1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/MustExecute.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
24 #include "llvm/Analysis/ScalarEvolutionExpander.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DomTreeUpdater.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 
41 using namespace llvm;
42 using namespace llvm::PatternMatch;
43 
44 #define DEBUG_TYPE "loop-utils"
45 
46 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
47 
48 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
49                                    bool PreserveLCSSA) {
50   bool Changed = false;
51 
52   // We re-use a vector for the in-loop predecesosrs.
53   SmallVector<BasicBlock *, 4> InLoopPredecessors;
54 
55   auto RewriteExit = [&](BasicBlock *BB) {
56     assert(InLoopPredecessors.empty() &&
57            "Must start with an empty predecessors list!");
58     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
59 
60     // See if there are any non-loop predecessors of this exit block and
61     // keep track of the in-loop predecessors.
62     bool IsDedicatedExit = true;
63     for (auto *PredBB : predecessors(BB))
64       if (L->contains(PredBB)) {
65         if (isa<IndirectBrInst>(PredBB->getTerminator()))
66           // We cannot rewrite exiting edges from an indirectbr.
67           return false;
68 
69         InLoopPredecessors.push_back(PredBB);
70       } else {
71         IsDedicatedExit = false;
72       }
73 
74     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
75 
76     // Nothing to do if this is already a dedicated exit.
77     if (IsDedicatedExit)
78       return false;
79 
80     auto *NewExitBB = SplitBlockPredecessors(
81         BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA);
82 
83     if (!NewExitBB)
84       LLVM_DEBUG(
85           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
86                  << *L << "\n");
87     else
88       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
89                         << NewExitBB->getName() << "\n");
90     return true;
91   };
92 
93   // Walk the exit blocks directly rather than building up a data structure for
94   // them, but only visit each one once.
95   SmallPtrSet<BasicBlock *, 4> Visited;
96   for (auto *BB : L->blocks())
97     for (auto *SuccBB : successors(BB)) {
98       // We're looking for exit blocks so skip in-loop successors.
99       if (L->contains(SuccBB))
100         continue;
101 
102       // Visit each exit block exactly once.
103       if (!Visited.insert(SuccBB).second)
104         continue;
105 
106       Changed |= RewriteExit(SuccBB);
107     }
108 
109   return Changed;
110 }
111 
112 /// Returns the instructions that use values defined in the loop.
113 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
114   SmallVector<Instruction *, 8> UsedOutside;
115 
116   for (auto *Block : L->getBlocks())
117     // FIXME: I believe that this could use copy_if if the Inst reference could
118     // be adapted into a pointer.
119     for (auto &Inst : *Block) {
120       auto Users = Inst.users();
121       if (any_of(Users, [&](User *U) {
122             auto *Use = cast<Instruction>(U);
123             return !L->contains(Use->getParent());
124           }))
125         UsedOutside.push_back(&Inst);
126     }
127 
128   return UsedOutside;
129 }
130 
131 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
132   // By definition, all loop passes need the LoopInfo analysis and the
133   // Dominator tree it depends on. Because they all participate in the loop
134   // pass manager, they must also preserve these.
135   AU.addRequired<DominatorTreeWrapperPass>();
136   AU.addPreserved<DominatorTreeWrapperPass>();
137   AU.addRequired<LoopInfoWrapperPass>();
138   AU.addPreserved<LoopInfoWrapperPass>();
139 
140   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
141   // here because users shouldn't directly get them from this header.
142   extern char &LoopSimplifyID;
143   extern char &LCSSAID;
144   AU.addRequiredID(LoopSimplifyID);
145   AU.addPreservedID(LoopSimplifyID);
146   AU.addRequiredID(LCSSAID);
147   AU.addPreservedID(LCSSAID);
148   // This is used in the LPPassManager to perform LCSSA verification on passes
149   // which preserve lcssa form
150   AU.addRequired<LCSSAVerificationPass>();
151   AU.addPreserved<LCSSAVerificationPass>();
152 
153   // Loop passes are designed to run inside of a loop pass manager which means
154   // that any function analyses they require must be required by the first loop
155   // pass in the manager (so that it is computed before the loop pass manager
156   // runs) and preserved by all loop pasess in the manager. To make this
157   // reasonably robust, the set needed for most loop passes is maintained here.
158   // If your loop pass requires an analysis not listed here, you will need to
159   // carefully audit the loop pass manager nesting structure that results.
160   AU.addRequired<AAResultsWrapperPass>();
161   AU.addPreserved<AAResultsWrapperPass>();
162   AU.addPreserved<BasicAAWrapperPass>();
163   AU.addPreserved<GlobalsAAWrapperPass>();
164   AU.addPreserved<SCEVAAWrapperPass>();
165   AU.addRequired<ScalarEvolutionWrapperPass>();
166   AU.addPreserved<ScalarEvolutionWrapperPass>();
167 }
168 
169 /// Manually defined generic "LoopPass" dependency initialization. This is used
170 /// to initialize the exact set of passes from above in \c
171 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
172 /// with:
173 ///
174 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
175 ///
176 /// As-if "LoopPass" were a pass.
177 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
178   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
179   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
180   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
181   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
182   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
183   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
184   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
185   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
186   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
187 }
188 
189 /// Find string metadata for loop
190 ///
191 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
192 /// operand or null otherwise.  If the string metadata is not found return
193 /// Optional's not-a-value.
194 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
195                                                             StringRef Name) {
196   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
197   if (!MD)
198     return None;
199   switch (MD->getNumOperands()) {
200   case 1:
201     return nullptr;
202   case 2:
203     return &MD->getOperand(1);
204   default:
205     llvm_unreachable("loop metadata has 0 or 1 operand");
206   }
207 }
208 
209 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
210                                                    StringRef Name) {
211   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
212   if (!MD)
213     return None;
214   switch (MD->getNumOperands()) {
215   case 1:
216     // When the value is absent it is interpreted as 'attribute set'.
217     return true;
218   case 2:
219     if (ConstantInt *IntMD =
220             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
221       return IntMD->getZExtValue();
222     return true;
223   }
224   llvm_unreachable("unexpected number of options");
225 }
226 
227 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
228   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
229 }
230 
231 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
232                                                       StringRef Name) {
233   const MDOperand *AttrMD =
234       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
235   if (!AttrMD)
236     return None;
237 
238   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
239   if (!IntMD)
240     return None;
241 
242   return IntMD->getSExtValue();
243 }
244 
245 Optional<MDNode *> llvm::makeFollowupLoopID(
246     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
247     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
248   if (!OrigLoopID) {
249     if (AlwaysNew)
250       return nullptr;
251     return None;
252   }
253 
254   assert(OrigLoopID->getOperand(0) == OrigLoopID);
255 
256   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
257   bool InheritSomeAttrs =
258       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
259   SmallVector<Metadata *, 8> MDs;
260   MDs.push_back(nullptr);
261 
262   bool Changed = false;
263   if (InheritAllAttrs || InheritSomeAttrs) {
264     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
265       MDNode *Op = cast<MDNode>(Existing.get());
266 
267       auto InheritThisAttribute = [InheritSomeAttrs,
268                                    InheritOptionsExceptPrefix](MDNode *Op) {
269         if (!InheritSomeAttrs)
270           return false;
271 
272         // Skip malformatted attribute metadata nodes.
273         if (Op->getNumOperands() == 0)
274           return true;
275         Metadata *NameMD = Op->getOperand(0).get();
276         if (!isa<MDString>(NameMD))
277           return true;
278         StringRef AttrName = cast<MDString>(NameMD)->getString();
279 
280         // Do not inherit excluded attributes.
281         return !AttrName.startswith(InheritOptionsExceptPrefix);
282       };
283 
284       if (InheritThisAttribute(Op))
285         MDs.push_back(Op);
286       else
287         Changed = true;
288     }
289   } else {
290     // Modified if we dropped at least one attribute.
291     Changed = OrigLoopID->getNumOperands() > 1;
292   }
293 
294   bool HasAnyFollowup = false;
295   for (StringRef OptionName : FollowupOptions) {
296     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
297     if (!FollowupNode)
298       continue;
299 
300     HasAnyFollowup = true;
301     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
302       MDs.push_back(Option.get());
303       Changed = true;
304     }
305   }
306 
307   // Attributes of the followup loop not specified explicity, so signal to the
308   // transformation pass to add suitable attributes.
309   if (!AlwaysNew && !HasAnyFollowup)
310     return None;
311 
312   // If no attributes were added or remove, the previous loop Id can be reused.
313   if (!AlwaysNew && !Changed)
314     return OrigLoopID;
315 
316   // No attributes is equivalent to having no !llvm.loop metadata at all.
317   if (MDs.size() == 1)
318     return nullptr;
319 
320   // Build the new loop ID.
321   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
322   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
323   return FollowupLoopID;
324 }
325 
326 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
327   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
328 }
329 
330 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
331   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
332     return TM_SuppressedByUser;
333 
334   Optional<int> Count =
335       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
336   if (Count.hasValue())
337     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
338 
339   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
340     return TM_ForcedByUser;
341 
342   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
343     return TM_ForcedByUser;
344 
345   if (hasDisableAllTransformsHint(L))
346     return TM_Disable;
347 
348   return TM_Unspecified;
349 }
350 
351 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
352   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
353     return TM_SuppressedByUser;
354 
355   Optional<int> Count =
356       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
357   if (Count.hasValue())
358     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
359 
360   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
361     return TM_ForcedByUser;
362 
363   if (hasDisableAllTransformsHint(L))
364     return TM_Disable;
365 
366   return TM_Unspecified;
367 }
368 
369 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
370   Optional<bool> Enable =
371       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
372 
373   if (Enable == false)
374     return TM_SuppressedByUser;
375 
376   Optional<int> VectorizeWidth =
377       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
378   Optional<int> InterleaveCount =
379       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
380 
381   // 'Forcing' vector width and interleave count to one effectively disables
382   // this tranformation.
383   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
384     return TM_SuppressedByUser;
385 
386   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
387     return TM_Disable;
388 
389   if (Enable == true)
390     return TM_ForcedByUser;
391 
392   if (VectorizeWidth == 1 && InterleaveCount == 1)
393     return TM_Disable;
394 
395   if (VectorizeWidth > 1 || InterleaveCount > 1)
396     return TM_Enable;
397 
398   if (hasDisableAllTransformsHint(L))
399     return TM_Disable;
400 
401   return TM_Unspecified;
402 }
403 
404 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
405   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
406     return TM_ForcedByUser;
407 
408   if (hasDisableAllTransformsHint(L))
409     return TM_Disable;
410 
411   return TM_Unspecified;
412 }
413 
414 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
415   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
416     return TM_SuppressedByUser;
417 
418   if (hasDisableAllTransformsHint(L))
419     return TM_Disable;
420 
421   return TM_Unspecified;
422 }
423 
424 /// Does a BFS from a given node to all of its children inside a given loop.
425 /// The returned vector of nodes includes the starting point.
426 SmallVector<DomTreeNode *, 16>
427 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
428   SmallVector<DomTreeNode *, 16> Worklist;
429   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
430     // Only include subregions in the top level loop.
431     BasicBlock *BB = DTN->getBlock();
432     if (CurLoop->contains(BB))
433       Worklist.push_back(DTN);
434   };
435 
436   AddRegionToWorklist(N);
437 
438   for (size_t I = 0; I < Worklist.size(); I++)
439     for (DomTreeNode *Child : Worklist[I]->getChildren())
440       AddRegionToWorklist(Child);
441 
442   return Worklist;
443 }
444 
445 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
446                           ScalarEvolution *SE = nullptr,
447                           LoopInfo *LI = nullptr) {
448   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
449   auto *Preheader = L->getLoopPreheader();
450   assert(Preheader && "Preheader should exist!");
451 
452   // Now that we know the removal is safe, remove the loop by changing the
453   // branch from the preheader to go to the single exit block.
454   //
455   // Because we're deleting a large chunk of code at once, the sequence in which
456   // we remove things is very important to avoid invalidation issues.
457 
458   // Tell ScalarEvolution that the loop is deleted. Do this before
459   // deleting the loop so that ScalarEvolution can look at the loop
460   // to determine what it needs to clean up.
461   if (SE)
462     SE->forgetLoop(L);
463 
464   auto *ExitBlock = L->getUniqueExitBlock();
465   assert(ExitBlock && "Should have a unique exit block!");
466   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
467 
468   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
469   assert(OldBr && "Preheader must end with a branch");
470   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
471   // Connect the preheader to the exit block. Keep the old edge to the header
472   // around to perform the dominator tree update in two separate steps
473   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
474   // preheader -> header.
475   //
476   //
477   // 0.  Preheader          1.  Preheader           2.  Preheader
478   //        |                    |   |                   |
479   //        V                    |   V                   |
480   //      Header <--\            | Header <--\           | Header <--\
481   //       |  |     |            |  |  |     |           |  |  |     |
482   //       |  V     |            |  |  V     |           |  |  V     |
483   //       | Body --/            |  | Body --/           |  | Body --/
484   //       V                     V  V                    V  V
485   //      Exit                   Exit                    Exit
486   //
487   // By doing this is two separate steps we can perform the dominator tree
488   // update without using the batch update API.
489   //
490   // Even when the loop is never executed, we cannot remove the edge from the
491   // source block to the exit block. Consider the case where the unexecuted loop
492   // branches back to an outer loop. If we deleted the loop and removed the edge
493   // coming to this inner loop, this will break the outer loop structure (by
494   // deleting the backedge of the outer loop). If the outer loop is indeed a
495   // non-loop, it will be deleted in a future iteration of loop deletion pass.
496   IRBuilder<> Builder(OldBr);
497   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
498   // Remove the old branch. The conditional branch becomes a new terminator.
499   OldBr->eraseFromParent();
500 
501   // Rewrite phis in the exit block to get their inputs from the Preheader
502   // instead of the exiting block.
503   for (PHINode &P : ExitBlock->phis()) {
504     // Set the zero'th element of Phi to be from the preheader and remove all
505     // other incoming values. Given the loop has dedicated exits, all other
506     // incoming values must be from the exiting blocks.
507     int PredIndex = 0;
508     P.setIncomingBlock(PredIndex, Preheader);
509     // Removes all incoming values from all other exiting blocks (including
510     // duplicate values from an exiting block).
511     // Nuke all entries except the zero'th entry which is the preheader entry.
512     // NOTE! We need to remove Incoming Values in the reverse order as done
513     // below, to keep the indices valid for deletion (removeIncomingValues
514     // updates getNumIncomingValues and shifts all values down into the operand
515     // being deleted).
516     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
517       P.removeIncomingValue(e - i, false);
518 
519     assert((P.getNumIncomingValues() == 1 &&
520             P.getIncomingBlock(PredIndex) == Preheader) &&
521            "Should have exactly one value and that's from the preheader!");
522   }
523 
524   // Disconnect the loop body by branching directly to its exit.
525   Builder.SetInsertPoint(Preheader->getTerminator());
526   Builder.CreateBr(ExitBlock);
527   // Remove the old branch.
528   Preheader->getTerminator()->eraseFromParent();
529 
530   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
531   if (DT) {
532     // Update the dominator tree by informing it about the new edge from the
533     // preheader to the exit.
534     DTU.insertEdge(Preheader, ExitBlock);
535     // Inform the dominator tree about the removed edge.
536     DTU.deleteEdge(Preheader, L->getHeader());
537   }
538 
539   // Use a map to unique and a vector to guarantee deterministic ordering.
540   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
541   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
542 
543   // Given LCSSA form is satisfied, we should not have users of instructions
544   // within the dead loop outside of the loop. However, LCSSA doesn't take
545   // unreachable uses into account. We handle them here.
546   // We could do it after drop all references (in this case all users in the
547   // loop will be already eliminated and we have less work to do but according
548   // to API doc of User::dropAllReferences only valid operation after dropping
549   // references, is deletion. So let's substitute all usages of
550   // instruction from the loop with undef value of corresponding type first.
551   for (auto *Block : L->blocks())
552     for (Instruction &I : *Block) {
553       auto *Undef = UndefValue::get(I.getType());
554       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
555         Use &U = *UI;
556         ++UI;
557         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
558           if (L->contains(Usr->getParent()))
559             continue;
560         // If we have a DT then we can check that uses outside a loop only in
561         // unreachable block.
562         if (DT)
563           assert(!DT->isReachableFromEntry(U) &&
564                  "Unexpected user in reachable block");
565         U.set(Undef);
566       }
567       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
568       if (!DVI)
569         continue;
570       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
571       if (Key != DeadDebugSet.end())
572         continue;
573       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
574       DeadDebugInst.push_back(DVI);
575     }
576 
577   // After the loop has been deleted all the values defined and modified
578   // inside the loop are going to be unavailable.
579   // Since debug values in the loop have been deleted, inserting an undef
580   // dbg.value truncates the range of any dbg.value before the loop where the
581   // loop used to be. This is particularly important for constant values.
582   DIBuilder DIB(*ExitBlock->getModule());
583   for (auto *DVI : DeadDebugInst)
584     DIB.insertDbgValueIntrinsic(
585         UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(),
586         DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI());
587 
588   // Remove the block from the reference counting scheme, so that we can
589   // delete it freely later.
590   for (auto *Block : L->blocks())
591     Block->dropAllReferences();
592 
593   if (LI) {
594     // Erase the instructions and the blocks without having to worry
595     // about ordering because we already dropped the references.
596     // NOTE: This iteration is safe because erasing the block does not remove
597     // its entry from the loop's block list.  We do that in the next section.
598     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
599          LpI != LpE; ++LpI)
600       (*LpI)->eraseFromParent();
601 
602     // Finally, the blocks from loopinfo.  This has to happen late because
603     // otherwise our loop iterators won't work.
604 
605     SmallPtrSet<BasicBlock *, 8> blocks;
606     blocks.insert(L->block_begin(), L->block_end());
607     for (BasicBlock *BB : blocks)
608       LI->removeBlock(BB);
609 
610     // The last step is to update LoopInfo now that we've eliminated this loop.
611     LI->erase(L);
612   }
613 }
614 
615 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
616   // Only support loops with a unique exiting block, and a latch.
617   if (!L->getExitingBlock())
618     return None;
619 
620   // Get the branch weights for the loop's backedge.
621   BranchInst *LatchBR =
622       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
623   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
624     return None;
625 
626   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
627           LatchBR->getSuccessor(1) == L->getHeader()) &&
628          "At least one edge out of the latch must go to the header");
629 
630   // To estimate the number of times the loop body was executed, we want to
631   // know the number of times the backedge was taken, vs. the number of times
632   // we exited the loop.
633   uint64_t TrueVal, FalseVal;
634   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
635     return None;
636 
637   if (!TrueVal || !FalseVal)
638     return 0;
639 
640   // Divide the count of the backedge by the count of the edge exiting the loop,
641   // rounding to nearest.
642   if (LatchBR->getSuccessor(0) == L->getHeader())
643     return (TrueVal + (FalseVal / 2)) / FalseVal;
644   else
645     return (FalseVal + (TrueVal / 2)) / TrueVal;
646 }
647 
648 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
649                                               ScalarEvolution &SE) {
650   Loop *OuterL = InnerLoop->getParentLoop();
651   if (!OuterL)
652     return true;
653 
654   // Get the backedge taken count for the inner loop
655   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
656   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
657   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
658       !InnerLoopBECountSC->getType()->isIntegerTy())
659     return false;
660 
661   // Get whether count is invariant to the outer loop
662   ScalarEvolution::LoopDisposition LD =
663       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
664   if (LD != ScalarEvolution::LoopInvariant)
665     return false;
666 
667   return true;
668 }
669 
670 /// Adds a 'fast' flag to floating point operations.
671 static Value *addFastMathFlag(Value *V) {
672   if (isa<FPMathOperator>(V)) {
673     FastMathFlags Flags;
674     Flags.setFast();
675     cast<Instruction>(V)->setFastMathFlags(Flags);
676   }
677   return V;
678 }
679 
680 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
681                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
682                             Value *Left, Value *Right) {
683   CmpInst::Predicate P = CmpInst::ICMP_NE;
684   switch (RK) {
685   default:
686     llvm_unreachable("Unknown min/max recurrence kind");
687   case RecurrenceDescriptor::MRK_UIntMin:
688     P = CmpInst::ICMP_ULT;
689     break;
690   case RecurrenceDescriptor::MRK_UIntMax:
691     P = CmpInst::ICMP_UGT;
692     break;
693   case RecurrenceDescriptor::MRK_SIntMin:
694     P = CmpInst::ICMP_SLT;
695     break;
696   case RecurrenceDescriptor::MRK_SIntMax:
697     P = CmpInst::ICMP_SGT;
698     break;
699   case RecurrenceDescriptor::MRK_FloatMin:
700     P = CmpInst::FCMP_OLT;
701     break;
702   case RecurrenceDescriptor::MRK_FloatMax:
703     P = CmpInst::FCMP_OGT;
704     break;
705   }
706 
707   // We only match FP sequences that are 'fast', so we can unconditionally
708   // set it on any generated instructions.
709   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
710   FastMathFlags FMF;
711   FMF.setFast();
712   Builder.setFastMathFlags(FMF);
713 
714   Value *Cmp;
715   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
716       RK == RecurrenceDescriptor::MRK_FloatMax)
717     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
718   else
719     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
720 
721   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
722   return Select;
723 }
724 
725 // Helper to generate an ordered reduction.
726 Value *
727 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
728                           unsigned Op,
729                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
730                           ArrayRef<Value *> RedOps) {
731   unsigned VF = Src->getType()->getVectorNumElements();
732 
733   // Extract and apply reduction ops in ascending order:
734   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
735   Value *Result = Acc;
736   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
737     Value *Ext =
738         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
739 
740     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
741       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
742                                    "bin.rdx");
743     } else {
744       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
745              "Invalid min/max");
746       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
747     }
748 
749     if (!RedOps.empty())
750       propagateIRFlags(Result, RedOps);
751   }
752 
753   return Result;
754 }
755 
756 // Helper to generate a log2 shuffle reduction.
757 Value *
758 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
759                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
760                           ArrayRef<Value *> RedOps) {
761   unsigned VF = Src->getType()->getVectorNumElements();
762   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
763   // and vector ops, reducing the set of values being computed by half each
764   // round.
765   assert(isPowerOf2_32(VF) &&
766          "Reduction emission only supported for pow2 vectors!");
767   Value *TmpVec = Src;
768   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
769   for (unsigned i = VF; i != 1; i >>= 1) {
770     // Move the upper half of the vector to the lower half.
771     for (unsigned j = 0; j != i / 2; ++j)
772       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
773 
774     // Fill the rest of the mask with undef.
775     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
776               UndefValue::get(Builder.getInt32Ty()));
777 
778     Value *Shuf = Builder.CreateShuffleVector(
779         TmpVec, UndefValue::get(TmpVec->getType()),
780         ConstantVector::get(ShuffleMask), "rdx.shuf");
781 
782     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
783       // Floating point operations had to be 'fast' to enable the reduction.
784       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
785                                                    TmpVec, Shuf, "bin.rdx"));
786     } else {
787       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
788              "Invalid min/max");
789       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
790     }
791     if (!RedOps.empty())
792       propagateIRFlags(TmpVec, RedOps);
793   }
794   // The result is in the first element of the vector.
795   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
796 }
797 
798 /// Create a simple vector reduction specified by an opcode and some
799 /// flags (if generating min/max reductions).
800 Value *llvm::createSimpleTargetReduction(
801     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
802     Value *Src, TargetTransformInfo::ReductionFlags Flags,
803     ArrayRef<Value *> RedOps) {
804   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
805 
806   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
807   std::function<Value *()> BuildFunc;
808   using RD = RecurrenceDescriptor;
809   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
810   // TODO: Support creating ordered reductions.
811   FastMathFlags FMFFast;
812   FMFFast.setFast();
813 
814   switch (Opcode) {
815   case Instruction::Add:
816     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
817     break;
818   case Instruction::Mul:
819     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
820     break;
821   case Instruction::And:
822     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
823     break;
824   case Instruction::Or:
825     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
826     break;
827   case Instruction::Xor:
828     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
829     break;
830   case Instruction::FAdd:
831     BuildFunc = [&]() {
832       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
833       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
834       return Rdx;
835     };
836     break;
837   case Instruction::FMul:
838     BuildFunc = [&]() {
839       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
840       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
841       return Rdx;
842     };
843     break;
844   case Instruction::ICmp:
845     if (Flags.IsMaxOp) {
846       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
847       BuildFunc = [&]() {
848         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
849       };
850     } else {
851       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
852       BuildFunc = [&]() {
853         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
854       };
855     }
856     break;
857   case Instruction::FCmp:
858     if (Flags.IsMaxOp) {
859       MinMaxKind = RD::MRK_FloatMax;
860       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
861     } else {
862       MinMaxKind = RD::MRK_FloatMin;
863       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
864     }
865     break;
866   default:
867     llvm_unreachable("Unhandled opcode");
868     break;
869   }
870   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
871     return BuildFunc();
872   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
873 }
874 
875 /// Create a vector reduction using a given recurrence descriptor.
876 Value *llvm::createTargetReduction(IRBuilder<> &B,
877                                    const TargetTransformInfo *TTI,
878                                    RecurrenceDescriptor &Desc, Value *Src,
879                                    bool NoNaN) {
880   // TODO: Support in-order reductions based on the recurrence descriptor.
881   using RD = RecurrenceDescriptor;
882   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
883   TargetTransformInfo::ReductionFlags Flags;
884   Flags.NoNaN = NoNaN;
885   switch (RecKind) {
886   case RD::RK_FloatAdd:
887     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
888   case RD::RK_FloatMult:
889     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
890   case RD::RK_IntegerAdd:
891     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
892   case RD::RK_IntegerMult:
893     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
894   case RD::RK_IntegerAnd:
895     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
896   case RD::RK_IntegerOr:
897     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
898   case RD::RK_IntegerXor:
899     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
900   case RD::RK_IntegerMinMax: {
901     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
902     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
903     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
904     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
905   }
906   case RD::RK_FloatMinMax: {
907     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
908     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
909   }
910   default:
911     llvm_unreachable("Unhandled RecKind");
912   }
913 }
914 
915 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
916   auto *VecOp = dyn_cast<Instruction>(I);
917   if (!VecOp)
918     return;
919   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
920                                             : dyn_cast<Instruction>(OpValue);
921   if (!Intersection)
922     return;
923   const unsigned Opcode = Intersection->getOpcode();
924   VecOp->copyIRFlags(Intersection);
925   for (auto *V : VL) {
926     auto *Instr = dyn_cast<Instruction>(V);
927     if (!Instr)
928       continue;
929     if (OpValue == nullptr || Opcode == Instr->getOpcode())
930       VecOp->andIRFlags(V);
931   }
932 }
933 
934 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
935                                  ScalarEvolution &SE) {
936   const SCEV *Zero = SE.getZero(S->getType());
937   return SE.isAvailableAtLoopEntry(S, L) &&
938          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
939 }
940 
941 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
942                                     ScalarEvolution &SE) {
943   const SCEV *Zero = SE.getZero(S->getType());
944   return SE.isAvailableAtLoopEntry(S, L) &&
945          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
946 }
947 
948 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
949                              bool Signed) {
950   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
951   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
952     APInt::getMinValue(BitWidth);
953   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
954   return SE.isAvailableAtLoopEntry(S, L) &&
955          SE.isLoopEntryGuardedByCond(L, Predicate, S,
956                                      SE.getConstant(Min));
957 }
958 
959 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
960                              bool Signed) {
961   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
962   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
963     APInt::getMaxValue(BitWidth);
964   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
965   return SE.isAvailableAtLoopEntry(S, L) &&
966          SE.isLoopEntryGuardedByCond(L, Predicate, S,
967                                      SE.getConstant(Max));
968 }
969