1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DIBuilder.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 
41 using namespace llvm;
42 using namespace llvm::PatternMatch;
43 
44 #define DEBUG_TYPE "loop-utils"
45 
46 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
47 
48 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
49                                    bool PreserveLCSSA) {
50   bool Changed = false;
51 
52   // We re-use a vector for the in-loop predecesosrs.
53   SmallVector<BasicBlock *, 4> InLoopPredecessors;
54 
55   auto RewriteExit = [&](BasicBlock *BB) {
56     assert(InLoopPredecessors.empty() &&
57            "Must start with an empty predecessors list!");
58     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
59 
60     // See if there are any non-loop predecessors of this exit block and
61     // keep track of the in-loop predecessors.
62     bool IsDedicatedExit = true;
63     for (auto *PredBB : predecessors(BB))
64       if (L->contains(PredBB)) {
65         if (isa<IndirectBrInst>(PredBB->getTerminator()))
66           // We cannot rewrite exiting edges from an indirectbr.
67           return false;
68         if (isa<CallBrInst>(PredBB->getTerminator()))
69           // We cannot rewrite exiting edges from a callbr.
70           return false;
71 
72         InLoopPredecessors.push_back(PredBB);
73       } else {
74         IsDedicatedExit = false;
75       }
76 
77     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
78 
79     // Nothing to do if this is already a dedicated exit.
80     if (IsDedicatedExit)
81       return false;
82 
83     auto *NewExitBB = SplitBlockPredecessors(
84         BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA);
85 
86     if (!NewExitBB)
87       LLVM_DEBUG(
88           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
89                  << *L << "\n");
90     else
91       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
92                         << NewExitBB->getName() << "\n");
93     return true;
94   };
95 
96   // Walk the exit blocks directly rather than building up a data structure for
97   // them, but only visit each one once.
98   SmallPtrSet<BasicBlock *, 4> Visited;
99   for (auto *BB : L->blocks())
100     for (auto *SuccBB : successors(BB)) {
101       // We're looking for exit blocks so skip in-loop successors.
102       if (L->contains(SuccBB))
103         continue;
104 
105       // Visit each exit block exactly once.
106       if (!Visited.insert(SuccBB).second)
107         continue;
108 
109       Changed |= RewriteExit(SuccBB);
110     }
111 
112   return Changed;
113 }
114 
115 /// Returns the instructions that use values defined in the loop.
116 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
117   SmallVector<Instruction *, 8> UsedOutside;
118 
119   for (auto *Block : L->getBlocks())
120     // FIXME: I believe that this could use copy_if if the Inst reference could
121     // be adapted into a pointer.
122     for (auto &Inst : *Block) {
123       auto Users = Inst.users();
124       if (any_of(Users, [&](User *U) {
125             auto *Use = cast<Instruction>(U);
126             return !L->contains(Use->getParent());
127           }))
128         UsedOutside.push_back(&Inst);
129     }
130 
131   return UsedOutside;
132 }
133 
134 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
135   // By definition, all loop passes need the LoopInfo analysis and the
136   // Dominator tree it depends on. Because they all participate in the loop
137   // pass manager, they must also preserve these.
138   AU.addRequired<DominatorTreeWrapperPass>();
139   AU.addPreserved<DominatorTreeWrapperPass>();
140   AU.addRequired<LoopInfoWrapperPass>();
141   AU.addPreserved<LoopInfoWrapperPass>();
142 
143   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
144   // here because users shouldn't directly get them from this header.
145   extern char &LoopSimplifyID;
146   extern char &LCSSAID;
147   AU.addRequiredID(LoopSimplifyID);
148   AU.addPreservedID(LoopSimplifyID);
149   AU.addRequiredID(LCSSAID);
150   AU.addPreservedID(LCSSAID);
151   // This is used in the LPPassManager to perform LCSSA verification on passes
152   // which preserve lcssa form
153   AU.addRequired<LCSSAVerificationPass>();
154   AU.addPreserved<LCSSAVerificationPass>();
155 
156   // Loop passes are designed to run inside of a loop pass manager which means
157   // that any function analyses they require must be required by the first loop
158   // pass in the manager (so that it is computed before the loop pass manager
159   // runs) and preserved by all loop pasess in the manager. To make this
160   // reasonably robust, the set needed for most loop passes is maintained here.
161   // If your loop pass requires an analysis not listed here, you will need to
162   // carefully audit the loop pass manager nesting structure that results.
163   AU.addRequired<AAResultsWrapperPass>();
164   AU.addPreserved<AAResultsWrapperPass>();
165   AU.addPreserved<BasicAAWrapperPass>();
166   AU.addPreserved<GlobalsAAWrapperPass>();
167   AU.addPreserved<SCEVAAWrapperPass>();
168   AU.addRequired<ScalarEvolutionWrapperPass>();
169   AU.addPreserved<ScalarEvolutionWrapperPass>();
170 }
171 
172 /// Manually defined generic "LoopPass" dependency initialization. This is used
173 /// to initialize the exact set of passes from above in \c
174 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
175 /// with:
176 ///
177 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
178 ///
179 /// As-if "LoopPass" were a pass.
180 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
181   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
182   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
183   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
184   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
185   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
186   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
187   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
188   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
189   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
190 }
191 
192 /// Find string metadata for loop
193 ///
194 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
195 /// operand or null otherwise.  If the string metadata is not found return
196 /// Optional's not-a-value.
197 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
198                                                             StringRef Name) {
199   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
200   if (!MD)
201     return None;
202   switch (MD->getNumOperands()) {
203   case 1:
204     return nullptr;
205   case 2:
206     return &MD->getOperand(1);
207   default:
208     llvm_unreachable("loop metadata has 0 or 1 operand");
209   }
210 }
211 
212 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
213                                                    StringRef Name) {
214   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
215   if (!MD)
216     return None;
217   switch (MD->getNumOperands()) {
218   case 1:
219     // When the value is absent it is interpreted as 'attribute set'.
220     return true;
221   case 2:
222     if (ConstantInt *IntMD =
223             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
224       return IntMD->getZExtValue();
225     return true;
226   }
227   llvm_unreachable("unexpected number of options");
228 }
229 
230 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
231   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
232 }
233 
234 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
235                                                       StringRef Name) {
236   const MDOperand *AttrMD =
237       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
238   if (!AttrMD)
239     return None;
240 
241   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
242   if (!IntMD)
243     return None;
244 
245   return IntMD->getSExtValue();
246 }
247 
248 Optional<MDNode *> llvm::makeFollowupLoopID(
249     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
250     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
251   if (!OrigLoopID) {
252     if (AlwaysNew)
253       return nullptr;
254     return None;
255   }
256 
257   assert(OrigLoopID->getOperand(0) == OrigLoopID);
258 
259   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
260   bool InheritSomeAttrs =
261       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
262   SmallVector<Metadata *, 8> MDs;
263   MDs.push_back(nullptr);
264 
265   bool Changed = false;
266   if (InheritAllAttrs || InheritSomeAttrs) {
267     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
268       MDNode *Op = cast<MDNode>(Existing.get());
269 
270       auto InheritThisAttribute = [InheritSomeAttrs,
271                                    InheritOptionsExceptPrefix](MDNode *Op) {
272         if (!InheritSomeAttrs)
273           return false;
274 
275         // Skip malformatted attribute metadata nodes.
276         if (Op->getNumOperands() == 0)
277           return true;
278         Metadata *NameMD = Op->getOperand(0).get();
279         if (!isa<MDString>(NameMD))
280           return true;
281         StringRef AttrName = cast<MDString>(NameMD)->getString();
282 
283         // Do not inherit excluded attributes.
284         return !AttrName.startswith(InheritOptionsExceptPrefix);
285       };
286 
287       if (InheritThisAttribute(Op))
288         MDs.push_back(Op);
289       else
290         Changed = true;
291     }
292   } else {
293     // Modified if we dropped at least one attribute.
294     Changed = OrigLoopID->getNumOperands() > 1;
295   }
296 
297   bool HasAnyFollowup = false;
298   for (StringRef OptionName : FollowupOptions) {
299     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
300     if (!FollowupNode)
301       continue;
302 
303     HasAnyFollowup = true;
304     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
305       MDs.push_back(Option.get());
306       Changed = true;
307     }
308   }
309 
310   // Attributes of the followup loop not specified explicity, so signal to the
311   // transformation pass to add suitable attributes.
312   if (!AlwaysNew && !HasAnyFollowup)
313     return None;
314 
315   // If no attributes were added or remove, the previous loop Id can be reused.
316   if (!AlwaysNew && !Changed)
317     return OrigLoopID;
318 
319   // No attributes is equivalent to having no !llvm.loop metadata at all.
320   if (MDs.size() == 1)
321     return nullptr;
322 
323   // Build the new loop ID.
324   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
325   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
326   return FollowupLoopID;
327 }
328 
329 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
330   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
331 }
332 
333 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
334   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
335     return TM_SuppressedByUser;
336 
337   Optional<int> Count =
338       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
339   if (Count.hasValue())
340     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
341 
342   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
343     return TM_ForcedByUser;
344 
345   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
346     return TM_ForcedByUser;
347 
348   if (hasDisableAllTransformsHint(L))
349     return TM_Disable;
350 
351   return TM_Unspecified;
352 }
353 
354 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
355   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
356     return TM_SuppressedByUser;
357 
358   Optional<int> Count =
359       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
360   if (Count.hasValue())
361     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
362 
363   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
364     return TM_ForcedByUser;
365 
366   if (hasDisableAllTransformsHint(L))
367     return TM_Disable;
368 
369   return TM_Unspecified;
370 }
371 
372 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
373   Optional<bool> Enable =
374       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
375 
376   if (Enable == false)
377     return TM_SuppressedByUser;
378 
379   Optional<int> VectorizeWidth =
380       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
381   Optional<int> InterleaveCount =
382       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
383 
384   // 'Forcing' vector width and interleave count to one effectively disables
385   // this tranformation.
386   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
387     return TM_SuppressedByUser;
388 
389   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
390     return TM_Disable;
391 
392   if (Enable == true)
393     return TM_ForcedByUser;
394 
395   if (VectorizeWidth == 1 && InterleaveCount == 1)
396     return TM_Disable;
397 
398   if (VectorizeWidth > 1 || InterleaveCount > 1)
399     return TM_Enable;
400 
401   if (hasDisableAllTransformsHint(L))
402     return TM_Disable;
403 
404   return TM_Unspecified;
405 }
406 
407 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
408   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
409     return TM_ForcedByUser;
410 
411   if (hasDisableAllTransformsHint(L))
412     return TM_Disable;
413 
414   return TM_Unspecified;
415 }
416 
417 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
418   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
419     return TM_SuppressedByUser;
420 
421   if (hasDisableAllTransformsHint(L))
422     return TM_Disable;
423 
424   return TM_Unspecified;
425 }
426 
427 /// Does a BFS from a given node to all of its children inside a given loop.
428 /// The returned vector of nodes includes the starting point.
429 SmallVector<DomTreeNode *, 16>
430 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
431   SmallVector<DomTreeNode *, 16> Worklist;
432   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
433     // Only include subregions in the top level loop.
434     BasicBlock *BB = DTN->getBlock();
435     if (CurLoop->contains(BB))
436       Worklist.push_back(DTN);
437   };
438 
439   AddRegionToWorklist(N);
440 
441   for (size_t I = 0; I < Worklist.size(); I++)
442     for (DomTreeNode *Child : Worklist[I]->getChildren())
443       AddRegionToWorklist(Child);
444 
445   return Worklist;
446 }
447 
448 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
449                           ScalarEvolution *SE = nullptr,
450                           LoopInfo *LI = nullptr) {
451   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
452   auto *Preheader = L->getLoopPreheader();
453   assert(Preheader && "Preheader should exist!");
454 
455   // Now that we know the removal is safe, remove the loop by changing the
456   // branch from the preheader to go to the single exit block.
457   //
458   // Because we're deleting a large chunk of code at once, the sequence in which
459   // we remove things is very important to avoid invalidation issues.
460 
461   // Tell ScalarEvolution that the loop is deleted. Do this before
462   // deleting the loop so that ScalarEvolution can look at the loop
463   // to determine what it needs to clean up.
464   if (SE)
465     SE->forgetLoop(L);
466 
467   auto *ExitBlock = L->getUniqueExitBlock();
468   assert(ExitBlock && "Should have a unique exit block!");
469   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
470 
471   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
472   assert(OldBr && "Preheader must end with a branch");
473   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
474   // Connect the preheader to the exit block. Keep the old edge to the header
475   // around to perform the dominator tree update in two separate steps
476   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
477   // preheader -> header.
478   //
479   //
480   // 0.  Preheader          1.  Preheader           2.  Preheader
481   //        |                    |   |                   |
482   //        V                    |   V                   |
483   //      Header <--\            | Header <--\           | Header <--\
484   //       |  |     |            |  |  |     |           |  |  |     |
485   //       |  V     |            |  |  V     |           |  |  V     |
486   //       | Body --/            |  | Body --/           |  | Body --/
487   //       V                     V  V                    V  V
488   //      Exit                   Exit                    Exit
489   //
490   // By doing this is two separate steps we can perform the dominator tree
491   // update without using the batch update API.
492   //
493   // Even when the loop is never executed, we cannot remove the edge from the
494   // source block to the exit block. Consider the case where the unexecuted loop
495   // branches back to an outer loop. If we deleted the loop and removed the edge
496   // coming to this inner loop, this will break the outer loop structure (by
497   // deleting the backedge of the outer loop). If the outer loop is indeed a
498   // non-loop, it will be deleted in a future iteration of loop deletion pass.
499   IRBuilder<> Builder(OldBr);
500   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
501   // Remove the old branch. The conditional branch becomes a new terminator.
502   OldBr->eraseFromParent();
503 
504   // Rewrite phis in the exit block to get their inputs from the Preheader
505   // instead of the exiting block.
506   for (PHINode &P : ExitBlock->phis()) {
507     // Set the zero'th element of Phi to be from the preheader and remove all
508     // other incoming values. Given the loop has dedicated exits, all other
509     // incoming values must be from the exiting blocks.
510     int PredIndex = 0;
511     P.setIncomingBlock(PredIndex, Preheader);
512     // Removes all incoming values from all other exiting blocks (including
513     // duplicate values from an exiting block).
514     // Nuke all entries except the zero'th entry which is the preheader entry.
515     // NOTE! We need to remove Incoming Values in the reverse order as done
516     // below, to keep the indices valid for deletion (removeIncomingValues
517     // updates getNumIncomingValues and shifts all values down into the operand
518     // being deleted).
519     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
520       P.removeIncomingValue(e - i, false);
521 
522     assert((P.getNumIncomingValues() == 1 &&
523             P.getIncomingBlock(PredIndex) == Preheader) &&
524            "Should have exactly one value and that's from the preheader!");
525   }
526 
527   // Disconnect the loop body by branching directly to its exit.
528   Builder.SetInsertPoint(Preheader->getTerminator());
529   Builder.CreateBr(ExitBlock);
530   // Remove the old branch.
531   Preheader->getTerminator()->eraseFromParent();
532 
533   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
534   if (DT) {
535     // Update the dominator tree by informing it about the new edge from the
536     // preheader to the exit.
537     DTU.insertEdge(Preheader, ExitBlock);
538     // Inform the dominator tree about the removed edge.
539     DTU.deleteEdge(Preheader, L->getHeader());
540   }
541 
542   // Use a map to unique and a vector to guarantee deterministic ordering.
543   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
544   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
545 
546   // Given LCSSA form is satisfied, we should not have users of instructions
547   // within the dead loop outside of the loop. However, LCSSA doesn't take
548   // unreachable uses into account. We handle them here.
549   // We could do it after drop all references (in this case all users in the
550   // loop will be already eliminated and we have less work to do but according
551   // to API doc of User::dropAllReferences only valid operation after dropping
552   // references, is deletion. So let's substitute all usages of
553   // instruction from the loop with undef value of corresponding type first.
554   for (auto *Block : L->blocks())
555     for (Instruction &I : *Block) {
556       auto *Undef = UndefValue::get(I.getType());
557       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
558         Use &U = *UI;
559         ++UI;
560         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
561           if (L->contains(Usr->getParent()))
562             continue;
563         // If we have a DT then we can check that uses outside a loop only in
564         // unreachable block.
565         if (DT)
566           assert(!DT->isReachableFromEntry(U) &&
567                  "Unexpected user in reachable block");
568         U.set(Undef);
569       }
570       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
571       if (!DVI)
572         continue;
573       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
574       if (Key != DeadDebugSet.end())
575         continue;
576       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
577       DeadDebugInst.push_back(DVI);
578     }
579 
580   // After the loop has been deleted all the values defined and modified
581   // inside the loop are going to be unavailable.
582   // Since debug values in the loop have been deleted, inserting an undef
583   // dbg.value truncates the range of any dbg.value before the loop where the
584   // loop used to be. This is particularly important for constant values.
585   DIBuilder DIB(*ExitBlock->getModule());
586   for (auto *DVI : DeadDebugInst)
587     DIB.insertDbgValueIntrinsic(
588         UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(),
589         DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI());
590 
591   // Remove the block from the reference counting scheme, so that we can
592   // delete it freely later.
593   for (auto *Block : L->blocks())
594     Block->dropAllReferences();
595 
596   if (LI) {
597     // Erase the instructions and the blocks without having to worry
598     // about ordering because we already dropped the references.
599     // NOTE: This iteration is safe because erasing the block does not remove
600     // its entry from the loop's block list.  We do that in the next section.
601     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
602          LpI != LpE; ++LpI)
603       (*LpI)->eraseFromParent();
604 
605     // Finally, the blocks from loopinfo.  This has to happen late because
606     // otherwise our loop iterators won't work.
607 
608     SmallPtrSet<BasicBlock *, 8> blocks;
609     blocks.insert(L->block_begin(), L->block_end());
610     for (BasicBlock *BB : blocks)
611       LI->removeBlock(BB);
612 
613     // The last step is to update LoopInfo now that we've eliminated this loop.
614     LI->erase(L);
615   }
616 }
617 
618 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
619   // Only support loops with a unique exiting block, and a latch.
620   if (!L->getExitingBlock())
621     return None;
622 
623   // Get the branch weights for the loop's backedge.
624   BranchInst *LatchBR =
625       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
626   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
627     return None;
628 
629   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
630           LatchBR->getSuccessor(1) == L->getHeader()) &&
631          "At least one edge out of the latch must go to the header");
632 
633   // To estimate the number of times the loop body was executed, we want to
634   // know the number of times the backedge was taken, vs. the number of times
635   // we exited the loop.
636   uint64_t TrueVal, FalseVal;
637   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
638     return None;
639 
640   if (!TrueVal || !FalseVal)
641     return 0;
642 
643   // Divide the count of the backedge by the count of the edge exiting the loop,
644   // rounding to nearest.
645   if (LatchBR->getSuccessor(0) == L->getHeader())
646     return (TrueVal + (FalseVal / 2)) / FalseVal;
647   else
648     return (FalseVal + (TrueVal / 2)) / TrueVal;
649 }
650 
651 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
652                                               ScalarEvolution &SE) {
653   Loop *OuterL = InnerLoop->getParentLoop();
654   if (!OuterL)
655     return true;
656 
657   // Get the backedge taken count for the inner loop
658   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
659   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
660   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
661       !InnerLoopBECountSC->getType()->isIntegerTy())
662     return false;
663 
664   // Get whether count is invariant to the outer loop
665   ScalarEvolution::LoopDisposition LD =
666       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
667   if (LD != ScalarEvolution::LoopInvariant)
668     return false;
669 
670   return true;
671 }
672 
673 /// Adds a 'fast' flag to floating point operations.
674 static Value *addFastMathFlag(Value *V) {
675   if (isa<FPMathOperator>(V)) {
676     FastMathFlags Flags;
677     Flags.setFast();
678     cast<Instruction>(V)->setFastMathFlags(Flags);
679   }
680   return V;
681 }
682 
683 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
684                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
685                             Value *Left, Value *Right) {
686   CmpInst::Predicate P = CmpInst::ICMP_NE;
687   switch (RK) {
688   default:
689     llvm_unreachable("Unknown min/max recurrence kind");
690   case RecurrenceDescriptor::MRK_UIntMin:
691     P = CmpInst::ICMP_ULT;
692     break;
693   case RecurrenceDescriptor::MRK_UIntMax:
694     P = CmpInst::ICMP_UGT;
695     break;
696   case RecurrenceDescriptor::MRK_SIntMin:
697     P = CmpInst::ICMP_SLT;
698     break;
699   case RecurrenceDescriptor::MRK_SIntMax:
700     P = CmpInst::ICMP_SGT;
701     break;
702   case RecurrenceDescriptor::MRK_FloatMin:
703     P = CmpInst::FCMP_OLT;
704     break;
705   case RecurrenceDescriptor::MRK_FloatMax:
706     P = CmpInst::FCMP_OGT;
707     break;
708   }
709 
710   // We only match FP sequences that are 'fast', so we can unconditionally
711   // set it on any generated instructions.
712   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
713   FastMathFlags FMF;
714   FMF.setFast();
715   Builder.setFastMathFlags(FMF);
716 
717   Value *Cmp;
718   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
719       RK == RecurrenceDescriptor::MRK_FloatMax)
720     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
721   else
722     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
723 
724   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
725   return Select;
726 }
727 
728 // Helper to generate an ordered reduction.
729 Value *
730 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
731                           unsigned Op,
732                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
733                           ArrayRef<Value *> RedOps) {
734   unsigned VF = Src->getType()->getVectorNumElements();
735 
736   // Extract and apply reduction ops in ascending order:
737   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
738   Value *Result = Acc;
739   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
740     Value *Ext =
741         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
742 
743     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
744       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
745                                    "bin.rdx");
746     } else {
747       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
748              "Invalid min/max");
749       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
750     }
751 
752     if (!RedOps.empty())
753       propagateIRFlags(Result, RedOps);
754   }
755 
756   return Result;
757 }
758 
759 // Helper to generate a log2 shuffle reduction.
760 Value *
761 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
762                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
763                           ArrayRef<Value *> RedOps) {
764   unsigned VF = Src->getType()->getVectorNumElements();
765   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
766   // and vector ops, reducing the set of values being computed by half each
767   // round.
768   assert(isPowerOf2_32(VF) &&
769          "Reduction emission only supported for pow2 vectors!");
770   Value *TmpVec = Src;
771   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
772   for (unsigned i = VF; i != 1; i >>= 1) {
773     // Move the upper half of the vector to the lower half.
774     for (unsigned j = 0; j != i / 2; ++j)
775       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
776 
777     // Fill the rest of the mask with undef.
778     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
779               UndefValue::get(Builder.getInt32Ty()));
780 
781     Value *Shuf = Builder.CreateShuffleVector(
782         TmpVec, UndefValue::get(TmpVec->getType()),
783         ConstantVector::get(ShuffleMask), "rdx.shuf");
784 
785     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
786       // Floating point operations had to be 'fast' to enable the reduction.
787       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
788                                                    TmpVec, Shuf, "bin.rdx"));
789     } else {
790       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
791              "Invalid min/max");
792       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
793     }
794     if (!RedOps.empty())
795       propagateIRFlags(TmpVec, RedOps);
796   }
797   // The result is in the first element of the vector.
798   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
799 }
800 
801 /// Create a simple vector reduction specified by an opcode and some
802 /// flags (if generating min/max reductions).
803 Value *llvm::createSimpleTargetReduction(
804     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
805     Value *Src, TargetTransformInfo::ReductionFlags Flags,
806     ArrayRef<Value *> RedOps) {
807   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
808 
809   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
810   std::function<Value *()> BuildFunc;
811   using RD = RecurrenceDescriptor;
812   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
813   // TODO: Support creating ordered reductions.
814   FastMathFlags FMFFast;
815   FMFFast.setFast();
816 
817   switch (Opcode) {
818   case Instruction::Add:
819     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
820     break;
821   case Instruction::Mul:
822     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
823     break;
824   case Instruction::And:
825     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
826     break;
827   case Instruction::Or:
828     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
829     break;
830   case Instruction::Xor:
831     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
832     break;
833   case Instruction::FAdd:
834     BuildFunc = [&]() {
835       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
836       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
837       return Rdx;
838     };
839     break;
840   case Instruction::FMul:
841     BuildFunc = [&]() {
842       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
843       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
844       return Rdx;
845     };
846     break;
847   case Instruction::ICmp:
848     if (Flags.IsMaxOp) {
849       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
850       BuildFunc = [&]() {
851         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
852       };
853     } else {
854       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
855       BuildFunc = [&]() {
856         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
857       };
858     }
859     break;
860   case Instruction::FCmp:
861     if (Flags.IsMaxOp) {
862       MinMaxKind = RD::MRK_FloatMax;
863       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
864     } else {
865       MinMaxKind = RD::MRK_FloatMin;
866       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
867     }
868     break;
869   default:
870     llvm_unreachable("Unhandled opcode");
871     break;
872   }
873   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
874     return BuildFunc();
875   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
876 }
877 
878 /// Create a vector reduction using a given recurrence descriptor.
879 Value *llvm::createTargetReduction(IRBuilder<> &B,
880                                    const TargetTransformInfo *TTI,
881                                    RecurrenceDescriptor &Desc, Value *Src,
882                                    bool NoNaN) {
883   // TODO: Support in-order reductions based on the recurrence descriptor.
884   using RD = RecurrenceDescriptor;
885   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
886   TargetTransformInfo::ReductionFlags Flags;
887   Flags.NoNaN = NoNaN;
888   switch (RecKind) {
889   case RD::RK_FloatAdd:
890     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
891   case RD::RK_FloatMult:
892     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
893   case RD::RK_IntegerAdd:
894     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
895   case RD::RK_IntegerMult:
896     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
897   case RD::RK_IntegerAnd:
898     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
899   case RD::RK_IntegerOr:
900     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
901   case RD::RK_IntegerXor:
902     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
903   case RD::RK_IntegerMinMax: {
904     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
905     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
906     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
907     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
908   }
909   case RD::RK_FloatMinMax: {
910     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
911     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
912   }
913   default:
914     llvm_unreachable("Unhandled RecKind");
915   }
916 }
917 
918 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
919   auto *VecOp = dyn_cast<Instruction>(I);
920   if (!VecOp)
921     return;
922   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
923                                             : dyn_cast<Instruction>(OpValue);
924   if (!Intersection)
925     return;
926   const unsigned Opcode = Intersection->getOpcode();
927   VecOp->copyIRFlags(Intersection);
928   for (auto *V : VL) {
929     auto *Instr = dyn_cast<Instruction>(V);
930     if (!Instr)
931       continue;
932     if (OpValue == nullptr || Opcode == Instr->getOpcode())
933       VecOp->andIRFlags(V);
934   }
935 }
936 
937 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
938                                  ScalarEvolution &SE) {
939   const SCEV *Zero = SE.getZero(S->getType());
940   return SE.isAvailableAtLoopEntry(S, L) &&
941          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
942 }
943 
944 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
945                                     ScalarEvolution &SE) {
946   const SCEV *Zero = SE.getZero(S->getType());
947   return SE.isAvailableAtLoopEntry(S, L) &&
948          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
949 }
950 
951 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
952                              bool Signed) {
953   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
954   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
955     APInt::getMinValue(BitWidth);
956   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
957   return SE.isAvailableAtLoopEntry(S, L) &&
958          SE.isLoopEntryGuardedByCond(L, Predicate, S,
959                                      SE.getConstant(Min));
960 }
961 
962 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
963                              bool Signed) {
964   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
965   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
966     APInt::getMaxValue(BitWidth);
967   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
968   return SE.isAvailableAtLoopEntry(S, L) &&
969          SE.isLoopEntryGuardedByCond(L, Predicate, S,
970                                      SE.getConstant(Max));
971 }
972