1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpander.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 41 using namespace llvm; 42 using namespace llvm::PatternMatch; 43 44 #define DEBUG_TYPE "loop-utils" 45 46 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 47 48 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 49 bool PreserveLCSSA) { 50 bool Changed = false; 51 52 // We re-use a vector for the in-loop predecesosrs. 53 SmallVector<BasicBlock *, 4> InLoopPredecessors; 54 55 auto RewriteExit = [&](BasicBlock *BB) { 56 assert(InLoopPredecessors.empty() && 57 "Must start with an empty predecessors list!"); 58 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 59 60 // See if there are any non-loop predecessors of this exit block and 61 // keep track of the in-loop predecessors. 62 bool IsDedicatedExit = true; 63 for (auto *PredBB : predecessors(BB)) 64 if (L->contains(PredBB)) { 65 if (isa<IndirectBrInst>(PredBB->getTerminator())) 66 // We cannot rewrite exiting edges from an indirectbr. 67 return false; 68 if (isa<CallBrInst>(PredBB->getTerminator())) 69 // We cannot rewrite exiting edges from a callbr. 70 return false; 71 72 InLoopPredecessors.push_back(PredBB); 73 } else { 74 IsDedicatedExit = false; 75 } 76 77 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 78 79 // Nothing to do if this is already a dedicated exit. 80 if (IsDedicatedExit) 81 return false; 82 83 auto *NewExitBB = SplitBlockPredecessors( 84 BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA); 85 86 if (!NewExitBB) 87 LLVM_DEBUG( 88 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 89 << *L << "\n"); 90 else 91 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 92 << NewExitBB->getName() << "\n"); 93 return true; 94 }; 95 96 // Walk the exit blocks directly rather than building up a data structure for 97 // them, but only visit each one once. 98 SmallPtrSet<BasicBlock *, 4> Visited; 99 for (auto *BB : L->blocks()) 100 for (auto *SuccBB : successors(BB)) { 101 // We're looking for exit blocks so skip in-loop successors. 102 if (L->contains(SuccBB)) 103 continue; 104 105 // Visit each exit block exactly once. 106 if (!Visited.insert(SuccBB).second) 107 continue; 108 109 Changed |= RewriteExit(SuccBB); 110 } 111 112 return Changed; 113 } 114 115 /// Returns the instructions that use values defined in the loop. 116 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 117 SmallVector<Instruction *, 8> UsedOutside; 118 119 for (auto *Block : L->getBlocks()) 120 // FIXME: I believe that this could use copy_if if the Inst reference could 121 // be adapted into a pointer. 122 for (auto &Inst : *Block) { 123 auto Users = Inst.users(); 124 if (any_of(Users, [&](User *U) { 125 auto *Use = cast<Instruction>(U); 126 return !L->contains(Use->getParent()); 127 })) 128 UsedOutside.push_back(&Inst); 129 } 130 131 return UsedOutside; 132 } 133 134 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 135 // By definition, all loop passes need the LoopInfo analysis and the 136 // Dominator tree it depends on. Because they all participate in the loop 137 // pass manager, they must also preserve these. 138 AU.addRequired<DominatorTreeWrapperPass>(); 139 AU.addPreserved<DominatorTreeWrapperPass>(); 140 AU.addRequired<LoopInfoWrapperPass>(); 141 AU.addPreserved<LoopInfoWrapperPass>(); 142 143 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 144 // here because users shouldn't directly get them from this header. 145 extern char &LoopSimplifyID; 146 extern char &LCSSAID; 147 AU.addRequiredID(LoopSimplifyID); 148 AU.addPreservedID(LoopSimplifyID); 149 AU.addRequiredID(LCSSAID); 150 AU.addPreservedID(LCSSAID); 151 // This is used in the LPPassManager to perform LCSSA verification on passes 152 // which preserve lcssa form 153 AU.addRequired<LCSSAVerificationPass>(); 154 AU.addPreserved<LCSSAVerificationPass>(); 155 156 // Loop passes are designed to run inside of a loop pass manager which means 157 // that any function analyses they require must be required by the first loop 158 // pass in the manager (so that it is computed before the loop pass manager 159 // runs) and preserved by all loop pasess in the manager. To make this 160 // reasonably robust, the set needed for most loop passes is maintained here. 161 // If your loop pass requires an analysis not listed here, you will need to 162 // carefully audit the loop pass manager nesting structure that results. 163 AU.addRequired<AAResultsWrapperPass>(); 164 AU.addPreserved<AAResultsWrapperPass>(); 165 AU.addPreserved<BasicAAWrapperPass>(); 166 AU.addPreserved<GlobalsAAWrapperPass>(); 167 AU.addPreserved<SCEVAAWrapperPass>(); 168 AU.addRequired<ScalarEvolutionWrapperPass>(); 169 AU.addPreserved<ScalarEvolutionWrapperPass>(); 170 } 171 172 /// Manually defined generic "LoopPass" dependency initialization. This is used 173 /// to initialize the exact set of passes from above in \c 174 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 175 /// with: 176 /// 177 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 178 /// 179 /// As-if "LoopPass" were a pass. 180 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 181 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 182 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 183 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 184 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 185 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 186 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 187 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 190 } 191 192 /// Find string metadata for loop 193 /// 194 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 195 /// operand or null otherwise. If the string metadata is not found return 196 /// Optional's not-a-value. 197 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 198 StringRef Name) { 199 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 200 if (!MD) 201 return None; 202 switch (MD->getNumOperands()) { 203 case 1: 204 return nullptr; 205 case 2: 206 return &MD->getOperand(1); 207 default: 208 llvm_unreachable("loop metadata has 0 or 1 operand"); 209 } 210 } 211 212 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 213 StringRef Name) { 214 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 215 if (!MD) 216 return None; 217 switch (MD->getNumOperands()) { 218 case 1: 219 // When the value is absent it is interpreted as 'attribute set'. 220 return true; 221 case 2: 222 if (ConstantInt *IntMD = 223 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 224 return IntMD->getZExtValue(); 225 return true; 226 } 227 llvm_unreachable("unexpected number of options"); 228 } 229 230 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 231 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 232 } 233 234 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 235 StringRef Name) { 236 const MDOperand *AttrMD = 237 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 238 if (!AttrMD) 239 return None; 240 241 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 242 if (!IntMD) 243 return None; 244 245 return IntMD->getSExtValue(); 246 } 247 248 Optional<MDNode *> llvm::makeFollowupLoopID( 249 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 250 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 251 if (!OrigLoopID) { 252 if (AlwaysNew) 253 return nullptr; 254 return None; 255 } 256 257 assert(OrigLoopID->getOperand(0) == OrigLoopID); 258 259 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 260 bool InheritSomeAttrs = 261 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 262 SmallVector<Metadata *, 8> MDs; 263 MDs.push_back(nullptr); 264 265 bool Changed = false; 266 if (InheritAllAttrs || InheritSomeAttrs) { 267 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 268 MDNode *Op = cast<MDNode>(Existing.get()); 269 270 auto InheritThisAttribute = [InheritSomeAttrs, 271 InheritOptionsExceptPrefix](MDNode *Op) { 272 if (!InheritSomeAttrs) 273 return false; 274 275 // Skip malformatted attribute metadata nodes. 276 if (Op->getNumOperands() == 0) 277 return true; 278 Metadata *NameMD = Op->getOperand(0).get(); 279 if (!isa<MDString>(NameMD)) 280 return true; 281 StringRef AttrName = cast<MDString>(NameMD)->getString(); 282 283 // Do not inherit excluded attributes. 284 return !AttrName.startswith(InheritOptionsExceptPrefix); 285 }; 286 287 if (InheritThisAttribute(Op)) 288 MDs.push_back(Op); 289 else 290 Changed = true; 291 } 292 } else { 293 // Modified if we dropped at least one attribute. 294 Changed = OrigLoopID->getNumOperands() > 1; 295 } 296 297 bool HasAnyFollowup = false; 298 for (StringRef OptionName : FollowupOptions) { 299 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 300 if (!FollowupNode) 301 continue; 302 303 HasAnyFollowup = true; 304 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 305 MDs.push_back(Option.get()); 306 Changed = true; 307 } 308 } 309 310 // Attributes of the followup loop not specified explicity, so signal to the 311 // transformation pass to add suitable attributes. 312 if (!AlwaysNew && !HasAnyFollowup) 313 return None; 314 315 // If no attributes were added or remove, the previous loop Id can be reused. 316 if (!AlwaysNew && !Changed) 317 return OrigLoopID; 318 319 // No attributes is equivalent to having no !llvm.loop metadata at all. 320 if (MDs.size() == 1) 321 return nullptr; 322 323 // Build the new loop ID. 324 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 325 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 326 return FollowupLoopID; 327 } 328 329 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 330 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 331 } 332 333 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 334 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 335 return TM_SuppressedByUser; 336 337 Optional<int> Count = 338 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 339 if (Count.hasValue()) 340 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 341 342 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 343 return TM_ForcedByUser; 344 345 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 346 return TM_ForcedByUser; 347 348 if (hasDisableAllTransformsHint(L)) 349 return TM_Disable; 350 351 return TM_Unspecified; 352 } 353 354 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 355 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 356 return TM_SuppressedByUser; 357 358 Optional<int> Count = 359 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 360 if (Count.hasValue()) 361 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 362 363 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 364 return TM_ForcedByUser; 365 366 if (hasDisableAllTransformsHint(L)) 367 return TM_Disable; 368 369 return TM_Unspecified; 370 } 371 372 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 373 Optional<bool> Enable = 374 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 375 376 if (Enable == false) 377 return TM_SuppressedByUser; 378 379 Optional<int> VectorizeWidth = 380 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 381 Optional<int> InterleaveCount = 382 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 383 384 // 'Forcing' vector width and interleave count to one effectively disables 385 // this tranformation. 386 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 387 return TM_SuppressedByUser; 388 389 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 390 return TM_Disable; 391 392 if (Enable == true) 393 return TM_ForcedByUser; 394 395 if (VectorizeWidth == 1 && InterleaveCount == 1) 396 return TM_Disable; 397 398 if (VectorizeWidth > 1 || InterleaveCount > 1) 399 return TM_Enable; 400 401 if (hasDisableAllTransformsHint(L)) 402 return TM_Disable; 403 404 return TM_Unspecified; 405 } 406 407 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 408 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 409 return TM_ForcedByUser; 410 411 if (hasDisableAllTransformsHint(L)) 412 return TM_Disable; 413 414 return TM_Unspecified; 415 } 416 417 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 418 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 419 return TM_SuppressedByUser; 420 421 if (hasDisableAllTransformsHint(L)) 422 return TM_Disable; 423 424 return TM_Unspecified; 425 } 426 427 /// Does a BFS from a given node to all of its children inside a given loop. 428 /// The returned vector of nodes includes the starting point. 429 SmallVector<DomTreeNode *, 16> 430 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 431 SmallVector<DomTreeNode *, 16> Worklist; 432 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 433 // Only include subregions in the top level loop. 434 BasicBlock *BB = DTN->getBlock(); 435 if (CurLoop->contains(BB)) 436 Worklist.push_back(DTN); 437 }; 438 439 AddRegionToWorklist(N); 440 441 for (size_t I = 0; I < Worklist.size(); I++) 442 for (DomTreeNode *Child : Worklist[I]->getChildren()) 443 AddRegionToWorklist(Child); 444 445 return Worklist; 446 } 447 448 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 449 ScalarEvolution *SE = nullptr, 450 LoopInfo *LI = nullptr) { 451 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 452 auto *Preheader = L->getLoopPreheader(); 453 assert(Preheader && "Preheader should exist!"); 454 455 // Now that we know the removal is safe, remove the loop by changing the 456 // branch from the preheader to go to the single exit block. 457 // 458 // Because we're deleting a large chunk of code at once, the sequence in which 459 // we remove things is very important to avoid invalidation issues. 460 461 // Tell ScalarEvolution that the loop is deleted. Do this before 462 // deleting the loop so that ScalarEvolution can look at the loop 463 // to determine what it needs to clean up. 464 if (SE) 465 SE->forgetLoop(L); 466 467 auto *ExitBlock = L->getUniqueExitBlock(); 468 assert(ExitBlock && "Should have a unique exit block!"); 469 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 470 471 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 472 assert(OldBr && "Preheader must end with a branch"); 473 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 474 // Connect the preheader to the exit block. Keep the old edge to the header 475 // around to perform the dominator tree update in two separate steps 476 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 477 // preheader -> header. 478 // 479 // 480 // 0. Preheader 1. Preheader 2. Preheader 481 // | | | | 482 // V | V | 483 // Header <--\ | Header <--\ | Header <--\ 484 // | | | | | | | | | | | 485 // | V | | | V | | | V | 486 // | Body --/ | | Body --/ | | Body --/ 487 // V V V V V 488 // Exit Exit Exit 489 // 490 // By doing this is two separate steps we can perform the dominator tree 491 // update without using the batch update API. 492 // 493 // Even when the loop is never executed, we cannot remove the edge from the 494 // source block to the exit block. Consider the case where the unexecuted loop 495 // branches back to an outer loop. If we deleted the loop and removed the edge 496 // coming to this inner loop, this will break the outer loop structure (by 497 // deleting the backedge of the outer loop). If the outer loop is indeed a 498 // non-loop, it will be deleted in a future iteration of loop deletion pass. 499 IRBuilder<> Builder(OldBr); 500 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 501 // Remove the old branch. The conditional branch becomes a new terminator. 502 OldBr->eraseFromParent(); 503 504 // Rewrite phis in the exit block to get their inputs from the Preheader 505 // instead of the exiting block. 506 for (PHINode &P : ExitBlock->phis()) { 507 // Set the zero'th element of Phi to be from the preheader and remove all 508 // other incoming values. Given the loop has dedicated exits, all other 509 // incoming values must be from the exiting blocks. 510 int PredIndex = 0; 511 P.setIncomingBlock(PredIndex, Preheader); 512 // Removes all incoming values from all other exiting blocks (including 513 // duplicate values from an exiting block). 514 // Nuke all entries except the zero'th entry which is the preheader entry. 515 // NOTE! We need to remove Incoming Values in the reverse order as done 516 // below, to keep the indices valid for deletion (removeIncomingValues 517 // updates getNumIncomingValues and shifts all values down into the operand 518 // being deleted). 519 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 520 P.removeIncomingValue(e - i, false); 521 522 assert((P.getNumIncomingValues() == 1 && 523 P.getIncomingBlock(PredIndex) == Preheader) && 524 "Should have exactly one value and that's from the preheader!"); 525 } 526 527 // Disconnect the loop body by branching directly to its exit. 528 Builder.SetInsertPoint(Preheader->getTerminator()); 529 Builder.CreateBr(ExitBlock); 530 // Remove the old branch. 531 Preheader->getTerminator()->eraseFromParent(); 532 533 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 534 if (DT) { 535 // Update the dominator tree by informing it about the new edge from the 536 // preheader to the exit. 537 DTU.insertEdge(Preheader, ExitBlock); 538 // Inform the dominator tree about the removed edge. 539 DTU.deleteEdge(Preheader, L->getHeader()); 540 } 541 542 // Use a map to unique and a vector to guarantee deterministic ordering. 543 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 544 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 545 546 // Given LCSSA form is satisfied, we should not have users of instructions 547 // within the dead loop outside of the loop. However, LCSSA doesn't take 548 // unreachable uses into account. We handle them here. 549 // We could do it after drop all references (in this case all users in the 550 // loop will be already eliminated and we have less work to do but according 551 // to API doc of User::dropAllReferences only valid operation after dropping 552 // references, is deletion. So let's substitute all usages of 553 // instruction from the loop with undef value of corresponding type first. 554 for (auto *Block : L->blocks()) 555 for (Instruction &I : *Block) { 556 auto *Undef = UndefValue::get(I.getType()); 557 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 558 Use &U = *UI; 559 ++UI; 560 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 561 if (L->contains(Usr->getParent())) 562 continue; 563 // If we have a DT then we can check that uses outside a loop only in 564 // unreachable block. 565 if (DT) 566 assert(!DT->isReachableFromEntry(U) && 567 "Unexpected user in reachable block"); 568 U.set(Undef); 569 } 570 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 571 if (!DVI) 572 continue; 573 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 574 if (Key != DeadDebugSet.end()) 575 continue; 576 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 577 DeadDebugInst.push_back(DVI); 578 } 579 580 // After the loop has been deleted all the values defined and modified 581 // inside the loop are going to be unavailable. 582 // Since debug values in the loop have been deleted, inserting an undef 583 // dbg.value truncates the range of any dbg.value before the loop where the 584 // loop used to be. This is particularly important for constant values. 585 DIBuilder DIB(*ExitBlock->getModule()); 586 for (auto *DVI : DeadDebugInst) 587 DIB.insertDbgValueIntrinsic( 588 UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(), 589 DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI()); 590 591 // Remove the block from the reference counting scheme, so that we can 592 // delete it freely later. 593 for (auto *Block : L->blocks()) 594 Block->dropAllReferences(); 595 596 if (LI) { 597 // Erase the instructions and the blocks without having to worry 598 // about ordering because we already dropped the references. 599 // NOTE: This iteration is safe because erasing the block does not remove 600 // its entry from the loop's block list. We do that in the next section. 601 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 602 LpI != LpE; ++LpI) 603 (*LpI)->eraseFromParent(); 604 605 // Finally, the blocks from loopinfo. This has to happen late because 606 // otherwise our loop iterators won't work. 607 608 SmallPtrSet<BasicBlock *, 8> blocks; 609 blocks.insert(L->block_begin(), L->block_end()); 610 for (BasicBlock *BB : blocks) 611 LI->removeBlock(BB); 612 613 // The last step is to update LoopInfo now that we've eliminated this loop. 614 LI->erase(L); 615 } 616 } 617 618 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 619 // Only support loops with a unique exiting block, and a latch. 620 if (!L->getExitingBlock()) 621 return None; 622 623 // Get the branch weights for the loop's backedge. 624 BranchInst *LatchBR = 625 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 626 if (!LatchBR || LatchBR->getNumSuccessors() != 2) 627 return None; 628 629 assert((LatchBR->getSuccessor(0) == L->getHeader() || 630 LatchBR->getSuccessor(1) == L->getHeader()) && 631 "At least one edge out of the latch must go to the header"); 632 633 // To estimate the number of times the loop body was executed, we want to 634 // know the number of times the backedge was taken, vs. the number of times 635 // we exited the loop. 636 uint64_t TrueVal, FalseVal; 637 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 638 return None; 639 640 if (!TrueVal || !FalseVal) 641 return 0; 642 643 // Divide the count of the backedge by the count of the edge exiting the loop, 644 // rounding to nearest. 645 if (LatchBR->getSuccessor(0) == L->getHeader()) 646 return (TrueVal + (FalseVal / 2)) / FalseVal; 647 else 648 return (FalseVal + (TrueVal / 2)) / TrueVal; 649 } 650 651 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 652 ScalarEvolution &SE) { 653 Loop *OuterL = InnerLoop->getParentLoop(); 654 if (!OuterL) 655 return true; 656 657 // Get the backedge taken count for the inner loop 658 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 659 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 660 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 661 !InnerLoopBECountSC->getType()->isIntegerTy()) 662 return false; 663 664 // Get whether count is invariant to the outer loop 665 ScalarEvolution::LoopDisposition LD = 666 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 667 if (LD != ScalarEvolution::LoopInvariant) 668 return false; 669 670 return true; 671 } 672 673 /// Adds a 'fast' flag to floating point operations. 674 static Value *addFastMathFlag(Value *V) { 675 if (isa<FPMathOperator>(V)) { 676 FastMathFlags Flags; 677 Flags.setFast(); 678 cast<Instruction>(V)->setFastMathFlags(Flags); 679 } 680 return V; 681 } 682 683 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 684 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 685 Value *Left, Value *Right) { 686 CmpInst::Predicate P = CmpInst::ICMP_NE; 687 switch (RK) { 688 default: 689 llvm_unreachable("Unknown min/max recurrence kind"); 690 case RecurrenceDescriptor::MRK_UIntMin: 691 P = CmpInst::ICMP_ULT; 692 break; 693 case RecurrenceDescriptor::MRK_UIntMax: 694 P = CmpInst::ICMP_UGT; 695 break; 696 case RecurrenceDescriptor::MRK_SIntMin: 697 P = CmpInst::ICMP_SLT; 698 break; 699 case RecurrenceDescriptor::MRK_SIntMax: 700 P = CmpInst::ICMP_SGT; 701 break; 702 case RecurrenceDescriptor::MRK_FloatMin: 703 P = CmpInst::FCMP_OLT; 704 break; 705 case RecurrenceDescriptor::MRK_FloatMax: 706 P = CmpInst::FCMP_OGT; 707 break; 708 } 709 710 // We only match FP sequences that are 'fast', so we can unconditionally 711 // set it on any generated instructions. 712 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 713 FastMathFlags FMF; 714 FMF.setFast(); 715 Builder.setFastMathFlags(FMF); 716 717 Value *Cmp; 718 if (RK == RecurrenceDescriptor::MRK_FloatMin || 719 RK == RecurrenceDescriptor::MRK_FloatMax) 720 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 721 else 722 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 723 724 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 725 return Select; 726 } 727 728 // Helper to generate an ordered reduction. 729 Value * 730 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 731 unsigned Op, 732 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 733 ArrayRef<Value *> RedOps) { 734 unsigned VF = Src->getType()->getVectorNumElements(); 735 736 // Extract and apply reduction ops in ascending order: 737 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 738 Value *Result = Acc; 739 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 740 Value *Ext = 741 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 742 743 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 744 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 745 "bin.rdx"); 746 } else { 747 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 748 "Invalid min/max"); 749 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 750 } 751 752 if (!RedOps.empty()) 753 propagateIRFlags(Result, RedOps); 754 } 755 756 return Result; 757 } 758 759 // Helper to generate a log2 shuffle reduction. 760 Value * 761 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 762 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 763 ArrayRef<Value *> RedOps) { 764 unsigned VF = Src->getType()->getVectorNumElements(); 765 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 766 // and vector ops, reducing the set of values being computed by half each 767 // round. 768 assert(isPowerOf2_32(VF) && 769 "Reduction emission only supported for pow2 vectors!"); 770 Value *TmpVec = Src; 771 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 772 for (unsigned i = VF; i != 1; i >>= 1) { 773 // Move the upper half of the vector to the lower half. 774 for (unsigned j = 0; j != i / 2; ++j) 775 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 776 777 // Fill the rest of the mask with undef. 778 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 779 UndefValue::get(Builder.getInt32Ty())); 780 781 Value *Shuf = Builder.CreateShuffleVector( 782 TmpVec, UndefValue::get(TmpVec->getType()), 783 ConstantVector::get(ShuffleMask), "rdx.shuf"); 784 785 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 786 // Floating point operations had to be 'fast' to enable the reduction. 787 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 788 TmpVec, Shuf, "bin.rdx")); 789 } else { 790 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 791 "Invalid min/max"); 792 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 793 } 794 if (!RedOps.empty()) 795 propagateIRFlags(TmpVec, RedOps); 796 } 797 // The result is in the first element of the vector. 798 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 799 } 800 801 /// Create a simple vector reduction specified by an opcode and some 802 /// flags (if generating min/max reductions). 803 Value *llvm::createSimpleTargetReduction( 804 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 805 Value *Src, TargetTransformInfo::ReductionFlags Flags, 806 ArrayRef<Value *> RedOps) { 807 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 808 809 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 810 std::function<Value *()> BuildFunc; 811 using RD = RecurrenceDescriptor; 812 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 813 // TODO: Support creating ordered reductions. 814 FastMathFlags FMFFast; 815 FMFFast.setFast(); 816 817 switch (Opcode) { 818 case Instruction::Add: 819 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 820 break; 821 case Instruction::Mul: 822 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 823 break; 824 case Instruction::And: 825 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 826 break; 827 case Instruction::Or: 828 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 829 break; 830 case Instruction::Xor: 831 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 832 break; 833 case Instruction::FAdd: 834 BuildFunc = [&]() { 835 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 836 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 837 return Rdx; 838 }; 839 break; 840 case Instruction::FMul: 841 BuildFunc = [&]() { 842 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 843 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 844 return Rdx; 845 }; 846 break; 847 case Instruction::ICmp: 848 if (Flags.IsMaxOp) { 849 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 850 BuildFunc = [&]() { 851 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 852 }; 853 } else { 854 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 855 BuildFunc = [&]() { 856 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 857 }; 858 } 859 break; 860 case Instruction::FCmp: 861 if (Flags.IsMaxOp) { 862 MinMaxKind = RD::MRK_FloatMax; 863 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 864 } else { 865 MinMaxKind = RD::MRK_FloatMin; 866 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 867 } 868 break; 869 default: 870 llvm_unreachable("Unhandled opcode"); 871 break; 872 } 873 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 874 return BuildFunc(); 875 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 876 } 877 878 /// Create a vector reduction using a given recurrence descriptor. 879 Value *llvm::createTargetReduction(IRBuilder<> &B, 880 const TargetTransformInfo *TTI, 881 RecurrenceDescriptor &Desc, Value *Src, 882 bool NoNaN) { 883 // TODO: Support in-order reductions based on the recurrence descriptor. 884 using RD = RecurrenceDescriptor; 885 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 886 TargetTransformInfo::ReductionFlags Flags; 887 Flags.NoNaN = NoNaN; 888 switch (RecKind) { 889 case RD::RK_FloatAdd: 890 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 891 case RD::RK_FloatMult: 892 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 893 case RD::RK_IntegerAdd: 894 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 895 case RD::RK_IntegerMult: 896 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 897 case RD::RK_IntegerAnd: 898 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 899 case RD::RK_IntegerOr: 900 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 901 case RD::RK_IntegerXor: 902 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 903 case RD::RK_IntegerMinMax: { 904 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 905 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 906 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 907 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 908 } 909 case RD::RK_FloatMinMax: { 910 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 911 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 912 } 913 default: 914 llvm_unreachable("Unhandled RecKind"); 915 } 916 } 917 918 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 919 auto *VecOp = dyn_cast<Instruction>(I); 920 if (!VecOp) 921 return; 922 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 923 : dyn_cast<Instruction>(OpValue); 924 if (!Intersection) 925 return; 926 const unsigned Opcode = Intersection->getOpcode(); 927 VecOp->copyIRFlags(Intersection); 928 for (auto *V : VL) { 929 auto *Instr = dyn_cast<Instruction>(V); 930 if (!Instr) 931 continue; 932 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 933 VecOp->andIRFlags(V); 934 } 935 } 936 937 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 938 ScalarEvolution &SE) { 939 const SCEV *Zero = SE.getZero(S->getType()); 940 return SE.isAvailableAtLoopEntry(S, L) && 941 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 942 } 943 944 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 945 ScalarEvolution &SE) { 946 const SCEV *Zero = SE.getZero(S->getType()); 947 return SE.isAvailableAtLoopEntry(S, L) && 948 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 949 } 950 951 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 952 bool Signed) { 953 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 954 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 955 APInt::getMinValue(BitWidth); 956 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 957 return SE.isAvailableAtLoopEntry(S, L) && 958 SE.isLoopEntryGuardedByCond(L, Predicate, S, 959 SE.getConstant(Min)); 960 } 961 962 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 963 bool Signed) { 964 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 965 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 966 APInt::getMaxValue(BitWidth); 967 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 968 return SE.isAvailableAtLoopEntry(S, L) && 969 SE.isLoopEntryGuardedByCond(L, Predicate, S, 970 SE.getConstant(Max)); 971 } 972