1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/LoopUtils.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/ScalarEvolution.h" 22 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 23 #include "llvm/Analysis/ScalarEvolutionExpander.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 #define DEBUG_TYPE "loop-utils" 37 38 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 39 SmallPtrSetImpl<Instruction *> &Set) { 40 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 41 if (!Set.count(dyn_cast<Instruction>(*Use))) 42 return false; 43 return true; 44 } 45 46 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 47 switch (Kind) { 48 default: 49 break; 50 case RK_IntegerAdd: 51 case RK_IntegerMult: 52 case RK_IntegerOr: 53 case RK_IntegerAnd: 54 case RK_IntegerXor: 55 case RK_IntegerMinMax: 56 return true; 57 } 58 return false; 59 } 60 61 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 62 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 63 } 64 65 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 66 switch (Kind) { 67 default: 68 break; 69 case RK_IntegerAdd: 70 case RK_IntegerMult: 71 case RK_FloatAdd: 72 case RK_FloatMult: 73 return true; 74 } 75 return false; 76 } 77 78 Instruction * 79 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 80 SmallPtrSetImpl<Instruction *> &Visited, 81 SmallPtrSetImpl<Instruction *> &CI) { 82 if (!Phi->hasOneUse()) 83 return Phi; 84 85 const APInt *M = nullptr; 86 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 87 88 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 89 // with a new integer type of the corresponding bit width. 90 if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), 91 m_And(m_APInt(M), m_Instruction(I))))) { 92 int32_t Bits = (*M + 1).exactLogBase2(); 93 if (Bits > 0) { 94 RT = IntegerType::get(Phi->getContext(), Bits); 95 Visited.insert(Phi); 96 CI.insert(J); 97 return J; 98 } 99 } 100 return Phi; 101 } 102 103 bool RecurrenceDescriptor::getSourceExtensionKind( 104 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 105 SmallPtrSetImpl<Instruction *> &Visited, 106 SmallPtrSetImpl<Instruction *> &CI) { 107 108 SmallVector<Instruction *, 8> Worklist; 109 bool FoundOneOperand = false; 110 unsigned DstSize = RT->getPrimitiveSizeInBits(); 111 Worklist.push_back(Exit); 112 113 // Traverse the instructions in the reduction expression, beginning with the 114 // exit value. 115 while (!Worklist.empty()) { 116 Instruction *I = Worklist.pop_back_val(); 117 for (Use &U : I->operands()) { 118 119 // Terminate the traversal if the operand is not an instruction, or we 120 // reach the starting value. 121 Instruction *J = dyn_cast<Instruction>(U.get()); 122 if (!J || J == Start) 123 continue; 124 125 // Otherwise, investigate the operation if it is also in the expression. 126 if (Visited.count(J)) { 127 Worklist.push_back(J); 128 continue; 129 } 130 131 // If the operand is not in Visited, it is not a reduction operation, but 132 // it does feed into one. Make sure it is either a single-use sign- or 133 // zero-extend instruction. 134 CastInst *Cast = dyn_cast<CastInst>(J); 135 bool IsSExtInst = isa<SExtInst>(J); 136 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 137 return false; 138 139 // Ensure the source type of the extend is no larger than the reduction 140 // type. It is not necessary for the types to be identical. 141 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 142 if (SrcSize > DstSize) 143 return false; 144 145 // Furthermore, ensure that all such extends are of the same kind. 146 if (FoundOneOperand) { 147 if (IsSigned != IsSExtInst) 148 return false; 149 } else { 150 FoundOneOperand = true; 151 IsSigned = IsSExtInst; 152 } 153 154 // Lastly, if the source type of the extend matches the reduction type, 155 // add the extend to CI so that we can avoid accounting for it in the 156 // cost model. 157 if (SrcSize == DstSize) 158 CI.insert(Cast); 159 } 160 } 161 return true; 162 } 163 164 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 165 Loop *TheLoop, bool HasFunNoNaNAttr, 166 RecurrenceDescriptor &RedDes) { 167 if (Phi->getNumIncomingValues() != 2) 168 return false; 169 170 // Reduction variables are only found in the loop header block. 171 if (Phi->getParent() != TheLoop->getHeader()) 172 return false; 173 174 // Obtain the reduction start value from the value that comes from the loop 175 // preheader. 176 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 177 178 // ExitInstruction is the single value which is used outside the loop. 179 // We only allow for a single reduction value to be used outside the loop. 180 // This includes users of the reduction, variables (which form a cycle 181 // which ends in the phi node). 182 Instruction *ExitInstruction = nullptr; 183 // Indicates that we found a reduction operation in our scan. 184 bool FoundReduxOp = false; 185 186 // We start with the PHI node and scan for all of the users of this 187 // instruction. All users must be instructions that can be used as reduction 188 // variables (such as ADD). We must have a single out-of-block user. The cycle 189 // must include the original PHI. 190 bool FoundStartPHI = false; 191 192 // To recognize min/max patterns formed by a icmp select sequence, we store 193 // the number of instruction we saw from the recognized min/max pattern, 194 // to make sure we only see exactly the two instructions. 195 unsigned NumCmpSelectPatternInst = 0; 196 InstDesc ReduxDesc(false, nullptr); 197 198 // Data used for determining if the recurrence has been type-promoted. 199 Type *RecurrenceType = Phi->getType(); 200 SmallPtrSet<Instruction *, 4> CastInsts; 201 Instruction *Start = Phi; 202 bool IsSigned = false; 203 204 SmallPtrSet<Instruction *, 8> VisitedInsts; 205 SmallVector<Instruction *, 8> Worklist; 206 207 // Return early if the recurrence kind does not match the type of Phi. If the 208 // recurrence kind is arithmetic, we attempt to look through AND operations 209 // resulting from the type promotion performed by InstCombine. Vector 210 // operations are not limited to the legal integer widths, so we may be able 211 // to evaluate the reduction in the narrower width. 212 if (RecurrenceType->isFloatingPointTy()) { 213 if (!isFloatingPointRecurrenceKind(Kind)) 214 return false; 215 } else { 216 if (!isIntegerRecurrenceKind(Kind)) 217 return false; 218 if (isArithmeticRecurrenceKind(Kind)) 219 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 220 } 221 222 Worklist.push_back(Start); 223 VisitedInsts.insert(Start); 224 225 // A value in the reduction can be used: 226 // - By the reduction: 227 // - Reduction operation: 228 // - One use of reduction value (safe). 229 // - Multiple use of reduction value (not safe). 230 // - PHI: 231 // - All uses of the PHI must be the reduction (safe). 232 // - Otherwise, not safe. 233 // - By one instruction outside of the loop (safe). 234 // - By further instructions outside of the loop (not safe). 235 // - By an instruction that is not part of the reduction (not safe). 236 // This is either: 237 // * An instruction type other than PHI or the reduction operation. 238 // * A PHI in the header other than the initial PHI. 239 while (!Worklist.empty()) { 240 Instruction *Cur = Worklist.back(); 241 Worklist.pop_back(); 242 243 // No Users. 244 // If the instruction has no users then this is a broken chain and can't be 245 // a reduction variable. 246 if (Cur->use_empty()) 247 return false; 248 249 bool IsAPhi = isa<PHINode>(Cur); 250 251 // A header PHI use other than the original PHI. 252 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 253 return false; 254 255 // Reductions of instructions such as Div, and Sub is only possible if the 256 // LHS is the reduction variable. 257 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 258 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 259 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 260 return false; 261 262 // Any reduction instruction must be of one of the allowed kinds. We ignore 263 // the starting value (the Phi or an AND instruction if the Phi has been 264 // type-promoted). 265 if (Cur != Start) { 266 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 267 if (!ReduxDesc.isRecurrence()) 268 return false; 269 } 270 271 // A reduction operation must only have one use of the reduction value. 272 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 273 hasMultipleUsesOf(Cur, VisitedInsts)) 274 return false; 275 276 // All inputs to a PHI node must be a reduction value. 277 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 278 return false; 279 280 if (Kind == RK_IntegerMinMax && 281 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 282 ++NumCmpSelectPatternInst; 283 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 284 ++NumCmpSelectPatternInst; 285 286 // Check whether we found a reduction operator. 287 FoundReduxOp |= !IsAPhi && Cur != Start; 288 289 // Process users of current instruction. Push non-PHI nodes after PHI nodes 290 // onto the stack. This way we are going to have seen all inputs to PHI 291 // nodes once we get to them. 292 SmallVector<Instruction *, 8> NonPHIs; 293 SmallVector<Instruction *, 8> PHIs; 294 for (User *U : Cur->users()) { 295 Instruction *UI = cast<Instruction>(U); 296 297 // Check if we found the exit user. 298 BasicBlock *Parent = UI->getParent(); 299 if (!TheLoop->contains(Parent)) { 300 // Exit if you find multiple outside users or if the header phi node is 301 // being used. In this case the user uses the value of the previous 302 // iteration, in which case we would loose "VF-1" iterations of the 303 // reduction operation if we vectorize. 304 if (ExitInstruction != nullptr || Cur == Phi) 305 return false; 306 307 // The instruction used by an outside user must be the last instruction 308 // before we feed back to the reduction phi. Otherwise, we loose VF-1 309 // operations on the value. 310 if (!is_contained(Phi->operands(), Cur)) 311 return false; 312 313 ExitInstruction = Cur; 314 continue; 315 } 316 317 // Process instructions only once (termination). Each reduction cycle 318 // value must only be used once, except by phi nodes and min/max 319 // reductions which are represented as a cmp followed by a select. 320 InstDesc IgnoredVal(false, nullptr); 321 if (VisitedInsts.insert(UI).second) { 322 if (isa<PHINode>(UI)) 323 PHIs.push_back(UI); 324 else 325 NonPHIs.push_back(UI); 326 } else if (!isa<PHINode>(UI) && 327 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 328 !isa<SelectInst>(UI)) || 329 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 330 return false; 331 332 // Remember that we completed the cycle. 333 if (UI == Phi) 334 FoundStartPHI = true; 335 } 336 Worklist.append(PHIs.begin(), PHIs.end()); 337 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 338 } 339 340 // This means we have seen one but not the other instruction of the 341 // pattern or more than just a select and cmp. 342 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 343 NumCmpSelectPatternInst != 2) 344 return false; 345 346 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 347 return false; 348 349 // If we think Phi may have been type-promoted, we also need to ensure that 350 // all source operands of the reduction are either SExtInsts or ZEstInsts. If 351 // so, we will be able to evaluate the reduction in the narrower bit width. 352 if (Start != Phi) 353 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 354 IsSigned, VisitedInsts, CastInsts)) 355 return false; 356 357 // We found a reduction var if we have reached the original phi node and we 358 // only have a single instruction with out-of-loop users. 359 360 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 361 // is saved as part of the RecurrenceDescriptor. 362 363 // Save the description of this reduction variable. 364 RecurrenceDescriptor RD( 365 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 366 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 367 RedDes = RD; 368 369 return true; 370 } 371 372 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 373 /// pattern corresponding to a min(X, Y) or max(X, Y). 374 RecurrenceDescriptor::InstDesc 375 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 376 377 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 378 "Expect a select instruction"); 379 Instruction *Cmp = nullptr; 380 SelectInst *Select = nullptr; 381 382 // We must handle the select(cmp()) as a single instruction. Advance to the 383 // select. 384 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 385 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 386 return InstDesc(false, I); 387 return InstDesc(Select, Prev.getMinMaxKind()); 388 } 389 390 // Only handle single use cases for now. 391 if (!(Select = dyn_cast<SelectInst>(I))) 392 return InstDesc(false, I); 393 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 394 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 395 return InstDesc(false, I); 396 if (!Cmp->hasOneUse()) 397 return InstDesc(false, I); 398 399 Value *CmpLeft; 400 Value *CmpRight; 401 402 // Look for a min/max pattern. 403 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 404 return InstDesc(Select, MRK_UIntMin); 405 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 406 return InstDesc(Select, MRK_UIntMax); 407 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 408 return InstDesc(Select, MRK_SIntMax); 409 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 410 return InstDesc(Select, MRK_SIntMin); 411 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 412 return InstDesc(Select, MRK_FloatMin); 413 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 414 return InstDesc(Select, MRK_FloatMax); 415 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 416 return InstDesc(Select, MRK_FloatMin); 417 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 418 return InstDesc(Select, MRK_FloatMax); 419 420 return InstDesc(false, I); 421 } 422 423 RecurrenceDescriptor::InstDesc 424 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 425 InstDesc &Prev, bool HasFunNoNaNAttr) { 426 bool FP = I->getType()->isFloatingPointTy(); 427 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 428 if (!UAI && FP && !I->hasUnsafeAlgebra()) 429 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 430 431 switch (I->getOpcode()) { 432 default: 433 return InstDesc(false, I); 434 case Instruction::PHI: 435 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 436 case Instruction::Sub: 437 case Instruction::Add: 438 return InstDesc(Kind == RK_IntegerAdd, I); 439 case Instruction::Mul: 440 return InstDesc(Kind == RK_IntegerMult, I); 441 case Instruction::And: 442 return InstDesc(Kind == RK_IntegerAnd, I); 443 case Instruction::Or: 444 return InstDesc(Kind == RK_IntegerOr, I); 445 case Instruction::Xor: 446 return InstDesc(Kind == RK_IntegerXor, I); 447 case Instruction::FMul: 448 return InstDesc(Kind == RK_FloatMult, I, UAI); 449 case Instruction::FSub: 450 case Instruction::FAdd: 451 return InstDesc(Kind == RK_FloatAdd, I, UAI); 452 case Instruction::FCmp: 453 case Instruction::ICmp: 454 case Instruction::Select: 455 if (Kind != RK_IntegerMinMax && 456 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 457 return InstDesc(false, I); 458 return isMinMaxSelectCmpPattern(I, Prev); 459 } 460 } 461 462 bool RecurrenceDescriptor::hasMultipleUsesOf( 463 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 464 unsigned NumUses = 0; 465 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 466 ++Use) { 467 if (Insts.count(dyn_cast<Instruction>(*Use))) 468 ++NumUses; 469 if (NumUses > 1) 470 return true; 471 } 472 473 return false; 474 } 475 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 476 RecurrenceDescriptor &RedDes) { 477 478 BasicBlock *Header = TheLoop->getHeader(); 479 Function &F = *Header->getParent(); 480 bool HasFunNoNaNAttr = 481 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 482 483 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 484 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 485 return true; 486 } 487 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 488 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 489 return true; 490 } 491 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 492 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 493 return true; 494 } 495 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 496 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 497 return true; 498 } 499 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 500 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 501 return true; 502 } 503 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 504 RedDes)) { 505 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 506 return true; 507 } 508 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 509 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 510 return true; 511 } 512 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 513 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 514 return true; 515 } 516 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 517 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 518 return true; 519 } 520 // Not a reduction of known type. 521 return false; 522 } 523 524 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, 525 DominatorTree *DT) { 526 527 // Ensure the phi node is in the loop header and has two incoming values. 528 if (Phi->getParent() != TheLoop->getHeader() || 529 Phi->getNumIncomingValues() != 2) 530 return false; 531 532 // Ensure the loop has a preheader and a single latch block. The loop 533 // vectorizer will need the latch to set up the next iteration of the loop. 534 auto *Preheader = TheLoop->getLoopPreheader(); 535 auto *Latch = TheLoop->getLoopLatch(); 536 if (!Preheader || !Latch) 537 return false; 538 539 // Ensure the phi node's incoming blocks are the loop preheader and latch. 540 if (Phi->getBasicBlockIndex(Preheader) < 0 || 541 Phi->getBasicBlockIndex(Latch) < 0) 542 return false; 543 544 // Get the previous value. The previous value comes from the latch edge while 545 // the initial value comes form the preheader edge. 546 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 547 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) 548 return false; 549 550 // Ensure every user of the phi node is dominated by the previous value. The 551 // dominance requirement ensures the loop vectorizer will not need to 552 // vectorize the initial value prior to the first iteration of the loop. 553 for (User *U : Phi->users()) 554 if (auto *I = dyn_cast<Instruction>(U)) 555 if (!DT->dominates(Previous, I)) 556 return false; 557 558 return true; 559 } 560 561 /// This function returns the identity element (or neutral element) for 562 /// the operation K. 563 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 564 Type *Tp) { 565 switch (K) { 566 case RK_IntegerXor: 567 case RK_IntegerAdd: 568 case RK_IntegerOr: 569 // Adding, Xoring, Oring zero to a number does not change it. 570 return ConstantInt::get(Tp, 0); 571 case RK_IntegerMult: 572 // Multiplying a number by 1 does not change it. 573 return ConstantInt::get(Tp, 1); 574 case RK_IntegerAnd: 575 // AND-ing a number with an all-1 value does not change it. 576 return ConstantInt::get(Tp, -1, true); 577 case RK_FloatMult: 578 // Multiplying a number by 1 does not change it. 579 return ConstantFP::get(Tp, 1.0L); 580 case RK_FloatAdd: 581 // Adding zero to a number does not change it. 582 return ConstantFP::get(Tp, 0.0L); 583 default: 584 llvm_unreachable("Unknown recurrence kind"); 585 } 586 } 587 588 /// This function translates the recurrence kind to an LLVM binary operator. 589 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 590 switch (Kind) { 591 case RK_IntegerAdd: 592 return Instruction::Add; 593 case RK_IntegerMult: 594 return Instruction::Mul; 595 case RK_IntegerOr: 596 return Instruction::Or; 597 case RK_IntegerAnd: 598 return Instruction::And; 599 case RK_IntegerXor: 600 return Instruction::Xor; 601 case RK_FloatMult: 602 return Instruction::FMul; 603 case RK_FloatAdd: 604 return Instruction::FAdd; 605 case RK_IntegerMinMax: 606 return Instruction::ICmp; 607 case RK_FloatMinMax: 608 return Instruction::FCmp; 609 default: 610 llvm_unreachable("Unknown recurrence operation"); 611 } 612 } 613 614 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 615 MinMaxRecurrenceKind RK, 616 Value *Left, Value *Right) { 617 CmpInst::Predicate P = CmpInst::ICMP_NE; 618 switch (RK) { 619 default: 620 llvm_unreachable("Unknown min/max recurrence kind"); 621 case MRK_UIntMin: 622 P = CmpInst::ICMP_ULT; 623 break; 624 case MRK_UIntMax: 625 P = CmpInst::ICMP_UGT; 626 break; 627 case MRK_SIntMin: 628 P = CmpInst::ICMP_SLT; 629 break; 630 case MRK_SIntMax: 631 P = CmpInst::ICMP_SGT; 632 break; 633 case MRK_FloatMin: 634 P = CmpInst::FCMP_OLT; 635 break; 636 case MRK_FloatMax: 637 P = CmpInst::FCMP_OGT; 638 break; 639 } 640 641 // We only match FP sequences with unsafe algebra, so we can unconditionally 642 // set it on any generated instructions. 643 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 644 FastMathFlags FMF; 645 FMF.setUnsafeAlgebra(); 646 Builder.setFastMathFlags(FMF); 647 648 Value *Cmp; 649 if (RK == MRK_FloatMin || RK == MRK_FloatMax) 650 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 651 else 652 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 653 654 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 655 return Select; 656 } 657 658 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 659 const SCEV *Step, BinaryOperator *BOp) 660 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 661 assert(IK != IK_NoInduction && "Not an induction"); 662 663 // Start value type should match the induction kind and the value 664 // itself should not be null. 665 assert(StartValue && "StartValue is null"); 666 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 667 "StartValue is not a pointer for pointer induction"); 668 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 669 "StartValue is not an integer for integer induction"); 670 671 // Check the Step Value. It should be non-zero integer value. 672 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 673 "Step value is zero"); 674 675 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 676 "Step value should be constant for pointer induction"); 677 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 678 "StepValue is not an integer"); 679 680 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 681 "StepValue is not FP for FpInduction"); 682 assert((IK != IK_FpInduction || (InductionBinOp && 683 (InductionBinOp->getOpcode() == Instruction::FAdd || 684 InductionBinOp->getOpcode() == Instruction::FSub))) && 685 "Binary opcode should be specified for FP induction"); 686 } 687 688 int InductionDescriptor::getConsecutiveDirection() const { 689 ConstantInt *ConstStep = getConstIntStepValue(); 690 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 691 return ConstStep->getSExtValue(); 692 return 0; 693 } 694 695 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 696 if (isa<SCEVConstant>(Step)) 697 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 698 return nullptr; 699 } 700 701 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 702 ScalarEvolution *SE, 703 const DataLayout& DL) const { 704 705 SCEVExpander Exp(*SE, DL, "induction"); 706 assert(Index->getType() == Step->getType() && 707 "Index type does not match StepValue type"); 708 switch (IK) { 709 case IK_IntInduction: { 710 assert(Index->getType() == StartValue->getType() && 711 "Index type does not match StartValue type"); 712 713 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 714 // and calculate (Start + Index * Step) for all cases, without 715 // special handling for "isOne" and "isMinusOne". 716 // But in the real life the result code getting worse. We mix SCEV 717 // expressions and ADD/SUB operations and receive redundant 718 // intermediate values being calculated in different ways and 719 // Instcombine is unable to reduce them all. 720 721 if (getConstIntStepValue() && 722 getConstIntStepValue()->isMinusOne()) 723 return B.CreateSub(StartValue, Index); 724 if (getConstIntStepValue() && 725 getConstIntStepValue()->isOne()) 726 return B.CreateAdd(StartValue, Index); 727 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 728 SE->getMulExpr(Step, SE->getSCEV(Index))); 729 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 730 } 731 case IK_PtrInduction: { 732 assert(isa<SCEVConstant>(Step) && 733 "Expected constant step for pointer induction"); 734 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 735 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 736 return B.CreateGEP(nullptr, StartValue, Index); 737 } 738 case IK_FpInduction: { 739 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 740 assert(InductionBinOp && 741 (InductionBinOp->getOpcode() == Instruction::FAdd || 742 InductionBinOp->getOpcode() == Instruction::FSub) && 743 "Original bin op should be defined for FP induction"); 744 745 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 746 747 // Floating point operations had to be 'fast' to enable the induction. 748 FastMathFlags Flags; 749 Flags.setUnsafeAlgebra(); 750 751 Value *MulExp = B.CreateFMul(StepValue, Index); 752 if (isa<Instruction>(MulExp)) 753 // We have to check, the MulExp may be a constant. 754 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 755 756 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 757 MulExp, "induction"); 758 if (isa<Instruction>(BOp)) 759 cast<Instruction>(BOp)->setFastMathFlags(Flags); 760 761 return BOp; 762 } 763 case IK_NoInduction: 764 return nullptr; 765 } 766 llvm_unreachable("invalid enum"); 767 } 768 769 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 770 ScalarEvolution *SE, 771 InductionDescriptor &D) { 772 773 // Here we only handle FP induction variables. 774 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 775 776 if (TheLoop->getHeader() != Phi->getParent()) 777 return false; 778 779 // The loop may have multiple entrances or multiple exits; we can analyze 780 // this phi if it has a unique entry value and a unique backedge value. 781 if (Phi->getNumIncomingValues() != 2) 782 return false; 783 Value *BEValue = nullptr, *StartValue = nullptr; 784 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 785 BEValue = Phi->getIncomingValue(0); 786 StartValue = Phi->getIncomingValue(1); 787 } else { 788 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 789 "Unexpected Phi node in the loop"); 790 BEValue = Phi->getIncomingValue(1); 791 StartValue = Phi->getIncomingValue(0); 792 } 793 794 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 795 if (!BOp) 796 return false; 797 798 Value *Addend = nullptr; 799 if (BOp->getOpcode() == Instruction::FAdd) { 800 if (BOp->getOperand(0) == Phi) 801 Addend = BOp->getOperand(1); 802 else if (BOp->getOperand(1) == Phi) 803 Addend = BOp->getOperand(0); 804 } else if (BOp->getOpcode() == Instruction::FSub) 805 if (BOp->getOperand(0) == Phi) 806 Addend = BOp->getOperand(1); 807 808 if (!Addend) 809 return false; 810 811 // The addend should be loop invariant 812 if (auto *I = dyn_cast<Instruction>(Addend)) 813 if (TheLoop->contains(I)) 814 return false; 815 816 // FP Step has unknown SCEV 817 const SCEV *Step = SE->getUnknown(Addend); 818 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 819 return true; 820 } 821 822 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 823 PredicatedScalarEvolution &PSE, 824 InductionDescriptor &D, 825 bool Assume) { 826 Type *PhiTy = Phi->getType(); 827 828 // Handle integer and pointer inductions variables. 829 // Now we handle also FP induction but not trying to make a 830 // recurrent expression from the PHI node in-place. 831 832 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 833 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 834 return false; 835 836 if (PhiTy->isFloatingPointTy()) 837 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 838 839 const SCEV *PhiScev = PSE.getSCEV(Phi); 840 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 841 842 // We need this expression to be an AddRecExpr. 843 if (Assume && !AR) 844 AR = PSE.getAsAddRec(Phi); 845 846 if (!AR) { 847 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 848 return false; 849 } 850 851 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 852 } 853 854 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 855 ScalarEvolution *SE, 856 InductionDescriptor &D, 857 const SCEV *Expr) { 858 Type *PhiTy = Phi->getType(); 859 // We only handle integer and pointer inductions variables. 860 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 861 return false; 862 863 // Check that the PHI is consecutive. 864 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 865 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 866 867 if (!AR) { 868 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 869 return false; 870 } 871 872 assert(TheLoop->getHeader() == Phi->getParent() && 873 "PHI is an AddRec for a different loop?!"); 874 Value *StartValue = 875 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 876 const SCEV *Step = AR->getStepRecurrence(*SE); 877 // Calculate the pointer stride and check if it is consecutive. 878 // The stride may be a constant or a loop invariant integer value. 879 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 880 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 881 return false; 882 883 if (PhiTy->isIntegerTy()) { 884 D = InductionDescriptor(StartValue, IK_IntInduction, Step); 885 return true; 886 } 887 888 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 889 // Pointer induction should be a constant. 890 if (!ConstStep) 891 return false; 892 893 ConstantInt *CV = ConstStep->getValue(); 894 Type *PointerElementType = PhiTy->getPointerElementType(); 895 // The pointer stride cannot be determined if the pointer element type is not 896 // sized. 897 if (!PointerElementType->isSized()) 898 return false; 899 900 const DataLayout &DL = Phi->getModule()->getDataLayout(); 901 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 902 if (!Size) 903 return false; 904 905 int64_t CVSize = CV->getSExtValue(); 906 if (CVSize % Size) 907 return false; 908 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 909 true /* signed */); 910 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 911 return true; 912 } 913 914 /// \brief Returns the instructions that use values defined in the loop. 915 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 916 SmallVector<Instruction *, 8> UsedOutside; 917 918 for (auto *Block : L->getBlocks()) 919 // FIXME: I believe that this could use copy_if if the Inst reference could 920 // be adapted into a pointer. 921 for (auto &Inst : *Block) { 922 auto Users = Inst.users(); 923 if (any_of(Users, [&](User *U) { 924 auto *Use = cast<Instruction>(U); 925 return !L->contains(Use->getParent()); 926 })) 927 UsedOutside.push_back(&Inst); 928 } 929 930 return UsedOutside; 931 } 932 933 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 934 // By definition, all loop passes need the LoopInfo analysis and the 935 // Dominator tree it depends on. Because they all participate in the loop 936 // pass manager, they must also preserve these. 937 AU.addRequired<DominatorTreeWrapperPass>(); 938 AU.addPreserved<DominatorTreeWrapperPass>(); 939 AU.addRequired<LoopInfoWrapperPass>(); 940 AU.addPreserved<LoopInfoWrapperPass>(); 941 942 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 943 // here because users shouldn't directly get them from this header. 944 extern char &LoopSimplifyID; 945 extern char &LCSSAID; 946 AU.addRequiredID(LoopSimplifyID); 947 AU.addPreservedID(LoopSimplifyID); 948 AU.addRequiredID(LCSSAID); 949 AU.addPreservedID(LCSSAID); 950 // This is used in the LPPassManager to perform LCSSA verification on passes 951 // which preserve lcssa form 952 AU.addRequired<LCSSAVerificationPass>(); 953 AU.addPreserved<LCSSAVerificationPass>(); 954 955 // Loop passes are designed to run inside of a loop pass manager which means 956 // that any function analyses they require must be required by the first loop 957 // pass in the manager (so that it is computed before the loop pass manager 958 // runs) and preserved by all loop pasess in the manager. To make this 959 // reasonably robust, the set needed for most loop passes is maintained here. 960 // If your loop pass requires an analysis not listed here, you will need to 961 // carefully audit the loop pass manager nesting structure that results. 962 AU.addRequired<AAResultsWrapperPass>(); 963 AU.addPreserved<AAResultsWrapperPass>(); 964 AU.addPreserved<BasicAAWrapperPass>(); 965 AU.addPreserved<GlobalsAAWrapperPass>(); 966 AU.addPreserved<SCEVAAWrapperPass>(); 967 AU.addRequired<ScalarEvolutionWrapperPass>(); 968 AU.addPreserved<ScalarEvolutionWrapperPass>(); 969 } 970 971 /// Manually defined generic "LoopPass" dependency initialization. This is used 972 /// to initialize the exact set of passes from above in \c 973 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 974 /// with: 975 /// 976 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 977 /// 978 /// As-if "LoopPass" were a pass. 979 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 980 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 981 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 982 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 983 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 984 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 985 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 986 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 987 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 988 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 989 } 990 991 /// \brief Find string metadata for loop 992 /// 993 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 994 /// operand or null otherwise. If the string metadata is not found return 995 /// Optional's not-a-value. 996 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 997 StringRef Name) { 998 MDNode *LoopID = TheLoop->getLoopID(); 999 // Return none if LoopID is false. 1000 if (!LoopID) 1001 return None; 1002 1003 // First operand should refer to the loop id itself. 1004 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1005 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1006 1007 // Iterate over LoopID operands and look for MDString Metadata 1008 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1009 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1010 if (!MD) 1011 continue; 1012 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1013 if (!S) 1014 continue; 1015 // Return true if MDString holds expected MetaData. 1016 if (Name.equals(S->getString())) 1017 switch (MD->getNumOperands()) { 1018 case 1: 1019 return nullptr; 1020 case 2: 1021 return &MD->getOperand(1); 1022 default: 1023 llvm_unreachable("loop metadata has 0 or 1 operand"); 1024 } 1025 } 1026 return None; 1027 } 1028 1029 /// Returns true if the instruction in a loop is guaranteed to execute at least 1030 /// once. 1031 bool llvm::isGuaranteedToExecute(const Instruction &Inst, 1032 const DominatorTree *DT, const Loop *CurLoop, 1033 const LoopSafetyInfo *SafetyInfo) { 1034 // We have to check to make sure that the instruction dominates all 1035 // of the exit blocks. If it doesn't, then there is a path out of the loop 1036 // which does not execute this instruction, so we can't hoist it. 1037 1038 // If the instruction is in the header block for the loop (which is very 1039 // common), it is always guaranteed to dominate the exit blocks. Since this 1040 // is a common case, and can save some work, check it now. 1041 if (Inst.getParent() == CurLoop->getHeader()) 1042 // If there's a throw in the header block, we can't guarantee we'll reach 1043 // Inst. 1044 return !SafetyInfo->HeaderMayThrow; 1045 1046 // Somewhere in this loop there is an instruction which may throw and make us 1047 // exit the loop. 1048 if (SafetyInfo->MayThrow) 1049 return false; 1050 1051 // Get the exit blocks for the current loop. 1052 SmallVector<BasicBlock *, 8> ExitBlocks; 1053 CurLoop->getExitBlocks(ExitBlocks); 1054 1055 // Verify that the block dominates each of the exit blocks of the loop. 1056 for (BasicBlock *ExitBlock : ExitBlocks) 1057 if (!DT->dominates(Inst.getParent(), ExitBlock)) 1058 return false; 1059 1060 // As a degenerate case, if the loop is statically infinite then we haven't 1061 // proven anything since there are no exit blocks. 1062 if (ExitBlocks.empty()) 1063 return false; 1064 1065 // FIXME: In general, we have to prove that the loop isn't an infinite loop. 1066 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 1067 // just a special case of this.) 1068 return true; 1069 } 1070 1071 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 1072 // Only support loops with a unique exiting block, and a latch. 1073 if (!L->getExitingBlock()) 1074 return None; 1075 1076 // Get the branch weights for the the loop's backedge. 1077 BranchInst *LatchBR = 1078 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 1079 if (!LatchBR || LatchBR->getNumSuccessors() != 2) 1080 return None; 1081 1082 assert((LatchBR->getSuccessor(0) == L->getHeader() || 1083 LatchBR->getSuccessor(1) == L->getHeader()) && 1084 "At least one edge out of the latch must go to the header"); 1085 1086 // To estimate the number of times the loop body was executed, we want to 1087 // know the number of times the backedge was taken, vs. the number of times 1088 // we exited the loop. 1089 uint64_t TrueVal, FalseVal; 1090 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 1091 return None; 1092 1093 if (!TrueVal || !FalseVal) 1094 return 0; 1095 1096 // Divide the count of the backedge by the count of the edge exiting the loop, 1097 // rounding to nearest. 1098 if (LatchBR->getSuccessor(0) == L->getHeader()) 1099 return (TrueVal + (FalseVal / 2)) / FalseVal; 1100 else 1101 return (FalseVal + (TrueVal / 2)) / TrueVal; 1102 } 1103