1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/MustExecute.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 static cl::opt<bool> ForceReductionIntrinsic( 58 "force-reduction-intrinsics", cl::Hidden, 59 cl::desc("Force creating reduction intrinsics for testing."), 60 cl::init(false)); 61 62 #define DEBUG_TYPE "loop-utils" 63 64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 66 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 67 68 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 69 MemorySSAUpdater *MSSAU, 70 bool PreserveLCSSA) { 71 bool Changed = false; 72 73 // We re-use a vector for the in-loop predecesosrs. 74 SmallVector<BasicBlock *, 4> InLoopPredecessors; 75 76 auto RewriteExit = [&](BasicBlock *BB) { 77 assert(InLoopPredecessors.empty() && 78 "Must start with an empty predecessors list!"); 79 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 80 81 // See if there are any non-loop predecessors of this exit block and 82 // keep track of the in-loop predecessors. 83 bool IsDedicatedExit = true; 84 for (auto *PredBB : predecessors(BB)) 85 if (L->contains(PredBB)) { 86 if (isa<IndirectBrInst>(PredBB->getTerminator())) 87 // We cannot rewrite exiting edges from an indirectbr. 88 return false; 89 if (isa<CallBrInst>(PredBB->getTerminator())) 90 // We cannot rewrite exiting edges from a callbr. 91 return false; 92 93 InLoopPredecessors.push_back(PredBB); 94 } else { 95 IsDedicatedExit = false; 96 } 97 98 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 99 100 // Nothing to do if this is already a dedicated exit. 101 if (IsDedicatedExit) 102 return false; 103 104 auto *NewExitBB = SplitBlockPredecessors( 105 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 106 107 if (!NewExitBB) 108 LLVM_DEBUG( 109 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 110 << *L << "\n"); 111 else 112 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 113 << NewExitBB->getName() << "\n"); 114 return true; 115 }; 116 117 // Walk the exit blocks directly rather than building up a data structure for 118 // them, but only visit each one once. 119 SmallPtrSet<BasicBlock *, 4> Visited; 120 for (auto *BB : L->blocks()) 121 for (auto *SuccBB : successors(BB)) { 122 // We're looking for exit blocks so skip in-loop successors. 123 if (L->contains(SuccBB)) 124 continue; 125 126 // Visit each exit block exactly once. 127 if (!Visited.insert(SuccBB).second) 128 continue; 129 130 Changed |= RewriteExit(SuccBB); 131 } 132 133 return Changed; 134 } 135 136 /// Returns the instructions that use values defined in the loop. 137 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 138 SmallVector<Instruction *, 8> UsedOutside; 139 140 for (auto *Block : L->getBlocks()) 141 // FIXME: I believe that this could use copy_if if the Inst reference could 142 // be adapted into a pointer. 143 for (auto &Inst : *Block) { 144 auto Users = Inst.users(); 145 if (any_of(Users, [&](User *U) { 146 auto *Use = cast<Instruction>(U); 147 return !L->contains(Use->getParent()); 148 })) 149 UsedOutside.push_back(&Inst); 150 } 151 152 return UsedOutside; 153 } 154 155 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 156 // By definition, all loop passes need the LoopInfo analysis and the 157 // Dominator tree it depends on. Because they all participate in the loop 158 // pass manager, they must also preserve these. 159 AU.addRequired<DominatorTreeWrapperPass>(); 160 AU.addPreserved<DominatorTreeWrapperPass>(); 161 AU.addRequired<LoopInfoWrapperPass>(); 162 AU.addPreserved<LoopInfoWrapperPass>(); 163 164 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 165 // here because users shouldn't directly get them from this header. 166 extern char &LoopSimplifyID; 167 extern char &LCSSAID; 168 AU.addRequiredID(LoopSimplifyID); 169 AU.addPreservedID(LoopSimplifyID); 170 AU.addRequiredID(LCSSAID); 171 AU.addPreservedID(LCSSAID); 172 // This is used in the LPPassManager to perform LCSSA verification on passes 173 // which preserve lcssa form 174 AU.addRequired<LCSSAVerificationPass>(); 175 AU.addPreserved<LCSSAVerificationPass>(); 176 177 // Loop passes are designed to run inside of a loop pass manager which means 178 // that any function analyses they require must be required by the first loop 179 // pass in the manager (so that it is computed before the loop pass manager 180 // runs) and preserved by all loop pasess in the manager. To make this 181 // reasonably robust, the set needed for most loop passes is maintained here. 182 // If your loop pass requires an analysis not listed here, you will need to 183 // carefully audit the loop pass manager nesting structure that results. 184 AU.addRequired<AAResultsWrapperPass>(); 185 AU.addPreserved<AAResultsWrapperPass>(); 186 AU.addPreserved<BasicAAWrapperPass>(); 187 AU.addPreserved<GlobalsAAWrapperPass>(); 188 AU.addPreserved<SCEVAAWrapperPass>(); 189 AU.addRequired<ScalarEvolutionWrapperPass>(); 190 AU.addPreserved<ScalarEvolutionWrapperPass>(); 191 // FIXME: When all loop passes preserve MemorySSA, it can be required and 192 // preserved here instead of the individual handling in each pass. 193 } 194 195 /// Manually defined generic "LoopPass" dependency initialization. This is used 196 /// to initialize the exact set of passes from above in \c 197 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 198 /// with: 199 /// 200 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 201 /// 202 /// As-if "LoopPass" were a pass. 203 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 204 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 205 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 207 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 208 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 209 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 210 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 211 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 212 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 213 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 214 } 215 216 /// Create MDNode for input string. 217 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 218 LLVMContext &Context = TheLoop->getHeader()->getContext(); 219 Metadata *MDs[] = { 220 MDString::get(Context, Name), 221 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 222 return MDNode::get(Context, MDs); 223 } 224 225 /// Set input string into loop metadata by keeping other values intact. 226 /// If the string is already in loop metadata update value if it is 227 /// different. 228 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 229 unsigned V) { 230 SmallVector<Metadata *, 4> MDs(1); 231 // If the loop already has metadata, retain it. 232 MDNode *LoopID = TheLoop->getLoopID(); 233 if (LoopID) { 234 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 235 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 236 // If it is of form key = value, try to parse it. 237 if (Node->getNumOperands() == 2) { 238 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 239 if (S && S->getString().equals(StringMD)) { 240 ConstantInt *IntMD = 241 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 242 if (IntMD && IntMD->getSExtValue() == V) 243 // It is already in place. Do nothing. 244 return; 245 // We need to update the value, so just skip it here and it will 246 // be added after copying other existed nodes. 247 continue; 248 } 249 } 250 MDs.push_back(Node); 251 } 252 } 253 // Add new metadata. 254 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 255 // Replace current metadata node with new one. 256 LLVMContext &Context = TheLoop->getHeader()->getContext(); 257 MDNode *NewLoopID = MDNode::get(Context, MDs); 258 // Set operand 0 to refer to the loop id itself. 259 NewLoopID->replaceOperandWith(0, NewLoopID); 260 TheLoop->setLoopID(NewLoopID); 261 } 262 263 /// Find string metadata for loop 264 /// 265 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 266 /// operand or null otherwise. If the string metadata is not found return 267 /// Optional's not-a-value. 268 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 269 StringRef Name) { 270 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 271 if (!MD) 272 return None; 273 switch (MD->getNumOperands()) { 274 case 1: 275 return nullptr; 276 case 2: 277 return &MD->getOperand(1); 278 default: 279 llvm_unreachable("loop metadata has 0 or 1 operand"); 280 } 281 } 282 283 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 284 StringRef Name) { 285 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 286 if (!MD) 287 return None; 288 switch (MD->getNumOperands()) { 289 case 1: 290 // When the value is absent it is interpreted as 'attribute set'. 291 return true; 292 case 2: 293 if (ConstantInt *IntMD = 294 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 295 return IntMD->getZExtValue(); 296 return true; 297 } 298 llvm_unreachable("unexpected number of options"); 299 } 300 301 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 302 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 303 } 304 305 Optional<ElementCount> 306 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) { 307 Optional<int> Width = 308 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 309 310 if (Width.hasValue()) { 311 Optional<int> IsScalable = getOptionalIntLoopAttribute( 312 TheLoop, "llvm.loop.vectorize.scalable.enable"); 313 return ElementCount::get(*Width, IsScalable.getValueOr(false)); 314 } 315 316 return None; 317 } 318 319 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 320 StringRef Name) { 321 const MDOperand *AttrMD = 322 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 323 if (!AttrMD) 324 return None; 325 326 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 327 if (!IntMD) 328 return None; 329 330 return IntMD->getSExtValue(); 331 } 332 333 Optional<MDNode *> llvm::makeFollowupLoopID( 334 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 335 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 336 if (!OrigLoopID) { 337 if (AlwaysNew) 338 return nullptr; 339 return None; 340 } 341 342 assert(OrigLoopID->getOperand(0) == OrigLoopID); 343 344 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 345 bool InheritSomeAttrs = 346 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 347 SmallVector<Metadata *, 8> MDs; 348 MDs.push_back(nullptr); 349 350 bool Changed = false; 351 if (InheritAllAttrs || InheritSomeAttrs) { 352 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 353 MDNode *Op = cast<MDNode>(Existing.get()); 354 355 auto InheritThisAttribute = [InheritSomeAttrs, 356 InheritOptionsExceptPrefix](MDNode *Op) { 357 if (!InheritSomeAttrs) 358 return false; 359 360 // Skip malformatted attribute metadata nodes. 361 if (Op->getNumOperands() == 0) 362 return true; 363 Metadata *NameMD = Op->getOperand(0).get(); 364 if (!isa<MDString>(NameMD)) 365 return true; 366 StringRef AttrName = cast<MDString>(NameMD)->getString(); 367 368 // Do not inherit excluded attributes. 369 return !AttrName.startswith(InheritOptionsExceptPrefix); 370 }; 371 372 if (InheritThisAttribute(Op)) 373 MDs.push_back(Op); 374 else 375 Changed = true; 376 } 377 } else { 378 // Modified if we dropped at least one attribute. 379 Changed = OrigLoopID->getNumOperands() > 1; 380 } 381 382 bool HasAnyFollowup = false; 383 for (StringRef OptionName : FollowupOptions) { 384 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 385 if (!FollowupNode) 386 continue; 387 388 HasAnyFollowup = true; 389 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 390 MDs.push_back(Option.get()); 391 Changed = true; 392 } 393 } 394 395 // Attributes of the followup loop not specified explicity, so signal to the 396 // transformation pass to add suitable attributes. 397 if (!AlwaysNew && !HasAnyFollowup) 398 return None; 399 400 // If no attributes were added or remove, the previous loop Id can be reused. 401 if (!AlwaysNew && !Changed) 402 return OrigLoopID; 403 404 // No attributes is equivalent to having no !llvm.loop metadata at all. 405 if (MDs.size() == 1) 406 return nullptr; 407 408 // Build the new loop ID. 409 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 410 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 411 return FollowupLoopID; 412 } 413 414 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 415 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 416 } 417 418 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 419 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 420 } 421 422 bool llvm::hasMustProgress(const Loop *L) { 423 return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 424 } 425 426 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 427 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 428 return TM_SuppressedByUser; 429 430 Optional<int> Count = 431 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 432 if (Count.hasValue()) 433 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 434 435 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 436 return TM_ForcedByUser; 437 438 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 439 return TM_ForcedByUser; 440 441 if (hasDisableAllTransformsHint(L)) 442 return TM_Disable; 443 444 return TM_Unspecified; 445 } 446 447 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 448 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 449 return TM_SuppressedByUser; 450 451 Optional<int> Count = 452 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 453 if (Count.hasValue()) 454 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 455 456 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 457 return TM_ForcedByUser; 458 459 if (hasDisableAllTransformsHint(L)) 460 return TM_Disable; 461 462 return TM_Unspecified; 463 } 464 465 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 466 Optional<bool> Enable = 467 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 468 469 if (Enable == false) 470 return TM_SuppressedByUser; 471 472 Optional<ElementCount> VectorizeWidth = 473 getOptionalElementCountLoopAttribute(L); 474 Optional<int> InterleaveCount = 475 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 476 477 // 'Forcing' vector width and interleave count to one effectively disables 478 // this tranformation. 479 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 480 InterleaveCount == 1) 481 return TM_SuppressedByUser; 482 483 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 484 return TM_Disable; 485 486 if (Enable == true) 487 return TM_ForcedByUser; 488 489 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 490 return TM_Disable; 491 492 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 493 return TM_Enable; 494 495 if (hasDisableAllTransformsHint(L)) 496 return TM_Disable; 497 498 return TM_Unspecified; 499 } 500 501 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 502 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 503 return TM_ForcedByUser; 504 505 if (hasDisableAllTransformsHint(L)) 506 return TM_Disable; 507 508 return TM_Unspecified; 509 } 510 511 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 512 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 513 return TM_SuppressedByUser; 514 515 if (hasDisableAllTransformsHint(L)) 516 return TM_Disable; 517 518 return TM_Unspecified; 519 } 520 521 /// Does a BFS from a given node to all of its children inside a given loop. 522 /// The returned vector of nodes includes the starting point. 523 SmallVector<DomTreeNode *, 16> 524 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 525 SmallVector<DomTreeNode *, 16> Worklist; 526 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 527 // Only include subregions in the top level loop. 528 BasicBlock *BB = DTN->getBlock(); 529 if (CurLoop->contains(BB)) 530 Worklist.push_back(DTN); 531 }; 532 533 AddRegionToWorklist(N); 534 535 for (size_t I = 0; I < Worklist.size(); I++) { 536 for (DomTreeNode *Child : Worklist[I]->children()) 537 AddRegionToWorklist(Child); 538 } 539 540 return Worklist; 541 } 542 543 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 544 LoopInfo *LI, MemorySSA *MSSA) { 545 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 546 auto *Preheader = L->getLoopPreheader(); 547 assert(Preheader && "Preheader should exist!"); 548 549 std::unique_ptr<MemorySSAUpdater> MSSAU; 550 if (MSSA) 551 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 552 553 // Now that we know the removal is safe, remove the loop by changing the 554 // branch from the preheader to go to the single exit block. 555 // 556 // Because we're deleting a large chunk of code at once, the sequence in which 557 // we remove things is very important to avoid invalidation issues. 558 559 // Tell ScalarEvolution that the loop is deleted. Do this before 560 // deleting the loop so that ScalarEvolution can look at the loop 561 // to determine what it needs to clean up. 562 if (SE) 563 SE->forgetLoop(L); 564 565 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 566 assert(OldBr && "Preheader must end with a branch"); 567 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 568 // Connect the preheader to the exit block. Keep the old edge to the header 569 // around to perform the dominator tree update in two separate steps 570 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 571 // preheader -> header. 572 // 573 // 574 // 0. Preheader 1. Preheader 2. Preheader 575 // | | | | 576 // V | V | 577 // Header <--\ | Header <--\ | Header <--\ 578 // | | | | | | | | | | | 579 // | V | | | V | | | V | 580 // | Body --/ | | Body --/ | | Body --/ 581 // V V V V V 582 // Exit Exit Exit 583 // 584 // By doing this is two separate steps we can perform the dominator tree 585 // update without using the batch update API. 586 // 587 // Even when the loop is never executed, we cannot remove the edge from the 588 // source block to the exit block. Consider the case where the unexecuted loop 589 // branches back to an outer loop. If we deleted the loop and removed the edge 590 // coming to this inner loop, this will break the outer loop structure (by 591 // deleting the backedge of the outer loop). If the outer loop is indeed a 592 // non-loop, it will be deleted in a future iteration of loop deletion pass. 593 IRBuilder<> Builder(OldBr); 594 595 auto *ExitBlock = L->getUniqueExitBlock(); 596 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 597 if (ExitBlock) { 598 assert(ExitBlock && "Should have a unique exit block!"); 599 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 600 601 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 602 // Remove the old branch. The conditional branch becomes a new terminator. 603 OldBr->eraseFromParent(); 604 605 // Rewrite phis in the exit block to get their inputs from the Preheader 606 // instead of the exiting block. 607 for (PHINode &P : ExitBlock->phis()) { 608 // Set the zero'th element of Phi to be from the preheader and remove all 609 // other incoming values. Given the loop has dedicated exits, all other 610 // incoming values must be from the exiting blocks. 611 int PredIndex = 0; 612 P.setIncomingBlock(PredIndex, Preheader); 613 // Removes all incoming values from all other exiting blocks (including 614 // duplicate values from an exiting block). 615 // Nuke all entries except the zero'th entry which is the preheader entry. 616 // NOTE! We need to remove Incoming Values in the reverse order as done 617 // below, to keep the indices valid for deletion (removeIncomingValues 618 // updates getNumIncomingValues and shifts all values down into the 619 // operand being deleted). 620 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 621 P.removeIncomingValue(e - i, false); 622 623 assert((P.getNumIncomingValues() == 1 && 624 P.getIncomingBlock(PredIndex) == Preheader) && 625 "Should have exactly one value and that's from the preheader!"); 626 } 627 628 if (DT) { 629 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 630 if (MSSA) { 631 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 632 *DT); 633 if (VerifyMemorySSA) 634 MSSA->verifyMemorySSA(); 635 } 636 } 637 638 // Disconnect the loop body by branching directly to its exit. 639 Builder.SetInsertPoint(Preheader->getTerminator()); 640 Builder.CreateBr(ExitBlock); 641 // Remove the old branch. 642 Preheader->getTerminator()->eraseFromParent(); 643 } else { 644 assert(L->hasNoExitBlocks() && 645 "Loop should have either zero or one exit blocks."); 646 647 Builder.SetInsertPoint(OldBr); 648 Builder.CreateUnreachable(); 649 Preheader->getTerminator()->eraseFromParent(); 650 } 651 652 if (DT) { 653 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 654 if (MSSA) { 655 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 656 *DT); 657 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 658 L->block_end()); 659 MSSAU->removeBlocks(DeadBlockSet); 660 if (VerifyMemorySSA) 661 MSSA->verifyMemorySSA(); 662 } 663 } 664 665 // Use a map to unique and a vector to guarantee deterministic ordering. 666 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 667 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 668 669 if (ExitBlock) { 670 // Given LCSSA form is satisfied, we should not have users of instructions 671 // within the dead loop outside of the loop. However, LCSSA doesn't take 672 // unreachable uses into account. We handle them here. 673 // We could do it after drop all references (in this case all users in the 674 // loop will be already eliminated and we have less work to do but according 675 // to API doc of User::dropAllReferences only valid operation after dropping 676 // references, is deletion. So let's substitute all usages of 677 // instruction from the loop with undef value of corresponding type first. 678 for (auto *Block : L->blocks()) 679 for (Instruction &I : *Block) { 680 auto *Undef = UndefValue::get(I.getType()); 681 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); 682 UI != E;) { 683 Use &U = *UI; 684 ++UI; 685 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 686 if (L->contains(Usr->getParent())) 687 continue; 688 // If we have a DT then we can check that uses outside a loop only in 689 // unreachable block. 690 if (DT) 691 assert(!DT->isReachableFromEntry(U) && 692 "Unexpected user in reachable block"); 693 U.set(Undef); 694 } 695 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 696 if (!DVI) 697 continue; 698 auto Key = 699 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 700 if (Key != DeadDebugSet.end()) 701 continue; 702 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 703 DeadDebugInst.push_back(DVI); 704 } 705 706 // After the loop has been deleted all the values defined and modified 707 // inside the loop are going to be unavailable. 708 // Since debug values in the loop have been deleted, inserting an undef 709 // dbg.value truncates the range of any dbg.value before the loop where the 710 // loop used to be. This is particularly important for constant values. 711 DIBuilder DIB(*ExitBlock->getModule()); 712 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 713 assert(InsertDbgValueBefore && 714 "There should be a non-PHI instruction in exit block, else these " 715 "instructions will have no parent."); 716 for (auto *DVI : DeadDebugInst) 717 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 718 DVI->getVariable(), DVI->getExpression(), 719 DVI->getDebugLoc(), InsertDbgValueBefore); 720 } 721 722 // Remove the block from the reference counting scheme, so that we can 723 // delete it freely later. 724 for (auto *Block : L->blocks()) 725 Block->dropAllReferences(); 726 727 if (MSSA && VerifyMemorySSA) 728 MSSA->verifyMemorySSA(); 729 730 if (LI) { 731 // Erase the instructions and the blocks without having to worry 732 // about ordering because we already dropped the references. 733 // NOTE: This iteration is safe because erasing the block does not remove 734 // its entry from the loop's block list. We do that in the next section. 735 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 736 LpI != LpE; ++LpI) 737 (*LpI)->eraseFromParent(); 738 739 // Finally, the blocks from loopinfo. This has to happen late because 740 // otherwise our loop iterators won't work. 741 742 SmallPtrSet<BasicBlock *, 8> blocks; 743 blocks.insert(L->block_begin(), L->block_end()); 744 for (BasicBlock *BB : blocks) 745 LI->removeBlock(BB); 746 747 // The last step is to update LoopInfo now that we've eliminated this loop. 748 // Note: LoopInfo::erase remove the given loop and relink its subloops with 749 // its parent. While removeLoop/removeChildLoop remove the given loop but 750 // not relink its subloops, which is what we want. 751 if (Loop *ParentLoop = L->getParentLoop()) { 752 Loop::iterator I = find(*ParentLoop, L); 753 assert(I != ParentLoop->end() && "Couldn't find loop"); 754 ParentLoop->removeChildLoop(I); 755 } else { 756 Loop::iterator I = find(*LI, L); 757 assert(I != LI->end() && "Couldn't find loop"); 758 LI->removeLoop(I); 759 } 760 LI->destroy(L); 761 } 762 } 763 764 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 765 LoopInfo &LI, MemorySSA *MSSA) { 766 767 assert(L->isOutermost() && "Can't yet preserve LCSSA for this case"); 768 auto *Latch = L->getLoopLatch(); 769 assert(Latch && "multiple latches not yet supported"); 770 auto *Header = L->getHeader(); 771 772 SE.forgetLoop(L); 773 774 // Note: By splitting the backedge, and then explicitly making it unreachable 775 // we gracefully handle corner cases such as non-bottom tested loops and the 776 // like. We also have the benefit of being able to reuse existing well tested 777 // code. It might be worth special casing the common bottom tested case at 778 // some point to avoid code churn. 779 780 std::unique_ptr<MemorySSAUpdater> MSSAU; 781 if (MSSA) 782 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 783 784 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 785 786 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 787 (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false, 788 /*PreserveLCSSA*/true, &DTU, MSSAU.get()); 789 790 // Erase (and destroy) this loop instance. Handles relinking sub-loops 791 // and blocks within the loop as needed. 792 LI.erase(L); 793 } 794 795 796 /// Checks if \p L has single exit through latch block except possibly 797 /// "deoptimizing" exits. Returns branch instruction terminating the loop 798 /// latch if above check is successful, nullptr otherwise. 799 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 800 BasicBlock *Latch = L->getLoopLatch(); 801 if (!Latch) 802 return nullptr; 803 804 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 805 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 806 return nullptr; 807 808 assert((LatchBR->getSuccessor(0) == L->getHeader() || 809 LatchBR->getSuccessor(1) == L->getHeader()) && 810 "At least one edge out of the latch must go to the header"); 811 812 SmallVector<BasicBlock *, 4> ExitBlocks; 813 L->getUniqueNonLatchExitBlocks(ExitBlocks); 814 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 815 return !EB->getTerminatingDeoptimizeCall(); 816 })) 817 return nullptr; 818 819 return LatchBR; 820 } 821 822 Optional<unsigned> 823 llvm::getLoopEstimatedTripCount(Loop *L, 824 unsigned *EstimatedLoopInvocationWeight) { 825 // Support loops with an exiting latch and other existing exists only 826 // deoptimize. 827 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 828 if (!LatchBranch) 829 return None; 830 831 // To estimate the number of times the loop body was executed, we want to 832 // know the number of times the backedge was taken, vs. the number of times 833 // we exited the loop. 834 uint64_t BackedgeTakenWeight, LatchExitWeight; 835 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 836 return None; 837 838 if (LatchBranch->getSuccessor(0) != L->getHeader()) 839 std::swap(BackedgeTakenWeight, LatchExitWeight); 840 841 if (!LatchExitWeight) 842 return None; 843 844 if (EstimatedLoopInvocationWeight) 845 *EstimatedLoopInvocationWeight = LatchExitWeight; 846 847 // Estimated backedge taken count is a ratio of the backedge taken weight by 848 // the weight of the edge exiting the loop, rounded to nearest. 849 uint64_t BackedgeTakenCount = 850 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 851 // Estimated trip count is one plus estimated backedge taken count. 852 return BackedgeTakenCount + 1; 853 } 854 855 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 856 unsigned EstimatedloopInvocationWeight) { 857 // Support loops with an exiting latch and other existing exists only 858 // deoptimize. 859 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 860 if (!LatchBranch) 861 return false; 862 863 // Calculate taken and exit weights. 864 unsigned LatchExitWeight = 0; 865 unsigned BackedgeTakenWeight = 0; 866 867 if (EstimatedTripCount > 0) { 868 LatchExitWeight = EstimatedloopInvocationWeight; 869 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 870 } 871 872 // Make a swap if back edge is taken when condition is "false". 873 if (LatchBranch->getSuccessor(0) != L->getHeader()) 874 std::swap(BackedgeTakenWeight, LatchExitWeight); 875 876 MDBuilder MDB(LatchBranch->getContext()); 877 878 // Set/Update profile metadata. 879 LatchBranch->setMetadata( 880 LLVMContext::MD_prof, 881 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 882 883 return true; 884 } 885 886 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 887 ScalarEvolution &SE) { 888 Loop *OuterL = InnerLoop->getParentLoop(); 889 if (!OuterL) 890 return true; 891 892 // Get the backedge taken count for the inner loop 893 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 894 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 895 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 896 !InnerLoopBECountSC->getType()->isIntegerTy()) 897 return false; 898 899 // Get whether count is invariant to the outer loop 900 ScalarEvolution::LoopDisposition LD = 901 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 902 if (LD != ScalarEvolution::LoopInvariant) 903 return false; 904 905 return true; 906 } 907 908 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 909 Value *Right) { 910 CmpInst::Predicate P = CmpInst::ICMP_NE; 911 switch (RK) { 912 default: 913 llvm_unreachable("Unknown min/max recurrence kind"); 914 case RecurKind::UMin: 915 P = CmpInst::ICMP_ULT; 916 break; 917 case RecurKind::UMax: 918 P = CmpInst::ICMP_UGT; 919 break; 920 case RecurKind::SMin: 921 P = CmpInst::ICMP_SLT; 922 break; 923 case RecurKind::SMax: 924 P = CmpInst::ICMP_SGT; 925 break; 926 case RecurKind::FMin: 927 P = CmpInst::FCMP_OLT; 928 break; 929 case RecurKind::FMax: 930 P = CmpInst::FCMP_OGT; 931 break; 932 } 933 934 // We only match FP sequences that are 'fast', so we can unconditionally 935 // set it on any generated instructions. 936 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 937 FastMathFlags FMF; 938 FMF.setFast(); 939 Builder.setFastMathFlags(FMF); 940 Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp"); 941 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 942 return Select; 943 } 944 945 // Helper to generate an ordered reduction. 946 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 947 unsigned Op, RecurKind RdxKind, 948 ArrayRef<Value *> RedOps) { 949 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 950 951 // Extract and apply reduction ops in ascending order: 952 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 953 Value *Result = Acc; 954 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 955 Value *Ext = 956 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 957 958 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 959 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 960 "bin.rdx"); 961 } else { 962 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 963 "Invalid min/max"); 964 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 965 } 966 967 if (!RedOps.empty()) 968 propagateIRFlags(Result, RedOps); 969 } 970 971 return Result; 972 } 973 974 // Helper to generate a log2 shuffle reduction. 975 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 976 unsigned Op, RecurKind RdxKind, 977 ArrayRef<Value *> RedOps) { 978 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 979 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 980 // and vector ops, reducing the set of values being computed by half each 981 // round. 982 assert(isPowerOf2_32(VF) && 983 "Reduction emission only supported for pow2 vectors!"); 984 Value *TmpVec = Src; 985 SmallVector<int, 32> ShuffleMask(VF); 986 for (unsigned i = VF; i != 1; i >>= 1) { 987 // Move the upper half of the vector to the lower half. 988 for (unsigned j = 0; j != i / 2; ++j) 989 ShuffleMask[j] = i / 2 + j; 990 991 // Fill the rest of the mask with undef. 992 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 993 994 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 995 996 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 997 // The builder propagates its fast-math-flags setting. 998 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 999 "bin.rdx"); 1000 } else { 1001 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1002 "Invalid min/max"); 1003 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1004 } 1005 if (!RedOps.empty()) 1006 propagateIRFlags(TmpVec, RedOps); 1007 1008 // We may compute the reassociated scalar ops in a way that does not 1009 // preserve nsw/nuw etc. Conservatively, drop those flags. 1010 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 1011 ReductionInst->dropPoisonGeneratingFlags(); 1012 } 1013 // The result is in the first element of the vector. 1014 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1015 } 1016 1017 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 1018 const TargetTransformInfo *TTI, 1019 Value *Src, RecurKind RdxKind, 1020 ArrayRef<Value *> RedOps) { 1021 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind); 1022 TargetTransformInfo::ReductionFlags RdxFlags; 1023 RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax || 1024 RdxKind == RecurKind::FMax; 1025 RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin; 1026 if (!ForceReductionIntrinsic && 1027 !TTI->useReductionIntrinsic(Opcode, Src->getType(), RdxFlags)) 1028 return getShuffleReduction(Builder, Src, Opcode, RdxKind, RedOps); 1029 1030 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1031 switch (RdxKind) { 1032 case RecurKind::Add: 1033 return Builder.CreateAddReduce(Src); 1034 case RecurKind::Mul: 1035 return Builder.CreateMulReduce(Src); 1036 case RecurKind::And: 1037 return Builder.CreateAndReduce(Src); 1038 case RecurKind::Or: 1039 return Builder.CreateOrReduce(Src); 1040 case RecurKind::Xor: 1041 return Builder.CreateXorReduce(Src); 1042 case RecurKind::FAdd: 1043 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1044 Src); 1045 case RecurKind::FMul: 1046 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1047 case RecurKind::SMax: 1048 return Builder.CreateIntMaxReduce(Src, true); 1049 case RecurKind::SMin: 1050 return Builder.CreateIntMinReduce(Src, true); 1051 case RecurKind::UMax: 1052 return Builder.CreateIntMaxReduce(Src, false); 1053 case RecurKind::UMin: 1054 return Builder.CreateIntMinReduce(Src, false); 1055 case RecurKind::FMax: 1056 return Builder.CreateFPMaxReduce(Src); 1057 case RecurKind::FMin: 1058 return Builder.CreateFPMinReduce(Src); 1059 default: 1060 llvm_unreachable("Unhandled opcode"); 1061 } 1062 } 1063 1064 Value *llvm::createTargetReduction(IRBuilderBase &B, 1065 const TargetTransformInfo *TTI, 1066 RecurrenceDescriptor &Desc, Value *Src) { 1067 // TODO: Support in-order reductions based on the recurrence descriptor. 1068 // All ops in the reduction inherit fast-math-flags from the recurrence 1069 // descriptor. 1070 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1071 B.setFastMathFlags(Desc.getFastMathFlags()); 1072 return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind()); 1073 } 1074 1075 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1076 auto *VecOp = dyn_cast<Instruction>(I); 1077 if (!VecOp) 1078 return; 1079 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1080 : dyn_cast<Instruction>(OpValue); 1081 if (!Intersection) 1082 return; 1083 const unsigned Opcode = Intersection->getOpcode(); 1084 VecOp->copyIRFlags(Intersection); 1085 for (auto *V : VL) { 1086 auto *Instr = dyn_cast<Instruction>(V); 1087 if (!Instr) 1088 continue; 1089 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1090 VecOp->andIRFlags(V); 1091 } 1092 } 1093 1094 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1095 ScalarEvolution &SE) { 1096 const SCEV *Zero = SE.getZero(S->getType()); 1097 return SE.isAvailableAtLoopEntry(S, L) && 1098 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1099 } 1100 1101 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1102 ScalarEvolution &SE) { 1103 const SCEV *Zero = SE.getZero(S->getType()); 1104 return SE.isAvailableAtLoopEntry(S, L) && 1105 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1106 } 1107 1108 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1109 bool Signed) { 1110 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1111 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1112 APInt::getMinValue(BitWidth); 1113 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1114 return SE.isAvailableAtLoopEntry(S, L) && 1115 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1116 SE.getConstant(Min)); 1117 } 1118 1119 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1120 bool Signed) { 1121 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1122 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1123 APInt::getMaxValue(BitWidth); 1124 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1125 return SE.isAvailableAtLoopEntry(S, L) && 1126 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1127 SE.getConstant(Max)); 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // rewriteLoopExitValues - Optimize IV users outside the loop. 1132 // As a side effect, reduces the amount of IV processing within the loop. 1133 //===----------------------------------------------------------------------===// 1134 1135 // Return true if the SCEV expansion generated by the rewriter can replace the 1136 // original value. SCEV guarantees that it produces the same value, but the way 1137 // it is produced may be illegal IR. Ideally, this function will only be 1138 // called for verification. 1139 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { 1140 // If an SCEV expression subsumed multiple pointers, its expansion could 1141 // reassociate the GEP changing the base pointer. This is illegal because the 1142 // final address produced by a GEP chain must be inbounds relative to its 1143 // underlying object. Otherwise basic alias analysis, among other things, 1144 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 1145 // producing an expression involving multiple pointers. Until then, we must 1146 // bail out here. 1147 // 1148 // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject 1149 // because it understands lcssa phis while SCEV does not. 1150 Value *FromPtr = FromVal; 1151 Value *ToPtr = ToVal; 1152 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) 1153 FromPtr = GEP->getPointerOperand(); 1154 1155 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) 1156 ToPtr = GEP->getPointerOperand(); 1157 1158 if (FromPtr != FromVal || ToPtr != ToVal) { 1159 // Quickly check the common case 1160 if (FromPtr == ToPtr) 1161 return true; 1162 1163 // SCEV may have rewritten an expression that produces the GEP's pointer 1164 // operand. That's ok as long as the pointer operand has the same base 1165 // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the 1166 // base of a recurrence. This handles the case in which SCEV expansion 1167 // converts a pointer type recurrence into a nonrecurrent pointer base 1168 // indexed by an integer recurrence. 1169 1170 // If the GEP base pointer is a vector of pointers, abort. 1171 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 1172 return false; 1173 1174 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 1175 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 1176 if (FromBase == ToBase) 1177 return true; 1178 1179 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out " 1180 << *FromBase << " != " << *ToBase << "\n"); 1181 1182 return false; 1183 } 1184 return true; 1185 } 1186 1187 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1188 SmallPtrSet<const Instruction *, 8> Visited; 1189 SmallVector<const Instruction *, 8> WorkList; 1190 Visited.insert(I); 1191 WorkList.push_back(I); 1192 while (!WorkList.empty()) { 1193 const Instruction *Curr = WorkList.pop_back_val(); 1194 // This use is outside the loop, nothing to do. 1195 if (!L->contains(Curr)) 1196 continue; 1197 // Do we assume it is a "hard" use which will not be eliminated easily? 1198 if (Curr->mayHaveSideEffects()) 1199 return true; 1200 // Otherwise, add all its users to worklist. 1201 for (auto U : Curr->users()) { 1202 auto *UI = cast<Instruction>(U); 1203 if (Visited.insert(UI).second) 1204 WorkList.push_back(UI); 1205 } 1206 } 1207 return false; 1208 } 1209 1210 // Collect information about PHI nodes which can be transformed in 1211 // rewriteLoopExitValues. 1212 struct RewritePhi { 1213 PHINode *PN; // For which PHI node is this replacement? 1214 unsigned Ith; // For which incoming value? 1215 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1216 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1217 bool HighCost; // Is this expansion a high-cost? 1218 1219 Value *Expansion = nullptr; 1220 bool ValidRewrite = false; 1221 1222 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1223 bool H) 1224 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1225 HighCost(H) {} 1226 }; 1227 1228 // Check whether it is possible to delete the loop after rewriting exit 1229 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1230 // aggressively. 1231 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1232 BasicBlock *Preheader = L->getLoopPreheader(); 1233 // If there is no preheader, the loop will not be deleted. 1234 if (!Preheader) 1235 return false; 1236 1237 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1238 // We obviate multiple ExitingBlocks case for simplicity. 1239 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1240 // after exit value rewriting, we can enhance the logic here. 1241 SmallVector<BasicBlock *, 4> ExitingBlocks; 1242 L->getExitingBlocks(ExitingBlocks); 1243 SmallVector<BasicBlock *, 8> ExitBlocks; 1244 L->getUniqueExitBlocks(ExitBlocks); 1245 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1246 return false; 1247 1248 BasicBlock *ExitBlock = ExitBlocks[0]; 1249 BasicBlock::iterator BI = ExitBlock->begin(); 1250 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1251 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1252 1253 // If the Incoming value of P is found in RewritePhiSet, we know it 1254 // could be rewritten to use a loop invariant value in transformation 1255 // phase later. Skip it in the loop invariant check below. 1256 bool found = false; 1257 for (const RewritePhi &Phi : RewritePhiSet) { 1258 if (!Phi.ValidRewrite) 1259 continue; 1260 unsigned i = Phi.Ith; 1261 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1262 found = true; 1263 break; 1264 } 1265 } 1266 1267 Instruction *I; 1268 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1269 if (!L->hasLoopInvariantOperands(I)) 1270 return false; 1271 1272 ++BI; 1273 } 1274 1275 for (auto *BB : L->blocks()) 1276 if (llvm::any_of(*BB, [](Instruction &I) { 1277 return I.mayHaveSideEffects(); 1278 })) 1279 return false; 1280 1281 return true; 1282 } 1283 1284 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1285 ScalarEvolution *SE, 1286 const TargetTransformInfo *TTI, 1287 SCEVExpander &Rewriter, DominatorTree *DT, 1288 ReplaceExitVal ReplaceExitValue, 1289 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1290 // Check a pre-condition. 1291 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1292 "Indvars did not preserve LCSSA!"); 1293 1294 SmallVector<BasicBlock*, 8> ExitBlocks; 1295 L->getUniqueExitBlocks(ExitBlocks); 1296 1297 SmallVector<RewritePhi, 8> RewritePhiSet; 1298 // Find all values that are computed inside the loop, but used outside of it. 1299 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1300 // the exit blocks of the loop to find them. 1301 for (BasicBlock *ExitBB : ExitBlocks) { 1302 // If there are no PHI nodes in this exit block, then no values defined 1303 // inside the loop are used on this path, skip it. 1304 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1305 if (!PN) continue; 1306 1307 unsigned NumPreds = PN->getNumIncomingValues(); 1308 1309 // Iterate over all of the PHI nodes. 1310 BasicBlock::iterator BBI = ExitBB->begin(); 1311 while ((PN = dyn_cast<PHINode>(BBI++))) { 1312 if (PN->use_empty()) 1313 continue; // dead use, don't replace it 1314 1315 if (!SE->isSCEVable(PN->getType())) 1316 continue; 1317 1318 // It's necessary to tell ScalarEvolution about this explicitly so that 1319 // it can walk the def-use list and forget all SCEVs, as it may not be 1320 // watching the PHI itself. Once the new exit value is in place, there 1321 // may not be a def-use connection between the loop and every instruction 1322 // which got a SCEVAddRecExpr for that loop. 1323 SE->forgetValue(PN); 1324 1325 // Iterate over all of the values in all the PHI nodes. 1326 for (unsigned i = 0; i != NumPreds; ++i) { 1327 // If the value being merged in is not integer or is not defined 1328 // in the loop, skip it. 1329 Value *InVal = PN->getIncomingValue(i); 1330 if (!isa<Instruction>(InVal)) 1331 continue; 1332 1333 // If this pred is for a subloop, not L itself, skip it. 1334 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1335 continue; // The Block is in a subloop, skip it. 1336 1337 // Check that InVal is defined in the loop. 1338 Instruction *Inst = cast<Instruction>(InVal); 1339 if (!L->contains(Inst)) 1340 continue; 1341 1342 // Okay, this instruction has a user outside of the current loop 1343 // and varies predictably *inside* the loop. Evaluate the value it 1344 // contains when the loop exits, if possible. We prefer to start with 1345 // expressions which are true for all exits (so as to maximize 1346 // expression reuse by the SCEVExpander), but resort to per-exit 1347 // evaluation if that fails. 1348 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1349 if (isa<SCEVCouldNotCompute>(ExitValue) || 1350 !SE->isLoopInvariant(ExitValue, L) || 1351 !isSafeToExpand(ExitValue, *SE)) { 1352 // TODO: This should probably be sunk into SCEV in some way; maybe a 1353 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1354 // most SCEV expressions and other recurrence types (e.g. shift 1355 // recurrences). Is there existing code we can reuse? 1356 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1357 if (isa<SCEVCouldNotCompute>(ExitCount)) 1358 continue; 1359 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1360 if (AddRec->getLoop() == L) 1361 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1362 if (isa<SCEVCouldNotCompute>(ExitValue) || 1363 !SE->isLoopInvariant(ExitValue, L) || 1364 !isSafeToExpand(ExitValue, *SE)) 1365 continue; 1366 } 1367 1368 // Computing the value outside of the loop brings no benefit if it is 1369 // definitely used inside the loop in a way which can not be optimized 1370 // away. Avoid doing so unless we know we have a value which computes 1371 // the ExitValue already. TODO: This should be merged into SCEV 1372 // expander to leverage its knowledge of existing expressions. 1373 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1374 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1375 continue; 1376 1377 // Check if expansions of this SCEV would count as being high cost. 1378 bool HighCost = Rewriter.isHighCostExpansion( 1379 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1380 1381 // Note that we must not perform expansions until after 1382 // we query *all* the costs, because if we perform temporary expansion 1383 // inbetween, one that we might not intend to keep, said expansion 1384 // *may* affect cost calculation of the the next SCEV's we'll query, 1385 // and next SCEV may errneously get smaller cost. 1386 1387 // Collect all the candidate PHINodes to be rewritten. 1388 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1389 } 1390 } 1391 } 1392 1393 // Now that we've done preliminary filtering and billed all the SCEV's, 1394 // we can perform the last sanity check - the expansion must be valid. 1395 for (RewritePhi &Phi : RewritePhiSet) { 1396 Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(), 1397 Phi.ExpansionPoint); 1398 1399 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " 1400 << *(Phi.Expansion) << '\n' 1401 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1402 1403 // FIXME: isValidRewrite() is a hack. it should be an assert, eventually. 1404 Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion); 1405 if (!Phi.ValidRewrite) { 1406 DeadInsts.push_back(Phi.Expansion); 1407 continue; 1408 } 1409 1410 #ifndef NDEBUG 1411 // If we reuse an instruction from a loop which is neither L nor one of 1412 // its containing loops, we end up breaking LCSSA form for this loop by 1413 // creating a new use of its instruction. 1414 if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion)) 1415 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1416 if (EVL != L) 1417 assert(EVL->contains(L) && "LCSSA breach detected!"); 1418 #endif 1419 } 1420 1421 // TODO: after isValidRewrite() is an assertion, evaluate whether 1422 // it is beneficial to change how we calculate high-cost: 1423 // if we have SCEV 'A' which we know we will expand, should we calculate 1424 // the cost of other SCEV's after expanding SCEV 'A', 1425 // thus potentially giving cost bonus to those other SCEV's? 1426 1427 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1428 int NumReplaced = 0; 1429 1430 // Transformation. 1431 for (const RewritePhi &Phi : RewritePhiSet) { 1432 if (!Phi.ValidRewrite) 1433 continue; 1434 1435 PHINode *PN = Phi.PN; 1436 Value *ExitVal = Phi.Expansion; 1437 1438 // Only do the rewrite when the ExitValue can be expanded cheaply. 1439 // If LoopCanBeDel is true, rewrite exit value aggressively. 1440 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 1441 DeadInsts.push_back(ExitVal); 1442 continue; 1443 } 1444 1445 NumReplaced++; 1446 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1447 PN->setIncomingValue(Phi.Ith, ExitVal); 1448 1449 // If this instruction is dead now, delete it. Don't do it now to avoid 1450 // invalidating iterators. 1451 if (isInstructionTriviallyDead(Inst, TLI)) 1452 DeadInsts.push_back(Inst); 1453 1454 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1455 if (PN->getNumIncomingValues() == 1 && 1456 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1457 PN->replaceAllUsesWith(ExitVal); 1458 PN->eraseFromParent(); 1459 } 1460 } 1461 1462 // The insertion point instruction may have been deleted; clear it out 1463 // so that the rewriter doesn't trip over it later. 1464 Rewriter.clearInsertPoint(); 1465 return NumReplaced; 1466 } 1467 1468 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1469 /// \p OrigLoop. 1470 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1471 Loop *RemainderLoop, uint64_t UF) { 1472 assert(UF > 0 && "Zero unrolled factor is not supported"); 1473 assert(UnrolledLoop != RemainderLoop && 1474 "Unrolled and Remainder loops are expected to distinct"); 1475 1476 // Get number of iterations in the original scalar loop. 1477 unsigned OrigLoopInvocationWeight = 0; 1478 Optional<unsigned> OrigAverageTripCount = 1479 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1480 if (!OrigAverageTripCount) 1481 return; 1482 1483 // Calculate number of iterations in unrolled loop. 1484 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1485 // Calculate number of iterations for remainder loop. 1486 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1487 1488 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1489 OrigLoopInvocationWeight); 1490 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1491 OrigLoopInvocationWeight); 1492 } 1493 1494 /// Utility that implements appending of loops onto a worklist. 1495 /// Loops are added in preorder (analogous for reverse postorder for trees), 1496 /// and the worklist is processed LIFO. 1497 template <typename RangeT> 1498 void llvm::appendReversedLoopsToWorklist( 1499 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1500 // We use an internal worklist to build up the preorder traversal without 1501 // recursion. 1502 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1503 1504 // We walk the initial sequence of loops in reverse because we generally want 1505 // to visit defs before uses and the worklist is LIFO. 1506 for (Loop *RootL : Loops) { 1507 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1508 assert(PreOrderWorklist.empty() && 1509 "Must start with an empty preorder walk worklist."); 1510 PreOrderWorklist.push_back(RootL); 1511 do { 1512 Loop *L = PreOrderWorklist.pop_back_val(); 1513 PreOrderWorklist.append(L->begin(), L->end()); 1514 PreOrderLoops.push_back(L); 1515 } while (!PreOrderWorklist.empty()); 1516 1517 Worklist.insert(std::move(PreOrderLoops)); 1518 PreOrderLoops.clear(); 1519 } 1520 } 1521 1522 template <typename RangeT> 1523 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1524 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1525 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1526 } 1527 1528 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1529 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1530 1531 template void 1532 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1533 SmallPriorityWorklist<Loop *, 4> &Worklist); 1534 1535 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1536 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1537 appendReversedLoopsToWorklist(LI, Worklist); 1538 } 1539 1540 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1541 LoopInfo *LI, LPPassManager *LPM) { 1542 Loop &New = *LI->AllocateLoop(); 1543 if (PL) 1544 PL->addChildLoop(&New); 1545 else 1546 LI->addTopLevelLoop(&New); 1547 1548 if (LPM) 1549 LPM->addLoop(New); 1550 1551 // Add all of the blocks in L to the new loop. 1552 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 1553 I != E; ++I) 1554 if (LI->getLoopFor(*I) == L) 1555 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 1556 1557 // Add all of the subloops to the new loop. 1558 for (Loop *I : *L) 1559 cloneLoop(I, &New, VM, LI, LPM); 1560 1561 return &New; 1562 } 1563 1564 /// IR Values for the lower and upper bounds of a pointer evolution. We 1565 /// need to use value-handles because SCEV expansion can invalidate previously 1566 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1567 /// a previous one. 1568 struct PointerBounds { 1569 TrackingVH<Value> Start; 1570 TrackingVH<Value> End; 1571 }; 1572 1573 /// Expand code for the lower and upper bound of the pointer group \p CG 1574 /// in \p TheLoop. \return the values for the bounds. 1575 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1576 Loop *TheLoop, Instruction *Loc, 1577 SCEVExpander &Exp, ScalarEvolution *SE) { 1578 // TODO: Add helper to retrieve pointers to CG. 1579 Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue; 1580 const SCEV *Sc = SE->getSCEV(Ptr); 1581 1582 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1583 LLVMContext &Ctx = Loc->getContext(); 1584 1585 // Use this type for pointer arithmetic. 1586 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1587 1588 if (SE->isLoopInvariant(Sc, TheLoop)) { 1589 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 1590 << *Ptr << "\n"); 1591 // Ptr could be in the loop body. If so, expand a new one at the correct 1592 // location. 1593 Instruction *Inst = dyn_cast<Instruction>(Ptr); 1594 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 1595 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 1596 : Ptr; 1597 // We must return a half-open range, which means incrementing Sc. 1598 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 1599 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 1600 return {NewPtr, NewPtrPlusOne}; 1601 } else { 1602 Value *Start = nullptr, *End = nullptr; 1603 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1604 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1605 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1606 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 1607 << "\n"); 1608 return {Start, End}; 1609 } 1610 } 1611 1612 /// Turns a collection of checks into a collection of expanded upper and 1613 /// lower bounds for both pointers in the check. 1614 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1615 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1616 Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) { 1617 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1618 1619 // Here we're relying on the SCEV Expander's cache to only emit code for the 1620 // same bounds once. 1621 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1622 [&](const RuntimePointerCheck &Check) { 1623 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE), 1624 Second = 1625 expandBounds(Check.second, L, Loc, Exp, SE); 1626 return std::make_pair(First, Second); 1627 }); 1628 1629 return ChecksWithBounds; 1630 } 1631 1632 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks( 1633 Instruction *Loc, Loop *TheLoop, 1634 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1635 ScalarEvolution *SE) { 1636 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1637 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1638 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1639 SCEVExpander Exp(*SE, DL, "induction"); 1640 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp); 1641 1642 LLVMContext &Ctx = Loc->getContext(); 1643 Instruction *FirstInst = nullptr; 1644 IRBuilder<> ChkBuilder(Loc); 1645 // Our instructions might fold to a constant. 1646 Value *MemoryRuntimeCheck = nullptr; 1647 1648 // FIXME: this helper is currently a duplicate of the one in 1649 // LoopVectorize.cpp. 1650 auto GetFirstInst = [](Instruction *FirstInst, Value *V, 1651 Instruction *Loc) -> Instruction * { 1652 if (FirstInst) 1653 return FirstInst; 1654 if (Instruction *I = dyn_cast<Instruction>(V)) 1655 return I->getParent() == Loc->getParent() ? I : nullptr; 1656 return nullptr; 1657 }; 1658 1659 for (const auto &Check : ExpandedChecks) { 1660 const PointerBounds &A = Check.first, &B = Check.second; 1661 // Check if two pointers (A and B) conflict where conflict is computed as: 1662 // start(A) <= end(B) && start(B) <= end(A) 1663 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1664 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1665 1666 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1667 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1668 "Trying to bounds check pointers with different address spaces"); 1669 1670 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1671 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1672 1673 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1674 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1675 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1676 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1677 1678 // [A|B].Start points to the first accessed byte under base [A|B]. 1679 // [A|B].End points to the last accessed byte, plus one. 1680 // There is no conflict when the intervals are disjoint: 1681 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1682 // 1683 // bound0 = (B.Start < A.End) 1684 // bound1 = (A.Start < B.End) 1685 // IsConflict = bound0 & bound1 1686 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1687 FirstInst = GetFirstInst(FirstInst, Cmp0, Loc); 1688 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1689 FirstInst = GetFirstInst(FirstInst, Cmp1, Loc); 1690 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1691 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1692 if (MemoryRuntimeCheck) { 1693 IsConflict = 1694 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1695 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1696 } 1697 MemoryRuntimeCheck = IsConflict; 1698 } 1699 1700 if (!MemoryRuntimeCheck) 1701 return std::make_pair(nullptr, nullptr); 1702 1703 // We have to do this trickery because the IRBuilder might fold the check to a 1704 // constant expression in which case there is no Instruction anchored in a 1705 // the block. 1706 Instruction *Check = 1707 BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); 1708 ChkBuilder.Insert(Check, "memcheck.conflict"); 1709 FirstInst = GetFirstInst(FirstInst, Check, Loc); 1710 return std::make_pair(FirstInst, Check); 1711 } 1712