1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 #define DEBUG_TYPE "loop-utils" 34 35 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 36 SmallPtrSetImpl<Instruction *> &Set) { 37 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 38 if (!Set.count(dyn_cast<Instruction>(*Use))) 39 return false; 40 return true; 41 } 42 43 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 44 switch (Kind) { 45 default: 46 break; 47 case RK_IntegerAdd: 48 case RK_IntegerMult: 49 case RK_IntegerOr: 50 case RK_IntegerAnd: 51 case RK_IntegerXor: 52 case RK_IntegerMinMax: 53 return true; 54 } 55 return false; 56 } 57 58 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 59 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 60 } 61 62 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 63 switch (Kind) { 64 default: 65 break; 66 case RK_IntegerAdd: 67 case RK_IntegerMult: 68 case RK_FloatAdd: 69 case RK_FloatMult: 70 return true; 71 } 72 return false; 73 } 74 75 Instruction * 76 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 77 SmallPtrSetImpl<Instruction *> &Visited, 78 SmallPtrSetImpl<Instruction *> &CI) { 79 if (!Phi->hasOneUse()) 80 return Phi; 81 82 const APInt *M = nullptr; 83 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 84 85 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 86 // with a new integer type of the corresponding bit width. 87 if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), 88 m_And(m_APInt(M), m_Instruction(I))))) { 89 int32_t Bits = (*M + 1).exactLogBase2(); 90 if (Bits > 0) { 91 RT = IntegerType::get(Phi->getContext(), Bits); 92 Visited.insert(Phi); 93 CI.insert(J); 94 return J; 95 } 96 } 97 return Phi; 98 } 99 100 bool RecurrenceDescriptor::getSourceExtensionKind( 101 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 102 SmallPtrSetImpl<Instruction *> &Visited, 103 SmallPtrSetImpl<Instruction *> &CI) { 104 105 SmallVector<Instruction *, 8> Worklist; 106 bool FoundOneOperand = false; 107 unsigned DstSize = RT->getPrimitiveSizeInBits(); 108 Worklist.push_back(Exit); 109 110 // Traverse the instructions in the reduction expression, beginning with the 111 // exit value. 112 while (!Worklist.empty()) { 113 Instruction *I = Worklist.pop_back_val(); 114 for (Use &U : I->operands()) { 115 116 // Terminate the traversal if the operand is not an instruction, or we 117 // reach the starting value. 118 Instruction *J = dyn_cast<Instruction>(U.get()); 119 if (!J || J == Start) 120 continue; 121 122 // Otherwise, investigate the operation if it is also in the expression. 123 if (Visited.count(J)) { 124 Worklist.push_back(J); 125 continue; 126 } 127 128 // If the operand is not in Visited, it is not a reduction operation, but 129 // it does feed into one. Make sure it is either a single-use sign- or 130 // zero-extend instruction. 131 CastInst *Cast = dyn_cast<CastInst>(J); 132 bool IsSExtInst = isa<SExtInst>(J); 133 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 134 return false; 135 136 // Ensure the source type of the extend is no larger than the reduction 137 // type. It is not necessary for the types to be identical. 138 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 139 if (SrcSize > DstSize) 140 return false; 141 142 // Furthermore, ensure that all such extends are of the same kind. 143 if (FoundOneOperand) { 144 if (IsSigned != IsSExtInst) 145 return false; 146 } else { 147 FoundOneOperand = true; 148 IsSigned = IsSExtInst; 149 } 150 151 // Lastly, if the source type of the extend matches the reduction type, 152 // add the extend to CI so that we can avoid accounting for it in the 153 // cost model. 154 if (SrcSize == DstSize) 155 CI.insert(Cast); 156 } 157 } 158 return true; 159 } 160 161 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 162 Loop *TheLoop, bool HasFunNoNaNAttr, 163 RecurrenceDescriptor &RedDes) { 164 if (Phi->getNumIncomingValues() != 2) 165 return false; 166 167 // Reduction variables are only found in the loop header block. 168 if (Phi->getParent() != TheLoop->getHeader()) 169 return false; 170 171 // Obtain the reduction start value from the value that comes from the loop 172 // preheader. 173 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 174 175 // ExitInstruction is the single value which is used outside the loop. 176 // We only allow for a single reduction value to be used outside the loop. 177 // This includes users of the reduction, variables (which form a cycle 178 // which ends in the phi node). 179 Instruction *ExitInstruction = nullptr; 180 // Indicates that we found a reduction operation in our scan. 181 bool FoundReduxOp = false; 182 183 // We start with the PHI node and scan for all of the users of this 184 // instruction. All users must be instructions that can be used as reduction 185 // variables (such as ADD). We must have a single out-of-block user. The cycle 186 // must include the original PHI. 187 bool FoundStartPHI = false; 188 189 // To recognize min/max patterns formed by a icmp select sequence, we store 190 // the number of instruction we saw from the recognized min/max pattern, 191 // to make sure we only see exactly the two instructions. 192 unsigned NumCmpSelectPatternInst = 0; 193 InstDesc ReduxDesc(false, nullptr); 194 195 // Data used for determining if the recurrence has been type-promoted. 196 Type *RecurrenceType = Phi->getType(); 197 SmallPtrSet<Instruction *, 4> CastInsts; 198 Instruction *Start = Phi; 199 bool IsSigned = false; 200 201 SmallPtrSet<Instruction *, 8> VisitedInsts; 202 SmallVector<Instruction *, 8> Worklist; 203 204 // Return early if the recurrence kind does not match the type of Phi. If the 205 // recurrence kind is arithmetic, we attempt to look through AND operations 206 // resulting from the type promotion performed by InstCombine. Vector 207 // operations are not limited to the legal integer widths, so we may be able 208 // to evaluate the reduction in the narrower width. 209 if (RecurrenceType->isFloatingPointTy()) { 210 if (!isFloatingPointRecurrenceKind(Kind)) 211 return false; 212 } else { 213 if (!isIntegerRecurrenceKind(Kind)) 214 return false; 215 if (isArithmeticRecurrenceKind(Kind)) 216 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 217 } 218 219 Worklist.push_back(Start); 220 VisitedInsts.insert(Start); 221 222 // A value in the reduction can be used: 223 // - By the reduction: 224 // - Reduction operation: 225 // - One use of reduction value (safe). 226 // - Multiple use of reduction value (not safe). 227 // - PHI: 228 // - All uses of the PHI must be the reduction (safe). 229 // - Otherwise, not safe. 230 // - By one instruction outside of the loop (safe). 231 // - By further instructions outside of the loop (not safe). 232 // - By an instruction that is not part of the reduction (not safe). 233 // This is either: 234 // * An instruction type other than PHI or the reduction operation. 235 // * A PHI in the header other than the initial PHI. 236 while (!Worklist.empty()) { 237 Instruction *Cur = Worklist.back(); 238 Worklist.pop_back(); 239 240 // No Users. 241 // If the instruction has no users then this is a broken chain and can't be 242 // a reduction variable. 243 if (Cur->use_empty()) 244 return false; 245 246 bool IsAPhi = isa<PHINode>(Cur); 247 248 // A header PHI use other than the original PHI. 249 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 250 return false; 251 252 // Reductions of instructions such as Div, and Sub is only possible if the 253 // LHS is the reduction variable. 254 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 255 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 256 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 257 return false; 258 259 // Any reduction instruction must be of one of the allowed kinds. We ignore 260 // the starting value (the Phi or an AND instruction if the Phi has been 261 // type-promoted). 262 if (Cur != Start) { 263 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 264 if (!ReduxDesc.isRecurrence()) 265 return false; 266 } 267 268 // A reduction operation must only have one use of the reduction value. 269 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 270 hasMultipleUsesOf(Cur, VisitedInsts)) 271 return false; 272 273 // All inputs to a PHI node must be a reduction value. 274 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 275 return false; 276 277 if (Kind == RK_IntegerMinMax && 278 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 279 ++NumCmpSelectPatternInst; 280 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 281 ++NumCmpSelectPatternInst; 282 283 // Check whether we found a reduction operator. 284 FoundReduxOp |= !IsAPhi && Cur != Start; 285 286 // Process users of current instruction. Push non-PHI nodes after PHI nodes 287 // onto the stack. This way we are going to have seen all inputs to PHI 288 // nodes once we get to them. 289 SmallVector<Instruction *, 8> NonPHIs; 290 SmallVector<Instruction *, 8> PHIs; 291 for (User *U : Cur->users()) { 292 Instruction *UI = cast<Instruction>(U); 293 294 // Check if we found the exit user. 295 BasicBlock *Parent = UI->getParent(); 296 if (!TheLoop->contains(Parent)) { 297 // Exit if you find multiple outside users or if the header phi node is 298 // being used. In this case the user uses the value of the previous 299 // iteration, in which case we would loose "VF-1" iterations of the 300 // reduction operation if we vectorize. 301 if (ExitInstruction != nullptr || Cur == Phi) 302 return false; 303 304 // The instruction used by an outside user must be the last instruction 305 // before we feed back to the reduction phi. Otherwise, we loose VF-1 306 // operations on the value. 307 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 308 return false; 309 310 ExitInstruction = Cur; 311 continue; 312 } 313 314 // Process instructions only once (termination). Each reduction cycle 315 // value must only be used once, except by phi nodes and min/max 316 // reductions which are represented as a cmp followed by a select. 317 InstDesc IgnoredVal(false, nullptr); 318 if (VisitedInsts.insert(UI).second) { 319 if (isa<PHINode>(UI)) 320 PHIs.push_back(UI); 321 else 322 NonPHIs.push_back(UI); 323 } else if (!isa<PHINode>(UI) && 324 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 325 !isa<SelectInst>(UI)) || 326 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 327 return false; 328 329 // Remember that we completed the cycle. 330 if (UI == Phi) 331 FoundStartPHI = true; 332 } 333 Worklist.append(PHIs.begin(), PHIs.end()); 334 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 335 } 336 337 // This means we have seen one but not the other instruction of the 338 // pattern or more than just a select and cmp. 339 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 340 NumCmpSelectPatternInst != 2) 341 return false; 342 343 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 344 return false; 345 346 // If we think Phi may have been type-promoted, we also need to ensure that 347 // all source operands of the reduction are either SExtInsts or ZEstInsts. If 348 // so, we will be able to evaluate the reduction in the narrower bit width. 349 if (Start != Phi) 350 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 351 IsSigned, VisitedInsts, CastInsts)) 352 return false; 353 354 // We found a reduction var if we have reached the original phi node and we 355 // only have a single instruction with out-of-loop users. 356 357 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 358 // is saved as part of the RecurrenceDescriptor. 359 360 // Save the description of this reduction variable. 361 RecurrenceDescriptor RD( 362 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 363 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 364 RedDes = RD; 365 366 return true; 367 } 368 369 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 370 /// pattern corresponding to a min(X, Y) or max(X, Y). 371 RecurrenceDescriptor::InstDesc 372 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 373 374 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 375 "Expect a select instruction"); 376 Instruction *Cmp = nullptr; 377 SelectInst *Select = nullptr; 378 379 // We must handle the select(cmp()) as a single instruction. Advance to the 380 // select. 381 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 382 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 383 return InstDesc(false, I); 384 return InstDesc(Select, Prev.getMinMaxKind()); 385 } 386 387 // Only handle single use cases for now. 388 if (!(Select = dyn_cast<SelectInst>(I))) 389 return InstDesc(false, I); 390 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 391 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 392 return InstDesc(false, I); 393 if (!Cmp->hasOneUse()) 394 return InstDesc(false, I); 395 396 Value *CmpLeft; 397 Value *CmpRight; 398 399 // Look for a min/max pattern. 400 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 401 return InstDesc(Select, MRK_UIntMin); 402 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 403 return InstDesc(Select, MRK_UIntMax); 404 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 405 return InstDesc(Select, MRK_SIntMax); 406 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 407 return InstDesc(Select, MRK_SIntMin); 408 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 409 return InstDesc(Select, MRK_FloatMin); 410 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 411 return InstDesc(Select, MRK_FloatMax); 412 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 413 return InstDesc(Select, MRK_FloatMin); 414 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 415 return InstDesc(Select, MRK_FloatMax); 416 417 return InstDesc(false, I); 418 } 419 420 RecurrenceDescriptor::InstDesc 421 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 422 InstDesc &Prev, bool HasFunNoNaNAttr) { 423 bool FP = I->getType()->isFloatingPointTy(); 424 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 425 if (!UAI && FP && !I->hasUnsafeAlgebra()) 426 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 427 428 switch (I->getOpcode()) { 429 default: 430 return InstDesc(false, I); 431 case Instruction::PHI: 432 return InstDesc(I, Prev.getMinMaxKind()); 433 case Instruction::Sub: 434 case Instruction::Add: 435 return InstDesc(Kind == RK_IntegerAdd, I); 436 case Instruction::Mul: 437 return InstDesc(Kind == RK_IntegerMult, I); 438 case Instruction::And: 439 return InstDesc(Kind == RK_IntegerAnd, I); 440 case Instruction::Or: 441 return InstDesc(Kind == RK_IntegerOr, I); 442 case Instruction::Xor: 443 return InstDesc(Kind == RK_IntegerXor, I); 444 case Instruction::FMul: 445 return InstDesc(Kind == RK_FloatMult, I, UAI); 446 case Instruction::FSub: 447 case Instruction::FAdd: 448 return InstDesc(Kind == RK_FloatAdd, I, UAI); 449 case Instruction::FCmp: 450 case Instruction::ICmp: 451 case Instruction::Select: 452 if (Kind != RK_IntegerMinMax && 453 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 454 return InstDesc(false, I); 455 return isMinMaxSelectCmpPattern(I, Prev); 456 } 457 } 458 459 bool RecurrenceDescriptor::hasMultipleUsesOf( 460 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 461 unsigned NumUses = 0; 462 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 463 ++Use) { 464 if (Insts.count(dyn_cast<Instruction>(*Use))) 465 ++NumUses; 466 if (NumUses > 1) 467 return true; 468 } 469 470 return false; 471 } 472 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 473 RecurrenceDescriptor &RedDes) { 474 475 BasicBlock *Header = TheLoop->getHeader(); 476 Function &F = *Header->getParent(); 477 bool HasFunNoNaNAttr = 478 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 479 480 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 481 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 482 return true; 483 } 484 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 485 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 486 return true; 487 } 488 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 489 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 490 return true; 491 } 492 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 493 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 494 return true; 495 } 496 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 497 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 498 return true; 499 } 500 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 501 RedDes)) { 502 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 503 return true; 504 } 505 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 506 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 507 return true; 508 } 509 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 510 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 511 return true; 512 } 513 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 514 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 515 return true; 516 } 517 // Not a reduction of known type. 518 return false; 519 } 520 521 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, 522 DominatorTree *DT) { 523 524 // Ensure the phi node is in the loop header and has two incoming values. 525 if (Phi->getParent() != TheLoop->getHeader() || 526 Phi->getNumIncomingValues() != 2) 527 return false; 528 529 // Ensure the loop has a preheader and a single latch block. The loop 530 // vectorizer will need the latch to set up the next iteration of the loop. 531 auto *Preheader = TheLoop->getLoopPreheader(); 532 auto *Latch = TheLoop->getLoopLatch(); 533 if (!Preheader || !Latch) 534 return false; 535 536 // Ensure the phi node's incoming blocks are the loop preheader and latch. 537 if (Phi->getBasicBlockIndex(Preheader) < 0 || 538 Phi->getBasicBlockIndex(Latch) < 0) 539 return false; 540 541 // Get the previous value. The previous value comes from the latch edge while 542 // the initial value comes form the preheader edge. 543 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 544 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) 545 return false; 546 547 // Ensure every user of the phi node is dominated by the previous value. The 548 // dominance requirement ensures the loop vectorizer will not need to 549 // vectorize the initial value prior to the first iteration of the loop. 550 for (User *U : Phi->users()) 551 if (auto *I = dyn_cast<Instruction>(U)) 552 if (!DT->dominates(Previous, I)) 553 return false; 554 555 return true; 556 } 557 558 /// This function returns the identity element (or neutral element) for 559 /// the operation K. 560 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 561 Type *Tp) { 562 switch (K) { 563 case RK_IntegerXor: 564 case RK_IntegerAdd: 565 case RK_IntegerOr: 566 // Adding, Xoring, Oring zero to a number does not change it. 567 return ConstantInt::get(Tp, 0); 568 case RK_IntegerMult: 569 // Multiplying a number by 1 does not change it. 570 return ConstantInt::get(Tp, 1); 571 case RK_IntegerAnd: 572 // AND-ing a number with an all-1 value does not change it. 573 return ConstantInt::get(Tp, -1, true); 574 case RK_FloatMult: 575 // Multiplying a number by 1 does not change it. 576 return ConstantFP::get(Tp, 1.0L); 577 case RK_FloatAdd: 578 // Adding zero to a number does not change it. 579 return ConstantFP::get(Tp, 0.0L); 580 default: 581 llvm_unreachable("Unknown recurrence kind"); 582 } 583 } 584 585 /// This function translates the recurrence kind to an LLVM binary operator. 586 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 587 switch (Kind) { 588 case RK_IntegerAdd: 589 return Instruction::Add; 590 case RK_IntegerMult: 591 return Instruction::Mul; 592 case RK_IntegerOr: 593 return Instruction::Or; 594 case RK_IntegerAnd: 595 return Instruction::And; 596 case RK_IntegerXor: 597 return Instruction::Xor; 598 case RK_FloatMult: 599 return Instruction::FMul; 600 case RK_FloatAdd: 601 return Instruction::FAdd; 602 case RK_IntegerMinMax: 603 return Instruction::ICmp; 604 case RK_FloatMinMax: 605 return Instruction::FCmp; 606 default: 607 llvm_unreachable("Unknown recurrence operation"); 608 } 609 } 610 611 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 612 MinMaxRecurrenceKind RK, 613 Value *Left, Value *Right) { 614 CmpInst::Predicate P = CmpInst::ICMP_NE; 615 switch (RK) { 616 default: 617 llvm_unreachable("Unknown min/max recurrence kind"); 618 case MRK_UIntMin: 619 P = CmpInst::ICMP_ULT; 620 break; 621 case MRK_UIntMax: 622 P = CmpInst::ICMP_UGT; 623 break; 624 case MRK_SIntMin: 625 P = CmpInst::ICMP_SLT; 626 break; 627 case MRK_SIntMax: 628 P = CmpInst::ICMP_SGT; 629 break; 630 case MRK_FloatMin: 631 P = CmpInst::FCMP_OLT; 632 break; 633 case MRK_FloatMax: 634 P = CmpInst::FCMP_OGT; 635 break; 636 } 637 638 // We only match FP sequences with unsafe algebra, so we can unconditionally 639 // set it on any generated instructions. 640 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 641 FastMathFlags FMF; 642 FMF.setUnsafeAlgebra(); 643 Builder.setFastMathFlags(FMF); 644 645 Value *Cmp; 646 if (RK == MRK_FloatMin || RK == MRK_FloatMax) 647 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 648 else 649 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 650 651 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 652 return Select; 653 } 654 655 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 656 ConstantInt *Step) 657 : StartValue(Start), IK(K), StepValue(Step) { 658 assert(IK != IK_NoInduction && "Not an induction"); 659 assert(StartValue && "StartValue is null"); 660 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 661 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 662 "StartValue is not a pointer for pointer induction"); 663 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 664 "StartValue is not an integer for integer induction"); 665 assert(StepValue->getType()->isIntegerTy() && 666 "StepValue is not an integer"); 667 } 668 669 int InductionDescriptor::getConsecutiveDirection() const { 670 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 671 return StepValue->getSExtValue(); 672 return 0; 673 } 674 675 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const { 676 switch (IK) { 677 case IK_IntInduction: 678 assert(Index->getType() == StartValue->getType() && 679 "Index type does not match StartValue type"); 680 if (StepValue->isMinusOne()) 681 return B.CreateSub(StartValue, Index); 682 if (!StepValue->isOne()) 683 Index = B.CreateMul(Index, StepValue); 684 return B.CreateAdd(StartValue, Index); 685 686 case IK_PtrInduction: 687 assert(Index->getType() == StepValue->getType() && 688 "Index type does not match StepValue type"); 689 if (StepValue->isMinusOne()) 690 Index = B.CreateNeg(Index); 691 else if (!StepValue->isOne()) 692 Index = B.CreateMul(Index, StepValue); 693 return B.CreateGEP(nullptr, StartValue, Index); 694 695 case IK_NoInduction: 696 return nullptr; 697 } 698 llvm_unreachable("invalid enum"); 699 } 700 701 bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, 702 InductionDescriptor &D) { 703 Type *PhiTy = Phi->getType(); 704 // We only handle integer and pointer inductions variables. 705 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 706 return false; 707 708 // Check that the PHI is consecutive. 709 const SCEV *PhiScev = SE->getSCEV(Phi); 710 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 711 if (!AR) { 712 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 713 return false; 714 } 715 716 assert(AR->getLoop()->getHeader() == Phi->getParent() && 717 "PHI is an AddRec for a different loop?!"); 718 Value *StartValue = 719 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 720 const SCEV *Step = AR->getStepRecurrence(*SE); 721 // Calculate the pointer stride and check if it is consecutive. 722 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 723 if (!C) 724 return false; 725 726 ConstantInt *CV = C->getValue(); 727 if (PhiTy->isIntegerTy()) { 728 D = InductionDescriptor(StartValue, IK_IntInduction, CV); 729 return true; 730 } 731 732 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 733 Type *PointerElementType = PhiTy->getPointerElementType(); 734 // The pointer stride cannot be determined if the pointer element type is not 735 // sized. 736 if (!PointerElementType->isSized()) 737 return false; 738 739 const DataLayout &DL = Phi->getModule()->getDataLayout(); 740 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 741 if (!Size) 742 return false; 743 744 int64_t CVSize = CV->getSExtValue(); 745 if (CVSize % Size) 746 return false; 747 auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 748 749 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 750 return true; 751 } 752 753 /// \brief Returns the instructions that use values defined in the loop. 754 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 755 SmallVector<Instruction *, 8> UsedOutside; 756 757 for (auto *Block : L->getBlocks()) 758 // FIXME: I believe that this could use copy_if if the Inst reference could 759 // be adapted into a pointer. 760 for (auto &Inst : *Block) { 761 auto Users = Inst.users(); 762 if (std::any_of(Users.begin(), Users.end(), [&](User *U) { 763 auto *Use = cast<Instruction>(U); 764 return !L->contains(Use->getParent()); 765 })) 766 UsedOutside.push_back(&Inst); 767 } 768 769 return UsedOutside; 770 } 771 772 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 773 // By definition, all loop passes need the LoopInfo analysis and the 774 // Dominator tree it depends on. Because they all participate in the loop 775 // pass manager, they must also preserve these. 776 AU.addRequired<DominatorTreeWrapperPass>(); 777 AU.addPreserved<DominatorTreeWrapperPass>(); 778 AU.addRequired<LoopInfoWrapperPass>(); 779 AU.addPreserved<LoopInfoWrapperPass>(); 780 781 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 782 // here because users shouldn't directly get them from this header. 783 extern char &LoopSimplifyID; 784 extern char &LCSSAID; 785 AU.addRequiredID(LoopSimplifyID); 786 AU.addPreservedID(LoopSimplifyID); 787 AU.addRequiredID(LCSSAID); 788 AU.addPreservedID(LCSSAID); 789 790 // Loop passes are designed to run inside of a loop pass manager which means 791 // that any function analyses they require must be required by the first loop 792 // pass in the manager (so that it is computed before the loop pass manager 793 // runs) and preserved by all loop pasess in the manager. To make this 794 // reasonably robust, the set needed for most loop passes is maintained here. 795 // If your loop pass requires an analysis not listed here, you will need to 796 // carefully audit the loop pass manager nesting structure that results. 797 AU.addRequired<AAResultsWrapperPass>(); 798 AU.addPreserved<AAResultsWrapperPass>(); 799 AU.addPreserved<BasicAAWrapperPass>(); 800 AU.addPreserved<GlobalsAAWrapperPass>(); 801 AU.addPreserved<SCEVAAWrapperPass>(); 802 AU.addRequired<ScalarEvolutionWrapperPass>(); 803 AU.addPreserved<ScalarEvolutionWrapperPass>(); 804 } 805 806 /// Manually defined generic "LoopPass" dependency initialization. This is used 807 /// to initialize the exact set of passes from above in \c 808 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 809 /// with: 810 /// 811 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 812 /// 813 /// As-if "LoopPass" were a pass. 814 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 815 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 816 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 817 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 818 INITIALIZE_PASS_DEPENDENCY(LCSSA) 819 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 820 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 821 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 822 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 823 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 824 } 825