1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/PatternMatch.h" 17 #include "llvm/IR/ValueHandle.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/Transforms/Utils/LoopUtils.h" 23 24 using namespace llvm; 25 using namespace llvm::PatternMatch; 26 27 #define DEBUG_TYPE "loop-utils" 28 29 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 30 SmallPtrSetImpl<Instruction *> &Set) { 31 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 32 if (!Set.count(dyn_cast<Instruction>(*Use))) 33 return false; 34 return true; 35 } 36 37 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 38 Loop *TheLoop, bool HasFunNoNaNAttr, 39 RecurrenceDescriptor &RedDes) { 40 if (Phi->getNumIncomingValues() != 2) 41 return false; 42 43 // Reduction variables are only found in the loop header block. 44 if (Phi->getParent() != TheLoop->getHeader()) 45 return false; 46 47 // Obtain the reduction start value from the value that comes from the loop 48 // preheader. 49 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 50 51 // ExitInstruction is the single value which is used outside the loop. 52 // We only allow for a single reduction value to be used outside the loop. 53 // This includes users of the reduction, variables (which form a cycle 54 // which ends in the phi node). 55 Instruction *ExitInstruction = nullptr; 56 // Indicates that we found a reduction operation in our scan. 57 bool FoundReduxOp = false; 58 59 // We start with the PHI node and scan for all of the users of this 60 // instruction. All users must be instructions that can be used as reduction 61 // variables (such as ADD). We must have a single out-of-block user. The cycle 62 // must include the original PHI. 63 bool FoundStartPHI = false; 64 65 // To recognize min/max patterns formed by a icmp select sequence, we store 66 // the number of instruction we saw from the recognized min/max pattern, 67 // to make sure we only see exactly the two instructions. 68 unsigned NumCmpSelectPatternInst = 0; 69 InstDesc ReduxDesc(false, nullptr); 70 71 SmallPtrSet<Instruction *, 8> VisitedInsts; 72 SmallVector<Instruction *, 8> Worklist; 73 Worklist.push_back(Phi); 74 VisitedInsts.insert(Phi); 75 76 // A value in the reduction can be used: 77 // - By the reduction: 78 // - Reduction operation: 79 // - One use of reduction value (safe). 80 // - Multiple use of reduction value (not safe). 81 // - PHI: 82 // - All uses of the PHI must be the reduction (safe). 83 // - Otherwise, not safe. 84 // - By one instruction outside of the loop (safe). 85 // - By further instructions outside of the loop (not safe). 86 // - By an instruction that is not part of the reduction (not safe). 87 // This is either: 88 // * An instruction type other than PHI or the reduction operation. 89 // * A PHI in the header other than the initial PHI. 90 while (!Worklist.empty()) { 91 Instruction *Cur = Worklist.back(); 92 Worklist.pop_back(); 93 94 // No Users. 95 // If the instruction has no users then this is a broken chain and can't be 96 // a reduction variable. 97 if (Cur->use_empty()) 98 return false; 99 100 bool IsAPhi = isa<PHINode>(Cur); 101 102 // A header PHI use other than the original PHI. 103 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 104 return false; 105 106 // Reductions of instructions such as Div, and Sub is only possible if the 107 // LHS is the reduction variable. 108 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 109 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 110 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 111 return false; 112 113 // Any reduction instruction must be of one of the allowed kinds. 114 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 115 if (!ReduxDesc.isRecurrence()) 116 return false; 117 118 // A reduction operation must only have one use of the reduction value. 119 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 120 hasMultipleUsesOf(Cur, VisitedInsts)) 121 return false; 122 123 // All inputs to a PHI node must be a reduction value. 124 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 125 return false; 126 127 if (Kind == RK_IntegerMinMax && 128 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 129 ++NumCmpSelectPatternInst; 130 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 131 ++NumCmpSelectPatternInst; 132 133 // Check whether we found a reduction operator. 134 FoundReduxOp |= !IsAPhi; 135 136 // Process users of current instruction. Push non-PHI nodes after PHI nodes 137 // onto the stack. This way we are going to have seen all inputs to PHI 138 // nodes once we get to them. 139 SmallVector<Instruction *, 8> NonPHIs; 140 SmallVector<Instruction *, 8> PHIs; 141 for (User *U : Cur->users()) { 142 Instruction *UI = cast<Instruction>(U); 143 144 // Check if we found the exit user. 145 BasicBlock *Parent = UI->getParent(); 146 if (!TheLoop->contains(Parent)) { 147 // Exit if you find multiple outside users or if the header phi node is 148 // being used. In this case the user uses the value of the previous 149 // iteration, in which case we would loose "VF-1" iterations of the 150 // reduction operation if we vectorize. 151 if (ExitInstruction != nullptr || Cur == Phi) 152 return false; 153 154 // The instruction used by an outside user must be the last instruction 155 // before we feed back to the reduction phi. Otherwise, we loose VF-1 156 // operations on the value. 157 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 158 return false; 159 160 ExitInstruction = Cur; 161 continue; 162 } 163 164 // Process instructions only once (termination). Each reduction cycle 165 // value must only be used once, except by phi nodes and min/max 166 // reductions which are represented as a cmp followed by a select. 167 InstDesc IgnoredVal(false, nullptr); 168 if (VisitedInsts.insert(UI).second) { 169 if (isa<PHINode>(UI)) 170 PHIs.push_back(UI); 171 else 172 NonPHIs.push_back(UI); 173 } else if (!isa<PHINode>(UI) && 174 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 175 !isa<SelectInst>(UI)) || 176 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 177 return false; 178 179 // Remember that we completed the cycle. 180 if (UI == Phi) 181 FoundStartPHI = true; 182 } 183 Worklist.append(PHIs.begin(), PHIs.end()); 184 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 185 } 186 187 // This means we have seen one but not the other instruction of the 188 // pattern or more than just a select and cmp. 189 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 190 NumCmpSelectPatternInst != 2) 191 return false; 192 193 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 194 return false; 195 196 // We found a reduction var if we have reached the original phi node and we 197 // only have a single instruction with out-of-loop users. 198 199 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 200 // is saved as part of the RecurrenceDescriptor. 201 202 // Save the description of this reduction variable. 203 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, 204 ReduxDesc.getMinMaxKind()); 205 206 RedDes = RD; 207 208 return true; 209 } 210 211 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 212 /// pattern corresponding to a min(X, Y) or max(X, Y). 213 RecurrenceDescriptor::InstDesc 214 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 215 216 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 217 "Expect a select instruction"); 218 Instruction *Cmp = nullptr; 219 SelectInst *Select = nullptr; 220 221 // We must handle the select(cmp()) as a single instruction. Advance to the 222 // select. 223 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 224 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 225 return InstDesc(false, I); 226 return InstDesc(Select, Prev.getMinMaxKind()); 227 } 228 229 // Only handle single use cases for now. 230 if (!(Select = dyn_cast<SelectInst>(I))) 231 return InstDesc(false, I); 232 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 233 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 234 return InstDesc(false, I); 235 if (!Cmp->hasOneUse()) 236 return InstDesc(false, I); 237 238 Value *CmpLeft; 239 Value *CmpRight; 240 241 // Look for a min/max pattern. 242 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 243 return InstDesc(Select, MRK_UIntMin); 244 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 245 return InstDesc(Select, MRK_UIntMax); 246 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 247 return InstDesc(Select, MRK_SIntMax); 248 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 249 return InstDesc(Select, MRK_SIntMin); 250 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 251 return InstDesc(Select, MRK_FloatMin); 252 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 253 return InstDesc(Select, MRK_FloatMax); 254 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 255 return InstDesc(Select, MRK_FloatMin); 256 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 257 return InstDesc(Select, MRK_FloatMax); 258 259 return InstDesc(false, I); 260 } 261 262 RecurrenceDescriptor::InstDesc 263 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 264 InstDesc &Prev, bool HasFunNoNaNAttr) { 265 bool FP = I->getType()->isFloatingPointTy(); 266 bool FastMath = FP && I->hasUnsafeAlgebra(); 267 switch (I->getOpcode()) { 268 default: 269 return InstDesc(false, I); 270 case Instruction::PHI: 271 if (FP && 272 (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax)) 273 return InstDesc(false, I); 274 return InstDesc(I, Prev.getMinMaxKind()); 275 case Instruction::Sub: 276 case Instruction::Add: 277 return InstDesc(Kind == RK_IntegerAdd, I); 278 case Instruction::Mul: 279 return InstDesc(Kind == RK_IntegerMult, I); 280 case Instruction::And: 281 return InstDesc(Kind == RK_IntegerAnd, I); 282 case Instruction::Or: 283 return InstDesc(Kind == RK_IntegerOr, I); 284 case Instruction::Xor: 285 return InstDesc(Kind == RK_IntegerXor, I); 286 case Instruction::FMul: 287 return InstDesc(Kind == RK_FloatMult && FastMath, I); 288 case Instruction::FSub: 289 case Instruction::FAdd: 290 return InstDesc(Kind == RK_FloatAdd && FastMath, I); 291 case Instruction::FCmp: 292 case Instruction::ICmp: 293 case Instruction::Select: 294 if (Kind != RK_IntegerMinMax && 295 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 296 return InstDesc(false, I); 297 return isMinMaxSelectCmpPattern(I, Prev); 298 } 299 } 300 301 bool RecurrenceDescriptor::hasMultipleUsesOf( 302 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 303 unsigned NumUses = 0; 304 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 305 ++Use) { 306 if (Insts.count(dyn_cast<Instruction>(*Use))) 307 ++NumUses; 308 if (NumUses > 1) 309 return true; 310 } 311 312 return false; 313 } 314 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 315 RecurrenceDescriptor &RedDes) { 316 317 bool HasFunNoNaNAttr = false; 318 BasicBlock *Header = TheLoop->getHeader(); 319 Function &F = *Header->getParent(); 320 if (F.hasFnAttribute("no-nans-fp-math")) 321 HasFunNoNaNAttr = 322 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 323 324 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 325 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 326 return true; 327 } 328 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 329 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 330 return true; 331 } 332 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 333 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 334 return true; 335 } 336 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 337 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 338 return true; 339 } 340 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 341 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 342 return true; 343 } 344 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 345 RedDes)) { 346 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 347 return true; 348 } 349 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 350 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 351 return true; 352 } 353 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 354 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 355 return true; 356 } 357 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 358 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 359 return true; 360 } 361 // Not a reduction of known type. 362 return false; 363 } 364 365 /// This function returns the identity element (or neutral element) for 366 /// the operation K. 367 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 368 Type *Tp) { 369 switch (K) { 370 case RK_IntegerXor: 371 case RK_IntegerAdd: 372 case RK_IntegerOr: 373 // Adding, Xoring, Oring zero to a number does not change it. 374 return ConstantInt::get(Tp, 0); 375 case RK_IntegerMult: 376 // Multiplying a number by 1 does not change it. 377 return ConstantInt::get(Tp, 1); 378 case RK_IntegerAnd: 379 // AND-ing a number with an all-1 value does not change it. 380 return ConstantInt::get(Tp, -1, true); 381 case RK_FloatMult: 382 // Multiplying a number by 1 does not change it. 383 return ConstantFP::get(Tp, 1.0L); 384 case RK_FloatAdd: 385 // Adding zero to a number does not change it. 386 return ConstantFP::get(Tp, 0.0L); 387 default: 388 llvm_unreachable("Unknown recurrence kind"); 389 } 390 } 391 392 /// This function translates the recurrence kind to an LLVM binary operator. 393 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 394 switch (Kind) { 395 case RK_IntegerAdd: 396 return Instruction::Add; 397 case RK_IntegerMult: 398 return Instruction::Mul; 399 case RK_IntegerOr: 400 return Instruction::Or; 401 case RK_IntegerAnd: 402 return Instruction::And; 403 case RK_IntegerXor: 404 return Instruction::Xor; 405 case RK_FloatMult: 406 return Instruction::FMul; 407 case RK_FloatAdd: 408 return Instruction::FAdd; 409 case RK_IntegerMinMax: 410 return Instruction::ICmp; 411 case RK_FloatMinMax: 412 return Instruction::FCmp; 413 default: 414 llvm_unreachable("Unknown recurrence operation"); 415 } 416 } 417 418 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 419 MinMaxRecurrenceKind RK, 420 Value *Left, Value *Right) { 421 CmpInst::Predicate P = CmpInst::ICMP_NE; 422 switch (RK) { 423 default: 424 llvm_unreachable("Unknown min/max recurrence kind"); 425 case MRK_UIntMin: 426 P = CmpInst::ICMP_ULT; 427 break; 428 case MRK_UIntMax: 429 P = CmpInst::ICMP_UGT; 430 break; 431 case MRK_SIntMin: 432 P = CmpInst::ICMP_SLT; 433 break; 434 case MRK_SIntMax: 435 P = CmpInst::ICMP_SGT; 436 break; 437 case MRK_FloatMin: 438 P = CmpInst::FCMP_OLT; 439 break; 440 case MRK_FloatMax: 441 P = CmpInst::FCMP_OGT; 442 break; 443 } 444 445 Value *Cmp; 446 if (RK == MRK_FloatMin || RK == MRK_FloatMax) 447 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 448 else 449 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 450 451 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 452 return Select; 453 } 454 455 bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, 456 ConstantInt *&StepValue) { 457 Type *PhiTy = Phi->getType(); 458 // We only handle integer and pointer inductions variables. 459 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 460 return false; 461 462 // Check that the PHI is consecutive. 463 const SCEV *PhiScev = SE->getSCEV(Phi); 464 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 465 if (!AR) { 466 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 467 return false; 468 } 469 470 const SCEV *Step = AR->getStepRecurrence(*SE); 471 // Calculate the pointer stride and check if it is consecutive. 472 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 473 if (!C) 474 return false; 475 476 ConstantInt *CV = C->getValue(); 477 if (PhiTy->isIntegerTy()) { 478 StepValue = CV; 479 return true; 480 } 481 482 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 483 Type *PointerElementType = PhiTy->getPointerElementType(); 484 // The pointer stride cannot be determined if the pointer element type is not 485 // sized. 486 if (!PointerElementType->isSized()) 487 return false; 488 489 const DataLayout &DL = Phi->getModule()->getDataLayout(); 490 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 491 if (!Size) 492 return false; 493 494 int64_t CVSize = CV->getSExtValue(); 495 if (CVSize % Size) 496 return false; 497 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 498 return true; 499 } 500