1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "loop-utils"
43 
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45                                         SmallPtrSetImpl<Instruction *> &Set) {
46   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47     if (!Set.count(dyn_cast<Instruction>(*Use)))
48       return false;
49   return true;
50 }
51 
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
53   switch (Kind) {
54   default:
55     break;
56   case RK_IntegerAdd:
57   case RK_IntegerMult:
58   case RK_IntegerOr:
59   case RK_IntegerAnd:
60   case RK_IntegerXor:
61   case RK_IntegerMinMax:
62     return true;
63   }
64   return false;
65 }
66 
67 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
68   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
69 }
70 
71 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
72   switch (Kind) {
73   default:
74     break;
75   case RK_IntegerAdd:
76   case RK_IntegerMult:
77   case RK_FloatAdd:
78   case RK_FloatMult:
79     return true;
80   }
81   return false;
82 }
83 
84 /// Determines if Phi may have been type-promoted. If Phi has a single user
85 /// that ANDs the Phi with a type mask, return the user. RT is updated to
86 /// account for the narrower bit width represented by the mask, and the AND
87 /// instruction is added to CI.
88 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
89                                    SmallPtrSetImpl<Instruction *> &Visited,
90                                    SmallPtrSetImpl<Instruction *> &CI) {
91   if (!Phi->hasOneUse())
92     return Phi;
93 
94   const APInt *M = nullptr;
95   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
96 
97   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
98   // with a new integer type of the corresponding bit width.
99   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
100     int32_t Bits = (*M + 1).exactLogBase2();
101     if (Bits > 0) {
102       RT = IntegerType::get(Phi->getContext(), Bits);
103       Visited.insert(Phi);
104       CI.insert(J);
105       return J;
106     }
107   }
108   return Phi;
109 }
110 
111 /// Compute the minimal bit width needed to represent a reduction whose exit
112 /// instruction is given by Exit.
113 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
114                                                      DemandedBits *DB,
115                                                      AssumptionCache *AC,
116                                                      DominatorTree *DT) {
117   bool IsSigned = false;
118   const DataLayout &DL = Exit->getModule()->getDataLayout();
119   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
120 
121   if (DB) {
122     // Use the demanded bits analysis to determine the bits that are live out
123     // of the exit instruction, rounding up to the nearest power of two. If the
124     // use of demanded bits results in a smaller bit width, we know the value
125     // must be positive (i.e., IsSigned = false), because if this were not the
126     // case, the sign bit would have been demanded.
127     auto Mask = DB->getDemandedBits(Exit);
128     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
129   }
130 
131   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
132     // If demanded bits wasn't able to limit the bit width, we can try to use
133     // value tracking instead. This can be the case, for example, if the value
134     // may be negative.
135     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
136     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
137     MaxBitWidth = NumTypeBits - NumSignBits;
138     KnownBits Bits = computeKnownBits(Exit, DL);
139     if (!Bits.isNonNegative()) {
140       // If the value is not known to be non-negative, we set IsSigned to true,
141       // meaning that we will use sext instructions instead of zext
142       // instructions to restore the original type.
143       IsSigned = true;
144       if (!Bits.isNegative())
145         // If the value is not known to be negative, we don't known what the
146         // upper bit is, and therefore, we don't know what kind of extend we
147         // will need. In this case, just increase the bit width by one bit and
148         // use sext.
149         ++MaxBitWidth;
150     }
151   }
152   if (!isPowerOf2_64(MaxBitWidth))
153     MaxBitWidth = NextPowerOf2(MaxBitWidth);
154 
155   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
156                         IsSigned);
157 }
158 
159 /// Collect cast instructions that can be ignored in the vectorizer's cost
160 /// model, given a reduction exit value and the minimal type in which the
161 /// reduction can be represented.
162 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
163                                  Type *RecurrenceType,
164                                  SmallPtrSetImpl<Instruction *> &Casts) {
165 
166   SmallVector<Instruction *, 8> Worklist;
167   SmallPtrSet<Instruction *, 8> Visited;
168   Worklist.push_back(Exit);
169 
170   while (!Worklist.empty()) {
171     Instruction *Val = Worklist.pop_back_val();
172     Visited.insert(Val);
173     if (auto *Cast = dyn_cast<CastInst>(Val))
174       if (Cast->getSrcTy() == RecurrenceType) {
175         // If the source type of a cast instruction is equal to the recurrence
176         // type, it will be eliminated, and should be ignored in the vectorizer
177         // cost model.
178         Casts.insert(Cast);
179         continue;
180       }
181 
182     // Add all operands to the work list if they are loop-varying values that
183     // we haven't yet visited.
184     for (Value *O : cast<User>(Val)->operands())
185       if (auto *I = dyn_cast<Instruction>(O))
186         if (TheLoop->contains(I) && !Visited.count(I))
187           Worklist.push_back(I);
188   }
189 }
190 
191 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
192                                            Loop *TheLoop, bool HasFunNoNaNAttr,
193                                            RecurrenceDescriptor &RedDes,
194                                            DemandedBits *DB,
195                                            AssumptionCache *AC,
196                                            DominatorTree *DT) {
197   if (Phi->getNumIncomingValues() != 2)
198     return false;
199 
200   // Reduction variables are only found in the loop header block.
201   if (Phi->getParent() != TheLoop->getHeader())
202     return false;
203 
204   // Obtain the reduction start value from the value that comes from the loop
205   // preheader.
206   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
207 
208   // ExitInstruction is the single value which is used outside the loop.
209   // We only allow for a single reduction value to be used outside the loop.
210   // This includes users of the reduction, variables (which form a cycle
211   // which ends in the phi node).
212   Instruction *ExitInstruction = nullptr;
213   // Indicates that we found a reduction operation in our scan.
214   bool FoundReduxOp = false;
215 
216   // We start with the PHI node and scan for all of the users of this
217   // instruction. All users must be instructions that can be used as reduction
218   // variables (such as ADD). We must have a single out-of-block user. The cycle
219   // must include the original PHI.
220   bool FoundStartPHI = false;
221 
222   // To recognize min/max patterns formed by a icmp select sequence, we store
223   // the number of instruction we saw from the recognized min/max pattern,
224   //  to make sure we only see exactly the two instructions.
225   unsigned NumCmpSelectPatternInst = 0;
226   InstDesc ReduxDesc(false, nullptr);
227 
228   // Data used for determining if the recurrence has been type-promoted.
229   Type *RecurrenceType = Phi->getType();
230   SmallPtrSet<Instruction *, 4> CastInsts;
231   Instruction *Start = Phi;
232   bool IsSigned = false;
233 
234   SmallPtrSet<Instruction *, 8> VisitedInsts;
235   SmallVector<Instruction *, 8> Worklist;
236 
237   // Return early if the recurrence kind does not match the type of Phi. If the
238   // recurrence kind is arithmetic, we attempt to look through AND operations
239   // resulting from the type promotion performed by InstCombine.  Vector
240   // operations are not limited to the legal integer widths, so we may be able
241   // to evaluate the reduction in the narrower width.
242   if (RecurrenceType->isFloatingPointTy()) {
243     if (!isFloatingPointRecurrenceKind(Kind))
244       return false;
245   } else {
246     if (!isIntegerRecurrenceKind(Kind))
247       return false;
248     if (isArithmeticRecurrenceKind(Kind))
249       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
250   }
251 
252   Worklist.push_back(Start);
253   VisitedInsts.insert(Start);
254 
255   // A value in the reduction can be used:
256   //  - By the reduction:
257   //      - Reduction operation:
258   //        - One use of reduction value (safe).
259   //        - Multiple use of reduction value (not safe).
260   //      - PHI:
261   //        - All uses of the PHI must be the reduction (safe).
262   //        - Otherwise, not safe.
263   //  - By instructions outside of the loop (safe).
264   //      * One value may have several outside users, but all outside
265   //        uses must be of the same value.
266   //  - By an instruction that is not part of the reduction (not safe).
267   //    This is either:
268   //      * An instruction type other than PHI or the reduction operation.
269   //      * A PHI in the header other than the initial PHI.
270   while (!Worklist.empty()) {
271     Instruction *Cur = Worklist.back();
272     Worklist.pop_back();
273 
274     // No Users.
275     // If the instruction has no users then this is a broken chain and can't be
276     // a reduction variable.
277     if (Cur->use_empty())
278       return false;
279 
280     bool IsAPhi = isa<PHINode>(Cur);
281 
282     // A header PHI use other than the original PHI.
283     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
284       return false;
285 
286     // Reductions of instructions such as Div, and Sub is only possible if the
287     // LHS is the reduction variable.
288     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
289         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
290         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
291       return false;
292 
293     // Any reduction instruction must be of one of the allowed kinds. We ignore
294     // the starting value (the Phi or an AND instruction if the Phi has been
295     // type-promoted).
296     if (Cur != Start) {
297       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
298       if (!ReduxDesc.isRecurrence())
299         return false;
300     }
301 
302     // A reduction operation must only have one use of the reduction value.
303     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
304         hasMultipleUsesOf(Cur, VisitedInsts))
305       return false;
306 
307     // All inputs to a PHI node must be a reduction value.
308     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
309       return false;
310 
311     if (Kind == RK_IntegerMinMax &&
312         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
313       ++NumCmpSelectPatternInst;
314     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
315       ++NumCmpSelectPatternInst;
316 
317     // Check  whether we found a reduction operator.
318     FoundReduxOp |= !IsAPhi && Cur != Start;
319 
320     // Process users of current instruction. Push non-PHI nodes after PHI nodes
321     // onto the stack. This way we are going to have seen all inputs to PHI
322     // nodes once we get to them.
323     SmallVector<Instruction *, 8> NonPHIs;
324     SmallVector<Instruction *, 8> PHIs;
325     for (User *U : Cur->users()) {
326       Instruction *UI = cast<Instruction>(U);
327 
328       // Check if we found the exit user.
329       BasicBlock *Parent = UI->getParent();
330       if (!TheLoop->contains(Parent)) {
331         // If we already know this instruction is used externally, move on to
332         // the next user.
333         if (ExitInstruction == Cur)
334           continue;
335 
336         // Exit if you find multiple values used outside or if the header phi
337         // node is being used. In this case the user uses the value of the
338         // previous iteration, in which case we would loose "VF-1" iterations of
339         // the reduction operation if we vectorize.
340         if (ExitInstruction != nullptr || Cur == Phi)
341           return false;
342 
343         // The instruction used by an outside user must be the last instruction
344         // before we feed back to the reduction phi. Otherwise, we loose VF-1
345         // operations on the value.
346         if (!is_contained(Phi->operands(), Cur))
347           return false;
348 
349         ExitInstruction = Cur;
350         continue;
351       }
352 
353       // Process instructions only once (termination). Each reduction cycle
354       // value must only be used once, except by phi nodes and min/max
355       // reductions which are represented as a cmp followed by a select.
356       InstDesc IgnoredVal(false, nullptr);
357       if (VisitedInsts.insert(UI).second) {
358         if (isa<PHINode>(UI))
359           PHIs.push_back(UI);
360         else
361           NonPHIs.push_back(UI);
362       } else if (!isa<PHINode>(UI) &&
363                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
364                    !isa<SelectInst>(UI)) ||
365                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
366         return false;
367 
368       // Remember that we completed the cycle.
369       if (UI == Phi)
370         FoundStartPHI = true;
371     }
372     Worklist.append(PHIs.begin(), PHIs.end());
373     Worklist.append(NonPHIs.begin(), NonPHIs.end());
374   }
375 
376   // This means we have seen one but not the other instruction of the
377   // pattern or more than just a select and cmp.
378   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
379       NumCmpSelectPatternInst != 2)
380     return false;
381 
382   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
383     return false;
384 
385   if (Start != Phi) {
386     // If the starting value is not the same as the phi node, we speculatively
387     // looked through an 'and' instruction when evaluating a potential
388     // arithmetic reduction to determine if it may have been type-promoted.
389     //
390     // We now compute the minimal bit width that is required to represent the
391     // reduction. If this is the same width that was indicated by the 'and', we
392     // can represent the reduction in the smaller type. The 'and' instruction
393     // will be eliminated since it will essentially be a cast instruction that
394     // can be ignore in the cost model. If we compute a different type than we
395     // did when evaluating the 'and', the 'and' will not be eliminated, and we
396     // will end up with different kinds of operations in the recurrence
397     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
398     // the case.
399     //
400     // The vectorizer relies on InstCombine to perform the actual
401     // type-shrinking. It does this by inserting instructions to truncate the
402     // exit value of the reduction to the width indicated by RecurrenceType and
403     // then extend this value back to the original width. If IsSigned is false,
404     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
405     // used.
406     //
407     // TODO: We should not rely on InstCombine to rewrite the reduction in the
408     //       smaller type. We should just generate a correctly typed expression
409     //       to begin with.
410     Type *ComputedType;
411     std::tie(ComputedType, IsSigned) =
412         computeRecurrenceType(ExitInstruction, DB, AC, DT);
413     if (ComputedType != RecurrenceType)
414       return false;
415 
416     // The recurrence expression will be represented in a narrower type. If
417     // there are any cast instructions that will be unnecessary, collect them
418     // in CastInsts. Note that the 'and' instruction was already included in
419     // this list.
420     //
421     // TODO: A better way to represent this may be to tag in some way all the
422     //       instructions that are a part of the reduction. The vectorizer cost
423     //       model could then apply the recurrence type to these instructions,
424     //       without needing a white list of instructions to ignore.
425     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
426   }
427 
428   // We found a reduction var if we have reached the original phi node and we
429   // only have a single instruction with out-of-loop users.
430 
431   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
432   // is saved as part of the RecurrenceDescriptor.
433 
434   // Save the description of this reduction variable.
435   RecurrenceDescriptor RD(
436       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
437       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
438   RedDes = RD;
439 
440   return true;
441 }
442 
443 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
444 /// pattern corresponding to a min(X, Y) or max(X, Y).
445 RecurrenceDescriptor::InstDesc
446 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
447 
448   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
449          "Expect a select instruction");
450   Instruction *Cmp = nullptr;
451   SelectInst *Select = nullptr;
452 
453   // We must handle the select(cmp()) as a single instruction. Advance to the
454   // select.
455   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
456     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
457       return InstDesc(false, I);
458     return InstDesc(Select, Prev.getMinMaxKind());
459   }
460 
461   // Only handle single use cases for now.
462   if (!(Select = dyn_cast<SelectInst>(I)))
463     return InstDesc(false, I);
464   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
465       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
466     return InstDesc(false, I);
467   if (!Cmp->hasOneUse())
468     return InstDesc(false, I);
469 
470   Value *CmpLeft;
471   Value *CmpRight;
472 
473   // Look for a min/max pattern.
474   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
475     return InstDesc(Select, MRK_UIntMin);
476   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
477     return InstDesc(Select, MRK_UIntMax);
478   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
479     return InstDesc(Select, MRK_SIntMax);
480   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
481     return InstDesc(Select, MRK_SIntMin);
482   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
483     return InstDesc(Select, MRK_FloatMin);
484   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
485     return InstDesc(Select, MRK_FloatMax);
486   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
487     return InstDesc(Select, MRK_FloatMin);
488   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
489     return InstDesc(Select, MRK_FloatMax);
490 
491   return InstDesc(false, I);
492 }
493 
494 RecurrenceDescriptor::InstDesc
495 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
496                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
497   bool FP = I->getType()->isFloatingPointTy();
498   Instruction *UAI = Prev.getUnsafeAlgebraInst();
499   if (!UAI && FP && !I->isFast())
500     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
501 
502   switch (I->getOpcode()) {
503   default:
504     return InstDesc(false, I);
505   case Instruction::PHI:
506     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
507   case Instruction::Sub:
508   case Instruction::Add:
509     return InstDesc(Kind == RK_IntegerAdd, I);
510   case Instruction::Mul:
511     return InstDesc(Kind == RK_IntegerMult, I);
512   case Instruction::And:
513     return InstDesc(Kind == RK_IntegerAnd, I);
514   case Instruction::Or:
515     return InstDesc(Kind == RK_IntegerOr, I);
516   case Instruction::Xor:
517     return InstDesc(Kind == RK_IntegerXor, I);
518   case Instruction::FMul:
519     return InstDesc(Kind == RK_FloatMult, I, UAI);
520   case Instruction::FSub:
521   case Instruction::FAdd:
522     return InstDesc(Kind == RK_FloatAdd, I, UAI);
523   case Instruction::FCmp:
524   case Instruction::ICmp:
525   case Instruction::Select:
526     if (Kind != RK_IntegerMinMax &&
527         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
528       return InstDesc(false, I);
529     return isMinMaxSelectCmpPattern(I, Prev);
530   }
531 }
532 
533 bool RecurrenceDescriptor::hasMultipleUsesOf(
534     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
535   unsigned NumUses = 0;
536   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
537        ++Use) {
538     if (Insts.count(dyn_cast<Instruction>(*Use)))
539       ++NumUses;
540     if (NumUses > 1)
541       return true;
542   }
543 
544   return false;
545 }
546 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
547                                           RecurrenceDescriptor &RedDes,
548                                           DemandedBits *DB, AssumptionCache *AC,
549                                           DominatorTree *DT) {
550 
551   BasicBlock *Header = TheLoop->getHeader();
552   Function &F = *Header->getParent();
553   bool HasFunNoNaNAttr =
554       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
555 
556   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
557                       AC, DT)) {
558     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
559     return true;
560   }
561   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
562                       AC, DT)) {
563     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
564     return true;
565   }
566   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
567                       AC, DT)) {
568     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
569     return true;
570   }
571   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
572                       AC, DT)) {
573     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
574     return true;
575   }
576   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
577                       AC, DT)) {
578     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
579     return true;
580   }
581   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
582                       DB, AC, DT)) {
583     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
584     return true;
585   }
586   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
587                       AC, DT)) {
588     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
589     return true;
590   }
591   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
592                       AC, DT)) {
593     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
594     return true;
595   }
596   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
597                       AC, DT)) {
598     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
599     return true;
600   }
601   // Not a reduction of known type.
602   return false;
603 }
604 
605 bool RecurrenceDescriptor::isFirstOrderRecurrence(
606     PHINode *Phi, Loop *TheLoop,
607     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
608 
609   // Ensure the phi node is in the loop header and has two incoming values.
610   if (Phi->getParent() != TheLoop->getHeader() ||
611       Phi->getNumIncomingValues() != 2)
612     return false;
613 
614   // Ensure the loop has a preheader and a single latch block. The loop
615   // vectorizer will need the latch to set up the next iteration of the loop.
616   auto *Preheader = TheLoop->getLoopPreheader();
617   auto *Latch = TheLoop->getLoopLatch();
618   if (!Preheader || !Latch)
619     return false;
620 
621   // Ensure the phi node's incoming blocks are the loop preheader and latch.
622   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
623       Phi->getBasicBlockIndex(Latch) < 0)
624     return false;
625 
626   // Get the previous value. The previous value comes from the latch edge while
627   // the initial value comes form the preheader edge.
628   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
629   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
630       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
631     return false;
632 
633   // Ensure every user of the phi node is dominated by the previous value.
634   // The dominance requirement ensures the loop vectorizer will not need to
635   // vectorize the initial value prior to the first iteration of the loop.
636   // TODO: Consider extending this sinking to handle other kinds of instructions
637   // and expressions, beyond sinking a single cast past Previous.
638   if (Phi->hasOneUse()) {
639     auto *I = Phi->user_back();
640     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
641         DT->dominates(Previous, I->user_back())) {
642       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
643         SinkAfter[I] = Previous;
644       return true;
645     }
646   }
647 
648   for (User *U : Phi->users())
649     if (auto *I = dyn_cast<Instruction>(U)) {
650       if (!DT->dominates(Previous, I))
651         return false;
652     }
653 
654   return true;
655 }
656 
657 /// This function returns the identity element (or neutral element) for
658 /// the operation K.
659 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
660                                                       Type *Tp) {
661   switch (K) {
662   case RK_IntegerXor:
663   case RK_IntegerAdd:
664   case RK_IntegerOr:
665     // Adding, Xoring, Oring zero to a number does not change it.
666     return ConstantInt::get(Tp, 0);
667   case RK_IntegerMult:
668     // Multiplying a number by 1 does not change it.
669     return ConstantInt::get(Tp, 1);
670   case RK_IntegerAnd:
671     // AND-ing a number with an all-1 value does not change it.
672     return ConstantInt::get(Tp, -1, true);
673   case RK_FloatMult:
674     // Multiplying a number by 1 does not change it.
675     return ConstantFP::get(Tp, 1.0L);
676   case RK_FloatAdd:
677     // Adding zero to a number does not change it.
678     return ConstantFP::get(Tp, 0.0L);
679   default:
680     llvm_unreachable("Unknown recurrence kind");
681   }
682 }
683 
684 /// This function translates the recurrence kind to an LLVM binary operator.
685 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
686   switch (Kind) {
687   case RK_IntegerAdd:
688     return Instruction::Add;
689   case RK_IntegerMult:
690     return Instruction::Mul;
691   case RK_IntegerOr:
692     return Instruction::Or;
693   case RK_IntegerAnd:
694     return Instruction::And;
695   case RK_IntegerXor:
696     return Instruction::Xor;
697   case RK_FloatMult:
698     return Instruction::FMul;
699   case RK_FloatAdd:
700     return Instruction::FAdd;
701   case RK_IntegerMinMax:
702     return Instruction::ICmp;
703   case RK_FloatMinMax:
704     return Instruction::FCmp;
705   default:
706     llvm_unreachable("Unknown recurrence operation");
707   }
708 }
709 
710 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
711                                             MinMaxRecurrenceKind RK,
712                                             Value *Left, Value *Right) {
713   CmpInst::Predicate P = CmpInst::ICMP_NE;
714   switch (RK) {
715   default:
716     llvm_unreachable("Unknown min/max recurrence kind");
717   case MRK_UIntMin:
718     P = CmpInst::ICMP_ULT;
719     break;
720   case MRK_UIntMax:
721     P = CmpInst::ICMP_UGT;
722     break;
723   case MRK_SIntMin:
724     P = CmpInst::ICMP_SLT;
725     break;
726   case MRK_SIntMax:
727     P = CmpInst::ICMP_SGT;
728     break;
729   case MRK_FloatMin:
730     P = CmpInst::FCMP_OLT;
731     break;
732   case MRK_FloatMax:
733     P = CmpInst::FCMP_OGT;
734     break;
735   }
736 
737   // We only match FP sequences that are 'fast', so we can unconditionally
738   // set it on any generated instructions.
739   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
740   FastMathFlags FMF;
741   FMF.setFast();
742   Builder.setFastMathFlags(FMF);
743 
744   Value *Cmp;
745   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
746     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
747   else
748     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
749 
750   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
751   return Select;
752 }
753 
754 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
755                                          const SCEV *Step, BinaryOperator *BOp,
756                                          SmallVectorImpl<Instruction *> *Casts)
757   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
758   assert(IK != IK_NoInduction && "Not an induction");
759 
760   // Start value type should match the induction kind and the value
761   // itself should not be null.
762   assert(StartValue && "StartValue is null");
763   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
764          "StartValue is not a pointer for pointer induction");
765   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
766          "StartValue is not an integer for integer induction");
767 
768   // Check the Step Value. It should be non-zero integer value.
769   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
770          "Step value is zero");
771 
772   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
773          "Step value should be constant for pointer induction");
774   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
775          "StepValue is not an integer");
776 
777   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
778          "StepValue is not FP for FpInduction");
779   assert((IK != IK_FpInduction || (InductionBinOp &&
780           (InductionBinOp->getOpcode() == Instruction::FAdd ||
781            InductionBinOp->getOpcode() == Instruction::FSub))) &&
782          "Binary opcode should be specified for FP induction");
783 
784   if (Casts) {
785     for (auto &Inst : *Casts) {
786       RedundantCasts.push_back(Inst);
787     }
788   }
789 }
790 
791 int InductionDescriptor::getConsecutiveDirection() const {
792   ConstantInt *ConstStep = getConstIntStepValue();
793   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
794     return ConstStep->getSExtValue();
795   return 0;
796 }
797 
798 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
799   if (isa<SCEVConstant>(Step))
800     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
801   return nullptr;
802 }
803 
804 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
805                                       ScalarEvolution *SE,
806                                       const DataLayout& DL) const {
807 
808   SCEVExpander Exp(*SE, DL, "induction");
809   assert(Index->getType() == Step->getType() &&
810          "Index type does not match StepValue type");
811   switch (IK) {
812   case IK_IntInduction: {
813     assert(Index->getType() == StartValue->getType() &&
814            "Index type does not match StartValue type");
815 
816     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
817     // and calculate (Start + Index * Step) for all cases, without
818     // special handling for "isOne" and "isMinusOne".
819     // But in the real life the result code getting worse. We mix SCEV
820     // expressions and ADD/SUB operations and receive redundant
821     // intermediate values being calculated in different ways and
822     // Instcombine is unable to reduce them all.
823 
824     if (getConstIntStepValue() &&
825         getConstIntStepValue()->isMinusOne())
826       return B.CreateSub(StartValue, Index);
827     if (getConstIntStepValue() &&
828         getConstIntStepValue()->isOne())
829       return B.CreateAdd(StartValue, Index);
830     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
831                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
832     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
833   }
834   case IK_PtrInduction: {
835     assert(isa<SCEVConstant>(Step) &&
836            "Expected constant step for pointer induction");
837     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
838     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
839     return B.CreateGEP(nullptr, StartValue, Index);
840   }
841   case IK_FpInduction: {
842     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
843     assert(InductionBinOp &&
844            (InductionBinOp->getOpcode() == Instruction::FAdd ||
845             InductionBinOp->getOpcode() == Instruction::FSub) &&
846            "Original bin op should be defined for FP induction");
847 
848     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
849 
850     // Floating point operations had to be 'fast' to enable the induction.
851     FastMathFlags Flags;
852     Flags.setFast();
853 
854     Value *MulExp = B.CreateFMul(StepValue, Index);
855     if (isa<Instruction>(MulExp))
856       // We have to check, the MulExp may be a constant.
857       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
858 
859     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
860                                MulExp, "induction");
861     if (isa<Instruction>(BOp))
862       cast<Instruction>(BOp)->setFastMathFlags(Flags);
863 
864     return BOp;
865   }
866   case IK_NoInduction:
867     return nullptr;
868   }
869   llvm_unreachable("invalid enum");
870 }
871 
872 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
873                                            ScalarEvolution *SE,
874                                            InductionDescriptor &D) {
875 
876   // Here we only handle FP induction variables.
877   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
878 
879   if (TheLoop->getHeader() != Phi->getParent())
880     return false;
881 
882   // The loop may have multiple entrances or multiple exits; we can analyze
883   // this phi if it has a unique entry value and a unique backedge value.
884   if (Phi->getNumIncomingValues() != 2)
885     return false;
886   Value *BEValue = nullptr, *StartValue = nullptr;
887   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
888     BEValue = Phi->getIncomingValue(0);
889     StartValue = Phi->getIncomingValue(1);
890   } else {
891     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
892            "Unexpected Phi node in the loop");
893     BEValue = Phi->getIncomingValue(1);
894     StartValue = Phi->getIncomingValue(0);
895   }
896 
897   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
898   if (!BOp)
899     return false;
900 
901   Value *Addend = nullptr;
902   if (BOp->getOpcode() == Instruction::FAdd) {
903     if (BOp->getOperand(0) == Phi)
904       Addend = BOp->getOperand(1);
905     else if (BOp->getOperand(1) == Phi)
906       Addend = BOp->getOperand(0);
907   } else if (BOp->getOpcode() == Instruction::FSub)
908     if (BOp->getOperand(0) == Phi)
909       Addend = BOp->getOperand(1);
910 
911   if (!Addend)
912     return false;
913 
914   // The addend should be loop invariant
915   if (auto *I = dyn_cast<Instruction>(Addend))
916     if (TheLoop->contains(I))
917       return false;
918 
919   // FP Step has unknown SCEV
920   const SCEV *Step = SE->getUnknown(Addend);
921   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
922   return true;
923 }
924 
925 /// This function is called when we suspect that the update-chain of a phi node
926 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
927 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
928 /// predicate P under which the SCEV expression for the phi can be the
929 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
930 /// cast instructions that are involved in the update-chain of this induction.
931 /// A caller that adds the required runtime predicate can be free to drop these
932 /// cast instructions, and compute the phi using \p AR (instead of some scev
933 /// expression with casts).
934 ///
935 /// For example, without a predicate the scev expression can take the following
936 /// form:
937 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
938 ///
939 /// It corresponds to the following IR sequence:
940 /// %for.body:
941 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
942 ///   %casted_phi = "ExtTrunc i64 %x"
943 ///   %add = add i64 %casted_phi, %step
944 ///
945 /// where %x is given in \p PN,
946 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
947 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
948 /// several forms, for example, such as:
949 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
950 /// or:
951 ///   ExtTrunc2:    %t = shl %x, m
952 ///                 %casted_phi = ashr %t, m
953 ///
954 /// If we are able to find such sequence, we return the instructions
955 /// we found, namely %casted_phi and the instructions on its use-def chain up
956 /// to the phi (not including the phi).
957 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
958                                     const SCEVUnknown *PhiScev,
959                                     const SCEVAddRecExpr *AR,
960                                     SmallVectorImpl<Instruction *> &CastInsts) {
961 
962   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
963   auto *PN = cast<PHINode>(PhiScev->getValue());
964   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
965   const Loop *L = AR->getLoop();
966 
967   // Find any cast instructions that participate in the def-use chain of
968   // PhiScev in the loop.
969   // FORNOW/TODO: We currently expect the def-use chain to include only
970   // two-operand instructions, where one of the operands is an invariant.
971   // createAddRecFromPHIWithCasts() currently does not support anything more
972   // involved than that, so we keep the search simple. This can be
973   // extended/generalized as needed.
974 
975   auto getDef = [&](const Value *Val) -> Value * {
976     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
977     if (!BinOp)
978       return nullptr;
979     Value *Op0 = BinOp->getOperand(0);
980     Value *Op1 = BinOp->getOperand(1);
981     Value *Def = nullptr;
982     if (L->isLoopInvariant(Op0))
983       Def = Op1;
984     else if (L->isLoopInvariant(Op1))
985       Def = Op0;
986     return Def;
987   };
988 
989   // Look for the instruction that defines the induction via the
990   // loop backedge.
991   BasicBlock *Latch = L->getLoopLatch();
992   if (!Latch)
993     return false;
994   Value *Val = PN->getIncomingValueForBlock(Latch);
995   if (!Val)
996     return false;
997 
998   // Follow the def-use chain until the induction phi is reached.
999   // If on the way we encounter a Value that has the same SCEV Expr as the
1000   // phi node, we can consider the instructions we visit from that point
1001   // as part of the cast-sequence that can be ignored.
1002   bool InCastSequence = false;
1003   auto *Inst = dyn_cast<Instruction>(Val);
1004   while (Val != PN) {
1005     // If we encountered a phi node other than PN, or if we left the loop,
1006     // we bail out.
1007     if (!Inst || !L->contains(Inst)) {
1008       return false;
1009     }
1010     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1011     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1012       InCastSequence = true;
1013     if (InCastSequence) {
1014       // Only the last instruction in the cast sequence is expected to have
1015       // uses outside the induction def-use chain.
1016       if (!CastInsts.empty())
1017         if (!Inst->hasOneUse())
1018           return false;
1019       CastInsts.push_back(Inst);
1020     }
1021     Val = getDef(Val);
1022     if (!Val)
1023       return false;
1024     Inst = dyn_cast<Instruction>(Val);
1025   }
1026 
1027   return InCastSequence;
1028 }
1029 
1030 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1031                                          PredicatedScalarEvolution &PSE,
1032                                          InductionDescriptor &D,
1033                                          bool Assume) {
1034   Type *PhiTy = Phi->getType();
1035 
1036   // Handle integer and pointer inductions variables.
1037   // Now we handle also FP induction but not trying to make a
1038   // recurrent expression from the PHI node in-place.
1039 
1040   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
1041       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1042     return false;
1043 
1044   if (PhiTy->isFloatingPointTy())
1045     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1046 
1047   const SCEV *PhiScev = PSE.getSCEV(Phi);
1048   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1049 
1050   // We need this expression to be an AddRecExpr.
1051   if (Assume && !AR)
1052     AR = PSE.getAsAddRec(Phi);
1053 
1054   if (!AR) {
1055     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1056     return false;
1057   }
1058 
1059   // Record any Cast instructions that participate in the induction update
1060   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1061   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1062   // only after enabling Assume with PSCEV, this means we may have encountered
1063   // cast instructions that required adding a runtime check in order to
1064   // guarantee the correctness of the AddRecurence respresentation of the
1065   // induction.
1066   if (PhiScev != AR && SymbolicPhi) {
1067     SmallVector<Instruction *, 2> Casts;
1068     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1069       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1070   }
1071 
1072   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1073 }
1074 
1075 bool InductionDescriptor::isInductionPHI(
1076     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1077     InductionDescriptor &D, const SCEV *Expr,
1078     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1079   Type *PhiTy = Phi->getType();
1080   // We only handle integer and pointer inductions variables.
1081   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1082     return false;
1083 
1084   // Check that the PHI is consecutive.
1085   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1086   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1087 
1088   if (!AR) {
1089     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1090     return false;
1091   }
1092 
1093   if (AR->getLoop() != TheLoop) {
1094     // FIXME: We should treat this as a uniform. Unfortunately, we
1095     // don't currently know how to handled uniform PHIs.
1096     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1097     return false;
1098   }
1099 
1100   Value *StartValue =
1101     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1102   const SCEV *Step = AR->getStepRecurrence(*SE);
1103   // Calculate the pointer stride and check if it is consecutive.
1104   // The stride may be a constant or a loop invariant integer value.
1105   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1106   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1107     return false;
1108 
1109   if (PhiTy->isIntegerTy()) {
1110     D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
1111                             CastsToIgnore);
1112     return true;
1113   }
1114 
1115   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1116   // Pointer induction should be a constant.
1117   if (!ConstStep)
1118     return false;
1119 
1120   ConstantInt *CV = ConstStep->getValue();
1121   Type *PointerElementType = PhiTy->getPointerElementType();
1122   // The pointer stride cannot be determined if the pointer element type is not
1123   // sized.
1124   if (!PointerElementType->isSized())
1125     return false;
1126 
1127   const DataLayout &DL = Phi->getModule()->getDataLayout();
1128   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1129   if (!Size)
1130     return false;
1131 
1132   int64_t CVSize = CV->getSExtValue();
1133   if (CVSize % Size)
1134     return false;
1135   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
1136                                     true /* signed */);
1137   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
1138   return true;
1139 }
1140 
1141 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
1142                                    bool PreserveLCSSA) {
1143   bool Changed = false;
1144 
1145   // We re-use a vector for the in-loop predecesosrs.
1146   SmallVector<BasicBlock *, 4> InLoopPredecessors;
1147 
1148   auto RewriteExit = [&](BasicBlock *BB) {
1149     assert(InLoopPredecessors.empty() &&
1150            "Must start with an empty predecessors list!");
1151     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
1152 
1153     // See if there are any non-loop predecessors of this exit block and
1154     // keep track of the in-loop predecessors.
1155     bool IsDedicatedExit = true;
1156     for (auto *PredBB : predecessors(BB))
1157       if (L->contains(PredBB)) {
1158         if (isa<IndirectBrInst>(PredBB->getTerminator()))
1159           // We cannot rewrite exiting edges from an indirectbr.
1160           return false;
1161 
1162         InLoopPredecessors.push_back(PredBB);
1163       } else {
1164         IsDedicatedExit = false;
1165       }
1166 
1167     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
1168 
1169     // Nothing to do if this is already a dedicated exit.
1170     if (IsDedicatedExit)
1171       return false;
1172 
1173     auto *NewExitBB = SplitBlockPredecessors(
1174         BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
1175 
1176     if (!NewExitBB)
1177       DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
1178                    << *L << "\n");
1179     else
1180       DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
1181                    << NewExitBB->getName() << "\n");
1182     return true;
1183   };
1184 
1185   // Walk the exit blocks directly rather than building up a data structure for
1186   // them, but only visit each one once.
1187   SmallPtrSet<BasicBlock *, 4> Visited;
1188   for (auto *BB : L->blocks())
1189     for (auto *SuccBB : successors(BB)) {
1190       // We're looking for exit blocks so skip in-loop successors.
1191       if (L->contains(SuccBB))
1192         continue;
1193 
1194       // Visit each exit block exactly once.
1195       if (!Visited.insert(SuccBB).second)
1196         continue;
1197 
1198       Changed |= RewriteExit(SuccBB);
1199     }
1200 
1201   return Changed;
1202 }
1203 
1204 /// \brief Returns the instructions that use values defined in the loop.
1205 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1206   SmallVector<Instruction *, 8> UsedOutside;
1207 
1208   for (auto *Block : L->getBlocks())
1209     // FIXME: I believe that this could use copy_if if the Inst reference could
1210     // be adapted into a pointer.
1211     for (auto &Inst : *Block) {
1212       auto Users = Inst.users();
1213       if (any_of(Users, [&](User *U) {
1214             auto *Use = cast<Instruction>(U);
1215             return !L->contains(Use->getParent());
1216           }))
1217         UsedOutside.push_back(&Inst);
1218     }
1219 
1220   return UsedOutside;
1221 }
1222 
1223 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1224   // By definition, all loop passes need the LoopInfo analysis and the
1225   // Dominator tree it depends on. Because they all participate in the loop
1226   // pass manager, they must also preserve these.
1227   AU.addRequired<DominatorTreeWrapperPass>();
1228   AU.addPreserved<DominatorTreeWrapperPass>();
1229   AU.addRequired<LoopInfoWrapperPass>();
1230   AU.addPreserved<LoopInfoWrapperPass>();
1231 
1232   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1233   // here because users shouldn't directly get them from this header.
1234   extern char &LoopSimplifyID;
1235   extern char &LCSSAID;
1236   AU.addRequiredID(LoopSimplifyID);
1237   AU.addPreservedID(LoopSimplifyID);
1238   AU.addRequiredID(LCSSAID);
1239   AU.addPreservedID(LCSSAID);
1240   // This is used in the LPPassManager to perform LCSSA verification on passes
1241   // which preserve lcssa form
1242   AU.addRequired<LCSSAVerificationPass>();
1243   AU.addPreserved<LCSSAVerificationPass>();
1244 
1245   // Loop passes are designed to run inside of a loop pass manager which means
1246   // that any function analyses they require must be required by the first loop
1247   // pass in the manager (so that it is computed before the loop pass manager
1248   // runs) and preserved by all loop pasess in the manager. To make this
1249   // reasonably robust, the set needed for most loop passes is maintained here.
1250   // If your loop pass requires an analysis not listed here, you will need to
1251   // carefully audit the loop pass manager nesting structure that results.
1252   AU.addRequired<AAResultsWrapperPass>();
1253   AU.addPreserved<AAResultsWrapperPass>();
1254   AU.addPreserved<BasicAAWrapperPass>();
1255   AU.addPreserved<GlobalsAAWrapperPass>();
1256   AU.addPreserved<SCEVAAWrapperPass>();
1257   AU.addRequired<ScalarEvolutionWrapperPass>();
1258   AU.addPreserved<ScalarEvolutionWrapperPass>();
1259 }
1260 
1261 /// Manually defined generic "LoopPass" dependency initialization. This is used
1262 /// to initialize the exact set of passes from above in \c
1263 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1264 /// with:
1265 ///
1266 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
1267 ///
1268 /// As-if "LoopPass" were a pass.
1269 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1270   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1271   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1272   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1273   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1274   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1275   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1276   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1277   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1278   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1279 }
1280 
1281 /// \brief Find string metadata for loop
1282 ///
1283 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1284 /// operand or null otherwise.  If the string metadata is not found return
1285 /// Optional's not-a-value.
1286 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1287                                                             StringRef Name) {
1288   MDNode *LoopID = TheLoop->getLoopID();
1289   // Return none if LoopID is false.
1290   if (!LoopID)
1291     return None;
1292 
1293   // First operand should refer to the loop id itself.
1294   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1295   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1296 
1297   // Iterate over LoopID operands and look for MDString Metadata
1298   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1299     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1300     if (!MD)
1301       continue;
1302     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1303     if (!S)
1304       continue;
1305     // Return true if MDString holds expected MetaData.
1306     if (Name.equals(S->getString()))
1307       switch (MD->getNumOperands()) {
1308       case 1:
1309         return nullptr;
1310       case 2:
1311         return &MD->getOperand(1);
1312       default:
1313         llvm_unreachable("loop metadata has 0 or 1 operand");
1314       }
1315   }
1316   return None;
1317 }
1318 
1319 /// Does a BFS from a given node to all of its children inside a given loop.
1320 /// The returned vector of nodes includes the starting point.
1321 SmallVector<DomTreeNode *, 16>
1322 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
1323   SmallVector<DomTreeNode *, 16> Worklist;
1324   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
1325     // Only include subregions in the top level loop.
1326     BasicBlock *BB = DTN->getBlock();
1327     if (CurLoop->contains(BB))
1328       Worklist.push_back(DTN);
1329   };
1330 
1331   AddRegionToWorklist(N);
1332 
1333   for (size_t I = 0; I < Worklist.size(); I++)
1334     for (DomTreeNode *Child : Worklist[I]->getChildren())
1335       AddRegionToWorklist(Child);
1336 
1337   return Worklist;
1338 }
1339 
1340 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
1341                           ScalarEvolution *SE = nullptr,
1342                           LoopInfo *LI = nullptr) {
1343   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
1344   auto *Preheader = L->getLoopPreheader();
1345   assert(Preheader && "Preheader should exist!");
1346 
1347   // Now that we know the removal is safe, remove the loop by changing the
1348   // branch from the preheader to go to the single exit block.
1349   //
1350   // Because we're deleting a large chunk of code at once, the sequence in which
1351   // we remove things is very important to avoid invalidation issues.
1352 
1353   // Tell ScalarEvolution that the loop is deleted. Do this before
1354   // deleting the loop so that ScalarEvolution can look at the loop
1355   // to determine what it needs to clean up.
1356   if (SE)
1357     SE->forgetLoop(L);
1358 
1359   auto *ExitBlock = L->getUniqueExitBlock();
1360   assert(ExitBlock && "Should have a unique exit block!");
1361   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
1362 
1363   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1364   assert(OldBr && "Preheader must end with a branch");
1365   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
1366   // Connect the preheader to the exit block. Keep the old edge to the header
1367   // around to perform the dominator tree update in two separate steps
1368   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
1369   // preheader -> header.
1370   //
1371   //
1372   // 0.  Preheader          1.  Preheader           2.  Preheader
1373   //        |                    |   |                   |
1374   //        V                    |   V                   |
1375   //      Header <--\            | Header <--\           | Header <--\
1376   //       |  |     |            |  |  |     |           |  |  |     |
1377   //       |  V     |            |  |  V     |           |  |  V     |
1378   //       | Body --/            |  | Body --/           |  | Body --/
1379   //       V                     V  V                    V  V
1380   //      Exit                   Exit                    Exit
1381   //
1382   // By doing this is two separate steps we can perform the dominator tree
1383   // update without using the batch update API.
1384   //
1385   // Even when the loop is never executed, we cannot remove the edge from the
1386   // source block to the exit block. Consider the case where the unexecuted loop
1387   // branches back to an outer loop. If we deleted the loop and removed the edge
1388   // coming to this inner loop, this will break the outer loop structure (by
1389   // deleting the backedge of the outer loop). If the outer loop is indeed a
1390   // non-loop, it will be deleted in a future iteration of loop deletion pass.
1391   IRBuilder<> Builder(OldBr);
1392   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
1393   // Remove the old branch. The conditional branch becomes a new terminator.
1394   OldBr->eraseFromParent();
1395 
1396   // Rewrite phis in the exit block to get their inputs from the Preheader
1397   // instead of the exiting block.
1398   for (PHINode &P : ExitBlock->phis()) {
1399     // Set the zero'th element of Phi to be from the preheader and remove all
1400     // other incoming values. Given the loop has dedicated exits, all other
1401     // incoming values must be from the exiting blocks.
1402     int PredIndex = 0;
1403     P.setIncomingBlock(PredIndex, Preheader);
1404     // Removes all incoming values from all other exiting blocks (including
1405     // duplicate values from an exiting block).
1406     // Nuke all entries except the zero'th entry which is the preheader entry.
1407     // NOTE! We need to remove Incoming Values in the reverse order as done
1408     // below, to keep the indices valid for deletion (removeIncomingValues
1409     // updates getNumIncomingValues and shifts all values down into the operand
1410     // being deleted).
1411     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
1412       P.removeIncomingValue(e - i, false);
1413 
1414     assert((P.getNumIncomingValues() == 1 &&
1415             P.getIncomingBlock(PredIndex) == Preheader) &&
1416            "Should have exactly one value and that's from the preheader!");
1417   }
1418 
1419   // Disconnect the loop body by branching directly to its exit.
1420   Builder.SetInsertPoint(Preheader->getTerminator());
1421   Builder.CreateBr(ExitBlock);
1422   // Remove the old branch.
1423   Preheader->getTerminator()->eraseFromParent();
1424 
1425   if (DT) {
1426     // Update the dominator tree by informing it about the new edge from the
1427     // preheader to the exit.
1428     DT->insertEdge(Preheader, ExitBlock);
1429     // Inform the dominator tree about the removed edge.
1430     DT->deleteEdge(Preheader, L->getHeader());
1431   }
1432 
1433   // Given LCSSA form is satisfied, we should not have users of instructions
1434   // within the dead loop outside of the loop. However, LCSSA doesn't take
1435   // unreachable uses into account. We handle them here.
1436   // We could do it after drop all references (in this case all users in the
1437   // loop will be already eliminated and we have less work to do but according
1438   // to API doc of User::dropAllReferences only valid operation after dropping
1439   // references, is deletion. So let's substitute all usages of
1440   // instruction from the loop with undef value of corresponding type first.
1441   for (auto *Block : L->blocks())
1442     for (Instruction &I : *Block) {
1443       auto *Undef = UndefValue::get(I.getType());
1444       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
1445         Use &U = *UI;
1446         ++UI;
1447         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
1448           if (L->contains(Usr->getParent()))
1449             continue;
1450         // If we have a DT then we can check that uses outside a loop only in
1451         // unreachable block.
1452         if (DT)
1453           assert(!DT->isReachableFromEntry(U) &&
1454                  "Unexpected user in reachable block");
1455         U.set(Undef);
1456       }
1457     }
1458 
1459   // Remove the block from the reference counting scheme, so that we can
1460   // delete it freely later.
1461   for (auto *Block : L->blocks())
1462     Block->dropAllReferences();
1463 
1464   if (LI) {
1465     // Erase the instructions and the blocks without having to worry
1466     // about ordering because we already dropped the references.
1467     // NOTE: This iteration is safe because erasing the block does not remove
1468     // its entry from the loop's block list.  We do that in the next section.
1469     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
1470          LpI != LpE; ++LpI)
1471       (*LpI)->eraseFromParent();
1472 
1473     // Finally, the blocks from loopinfo.  This has to happen late because
1474     // otherwise our loop iterators won't work.
1475 
1476     SmallPtrSet<BasicBlock *, 8> blocks;
1477     blocks.insert(L->block_begin(), L->block_end());
1478     for (BasicBlock *BB : blocks)
1479       LI->removeBlock(BB);
1480 
1481     // The last step is to update LoopInfo now that we've eliminated this loop.
1482     LI->erase(L);
1483   }
1484 }
1485 
1486 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1487   // Only support loops with a unique exiting block, and a latch.
1488   if (!L->getExitingBlock())
1489     return None;
1490 
1491   // Get the branch weights for the loop's backedge.
1492   BranchInst *LatchBR =
1493       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1494   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1495     return None;
1496 
1497   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1498           LatchBR->getSuccessor(1) == L->getHeader()) &&
1499          "At least one edge out of the latch must go to the header");
1500 
1501   // To estimate the number of times the loop body was executed, we want to
1502   // know the number of times the backedge was taken, vs. the number of times
1503   // we exited the loop.
1504   uint64_t TrueVal, FalseVal;
1505   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1506     return None;
1507 
1508   if (!TrueVal || !FalseVal)
1509     return 0;
1510 
1511   // Divide the count of the backedge by the count of the edge exiting the loop,
1512   // rounding to nearest.
1513   if (LatchBR->getSuccessor(0) == L->getHeader())
1514     return (TrueVal + (FalseVal / 2)) / FalseVal;
1515   else
1516     return (FalseVal + (TrueVal / 2)) / TrueVal;
1517 }
1518 
1519 /// \brief Adds a 'fast' flag to floating point operations.
1520 static Value *addFastMathFlag(Value *V) {
1521   if (isa<FPMathOperator>(V)) {
1522     FastMathFlags Flags;
1523     Flags.setFast();
1524     cast<Instruction>(V)->setFastMathFlags(Flags);
1525   }
1526   return V;
1527 }
1528 
1529 // Helper to generate a log2 shuffle reduction.
1530 Value *
1531 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1532                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1533                           ArrayRef<Value *> RedOps) {
1534   unsigned VF = Src->getType()->getVectorNumElements();
1535   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1536   // and vector ops, reducing the set of values being computed by half each
1537   // round.
1538   assert(isPowerOf2_32(VF) &&
1539          "Reduction emission only supported for pow2 vectors!");
1540   Value *TmpVec = Src;
1541   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1542   for (unsigned i = VF; i != 1; i >>= 1) {
1543     // Move the upper half of the vector to the lower half.
1544     for (unsigned j = 0; j != i / 2; ++j)
1545       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1546 
1547     // Fill the rest of the mask with undef.
1548     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1549               UndefValue::get(Builder.getInt32Ty()));
1550 
1551     Value *Shuf = Builder.CreateShuffleVector(
1552         TmpVec, UndefValue::get(TmpVec->getType()),
1553         ConstantVector::get(ShuffleMask), "rdx.shuf");
1554 
1555     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1556       // Floating point operations had to be 'fast' to enable the reduction.
1557       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1558                                                    TmpVec, Shuf, "bin.rdx"));
1559     } else {
1560       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1561              "Invalid min/max");
1562       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1563                                                     Shuf);
1564     }
1565     if (!RedOps.empty())
1566       propagateIRFlags(TmpVec, RedOps);
1567   }
1568   // The result is in the first element of the vector.
1569   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1570 }
1571 
1572 /// Create a simple vector reduction specified by an opcode and some
1573 /// flags (if generating min/max reductions).
1574 Value *llvm::createSimpleTargetReduction(
1575     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1576     Value *Src, TargetTransformInfo::ReductionFlags Flags,
1577     ArrayRef<Value *> RedOps) {
1578   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1579 
1580   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1581   std::function<Value*()> BuildFunc;
1582   using RD = RecurrenceDescriptor;
1583   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1584   // TODO: Support creating ordered reductions.
1585   FastMathFlags FMFFast;
1586   FMFFast.setFast();
1587 
1588   switch (Opcode) {
1589   case Instruction::Add:
1590     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1591     break;
1592   case Instruction::Mul:
1593     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1594     break;
1595   case Instruction::And:
1596     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1597     break;
1598   case Instruction::Or:
1599     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1600     break;
1601   case Instruction::Xor:
1602     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1603     break;
1604   case Instruction::FAdd:
1605     BuildFunc = [&]() {
1606       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1607       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1608       return Rdx;
1609     };
1610     break;
1611   case Instruction::FMul:
1612     BuildFunc = [&]() {
1613       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1614       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1615       return Rdx;
1616     };
1617     break;
1618   case Instruction::ICmp:
1619     if (Flags.IsMaxOp) {
1620       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1621       BuildFunc = [&]() {
1622         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1623       };
1624     } else {
1625       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1626       BuildFunc = [&]() {
1627         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1628       };
1629     }
1630     break;
1631   case Instruction::FCmp:
1632     if (Flags.IsMaxOp) {
1633       MinMaxKind = RD::MRK_FloatMax;
1634       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1635     } else {
1636       MinMaxKind = RD::MRK_FloatMin;
1637       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1638     }
1639     break;
1640   default:
1641     llvm_unreachable("Unhandled opcode");
1642     break;
1643   }
1644   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1645     return BuildFunc();
1646   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1647 }
1648 
1649 /// Create a vector reduction using a given recurrence descriptor.
1650 Value *llvm::createTargetReduction(IRBuilder<> &B,
1651                                    const TargetTransformInfo *TTI,
1652                                    RecurrenceDescriptor &Desc, Value *Src,
1653                                    bool NoNaN) {
1654   // TODO: Support in-order reductions based on the recurrence descriptor.
1655   using RD = RecurrenceDescriptor;
1656   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1657   TargetTransformInfo::ReductionFlags Flags;
1658   Flags.NoNaN = NoNaN;
1659   switch (RecKind) {
1660   case RD::RK_FloatAdd:
1661     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1662   case RD::RK_FloatMult:
1663     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1664   case RD::RK_IntegerAdd:
1665     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1666   case RD::RK_IntegerMult:
1667     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1668   case RD::RK_IntegerAnd:
1669     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1670   case RD::RK_IntegerOr:
1671     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1672   case RD::RK_IntegerXor:
1673     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1674   case RD::RK_IntegerMinMax: {
1675     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1676     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1677     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1678     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1679   }
1680   case RD::RK_FloatMinMax: {
1681     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1682     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1683   }
1684   default:
1685     llvm_unreachable("Unhandled RecKind");
1686   }
1687 }
1688 
1689 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1690   auto *VecOp = dyn_cast<Instruction>(I);
1691   if (!VecOp)
1692     return;
1693   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1694                                             : dyn_cast<Instruction>(OpValue);
1695   if (!Intersection)
1696     return;
1697   const unsigned Opcode = Intersection->getOpcode();
1698   VecOp->copyIRFlags(Intersection);
1699   for (auto *V : VL) {
1700     auto *Instr = dyn_cast<Instruction>(V);
1701     if (!Instr)
1702       continue;
1703     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1704       VecOp->andIRFlags(V);
1705   }
1706 }
1707