1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/MustExecute.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
24 #include "llvm/Analysis/ScalarEvolutionExpander.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DomTreeUpdater.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 
41 using namespace llvm;
42 using namespace llvm::PatternMatch;
43 
44 #define DEBUG_TYPE "loop-utils"
45 
46 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
47 
48 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
49                                    bool PreserveLCSSA) {
50   bool Changed = false;
51 
52   // We re-use a vector for the in-loop predecesosrs.
53   SmallVector<BasicBlock *, 4> InLoopPredecessors;
54 
55   auto RewriteExit = [&](BasicBlock *BB) {
56     assert(InLoopPredecessors.empty() &&
57            "Must start with an empty predecessors list!");
58     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
59 
60     // See if there are any non-loop predecessors of this exit block and
61     // keep track of the in-loop predecessors.
62     bool IsDedicatedExit = true;
63     for (auto *PredBB : predecessors(BB))
64       if (L->contains(PredBB)) {
65         if (isa<IndirectBrInst>(PredBB->getTerminator()))
66           // We cannot rewrite exiting edges from an indirectbr.
67           return false;
68 
69         InLoopPredecessors.push_back(PredBB);
70       } else {
71         IsDedicatedExit = false;
72       }
73 
74     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
75 
76     // Nothing to do if this is already a dedicated exit.
77     if (IsDedicatedExit)
78       return false;
79 
80     auto *NewExitBB = SplitBlockPredecessors(
81         BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA);
82 
83     if (!NewExitBB)
84       LLVM_DEBUG(
85           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
86                  << *L << "\n");
87     else
88       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
89                         << NewExitBB->getName() << "\n");
90     return true;
91   };
92 
93   // Walk the exit blocks directly rather than building up a data structure for
94   // them, but only visit each one once.
95   SmallPtrSet<BasicBlock *, 4> Visited;
96   for (auto *BB : L->blocks())
97     for (auto *SuccBB : successors(BB)) {
98       // We're looking for exit blocks so skip in-loop successors.
99       if (L->contains(SuccBB))
100         continue;
101 
102       // Visit each exit block exactly once.
103       if (!Visited.insert(SuccBB).second)
104         continue;
105 
106       Changed |= RewriteExit(SuccBB);
107     }
108 
109   return Changed;
110 }
111 
112 /// Returns the instructions that use values defined in the loop.
113 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
114   SmallVector<Instruction *, 8> UsedOutside;
115 
116   for (auto *Block : L->getBlocks())
117     // FIXME: I believe that this could use copy_if if the Inst reference could
118     // be adapted into a pointer.
119     for (auto &Inst : *Block) {
120       auto Users = Inst.users();
121       if (any_of(Users, [&](User *U) {
122             auto *Use = cast<Instruction>(U);
123             return !L->contains(Use->getParent());
124           }))
125         UsedOutside.push_back(&Inst);
126     }
127 
128   return UsedOutside;
129 }
130 
131 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
132   // By definition, all loop passes need the LoopInfo analysis and the
133   // Dominator tree it depends on. Because they all participate in the loop
134   // pass manager, they must also preserve these.
135   AU.addRequired<DominatorTreeWrapperPass>();
136   AU.addPreserved<DominatorTreeWrapperPass>();
137   AU.addRequired<LoopInfoWrapperPass>();
138   AU.addPreserved<LoopInfoWrapperPass>();
139 
140   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
141   // here because users shouldn't directly get them from this header.
142   extern char &LoopSimplifyID;
143   extern char &LCSSAID;
144   AU.addRequiredID(LoopSimplifyID);
145   AU.addPreservedID(LoopSimplifyID);
146   AU.addRequiredID(LCSSAID);
147   AU.addPreservedID(LCSSAID);
148   // This is used in the LPPassManager to perform LCSSA verification on passes
149   // which preserve lcssa form
150   AU.addRequired<LCSSAVerificationPass>();
151   AU.addPreserved<LCSSAVerificationPass>();
152 
153   // Loop passes are designed to run inside of a loop pass manager which means
154   // that any function analyses they require must be required by the first loop
155   // pass in the manager (so that it is computed before the loop pass manager
156   // runs) and preserved by all loop pasess in the manager. To make this
157   // reasonably robust, the set needed for most loop passes is maintained here.
158   // If your loop pass requires an analysis not listed here, you will need to
159   // carefully audit the loop pass manager nesting structure that results.
160   AU.addRequired<AAResultsWrapperPass>();
161   AU.addPreserved<AAResultsWrapperPass>();
162   AU.addPreserved<BasicAAWrapperPass>();
163   AU.addPreserved<GlobalsAAWrapperPass>();
164   AU.addPreserved<SCEVAAWrapperPass>();
165   AU.addRequired<ScalarEvolutionWrapperPass>();
166   AU.addPreserved<ScalarEvolutionWrapperPass>();
167 }
168 
169 /// Manually defined generic "LoopPass" dependency initialization. This is used
170 /// to initialize the exact set of passes from above in \c
171 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
172 /// with:
173 ///
174 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
175 ///
176 /// As-if "LoopPass" were a pass.
177 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
178   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
179   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
180   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
181   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
182   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
183   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
184   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
185   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
186   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
187 }
188 
189 /// Find string metadata for loop
190 ///
191 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
192 /// operand or null otherwise.  If the string metadata is not found return
193 /// Optional's not-a-value.
194 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
195                                                             StringRef Name) {
196   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
197   if (!MD)
198     return None;
199   switch (MD->getNumOperands()) {
200   case 1:
201     return nullptr;
202   case 2:
203     return &MD->getOperand(1);
204   default:
205     llvm_unreachable("loop metadata has 0 or 1 operand");
206   }
207 }
208 
209 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
210                                                    StringRef Name) {
211   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
212   if (!MD)
213     return None;
214   switch (MD->getNumOperands()) {
215   case 1:
216     // When the value is absent it is interpreted as 'attribute set'.
217     return true;
218   case 2:
219     return mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get());
220   }
221   llvm_unreachable("unexpected number of options");
222 }
223 
224 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
225   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
226 }
227 
228 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
229                                                       StringRef Name) {
230   const MDOperand *AttrMD =
231       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
232   if (!AttrMD)
233     return None;
234 
235   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
236   if (!IntMD)
237     return None;
238 
239   return IntMD->getSExtValue();
240 }
241 
242 Optional<MDNode *> llvm::makeFollowupLoopID(
243     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
244     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
245   if (!OrigLoopID) {
246     if (AlwaysNew)
247       return nullptr;
248     return None;
249   }
250 
251   assert(OrigLoopID->getOperand(0) == OrigLoopID);
252 
253   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
254   bool InheritSomeAttrs =
255       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
256   SmallVector<Metadata *, 8> MDs;
257   MDs.push_back(nullptr);
258 
259   bool Changed = false;
260   if (InheritAllAttrs || InheritSomeAttrs) {
261     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
262       MDNode *Op = cast<MDNode>(Existing.get());
263 
264       auto InheritThisAttribute = [InheritSomeAttrs,
265                                    InheritOptionsExceptPrefix](MDNode *Op) {
266         if (!InheritSomeAttrs)
267           return false;
268 
269         // Skip malformatted attribute metadata nodes.
270         if (Op->getNumOperands() == 0)
271           return true;
272         Metadata *NameMD = Op->getOperand(0).get();
273         if (!isa<MDString>(NameMD))
274           return true;
275         StringRef AttrName = cast<MDString>(NameMD)->getString();
276 
277         // Do not inherit excluded attributes.
278         return !AttrName.startswith(InheritOptionsExceptPrefix);
279       };
280 
281       if (InheritThisAttribute(Op))
282         MDs.push_back(Op);
283       else
284         Changed = true;
285     }
286   } else {
287     // Modified if we dropped at least one attribute.
288     Changed = OrigLoopID->getNumOperands() > 1;
289   }
290 
291   bool HasAnyFollowup = false;
292   for (StringRef OptionName : FollowupOptions) {
293     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
294     if (!FollowupNode)
295       continue;
296 
297     HasAnyFollowup = true;
298     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
299       MDs.push_back(Option.get());
300       Changed = true;
301     }
302   }
303 
304   // Attributes of the followup loop not specified explicity, so signal to the
305   // transformation pass to add suitable attributes.
306   if (!AlwaysNew && !HasAnyFollowup)
307     return None;
308 
309   // If no attributes were added or remove, the previous loop Id can be reused.
310   if (!AlwaysNew && !Changed)
311     return OrigLoopID;
312 
313   // No attributes is equivalent to having no !llvm.loop metadata at all.
314   if (MDs.size() == 1)
315     return nullptr;
316 
317   // Build the new loop ID.
318   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
319   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
320   return FollowupLoopID;
321 }
322 
323 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
324   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
325 }
326 
327 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
328   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
329     return TM_SuppressedByUser;
330 
331   Optional<int> Count =
332       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
333   if (Count.hasValue())
334     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
335 
336   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
337     return TM_ForcedByUser;
338 
339   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
340     return TM_ForcedByUser;
341 
342   if (hasDisableAllTransformsHint(L))
343     return TM_Disable;
344 
345   return TM_Unspecified;
346 }
347 
348 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
349   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
350     return TM_SuppressedByUser;
351 
352   Optional<int> Count =
353       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
354   if (Count.hasValue())
355     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
356 
357   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
358     return TM_ForcedByUser;
359 
360   if (hasDisableAllTransformsHint(L))
361     return TM_Disable;
362 
363   return TM_Unspecified;
364 }
365 
366 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
367   Optional<bool> Enable =
368       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
369 
370   if (Enable == false)
371     return TM_SuppressedByUser;
372 
373   Optional<int> VectorizeWidth =
374       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
375   Optional<int> InterleaveCount =
376       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
377 
378   if (Enable == true) {
379     // 'Forcing' vector width and interleave count to one effectively disables
380     // this tranformation.
381     if (VectorizeWidth == 1 && InterleaveCount == 1)
382       return TM_SuppressedByUser;
383     return TM_ForcedByUser;
384   }
385 
386   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
387     return TM_Disable;
388 
389   if (VectorizeWidth == 1 && InterleaveCount == 1)
390     return TM_Disable;
391 
392   if (VectorizeWidth > 1 || InterleaveCount > 1)
393     return TM_Enable;
394 
395   if (hasDisableAllTransformsHint(L))
396     return TM_Disable;
397 
398   return TM_Unspecified;
399 }
400 
401 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
402   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
403     return TM_ForcedByUser;
404 
405   if (hasDisableAllTransformsHint(L))
406     return TM_Disable;
407 
408   return TM_Unspecified;
409 }
410 
411 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
412   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
413     return TM_SuppressedByUser;
414 
415   if (hasDisableAllTransformsHint(L))
416     return TM_Disable;
417 
418   return TM_Unspecified;
419 }
420 
421 /// Does a BFS from a given node to all of its children inside a given loop.
422 /// The returned vector of nodes includes the starting point.
423 SmallVector<DomTreeNode *, 16>
424 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
425   SmallVector<DomTreeNode *, 16> Worklist;
426   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
427     // Only include subregions in the top level loop.
428     BasicBlock *BB = DTN->getBlock();
429     if (CurLoop->contains(BB))
430       Worklist.push_back(DTN);
431   };
432 
433   AddRegionToWorklist(N);
434 
435   for (size_t I = 0; I < Worklist.size(); I++)
436     for (DomTreeNode *Child : Worklist[I]->getChildren())
437       AddRegionToWorklist(Child);
438 
439   return Worklist;
440 }
441 
442 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
443                           ScalarEvolution *SE = nullptr,
444                           LoopInfo *LI = nullptr) {
445   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
446   auto *Preheader = L->getLoopPreheader();
447   assert(Preheader && "Preheader should exist!");
448 
449   // Now that we know the removal is safe, remove the loop by changing the
450   // branch from the preheader to go to the single exit block.
451   //
452   // Because we're deleting a large chunk of code at once, the sequence in which
453   // we remove things is very important to avoid invalidation issues.
454 
455   // Tell ScalarEvolution that the loop is deleted. Do this before
456   // deleting the loop so that ScalarEvolution can look at the loop
457   // to determine what it needs to clean up.
458   if (SE)
459     SE->forgetLoop(L);
460 
461   auto *ExitBlock = L->getUniqueExitBlock();
462   assert(ExitBlock && "Should have a unique exit block!");
463   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
464 
465   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
466   assert(OldBr && "Preheader must end with a branch");
467   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
468   // Connect the preheader to the exit block. Keep the old edge to the header
469   // around to perform the dominator tree update in two separate steps
470   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
471   // preheader -> header.
472   //
473   //
474   // 0.  Preheader          1.  Preheader           2.  Preheader
475   //        |                    |   |                   |
476   //        V                    |   V                   |
477   //      Header <--\            | Header <--\           | Header <--\
478   //       |  |     |            |  |  |     |           |  |  |     |
479   //       |  V     |            |  |  V     |           |  |  V     |
480   //       | Body --/            |  | Body --/           |  | Body --/
481   //       V                     V  V                    V  V
482   //      Exit                   Exit                    Exit
483   //
484   // By doing this is two separate steps we can perform the dominator tree
485   // update without using the batch update API.
486   //
487   // Even when the loop is never executed, we cannot remove the edge from the
488   // source block to the exit block. Consider the case where the unexecuted loop
489   // branches back to an outer loop. If we deleted the loop and removed the edge
490   // coming to this inner loop, this will break the outer loop structure (by
491   // deleting the backedge of the outer loop). If the outer loop is indeed a
492   // non-loop, it will be deleted in a future iteration of loop deletion pass.
493   IRBuilder<> Builder(OldBr);
494   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
495   // Remove the old branch. The conditional branch becomes a new terminator.
496   OldBr->eraseFromParent();
497 
498   // Rewrite phis in the exit block to get their inputs from the Preheader
499   // instead of the exiting block.
500   for (PHINode &P : ExitBlock->phis()) {
501     // Set the zero'th element of Phi to be from the preheader and remove all
502     // other incoming values. Given the loop has dedicated exits, all other
503     // incoming values must be from the exiting blocks.
504     int PredIndex = 0;
505     P.setIncomingBlock(PredIndex, Preheader);
506     // Removes all incoming values from all other exiting blocks (including
507     // duplicate values from an exiting block).
508     // Nuke all entries except the zero'th entry which is the preheader entry.
509     // NOTE! We need to remove Incoming Values in the reverse order as done
510     // below, to keep the indices valid for deletion (removeIncomingValues
511     // updates getNumIncomingValues and shifts all values down into the operand
512     // being deleted).
513     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
514       P.removeIncomingValue(e - i, false);
515 
516     assert((P.getNumIncomingValues() == 1 &&
517             P.getIncomingBlock(PredIndex) == Preheader) &&
518            "Should have exactly one value and that's from the preheader!");
519   }
520 
521   // Disconnect the loop body by branching directly to its exit.
522   Builder.SetInsertPoint(Preheader->getTerminator());
523   Builder.CreateBr(ExitBlock);
524   // Remove the old branch.
525   Preheader->getTerminator()->eraseFromParent();
526 
527   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
528   if (DT) {
529     // Update the dominator tree by informing it about the new edge from the
530     // preheader to the exit.
531     DTU.insertEdge(Preheader, ExitBlock);
532     // Inform the dominator tree about the removed edge.
533     DTU.deleteEdge(Preheader, L->getHeader());
534   }
535 
536   // Use a map to unique and a vector to guarantee deterministic ordering.
537   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
538   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
539 
540   // Given LCSSA form is satisfied, we should not have users of instructions
541   // within the dead loop outside of the loop. However, LCSSA doesn't take
542   // unreachable uses into account. We handle them here.
543   // We could do it after drop all references (in this case all users in the
544   // loop will be already eliminated and we have less work to do but according
545   // to API doc of User::dropAllReferences only valid operation after dropping
546   // references, is deletion. So let's substitute all usages of
547   // instruction from the loop with undef value of corresponding type first.
548   for (auto *Block : L->blocks())
549     for (Instruction &I : *Block) {
550       auto *Undef = UndefValue::get(I.getType());
551       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
552         Use &U = *UI;
553         ++UI;
554         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
555           if (L->contains(Usr->getParent()))
556             continue;
557         // If we have a DT then we can check that uses outside a loop only in
558         // unreachable block.
559         if (DT)
560           assert(!DT->isReachableFromEntry(U) &&
561                  "Unexpected user in reachable block");
562         U.set(Undef);
563       }
564       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
565       if (!DVI)
566         continue;
567       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
568       if (Key != DeadDebugSet.end())
569         continue;
570       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
571       DeadDebugInst.push_back(DVI);
572     }
573 
574   // After the loop has been deleted all the values defined and modified
575   // inside the loop are going to be unavailable.
576   // Since debug values in the loop have been deleted, inserting an undef
577   // dbg.value truncates the range of any dbg.value before the loop where the
578   // loop used to be. This is particularly important for constant values.
579   DIBuilder DIB(*ExitBlock->getModule());
580   for (auto *DVI : DeadDebugInst)
581     DIB.insertDbgValueIntrinsic(
582         UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(),
583         DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI());
584 
585   // Remove the block from the reference counting scheme, so that we can
586   // delete it freely later.
587   for (auto *Block : L->blocks())
588     Block->dropAllReferences();
589 
590   if (LI) {
591     // Erase the instructions and the blocks without having to worry
592     // about ordering because we already dropped the references.
593     // NOTE: This iteration is safe because erasing the block does not remove
594     // its entry from the loop's block list.  We do that in the next section.
595     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
596          LpI != LpE; ++LpI)
597       (*LpI)->eraseFromParent();
598 
599     // Finally, the blocks from loopinfo.  This has to happen late because
600     // otherwise our loop iterators won't work.
601 
602     SmallPtrSet<BasicBlock *, 8> blocks;
603     blocks.insert(L->block_begin(), L->block_end());
604     for (BasicBlock *BB : blocks)
605       LI->removeBlock(BB);
606 
607     // The last step is to update LoopInfo now that we've eliminated this loop.
608     LI->erase(L);
609   }
610 }
611 
612 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
613   // Only support loops with a unique exiting block, and a latch.
614   if (!L->getExitingBlock())
615     return None;
616 
617   // Get the branch weights for the loop's backedge.
618   BranchInst *LatchBR =
619       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
620   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
621     return None;
622 
623   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
624           LatchBR->getSuccessor(1) == L->getHeader()) &&
625          "At least one edge out of the latch must go to the header");
626 
627   // To estimate the number of times the loop body was executed, we want to
628   // know the number of times the backedge was taken, vs. the number of times
629   // we exited the loop.
630   uint64_t TrueVal, FalseVal;
631   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
632     return None;
633 
634   if (!TrueVal || !FalseVal)
635     return 0;
636 
637   // Divide the count of the backedge by the count of the edge exiting the loop,
638   // rounding to nearest.
639   if (LatchBR->getSuccessor(0) == L->getHeader())
640     return (TrueVal + (FalseVal / 2)) / FalseVal;
641   else
642     return (FalseVal + (TrueVal / 2)) / TrueVal;
643 }
644 
645 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
646                                               ScalarEvolution &SE) {
647   Loop *OuterL = InnerLoop->getParentLoop();
648   if (!OuterL)
649     return true;
650 
651   // Get the backedge taken count for the inner loop
652   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
653   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
654   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
655       !InnerLoopBECountSC->getType()->isIntegerTy())
656     return false;
657 
658   // Get whether count is invariant to the outer loop
659   ScalarEvolution::LoopDisposition LD =
660       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
661   if (LD != ScalarEvolution::LoopInvariant)
662     return false;
663 
664   return true;
665 }
666 
667 /// Adds a 'fast' flag to floating point operations.
668 static Value *addFastMathFlag(Value *V) {
669   if (isa<FPMathOperator>(V)) {
670     FastMathFlags Flags;
671     Flags.setFast();
672     cast<Instruction>(V)->setFastMathFlags(Flags);
673   }
674   return V;
675 }
676 
677 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
678                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
679                             Value *Left, Value *Right) {
680   CmpInst::Predicate P = CmpInst::ICMP_NE;
681   switch (RK) {
682   default:
683     llvm_unreachable("Unknown min/max recurrence kind");
684   case RecurrenceDescriptor::MRK_UIntMin:
685     P = CmpInst::ICMP_ULT;
686     break;
687   case RecurrenceDescriptor::MRK_UIntMax:
688     P = CmpInst::ICMP_UGT;
689     break;
690   case RecurrenceDescriptor::MRK_SIntMin:
691     P = CmpInst::ICMP_SLT;
692     break;
693   case RecurrenceDescriptor::MRK_SIntMax:
694     P = CmpInst::ICMP_SGT;
695     break;
696   case RecurrenceDescriptor::MRK_FloatMin:
697     P = CmpInst::FCMP_OLT;
698     break;
699   case RecurrenceDescriptor::MRK_FloatMax:
700     P = CmpInst::FCMP_OGT;
701     break;
702   }
703 
704   // We only match FP sequences that are 'fast', so we can unconditionally
705   // set it on any generated instructions.
706   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
707   FastMathFlags FMF;
708   FMF.setFast();
709   Builder.setFastMathFlags(FMF);
710 
711   Value *Cmp;
712   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
713       RK == RecurrenceDescriptor::MRK_FloatMax)
714     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
715   else
716     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
717 
718   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
719   return Select;
720 }
721 
722 // Helper to generate an ordered reduction.
723 Value *
724 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
725                           unsigned Op,
726                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
727                           ArrayRef<Value *> RedOps) {
728   unsigned VF = Src->getType()->getVectorNumElements();
729 
730   // Extract and apply reduction ops in ascending order:
731   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
732   Value *Result = Acc;
733   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
734     Value *Ext =
735         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
736 
737     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
738       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
739                                    "bin.rdx");
740     } else {
741       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
742              "Invalid min/max");
743       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
744     }
745 
746     if (!RedOps.empty())
747       propagateIRFlags(Result, RedOps);
748   }
749 
750   return Result;
751 }
752 
753 // Helper to generate a log2 shuffle reduction.
754 Value *
755 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
756                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
757                           ArrayRef<Value *> RedOps) {
758   unsigned VF = Src->getType()->getVectorNumElements();
759   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
760   // and vector ops, reducing the set of values being computed by half each
761   // round.
762   assert(isPowerOf2_32(VF) &&
763          "Reduction emission only supported for pow2 vectors!");
764   Value *TmpVec = Src;
765   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
766   for (unsigned i = VF; i != 1; i >>= 1) {
767     // Move the upper half of the vector to the lower half.
768     for (unsigned j = 0; j != i / 2; ++j)
769       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
770 
771     // Fill the rest of the mask with undef.
772     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
773               UndefValue::get(Builder.getInt32Ty()));
774 
775     Value *Shuf = Builder.CreateShuffleVector(
776         TmpVec, UndefValue::get(TmpVec->getType()),
777         ConstantVector::get(ShuffleMask), "rdx.shuf");
778 
779     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
780       // Floating point operations had to be 'fast' to enable the reduction.
781       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
782                                                    TmpVec, Shuf, "bin.rdx"));
783     } else {
784       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
785              "Invalid min/max");
786       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
787     }
788     if (!RedOps.empty())
789       propagateIRFlags(TmpVec, RedOps);
790   }
791   // The result is in the first element of the vector.
792   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
793 }
794 
795 /// Create a simple vector reduction specified by an opcode and some
796 /// flags (if generating min/max reductions).
797 Value *llvm::createSimpleTargetReduction(
798     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
799     Value *Src, TargetTransformInfo::ReductionFlags Flags,
800     ArrayRef<Value *> RedOps) {
801   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
802 
803   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
804   std::function<Value *()> BuildFunc;
805   using RD = RecurrenceDescriptor;
806   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
807   // TODO: Support creating ordered reductions.
808   FastMathFlags FMFFast;
809   FMFFast.setFast();
810 
811   switch (Opcode) {
812   case Instruction::Add:
813     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
814     break;
815   case Instruction::Mul:
816     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
817     break;
818   case Instruction::And:
819     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
820     break;
821   case Instruction::Or:
822     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
823     break;
824   case Instruction::Xor:
825     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
826     break;
827   case Instruction::FAdd:
828     BuildFunc = [&]() {
829       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
830       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
831       return Rdx;
832     };
833     break;
834   case Instruction::FMul:
835     BuildFunc = [&]() {
836       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
837       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
838       return Rdx;
839     };
840     break;
841   case Instruction::ICmp:
842     if (Flags.IsMaxOp) {
843       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
844       BuildFunc = [&]() {
845         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
846       };
847     } else {
848       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
849       BuildFunc = [&]() {
850         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
851       };
852     }
853     break;
854   case Instruction::FCmp:
855     if (Flags.IsMaxOp) {
856       MinMaxKind = RD::MRK_FloatMax;
857       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
858     } else {
859       MinMaxKind = RD::MRK_FloatMin;
860       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
861     }
862     break;
863   default:
864     llvm_unreachable("Unhandled opcode");
865     break;
866   }
867   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
868     return BuildFunc();
869   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
870 }
871 
872 /// Create a vector reduction using a given recurrence descriptor.
873 Value *llvm::createTargetReduction(IRBuilder<> &B,
874                                    const TargetTransformInfo *TTI,
875                                    RecurrenceDescriptor &Desc, Value *Src,
876                                    bool NoNaN) {
877   // TODO: Support in-order reductions based on the recurrence descriptor.
878   using RD = RecurrenceDescriptor;
879   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
880   TargetTransformInfo::ReductionFlags Flags;
881   Flags.NoNaN = NoNaN;
882   switch (RecKind) {
883   case RD::RK_FloatAdd:
884     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
885   case RD::RK_FloatMult:
886     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
887   case RD::RK_IntegerAdd:
888     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
889   case RD::RK_IntegerMult:
890     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
891   case RD::RK_IntegerAnd:
892     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
893   case RD::RK_IntegerOr:
894     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
895   case RD::RK_IntegerXor:
896     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
897   case RD::RK_IntegerMinMax: {
898     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
899     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
900     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
901     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
902   }
903   case RD::RK_FloatMinMax: {
904     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
905     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
906   }
907   default:
908     llvm_unreachable("Unhandled RecKind");
909   }
910 }
911 
912 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
913   auto *VecOp = dyn_cast<Instruction>(I);
914   if (!VecOp)
915     return;
916   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
917                                             : dyn_cast<Instruction>(OpValue);
918   if (!Intersection)
919     return;
920   const unsigned Opcode = Intersection->getOpcode();
921   VecOp->copyIRFlags(Intersection);
922   for (auto *V : VL) {
923     auto *Instr = dyn_cast<Instruction>(V);
924     if (!Instr)
925       continue;
926     if (OpValue == nullptr || Opcode == Instr->getOpcode())
927       VecOp->andIRFlags(V);
928   }
929 }
930 
931 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
932                                  ScalarEvolution &SE) {
933   const SCEV *Zero = SE.getZero(S->getType());
934   return SE.isAvailableAtLoopEntry(S, L) &&
935          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
936 }
937 
938 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
939                                     ScalarEvolution &SE) {
940   const SCEV *Zero = SE.getZero(S->getType());
941   return SE.isAvailableAtLoopEntry(S, L) &&
942          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
943 }
944 
945 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
946                              bool Signed) {
947   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
948   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
949     APInt::getMinValue(BitWidth);
950   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
951   return SE.isAvailableAtLoopEntry(S, L) &&
952          SE.isLoopEntryGuardedByCond(L, Predicate, S,
953                                      SE.getConstant(Min));
954 }
955 
956 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
957                              bool Signed) {
958   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
959   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
960     APInt::getMaxValue(BitWidth);
961   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
962   return SE.isAvailableAtLoopEntry(S, L) &&
963          SE.isLoopEntryGuardedByCond(L, Predicate, S,
964                                      SE.getConstant(Max));
965 }
966