1100                                             : dyn_cast<Instruction>(OpValue);
1101   if (!Intersection)
1102     return;
1103   const unsigned Opcode = Intersection->getOpcode();
1104   VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1105   for (auto *V : VL) {
1106     auto *Instr = dyn_cast<Instruction>(V);
1107     if (!Instr)
1108       continue;
1109     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1110       VecOp->andIRFlags(V);
1111   }
1112 }
1113 
1114 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1115                                  ScalarEvolution &SE) {
1116   const SCEV *Zero = SE.getZero(S->getType());
1117   return SE.isAvailableAtLoopEntry(S, L) &&
1118          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1119 }
1120 
1121 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1122                                     ScalarEvolution &SE) {
1123   const SCEV *Zero = SE.getZero(S->getType());
1124   return SE.isAvailableAtLoopEntry(S, L) &&
1125          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1126 }
1127 
1128 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1129                              bool Signed) {
1130   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1131   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1132     APInt::getMinValue(BitWidth);
1133   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1134   return SE.isAvailableAtLoopEntry(S, L) &&
1135          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1136                                      SE.getConstant(Min));
1137 }
1138 
1139 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1140                              bool Signed) {
1141   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1142   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1143     APInt::getMaxValue(BitWidth);
1144   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1145   return SE.isAvailableAtLoopEntry(S, L) &&
1146          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1147                                      SE.getConstant(Max));
1148 }
1149 
1150 //===----------------------------------------------------------------------===//
1151 // rewriteLoopExitValues - Optimize IV users outside the loop.
1152 // As a side effect, reduces the amount of IV processing within the loop.
1153 //===----------------------------------------------------------------------===//
1154 
1155 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1156   SmallPtrSet<const Instruction *, 8> Visited;
1157   SmallVector<const Instruction *, 8> WorkList;
1158   Visited.insert(I);
1159   WorkList.push_back(I);
1160   while (!WorkList.empty()) {
1161     const Instruction *Curr = WorkList.pop_back_val();
1162     // This use is outside the loop, nothing to do.
1163     if (!L->contains(Curr))
1164       continue;
1165     // Do we assume it is a "hard" use which will not be eliminated easily?
1166     if (Curr->mayHaveSideEffects())
1167       return true;
1168     // Otherwise, add all its users to worklist.
1169     for (auto U : Curr->users()) {
1170       auto *UI = cast<Instruction>(U);
1171       if (Visited.insert(UI).second)
1172         WorkList.push_back(UI);
1173     }
1174   }
1175   return false;
1176 }
1177 
1178 // Collect information about PHI nodes which can be transformed in
1179 // rewriteLoopExitValues.
1180 struct RewritePhi {
1181   PHINode *PN;               // For which PHI node is this replacement?
1182   unsigned Ith;              // For which incoming value?
1183   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1184   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1185   bool HighCost;               // Is this expansion a high-cost?
1186 
1187   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1188              bool H)
1189       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1190         HighCost(H) {}
1191 };
1192 
1193 // Check whether it is possible to delete the loop after rewriting exit
1194 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1195 // aggressively.
1196 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1197   BasicBlock *Preheader = L->getLoopPreheader();
1198   // If there is no preheader, the loop will not be deleted.
1199   if (!Preheader)
1200     return false;
1201 
1202   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1203   // We obviate multiple ExitingBlocks case for simplicity.
1204   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1205   // after exit value rewriting, we can enhance the logic here.
1206   SmallVector<BasicBlock *, 4> ExitingBlocks;
1207   L->getExitingBlocks(ExitingBlocks);
1208   SmallVector<BasicBlock *, 8> ExitBlocks;
1209   L->getUniqueExitBlocks(ExitBlocks);
1210   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1211     return false;
1212 
1213   BasicBlock *ExitBlock = ExitBlocks[0];
1214   BasicBlock::iterator BI = ExitBlock->begin();
1215   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1216     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1217 
1218     // If the Incoming value of P is found in RewritePhiSet, we know it
1219     // could be rewritten to use a loop invariant value in transformation
1220     // phase later. Skip it in the loop invariant check below.
1221     bool found = false;
1222     for (const RewritePhi &Phi : RewritePhiSet) {
1223       unsigned i = Phi.Ith;
1224       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1225         found = true;
1226         break;
1227       }
1228     }
1229 
1230     Instruction *I;
1231     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1232       if (!L->hasLoopInvariantOperands(I))
1233         return false;
1234 
1235     ++BI;
1236   }
1237 
1238   for (auto *BB : L->blocks())
1239     if (llvm::any_of(*BB, [](Instruction &I) {
1240           return I.mayHaveSideEffects();
1241         }))
1242       return false;
1243 
1244   return true;
1245 }
1246 
1247 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1248                                 ScalarEvolution *SE,
1249                                 const TargetTransformInfo *TTI,
1250                                 SCEVExpander &Rewriter, DominatorTree *DT,
1251                                 ReplaceExitVal ReplaceExitValue,
1252                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1253   // Check a pre-condition.
1254   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1255          "Indvars did not preserve LCSSA!");
1256 
1257   SmallVector<BasicBlock*, 8> ExitBlocks;
1258   L->getUniqueExitBlocks(ExitBlocks);
1259 
1260   SmallVector<RewritePhi, 8> RewritePhiSet;
1261   // Find all values that are computed inside the loop, but used outside of it.
1262   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1263   // the exit blocks of the loop to find them.
1264   for (BasicBlock *ExitBB : ExitBlocks) {
1265     // If there are no PHI nodes in this exit block, then no values defined
1266     // inside the loop are used on this path, skip it.
1267     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1268     if (!PN) continue;
1269 
1270     unsigned NumPreds = PN->getNumIncomingValues();
1271 
1272     // Iterate over all of the PHI nodes.
1273     BasicBlock::iterator BBI = ExitBB->begin();
1274     while ((PN = dyn_cast<PHINode>(BBI++))) {
1275       if (PN->use_empty())
1276         continue; // dead use, don't replace it
1277 
1278       if (!SE->isSCEVable(PN->getType()))
1279         continue;
1280 
1281       // Iterate over all of the values in all the PHI nodes.
1282       for (unsigned i = 0; i != NumPreds; ++i) {
1283         // If the value being merged in is not integer or is not defined
1284         // in the loop, skip it.
1285         Value *InVal = PN->getIncomingValue(i);
1286         if (!isa<Instruction>(InVal))
1287           continue;
1288 
1289         // If this pred is for a subloop, not L itself, skip it.
1290         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1291           continue; // The Block is in a subloop, skip it.
1292 
1293         // Check that InVal is defined in the loop.
1294         Instruction *Inst = cast<Instruction>(InVal);
1295         if (!L->contains(Inst))
1296           continue;
1297 
1298         // Okay, this instruction has a user outside of the current loop
1299         // and varies predictably *inside* the loop.  Evaluate the value it
1300         // contains when the loop exits, if possible.  We prefer to start with
1301         // expressions which are true for all exits (so as to maximize
1302         // expression reuse by the SCEVExpander), but resort to per-exit
1303         // evaluation if that fails.
1304         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1305         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1306             !SE->isLoopInvariant(ExitValue, L) ||
1307             !isSafeToExpand(ExitValue, *SE)) {
1308           // TODO: This should probably be sunk into SCEV in some way; maybe a
1309           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1310           // most SCEV expressions and other recurrence types (e.g. shift
1311           // recurrences).  Is there existing code we can reuse?
1312           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1313           if (isa<SCEVCouldNotCompute>(ExitCount))
1314             continue;
1315           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1316             if (AddRec->getLoop() == L)
1317               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1318           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1319               !SE->isLoopInvariant(ExitValue, L) ||
1320               !isSafeToExpand(ExitValue, *SE))
1321             continue;
1322         }
1323 
1324         // Computing the value outside of the loop brings no benefit if it is
1325         // definitely used inside the loop in a way which can not be optimized
1326         // away. Avoid doing so unless we know we have a value which computes
1327         // the ExitValue already. TODO: This should be merged into SCEV
1328         // expander to leverage its knowledge of existing expressions.
1329         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1330             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1331           continue;
1332 
1333         // Check if expansions of this SCEV would count as being high cost.
1334         bool HighCost = Rewriter.isHighCostExpansion(
1335             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1336 
1337         // Note that we must not perform expansions until after
1338         // we query *all* the costs, because if we perform temporary expansion
1339         // inbetween, one that we might not intend to keep, said expansion
1340         // *may* affect cost calculation of the the next SCEV's we'll query,
1341         // and next SCEV may errneously get smaller cost.
1342 
1343         // Collect all the candidate PHINodes to be rewritten.
1344         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1345       }
1346     }
1347   }
1348 
1349   // TODO: evaluate whether it is beneficial to change how we calculate
1350   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1351   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1352   // potentially giving cost bonus to those other SCEV's?
1353 
1354   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1355   int NumReplaced = 0;
1356 
1357   // Transformation.
1358   for (const RewritePhi &Phi : RewritePhiSet) {
1359     PHINode *PN = Phi.PN;
1360 
1361     // Only do the rewrite when the ExitValue can be expanded cheaply.
1362     // If LoopCanBeDel is true, rewrite exit value aggressively.
1363     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost)
1364       continue;
1365 
1366     Value *ExitVal = Rewriter.expandCodeFor(
1367         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1368 
1369     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1370                       << '\n'
1371                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1372 
1373 #ifndef NDEBUG
1374     // If we reuse an instruction from a loop which is neither L nor one of
1375     // its containing loops, we end up breaking LCSSA form for this loop by
1376     // creating a new use of its instruction.
1377     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1378       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1379         if (EVL != L)
1380           assert(EVL->contains(L) && "LCSSA breach detected!");
1381 #endif
1382 
1383     NumReplaced++;
1384     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1385     PN->setIncomingValue(Phi.Ith, ExitVal);
1386     // It's necessary to tell ScalarEvolution about this explicitly so that
1387     // it can walk the def-use list and forget all SCEVs, as it may not be
1388     // watching the PHI itself. Once the new exit value is in place, there
1389     // may not be a def-use connection between the loop and every instruction
1390     // which got a SCEVAddRecExpr for that loop.
1391     SE->forgetValue(PN);
1392 
1393     // If this instruction is dead now, delete it. Don't do it now to avoid
1394     // invalidating iterators.
1395     if (isInstructionTriviallyDead(Inst, TLI))
1396       DeadInsts.push_back(Inst);
1397 
1398     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1399     if (PN->getNumIncomingValues() == 1 &&
1400         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1401       PN->replaceAllUsesWith(ExitVal);
1402       PN->eraseFromParent();
1403     }
1404   }
1405 
1406   // The insertion point instruction may have been deleted; clear it out
1407   // so that the rewriter doesn't trip over it later.
1408   Rewriter.clearInsertPoint();
1409   return NumReplaced;
1410 }
1411 
1412 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1413 /// \p OrigLoop.
1414 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1415                                         Loop *RemainderLoop, uint64_t UF) {
1416   assert(UF > 0 && "Zero unrolled factor is not supported");
1417   assert(UnrolledLoop != RemainderLoop &&
1418          "Unrolled and Remainder loops are expected to distinct");
1419 
1420   // Get number of iterations in the original scalar loop.
1421   unsigned OrigLoopInvocationWeight = 0;
1422   Optional<unsigned> OrigAverageTripCount =
1423       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1424   if (!OrigAverageTripCount)
1425     return;
1426 
1427   // Calculate number of iterations in unrolled loop.
1428   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1429   // Calculate number of iterations for remainder loop.
1430   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1431 
1432   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1433                             OrigLoopInvocationWeight);
1434   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1435                             OrigLoopInvocationWeight);
1436 }
1437 
1438 /// Utility that implements appending of loops onto a worklist.
1439 /// Loops are added in preorder (analogous for reverse postorder for trees),
1440 /// and the worklist is processed LIFO.
1441 template <typename RangeT>
1442 void llvm::appendReversedLoopsToWorklist(
1443     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1444   // We use an internal worklist to build up the preorder traversal without
1445   // recursion.
1446   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1447 
1448   // We walk the initial sequence of loops in reverse because we generally want
1449   // to visit defs before uses and the worklist is LIFO.
1450   for (Loop *RootL : Loops) {
1451     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1452     assert(PreOrderWorklist.empty() &&
1453            "Must start with an empty preorder walk worklist.");
1454     PreOrderWorklist.push_back(RootL);
1455     do {
1456       Loop *L = PreOrderWorklist.pop_back_val();
1457       PreOrderWorklist.append(L->begin(), L->end());
1458       PreOrderLoops.push_back(L);
1459     } while (!PreOrderWorklist.empty());
1460 
1461     Worklist.insert(std::move(PreOrderLoops));
1462     PreOrderLoops.clear();
1463   }
1464 }
1465 
1466 template <typename RangeT>
1467 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1468                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1469   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1470 }
1471 
1472 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1473     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1474 
1475 template void
1476 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1477                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1478 
1479 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1480                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1481   appendReversedLoopsToWorklist(LI, Worklist);
1482 }
1483 
1484 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1485                       LoopInfo *LI, LPPassManager *LPM) {
1486   Loop &New = *LI->AllocateLoop();
1487   if (PL)
1488     PL->addChildLoop(&New);
1489   else
1490     LI->addTopLevelLoop(&New);
1491 
1492   if (LPM)
1493     LPM->addLoop(New);
1494 
1495   // Add all of the blocks in L to the new loop.
1496   for (BasicBlock *BB : L->blocks())
1497     if (LI->getLoopFor(BB) == L)
1498       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1499 
1500   // Add all of the subloops to the new loop.
1501   for (Loop *I : *L)
1502     cloneLoop(I, &New, VM, LI, LPM);
1503 
1504   return &New;
1505 }
1506 
1507 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1508 /// need to use value-handles because SCEV expansion can invalidate previously
1509 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1510 /// a previous one.
1511 struct PointerBounds {
1512   TrackingVH<Value> Start;
1513   TrackingVH<Value> End;
1514 };
1515 
1516 /// Expand code for the lower and upper bound of the pointer group \p CG
1517 /// in \p TheLoop.  \return the values for the bounds.
1518 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1519                                   Loop *TheLoop, Instruction *Loc,
1520                                   SCEVExpander &Exp) {
1521   LLVMContext &Ctx = Loc->getContext();
1522   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
1523 
1524   Value *Start = nullptr, *End = nullptr;
1525   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1526   Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1527   End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1528   LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1529   return {Start, End};
1530 }
1531 
1532 /// Turns a collection of checks into a collection of expanded upper and
1533 /// lower bounds for both pointers in the check.
1534 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1535 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1536              Instruction *Loc, SCEVExpander &Exp) {
1537   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1538 
1539   // Here we're relying on the SCEV Expander's cache to only emit code for the
1540   // same bounds once.
1541   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1542             [&](const RuntimePointerCheck &Check) {
1543               PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
1544                             Second = expandBounds(Check.second, L, Loc, Exp);
1545               return std::make_pair(First, Second);
1546             });
1547 
1548   return ChecksWithBounds;
1549 }
1550 
1551 Value *llvm::addRuntimeChecks(
1552     Instruction *Loc, Loop *TheLoop,
1553     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1554     SCEVExpander &Exp) {
1555   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1556   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1557   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
1558 
1559   LLVMContext &Ctx = Loc->getContext();
1560   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1561                                            Loc->getModule()->getDataLayout());
1562   ChkBuilder.SetInsertPoint(Loc);
1563   // Our instructions might fold to a constant.
1564   Value *MemoryRuntimeCheck = nullptr;
1565 
1566   for (const auto &Check : ExpandedChecks) {
1567     const PointerBounds &A = Check.first, &B = Check.second;
1568     // Check if two pointers (A and B) conflict where conflict is computed as:
1569     // start(A) <= end(B) && start(B) <= end(A)
1570     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1571     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1572 
1573     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1574            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1575            "Trying to bounds check pointers with different address spaces");
1576 
1577     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1578     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1579 
1580     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1581     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1582     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1583     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1584 
1585     // [A|B].Start points to the first accessed byte under base [A|B].
1586     // [A|B].End points to the last accessed byte, plus one.
1587     // There is no conflict when the intervals are disjoint:
1588     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1589     //
1590     // bound0 = (B.Start < A.End)
1591     // bound1 = (A.Start < B.End)
1592     //  IsConflict = bound0 & bound1
1593     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1594     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1595     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1596     if (MemoryRuntimeCheck) {
1597       IsConflict =
1598           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1599     }
1600     MemoryRuntimeCheck = IsConflict;
1601   }
1602 
1603   return MemoryRuntimeCheck;
1604 }
1605 
1606 Value *llvm::addDiffRuntimeChecks(
1607     Instruction *Loc, Loop *TheLoop, ArrayRef<PointerDiffInfo> Checks,
1608     SCEVExpander &Expander,
1609     function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
1610 
1611   LLVMContext &Ctx = Loc->getContext();
1612   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1613                                            Loc->getModule()->getDataLayout());
1614   ChkBuilder.SetInsertPoint(Loc);
1615   // Our instructions might fold to a constant.
1616   Value *MemoryRuntimeCheck = nullptr;
1617 
1618   for (auto &C : Checks) {
1619     Type *Ty = C.SinkStart->getType();
1620     // Compute VF * IC * AccessSize.
1621     auto *VFTimesUFTimesSize =
1622         ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
1623                              ConstantInt::get(Ty, IC * C.AccessSize));
1624     Value *Sink = Expander.expandCodeFor(C.SinkStart, Ty, Loc);
1625     Value *Src = Expander.expandCodeFor(C.SrcStart, Ty, Loc);
1626     Value *Diff = ChkBuilder.CreateSub(Sink, Src);
1627     Value *IsConflict =
1628         ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1629 
1630     if (MemoryRuntimeCheck) {
1631       IsConflict =
1632           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1633     }
1634     MemoryRuntimeCheck = IsConflict;
1635   }
1636 
1637   return MemoryRuntimeCheck;
1638 }
1639 
1640 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
1641                                                       unsigned MSSAThreshold,
1642                                                       MemorySSA &MSSA,
1643                                                       AAResults &AA) {
1644   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1645   if (!TI || !TI->isConditional())
1646     return {};
1647 
1648   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1649   // The case with the condition outside the loop should already be handled
1650   // earlier.
1651   if (!CondI || !L.contains(CondI))
1652     return {};
1653 
1654   SmallVector<Instruction *> InstToDuplicate;
1655   InstToDuplicate.push_back(CondI);
1656 
1657   SmallVector<Value *, 4> WorkList;
1658   WorkList.append(CondI->op_begin(), CondI->op_end());
1659 
1660   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1661   SmallVector<MemoryLocation, 4> AccessedLocs;
1662   while (!WorkList.empty()) {
1663     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1664     if (!I || !L.contains(I))
1665       continue;
1666 
1667     // TODO: support additional instructions.
1668     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1669       return {};
1670 
1671     // Do not duplicate volatile and atomic loads.
1672     if (auto *LI = dyn_cast<LoadInst>(I))
1673       if (LI->isVolatile() || LI->isAtomic())
1674         return {};
1675 
1676     InstToDuplicate.push_back(I);
1677     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1678       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1679         // Queue the defining access to check for alias checks.
1680         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1681         AccessedLocs.push_back(MemoryLocation::get(I));
1682       } else {
1683         // MemoryDefs may clobber the location or may be atomic memory
1684         // operations. Bail out.
1685         return {};
1686       }
1687     }
1688     WorkList.append(I->op_begin(), I->op_end());
1689   }
1690 
1691   if (InstToDuplicate.empty())
1692     return {};
1693 
1694   SmallVector<BasicBlock *, 4> ExitingBlocks;
1695   L.getExitingBlocks(ExitingBlocks);
1696   auto HasNoClobbersOnPath =
1697       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1698        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1699                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1700       -> Optional<IVConditionInfo> {
1701     IVConditionInfo Info;
1702     // First, collect all blocks in the loop that are on a patch from Succ
1703     // to the header.
1704     SmallVector<BasicBlock *, 4> WorkList;
1705     WorkList.push_back(Succ);
1706     WorkList.push_back(Header);
1707     SmallPtrSet<BasicBlock *, 4> Seen;
1708     Seen.insert(Header);
1709     Info.PathIsNoop &=
1710         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1711 
1712     while (!WorkList.empty()) {
1713       BasicBlock *Current = WorkList.pop_back_val();
1714       if (!L.contains(Current))
1715         continue;
1716       const auto &SeenIns = Seen.insert(Current);
1717       if (!SeenIns.second)
1718         continue;
1719 
1720       Info.PathIsNoop &= all_of(
1721           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1722       WorkList.append(succ_begin(Current), succ_end(Current));
1723     }
1724 
1725     // Require at least 2 blocks on a path through the loop. This skips
1726     // paths that directly exit the loop.
1727     if (Seen.size() < 2)
1728       return {};
1729 
1730     // Next, check if there are any MemoryDefs that are on the path through
1731     // the loop (in the Seen set) and they may-alias any of the locations in
1732     // AccessedLocs. If that is the case, they may modify the condition and
1733     // partial unswitching is not possible.
1734     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1735     while (!AccessesToCheck.empty()) {
1736       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1737       auto SeenI = SeenAccesses.insert(Current);
1738       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1739         continue;
1740 
1741       // Bail out if exceeded the threshold.
1742       if (SeenAccesses.size() >= MSSAThreshold)
1743         return {};
1744 
1745       // MemoryUse are read-only accesses.
1746       if (isa<MemoryUse>(Current))
1747         continue;
1748 
1749       // For a MemoryDef, check if is aliases any of the location feeding
1750       // the original condition.
1751       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1752         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1753               return isModSet(
1754                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1755             }))
1756           return {};
1757       }
1758 
1759       for (Use &U : Current->uses())
1760         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1761     }
1762 
1763     // We could also allow loops with known trip counts without mustprogress,
1764     // but ScalarEvolution may not be available.
1765     Info.PathIsNoop &= isMustProgress(&L);
1766 
1767     // If the path is considered a no-op so far, check if it reaches a
1768     // single exit block without any phis. This ensures no values from the
1769     // loop are used outside of the loop.
1770     if (Info.PathIsNoop) {
1771       for (auto *Exiting : ExitingBlocks) {
1772         if (!Seen.contains(Exiting))
1773           continue;
1774         for (auto *Succ : successors(Exiting)) {
1775           if (L.contains(Succ))
1776             continue;
1777 
1778           Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
1779                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1780           if (!Info.PathIsNoop)
1781             break;
1782           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1783                  "cannot have multiple exit blocks");
1784           Info.ExitForPath = Succ;
1785         }
1786       }
1787     }
1788     if (!Info.ExitForPath)
1789       Info.PathIsNoop = false;
1790 
1791     Info.InstToDuplicate = InstToDuplicate;
1792     return Info;
1793   };
1794 
1795   // If we branch to the same successor, partial unswitching will not be
1796   // beneficial.
1797   if (TI->getSuccessor(0) == TI->getSuccessor(1))
1798     return {};
1799 
1800   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
1801                                       AccessesToCheck)) {
1802     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
1803     return Info;
1804   }
1805   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
1806                                       AccessesToCheck)) {
1807     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
1808     return Info;
1809   }
1810 
1811   return {};
1812 }
1813