1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
23 #include "llvm/Analysis/ScalarEvolutionExpander.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 #define DEBUG_TYPE "loop-utils"
39 
40 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
41                                         SmallPtrSetImpl<Instruction *> &Set) {
42   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
43     if (!Set.count(dyn_cast<Instruction>(*Use)))
44       return false;
45   return true;
46 }
47 
48 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
49   switch (Kind) {
50   default:
51     break;
52   case RK_IntegerAdd:
53   case RK_IntegerMult:
54   case RK_IntegerOr:
55   case RK_IntegerAnd:
56   case RK_IntegerXor:
57   case RK_IntegerMinMax:
58     return true;
59   }
60   return false;
61 }
62 
63 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
64   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
65 }
66 
67 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
68   switch (Kind) {
69   default:
70     break;
71   case RK_IntegerAdd:
72   case RK_IntegerMult:
73   case RK_FloatAdd:
74   case RK_FloatMult:
75     return true;
76   }
77   return false;
78 }
79 
80 Instruction *
81 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
82                                      SmallPtrSetImpl<Instruction *> &Visited,
83                                      SmallPtrSetImpl<Instruction *> &CI) {
84   if (!Phi->hasOneUse())
85     return Phi;
86 
87   const APInt *M = nullptr;
88   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
89 
90   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
91   // with a new integer type of the corresponding bit width.
92   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
93     int32_t Bits = (*M + 1).exactLogBase2();
94     if (Bits > 0) {
95       RT = IntegerType::get(Phi->getContext(), Bits);
96       Visited.insert(Phi);
97       CI.insert(J);
98       return J;
99     }
100   }
101   return Phi;
102 }
103 
104 bool RecurrenceDescriptor::getSourceExtensionKind(
105     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
106     SmallPtrSetImpl<Instruction *> &Visited,
107     SmallPtrSetImpl<Instruction *> &CI) {
108 
109   SmallVector<Instruction *, 8> Worklist;
110   bool FoundOneOperand = false;
111   unsigned DstSize = RT->getPrimitiveSizeInBits();
112   Worklist.push_back(Exit);
113 
114   // Traverse the instructions in the reduction expression, beginning with the
115   // exit value.
116   while (!Worklist.empty()) {
117     Instruction *I = Worklist.pop_back_val();
118     for (Use &U : I->operands()) {
119 
120       // Terminate the traversal if the operand is not an instruction, or we
121       // reach the starting value.
122       Instruction *J = dyn_cast<Instruction>(U.get());
123       if (!J || J == Start)
124         continue;
125 
126       // Otherwise, investigate the operation if it is also in the expression.
127       if (Visited.count(J)) {
128         Worklist.push_back(J);
129         continue;
130       }
131 
132       // If the operand is not in Visited, it is not a reduction operation, but
133       // it does feed into one. Make sure it is either a single-use sign- or
134       // zero-extend instruction.
135       CastInst *Cast = dyn_cast<CastInst>(J);
136       bool IsSExtInst = isa<SExtInst>(J);
137       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
138         return false;
139 
140       // Ensure the source type of the extend is no larger than the reduction
141       // type. It is not necessary for the types to be identical.
142       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
143       if (SrcSize > DstSize)
144         return false;
145 
146       // Furthermore, ensure that all such extends are of the same kind.
147       if (FoundOneOperand) {
148         if (IsSigned != IsSExtInst)
149           return false;
150       } else {
151         FoundOneOperand = true;
152         IsSigned = IsSExtInst;
153       }
154 
155       // Lastly, if the source type of the extend matches the reduction type,
156       // add the extend to CI so that we can avoid accounting for it in the
157       // cost model.
158       if (SrcSize == DstSize)
159         CI.insert(Cast);
160     }
161   }
162   return true;
163 }
164 
165 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
166                                            Loop *TheLoop, bool HasFunNoNaNAttr,
167                                            RecurrenceDescriptor &RedDes) {
168   if (Phi->getNumIncomingValues() != 2)
169     return false;
170 
171   // Reduction variables are only found in the loop header block.
172   if (Phi->getParent() != TheLoop->getHeader())
173     return false;
174 
175   // Obtain the reduction start value from the value that comes from the loop
176   // preheader.
177   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
178 
179   // ExitInstruction is the single value which is used outside the loop.
180   // We only allow for a single reduction value to be used outside the loop.
181   // This includes users of the reduction, variables (which form a cycle
182   // which ends in the phi node).
183   Instruction *ExitInstruction = nullptr;
184   // Indicates that we found a reduction operation in our scan.
185   bool FoundReduxOp = false;
186 
187   // We start with the PHI node and scan for all of the users of this
188   // instruction. All users must be instructions that can be used as reduction
189   // variables (such as ADD). We must have a single out-of-block user. The cycle
190   // must include the original PHI.
191   bool FoundStartPHI = false;
192 
193   // To recognize min/max patterns formed by a icmp select sequence, we store
194   // the number of instruction we saw from the recognized min/max pattern,
195   //  to make sure we only see exactly the two instructions.
196   unsigned NumCmpSelectPatternInst = 0;
197   InstDesc ReduxDesc(false, nullptr);
198 
199   // Data used for determining if the recurrence has been type-promoted.
200   Type *RecurrenceType = Phi->getType();
201   SmallPtrSet<Instruction *, 4> CastInsts;
202   Instruction *Start = Phi;
203   bool IsSigned = false;
204 
205   SmallPtrSet<Instruction *, 8> VisitedInsts;
206   SmallVector<Instruction *, 8> Worklist;
207 
208   // Return early if the recurrence kind does not match the type of Phi. If the
209   // recurrence kind is arithmetic, we attempt to look through AND operations
210   // resulting from the type promotion performed by InstCombine.  Vector
211   // operations are not limited to the legal integer widths, so we may be able
212   // to evaluate the reduction in the narrower width.
213   if (RecurrenceType->isFloatingPointTy()) {
214     if (!isFloatingPointRecurrenceKind(Kind))
215       return false;
216   } else {
217     if (!isIntegerRecurrenceKind(Kind))
218       return false;
219     if (isArithmeticRecurrenceKind(Kind))
220       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
221   }
222 
223   Worklist.push_back(Start);
224   VisitedInsts.insert(Start);
225 
226   // A value in the reduction can be used:
227   //  - By the reduction:
228   //      - Reduction operation:
229   //        - One use of reduction value (safe).
230   //        - Multiple use of reduction value (not safe).
231   //      - PHI:
232   //        - All uses of the PHI must be the reduction (safe).
233   //        - Otherwise, not safe.
234   //  - By instructions outside of the loop (safe).
235   //      * One value may have several outside users, but all outside
236   //        uses must be of the same value.
237   //  - By an instruction that is not part of the reduction (not safe).
238   //    This is either:
239   //      * An instruction type other than PHI or the reduction operation.
240   //      * A PHI in the header other than the initial PHI.
241   while (!Worklist.empty()) {
242     Instruction *Cur = Worklist.back();
243     Worklist.pop_back();
244 
245     // No Users.
246     // If the instruction has no users then this is a broken chain and can't be
247     // a reduction variable.
248     if (Cur->use_empty())
249       return false;
250 
251     bool IsAPhi = isa<PHINode>(Cur);
252 
253     // A header PHI use other than the original PHI.
254     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
255       return false;
256 
257     // Reductions of instructions such as Div, and Sub is only possible if the
258     // LHS is the reduction variable.
259     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
260         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
261         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
262       return false;
263 
264     // Any reduction instruction must be of one of the allowed kinds. We ignore
265     // the starting value (the Phi or an AND instruction if the Phi has been
266     // type-promoted).
267     if (Cur != Start) {
268       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
269       if (!ReduxDesc.isRecurrence())
270         return false;
271     }
272 
273     // A reduction operation must only have one use of the reduction value.
274     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
275         hasMultipleUsesOf(Cur, VisitedInsts))
276       return false;
277 
278     // All inputs to a PHI node must be a reduction value.
279     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
280       return false;
281 
282     if (Kind == RK_IntegerMinMax &&
283         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
284       ++NumCmpSelectPatternInst;
285     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
286       ++NumCmpSelectPatternInst;
287 
288     // Check  whether we found a reduction operator.
289     FoundReduxOp |= !IsAPhi && Cur != Start;
290 
291     // Process users of current instruction. Push non-PHI nodes after PHI nodes
292     // onto the stack. This way we are going to have seen all inputs to PHI
293     // nodes once we get to them.
294     SmallVector<Instruction *, 8> NonPHIs;
295     SmallVector<Instruction *, 8> PHIs;
296     for (User *U : Cur->users()) {
297       Instruction *UI = cast<Instruction>(U);
298 
299       // Check if we found the exit user.
300       BasicBlock *Parent = UI->getParent();
301       if (!TheLoop->contains(Parent)) {
302         // If we already know this instruction is used externally, move on to
303         // the next user.
304         if (ExitInstruction == Cur)
305           continue;
306 
307         // Exit if you find multiple values used outside or if the header phi
308         // node is being used. In this case the user uses the value of the
309         // previous iteration, in which case we would loose "VF-1" iterations of
310         // the reduction operation if we vectorize.
311         if (ExitInstruction != nullptr || Cur == Phi)
312           return false;
313 
314         // The instruction used by an outside user must be the last instruction
315         // before we feed back to the reduction phi. Otherwise, we loose VF-1
316         // operations on the value.
317         if (!is_contained(Phi->operands(), Cur))
318           return false;
319 
320         ExitInstruction = Cur;
321         continue;
322       }
323 
324       // Process instructions only once (termination). Each reduction cycle
325       // value must only be used once, except by phi nodes and min/max
326       // reductions which are represented as a cmp followed by a select.
327       InstDesc IgnoredVal(false, nullptr);
328       if (VisitedInsts.insert(UI).second) {
329         if (isa<PHINode>(UI))
330           PHIs.push_back(UI);
331         else
332           NonPHIs.push_back(UI);
333       } else if (!isa<PHINode>(UI) &&
334                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
335                    !isa<SelectInst>(UI)) ||
336                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
337         return false;
338 
339       // Remember that we completed the cycle.
340       if (UI == Phi)
341         FoundStartPHI = true;
342     }
343     Worklist.append(PHIs.begin(), PHIs.end());
344     Worklist.append(NonPHIs.begin(), NonPHIs.end());
345   }
346 
347   // This means we have seen one but not the other instruction of the
348   // pattern or more than just a select and cmp.
349   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
350       NumCmpSelectPatternInst != 2)
351     return false;
352 
353   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
354     return false;
355 
356   // If we think Phi may have been type-promoted, we also need to ensure that
357   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
358   // so, we will be able to evaluate the reduction in the narrower bit width.
359   if (Start != Phi)
360     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
361                                 IsSigned, VisitedInsts, CastInsts))
362       return false;
363 
364   // We found a reduction var if we have reached the original phi node and we
365   // only have a single instruction with out-of-loop users.
366 
367   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
368   // is saved as part of the RecurrenceDescriptor.
369 
370   // Save the description of this reduction variable.
371   RecurrenceDescriptor RD(
372       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
373       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
374   RedDes = RD;
375 
376   return true;
377 }
378 
379 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
380 /// pattern corresponding to a min(X, Y) or max(X, Y).
381 RecurrenceDescriptor::InstDesc
382 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
383 
384   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
385          "Expect a select instruction");
386   Instruction *Cmp = nullptr;
387   SelectInst *Select = nullptr;
388 
389   // We must handle the select(cmp()) as a single instruction. Advance to the
390   // select.
391   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
392     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
393       return InstDesc(false, I);
394     return InstDesc(Select, Prev.getMinMaxKind());
395   }
396 
397   // Only handle single use cases for now.
398   if (!(Select = dyn_cast<SelectInst>(I)))
399     return InstDesc(false, I);
400   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
401       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
402     return InstDesc(false, I);
403   if (!Cmp->hasOneUse())
404     return InstDesc(false, I);
405 
406   Value *CmpLeft;
407   Value *CmpRight;
408 
409   // Look for a min/max pattern.
410   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
411     return InstDesc(Select, MRK_UIntMin);
412   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
413     return InstDesc(Select, MRK_UIntMax);
414   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
415     return InstDesc(Select, MRK_SIntMax);
416   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
417     return InstDesc(Select, MRK_SIntMin);
418   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
419     return InstDesc(Select, MRK_FloatMin);
420   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
421     return InstDesc(Select, MRK_FloatMax);
422   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
423     return InstDesc(Select, MRK_FloatMin);
424   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
425     return InstDesc(Select, MRK_FloatMax);
426 
427   return InstDesc(false, I);
428 }
429 
430 RecurrenceDescriptor::InstDesc
431 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
432                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
433   bool FP = I->getType()->isFloatingPointTy();
434   Instruction *UAI = Prev.getUnsafeAlgebraInst();
435   if (!UAI && FP && !I->hasUnsafeAlgebra())
436     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
437 
438   switch (I->getOpcode()) {
439   default:
440     return InstDesc(false, I);
441   case Instruction::PHI:
442     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
443   case Instruction::Sub:
444   case Instruction::Add:
445     return InstDesc(Kind == RK_IntegerAdd, I);
446   case Instruction::Mul:
447     return InstDesc(Kind == RK_IntegerMult, I);
448   case Instruction::And:
449     return InstDesc(Kind == RK_IntegerAnd, I);
450   case Instruction::Or:
451     return InstDesc(Kind == RK_IntegerOr, I);
452   case Instruction::Xor:
453     return InstDesc(Kind == RK_IntegerXor, I);
454   case Instruction::FMul:
455     return InstDesc(Kind == RK_FloatMult, I, UAI);
456   case Instruction::FSub:
457   case Instruction::FAdd:
458     return InstDesc(Kind == RK_FloatAdd, I, UAI);
459   case Instruction::FCmp:
460   case Instruction::ICmp:
461   case Instruction::Select:
462     if (Kind != RK_IntegerMinMax &&
463         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
464       return InstDesc(false, I);
465     return isMinMaxSelectCmpPattern(I, Prev);
466   }
467 }
468 
469 bool RecurrenceDescriptor::hasMultipleUsesOf(
470     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
471   unsigned NumUses = 0;
472   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
473        ++Use) {
474     if (Insts.count(dyn_cast<Instruction>(*Use)))
475       ++NumUses;
476     if (NumUses > 1)
477       return true;
478   }
479 
480   return false;
481 }
482 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
483                                           RecurrenceDescriptor &RedDes) {
484 
485   BasicBlock *Header = TheLoop->getHeader();
486   Function &F = *Header->getParent();
487   bool HasFunNoNaNAttr =
488       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
489 
490   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
491     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
492     return true;
493   }
494   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
495     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
496     return true;
497   }
498   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
499     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
500     return true;
501   }
502   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
503     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
504     return true;
505   }
506   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
507     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
508     return true;
509   }
510   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
511                       RedDes)) {
512     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
513     return true;
514   }
515   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
516     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
517     return true;
518   }
519   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
520     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
521     return true;
522   }
523   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
524     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
525     return true;
526   }
527   // Not a reduction of known type.
528   return false;
529 }
530 
531 bool RecurrenceDescriptor::isFirstOrderRecurrence(
532     PHINode *Phi, Loop *TheLoop,
533     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
534 
535   // Ensure the phi node is in the loop header and has two incoming values.
536   if (Phi->getParent() != TheLoop->getHeader() ||
537       Phi->getNumIncomingValues() != 2)
538     return false;
539 
540   // Ensure the loop has a preheader and a single latch block. The loop
541   // vectorizer will need the latch to set up the next iteration of the loop.
542   auto *Preheader = TheLoop->getLoopPreheader();
543   auto *Latch = TheLoop->getLoopLatch();
544   if (!Preheader || !Latch)
545     return false;
546 
547   // Ensure the phi node's incoming blocks are the loop preheader and latch.
548   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
549       Phi->getBasicBlockIndex(Latch) < 0)
550     return false;
551 
552   // Get the previous value. The previous value comes from the latch edge while
553   // the initial value comes form the preheader edge.
554   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
555   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
556       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
557     return false;
558 
559   // Ensure every user of the phi node is dominated by the previous value.
560   // The dominance requirement ensures the loop vectorizer will not need to
561   // vectorize the initial value prior to the first iteration of the loop.
562   // TODO: Consider extending this sinking to handle other kinds of instructions
563   // and expressions, beyond sinking a single cast past Previous.
564   if (Phi->hasOneUse()) {
565     auto *I = Phi->user_back();
566     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
567         DT->dominates(Previous, I->user_back())) {
568       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
569         SinkAfter[I] = Previous;
570       return true;
571     }
572   }
573 
574   for (User *U : Phi->users())
575     if (auto *I = dyn_cast<Instruction>(U)) {
576       if (!DT->dominates(Previous, I))
577         return false;
578     }
579 
580   return true;
581 }
582 
583 /// This function returns the identity element (or neutral element) for
584 /// the operation K.
585 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
586                                                       Type *Tp) {
587   switch (K) {
588   case RK_IntegerXor:
589   case RK_IntegerAdd:
590   case RK_IntegerOr:
591     // Adding, Xoring, Oring zero to a number does not change it.
592     return ConstantInt::get(Tp, 0);
593   case RK_IntegerMult:
594     // Multiplying a number by 1 does not change it.
595     return ConstantInt::get(Tp, 1);
596   case RK_IntegerAnd:
597     // AND-ing a number with an all-1 value does not change it.
598     return ConstantInt::get(Tp, -1, true);
599   case RK_FloatMult:
600     // Multiplying a number by 1 does not change it.
601     return ConstantFP::get(Tp, 1.0L);
602   case RK_FloatAdd:
603     // Adding zero to a number does not change it.
604     return ConstantFP::get(Tp, 0.0L);
605   default:
606     llvm_unreachable("Unknown recurrence kind");
607   }
608 }
609 
610 /// This function translates the recurrence kind to an LLVM binary operator.
611 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
612   switch (Kind) {
613   case RK_IntegerAdd:
614     return Instruction::Add;
615   case RK_IntegerMult:
616     return Instruction::Mul;
617   case RK_IntegerOr:
618     return Instruction::Or;
619   case RK_IntegerAnd:
620     return Instruction::And;
621   case RK_IntegerXor:
622     return Instruction::Xor;
623   case RK_FloatMult:
624     return Instruction::FMul;
625   case RK_FloatAdd:
626     return Instruction::FAdd;
627   case RK_IntegerMinMax:
628     return Instruction::ICmp;
629   case RK_FloatMinMax:
630     return Instruction::FCmp;
631   default:
632     llvm_unreachable("Unknown recurrence operation");
633   }
634 }
635 
636 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
637                                             MinMaxRecurrenceKind RK,
638                                             Value *Left, Value *Right) {
639   CmpInst::Predicate P = CmpInst::ICMP_NE;
640   switch (RK) {
641   default:
642     llvm_unreachable("Unknown min/max recurrence kind");
643   case MRK_UIntMin:
644     P = CmpInst::ICMP_ULT;
645     break;
646   case MRK_UIntMax:
647     P = CmpInst::ICMP_UGT;
648     break;
649   case MRK_SIntMin:
650     P = CmpInst::ICMP_SLT;
651     break;
652   case MRK_SIntMax:
653     P = CmpInst::ICMP_SGT;
654     break;
655   case MRK_FloatMin:
656     P = CmpInst::FCMP_OLT;
657     break;
658   case MRK_FloatMax:
659     P = CmpInst::FCMP_OGT;
660     break;
661   }
662 
663   // We only match FP sequences with unsafe algebra, so we can unconditionally
664   // set it on any generated instructions.
665   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
666   FastMathFlags FMF;
667   FMF.setUnsafeAlgebra();
668   Builder.setFastMathFlags(FMF);
669 
670   Value *Cmp;
671   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
672     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
673   else
674     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
675 
676   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
677   return Select;
678 }
679 
680 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
681                                          const SCEV *Step, BinaryOperator *BOp)
682   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
683   assert(IK != IK_NoInduction && "Not an induction");
684 
685   // Start value type should match the induction kind and the value
686   // itself should not be null.
687   assert(StartValue && "StartValue is null");
688   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
689          "StartValue is not a pointer for pointer induction");
690   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
691          "StartValue is not an integer for integer induction");
692 
693   // Check the Step Value. It should be non-zero integer value.
694   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
695          "Step value is zero");
696 
697   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
698          "Step value should be constant for pointer induction");
699   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
700          "StepValue is not an integer");
701 
702   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
703          "StepValue is not FP for FpInduction");
704   assert((IK != IK_FpInduction || (InductionBinOp &&
705           (InductionBinOp->getOpcode() == Instruction::FAdd ||
706            InductionBinOp->getOpcode() == Instruction::FSub))) &&
707          "Binary opcode should be specified for FP induction");
708 }
709 
710 int InductionDescriptor::getConsecutiveDirection() const {
711   ConstantInt *ConstStep = getConstIntStepValue();
712   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
713     return ConstStep->getSExtValue();
714   return 0;
715 }
716 
717 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
718   if (isa<SCEVConstant>(Step))
719     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
720   return nullptr;
721 }
722 
723 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
724                                       ScalarEvolution *SE,
725                                       const DataLayout& DL) const {
726 
727   SCEVExpander Exp(*SE, DL, "induction");
728   assert(Index->getType() == Step->getType() &&
729          "Index type does not match StepValue type");
730   switch (IK) {
731   case IK_IntInduction: {
732     assert(Index->getType() == StartValue->getType() &&
733            "Index type does not match StartValue type");
734 
735     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
736     // and calculate (Start + Index * Step) for all cases, without
737     // special handling for "isOne" and "isMinusOne".
738     // But in the real life the result code getting worse. We mix SCEV
739     // expressions and ADD/SUB operations and receive redundant
740     // intermediate values being calculated in different ways and
741     // Instcombine is unable to reduce them all.
742 
743     if (getConstIntStepValue() &&
744         getConstIntStepValue()->isMinusOne())
745       return B.CreateSub(StartValue, Index);
746     if (getConstIntStepValue() &&
747         getConstIntStepValue()->isOne())
748       return B.CreateAdd(StartValue, Index);
749     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
750                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
751     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
752   }
753   case IK_PtrInduction: {
754     assert(isa<SCEVConstant>(Step) &&
755            "Expected constant step for pointer induction");
756     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
757     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
758     return B.CreateGEP(nullptr, StartValue, Index);
759   }
760   case IK_FpInduction: {
761     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
762     assert(InductionBinOp &&
763            (InductionBinOp->getOpcode() == Instruction::FAdd ||
764             InductionBinOp->getOpcode() == Instruction::FSub) &&
765            "Original bin op should be defined for FP induction");
766 
767     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
768 
769     // Floating point operations had to be 'fast' to enable the induction.
770     FastMathFlags Flags;
771     Flags.setUnsafeAlgebra();
772 
773     Value *MulExp = B.CreateFMul(StepValue, Index);
774     if (isa<Instruction>(MulExp))
775       // We have to check, the MulExp may be a constant.
776       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
777 
778     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
779                                MulExp, "induction");
780     if (isa<Instruction>(BOp))
781       cast<Instruction>(BOp)->setFastMathFlags(Flags);
782 
783     return BOp;
784   }
785   case IK_NoInduction:
786     return nullptr;
787   }
788   llvm_unreachable("invalid enum");
789 }
790 
791 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
792                                            ScalarEvolution *SE,
793                                            InductionDescriptor &D) {
794 
795   // Here we only handle FP induction variables.
796   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
797 
798   if (TheLoop->getHeader() != Phi->getParent())
799     return false;
800 
801   // The loop may have multiple entrances or multiple exits; we can analyze
802   // this phi if it has a unique entry value and a unique backedge value.
803   if (Phi->getNumIncomingValues() != 2)
804     return false;
805   Value *BEValue = nullptr, *StartValue = nullptr;
806   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
807     BEValue = Phi->getIncomingValue(0);
808     StartValue = Phi->getIncomingValue(1);
809   } else {
810     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
811            "Unexpected Phi node in the loop");
812     BEValue = Phi->getIncomingValue(1);
813     StartValue = Phi->getIncomingValue(0);
814   }
815 
816   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
817   if (!BOp)
818     return false;
819 
820   Value *Addend = nullptr;
821   if (BOp->getOpcode() == Instruction::FAdd) {
822     if (BOp->getOperand(0) == Phi)
823       Addend = BOp->getOperand(1);
824     else if (BOp->getOperand(1) == Phi)
825       Addend = BOp->getOperand(0);
826   } else if (BOp->getOpcode() == Instruction::FSub)
827     if (BOp->getOperand(0) == Phi)
828       Addend = BOp->getOperand(1);
829 
830   if (!Addend)
831     return false;
832 
833   // The addend should be loop invariant
834   if (auto *I = dyn_cast<Instruction>(Addend))
835     if (TheLoop->contains(I))
836       return false;
837 
838   // FP Step has unknown SCEV
839   const SCEV *Step = SE->getUnknown(Addend);
840   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
841   return true;
842 }
843 
844 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
845                                          PredicatedScalarEvolution &PSE,
846                                          InductionDescriptor &D,
847                                          bool Assume) {
848   Type *PhiTy = Phi->getType();
849 
850   // Handle integer and pointer inductions variables.
851   // Now we handle also FP induction but not trying to make a
852   // recurrent expression from the PHI node in-place.
853 
854   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
855       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
856     return false;
857 
858   if (PhiTy->isFloatingPointTy())
859     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
860 
861   const SCEV *PhiScev = PSE.getSCEV(Phi);
862   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
863 
864   // We need this expression to be an AddRecExpr.
865   if (Assume && !AR)
866     AR = PSE.getAsAddRec(Phi);
867 
868   if (!AR) {
869     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
870     return false;
871   }
872 
873   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
874 }
875 
876 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
877                                          ScalarEvolution *SE,
878                                          InductionDescriptor &D,
879                                          const SCEV *Expr) {
880   Type *PhiTy = Phi->getType();
881   // We only handle integer and pointer inductions variables.
882   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
883     return false;
884 
885   // Check that the PHI is consecutive.
886   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
887   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
888 
889   if (!AR) {
890     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
891     return false;
892   }
893 
894   if (AR->getLoop() != TheLoop) {
895     // FIXME: We should treat this as a uniform. Unfortunately, we
896     // don't currently know how to handled uniform PHIs.
897     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
898     return false;
899   }
900 
901   Value *StartValue =
902     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
903   const SCEV *Step = AR->getStepRecurrence(*SE);
904   // Calculate the pointer stride and check if it is consecutive.
905   // The stride may be a constant or a loop invariant integer value.
906   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
907   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
908     return false;
909 
910   if (PhiTy->isIntegerTy()) {
911     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
912     return true;
913   }
914 
915   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
916   // Pointer induction should be a constant.
917   if (!ConstStep)
918     return false;
919 
920   ConstantInt *CV = ConstStep->getValue();
921   Type *PointerElementType = PhiTy->getPointerElementType();
922   // The pointer stride cannot be determined if the pointer element type is not
923   // sized.
924   if (!PointerElementType->isSized())
925     return false;
926 
927   const DataLayout &DL = Phi->getModule()->getDataLayout();
928   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
929   if (!Size)
930     return false;
931 
932   int64_t CVSize = CV->getSExtValue();
933   if (CVSize % Size)
934     return false;
935   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
936                                     true /* signed */);
937   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
938   return true;
939 }
940 
941 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
942                                    bool PreserveLCSSA) {
943   bool Changed = false;
944 
945   // We re-use a vector for the in-loop predecesosrs.
946   SmallVector<BasicBlock *, 4> InLoopPredecessors;
947 
948   auto RewriteExit = [&](BasicBlock *BB) {
949     assert(InLoopPredecessors.empty() &&
950            "Must start with an empty predecessors list!");
951     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
952 
953     // See if there are any non-loop predecessors of this exit block and
954     // keep track of the in-loop predecessors.
955     bool IsDedicatedExit = true;
956     for (auto *PredBB : predecessors(BB))
957       if (L->contains(PredBB)) {
958         if (isa<IndirectBrInst>(PredBB->getTerminator()))
959           // We cannot rewrite exiting edges from an indirectbr.
960           return false;
961 
962         InLoopPredecessors.push_back(PredBB);
963       } else {
964         IsDedicatedExit = false;
965       }
966 
967     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
968 
969     // Nothing to do if this is already a dedicated exit.
970     if (IsDedicatedExit)
971       return false;
972 
973     auto *NewExitBB = SplitBlockPredecessors(
974         BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
975 
976     if (!NewExitBB)
977       DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
978                    << *L << "\n");
979     else
980       DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
981                    << NewExitBB->getName() << "\n");
982     return true;
983   };
984 
985   // Walk the exit blocks directly rather than building up a data structure for
986   // them, but only visit each one once.
987   SmallPtrSet<BasicBlock *, 4> Visited;
988   for (auto *BB : L->blocks())
989     for (auto *SuccBB : successors(BB)) {
990       // We're looking for exit blocks so skip in-loop successors.
991       if (L->contains(SuccBB))
992         continue;
993 
994       // Visit each exit block exactly once.
995       if (!Visited.insert(SuccBB).second)
996         continue;
997 
998       Changed |= RewriteExit(SuccBB);
999     }
1000 
1001   return Changed;
1002 }
1003 
1004 /// \brief Returns the instructions that use values defined in the loop.
1005 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1006   SmallVector<Instruction *, 8> UsedOutside;
1007 
1008   for (auto *Block : L->getBlocks())
1009     // FIXME: I believe that this could use copy_if if the Inst reference could
1010     // be adapted into a pointer.
1011     for (auto &Inst : *Block) {
1012       auto Users = Inst.users();
1013       if (any_of(Users, [&](User *U) {
1014             auto *Use = cast<Instruction>(U);
1015             return !L->contains(Use->getParent());
1016           }))
1017         UsedOutside.push_back(&Inst);
1018     }
1019 
1020   return UsedOutside;
1021 }
1022 
1023 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1024   // By definition, all loop passes need the LoopInfo analysis and the
1025   // Dominator tree it depends on. Because they all participate in the loop
1026   // pass manager, they must also preserve these.
1027   AU.addRequired<DominatorTreeWrapperPass>();
1028   AU.addPreserved<DominatorTreeWrapperPass>();
1029   AU.addRequired<LoopInfoWrapperPass>();
1030   AU.addPreserved<LoopInfoWrapperPass>();
1031 
1032   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1033   // here because users shouldn't directly get them from this header.
1034   extern char &LoopSimplifyID;
1035   extern char &LCSSAID;
1036   AU.addRequiredID(LoopSimplifyID);
1037   AU.addPreservedID(LoopSimplifyID);
1038   AU.addRequiredID(LCSSAID);
1039   AU.addPreservedID(LCSSAID);
1040   // This is used in the LPPassManager to perform LCSSA verification on passes
1041   // which preserve lcssa form
1042   AU.addRequired<LCSSAVerificationPass>();
1043   AU.addPreserved<LCSSAVerificationPass>();
1044 
1045   // Loop passes are designed to run inside of a loop pass manager which means
1046   // that any function analyses they require must be required by the first loop
1047   // pass in the manager (so that it is computed before the loop pass manager
1048   // runs) and preserved by all loop pasess in the manager. To make this
1049   // reasonably robust, the set needed for most loop passes is maintained here.
1050   // If your loop pass requires an analysis not listed here, you will need to
1051   // carefully audit the loop pass manager nesting structure that results.
1052   AU.addRequired<AAResultsWrapperPass>();
1053   AU.addPreserved<AAResultsWrapperPass>();
1054   AU.addPreserved<BasicAAWrapperPass>();
1055   AU.addPreserved<GlobalsAAWrapperPass>();
1056   AU.addPreserved<SCEVAAWrapperPass>();
1057   AU.addRequired<ScalarEvolutionWrapperPass>();
1058   AU.addPreserved<ScalarEvolutionWrapperPass>();
1059 }
1060 
1061 /// Manually defined generic "LoopPass" dependency initialization. This is used
1062 /// to initialize the exact set of passes from above in \c
1063 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1064 /// with:
1065 ///
1066 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
1067 ///
1068 /// As-if "LoopPass" were a pass.
1069 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1070   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1071   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1072   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1073   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1074   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1075   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1076   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1077   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1078   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1079 }
1080 
1081 /// \brief Find string metadata for loop
1082 ///
1083 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1084 /// operand or null otherwise.  If the string metadata is not found return
1085 /// Optional's not-a-value.
1086 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1087                                                             StringRef Name) {
1088   MDNode *LoopID = TheLoop->getLoopID();
1089   // Return none if LoopID is false.
1090   if (!LoopID)
1091     return None;
1092 
1093   // First operand should refer to the loop id itself.
1094   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1095   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1096 
1097   // Iterate over LoopID operands and look for MDString Metadata
1098   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1099     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1100     if (!MD)
1101       continue;
1102     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1103     if (!S)
1104       continue;
1105     // Return true if MDString holds expected MetaData.
1106     if (Name.equals(S->getString()))
1107       switch (MD->getNumOperands()) {
1108       case 1:
1109         return nullptr;
1110       case 2:
1111         return &MD->getOperand(1);
1112       default:
1113         llvm_unreachable("loop metadata has 0 or 1 operand");
1114       }
1115   }
1116   return None;
1117 }
1118 
1119 /// Returns true if the instruction in a loop is guaranteed to execute at least
1120 /// once.
1121 bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1122                                  const DominatorTree *DT, const Loop *CurLoop,
1123                                  const LoopSafetyInfo *SafetyInfo) {
1124   // We have to check to make sure that the instruction dominates all
1125   // of the exit blocks.  If it doesn't, then there is a path out of the loop
1126   // which does not execute this instruction, so we can't hoist it.
1127 
1128   // If the instruction is in the header block for the loop (which is very
1129   // common), it is always guaranteed to dominate the exit blocks.  Since this
1130   // is a common case, and can save some work, check it now.
1131   if (Inst.getParent() == CurLoop->getHeader())
1132     // If there's a throw in the header block, we can't guarantee we'll reach
1133     // Inst.
1134     return !SafetyInfo->HeaderMayThrow;
1135 
1136   // Somewhere in this loop there is an instruction which may throw and make us
1137   // exit the loop.
1138   if (SafetyInfo->MayThrow)
1139     return false;
1140 
1141   // Get the exit blocks for the current loop.
1142   SmallVector<BasicBlock *, 8> ExitBlocks;
1143   CurLoop->getExitBlocks(ExitBlocks);
1144 
1145   // Verify that the block dominates each of the exit blocks of the loop.
1146   for (BasicBlock *ExitBlock : ExitBlocks)
1147     if (!DT->dominates(Inst.getParent(), ExitBlock))
1148       return false;
1149 
1150   // As a degenerate case, if the loop is statically infinite then we haven't
1151   // proven anything since there are no exit blocks.
1152   if (ExitBlocks.empty())
1153     return false;
1154 
1155   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1156   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
1157   // just a special case of this.)
1158   return true;
1159 }
1160 
1161 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1162   // Only support loops with a unique exiting block, and a latch.
1163   if (!L->getExitingBlock())
1164     return None;
1165 
1166   // Get the branch weights for the the loop's backedge.
1167   BranchInst *LatchBR =
1168       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1169   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1170     return None;
1171 
1172   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1173           LatchBR->getSuccessor(1) == L->getHeader()) &&
1174          "At least one edge out of the latch must go to the header");
1175 
1176   // To estimate the number of times the loop body was executed, we want to
1177   // know the number of times the backedge was taken, vs. the number of times
1178   // we exited the loop.
1179   uint64_t TrueVal, FalseVal;
1180   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1181     return None;
1182 
1183   if (!TrueVal || !FalseVal)
1184     return 0;
1185 
1186   // Divide the count of the backedge by the count of the edge exiting the loop,
1187   // rounding to nearest.
1188   if (LatchBR->getSuccessor(0) == L->getHeader())
1189     return (TrueVal + (FalseVal / 2)) / FalseVal;
1190   else
1191     return (FalseVal + (TrueVal / 2)) / TrueVal;
1192 }
1193 
1194 /// \brief Adds a 'fast' flag to floating point operations.
1195 static Value *addFastMathFlag(Value *V) {
1196   if (isa<FPMathOperator>(V)) {
1197     FastMathFlags Flags;
1198     Flags.setUnsafeAlgebra();
1199     cast<Instruction>(V)->setFastMathFlags(Flags);
1200   }
1201   return V;
1202 }
1203 
1204 // Helper to generate a log2 shuffle reduction.
1205 Value *
1206 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1207                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1208                           ArrayRef<Value *> RedOps) {
1209   unsigned VF = Src->getType()->getVectorNumElements();
1210   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1211   // and vector ops, reducing the set of values being computed by half each
1212   // round.
1213   assert(isPowerOf2_32(VF) &&
1214          "Reduction emission only supported for pow2 vectors!");
1215   Value *TmpVec = Src;
1216   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1217   for (unsigned i = VF; i != 1; i >>= 1) {
1218     // Move the upper half of the vector to the lower half.
1219     for (unsigned j = 0; j != i / 2; ++j)
1220       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1221 
1222     // Fill the rest of the mask with undef.
1223     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1224               UndefValue::get(Builder.getInt32Ty()));
1225 
1226     Value *Shuf = Builder.CreateShuffleVector(
1227         TmpVec, UndefValue::get(TmpVec->getType()),
1228         ConstantVector::get(ShuffleMask), "rdx.shuf");
1229 
1230     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1231       // Floating point operations had to be 'fast' to enable the reduction.
1232       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1233                                                    TmpVec, Shuf, "bin.rdx"));
1234     } else {
1235       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1236              "Invalid min/max");
1237       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1238                                                     Shuf);
1239     }
1240     if (!RedOps.empty())
1241       propagateIRFlags(TmpVec, RedOps);
1242   }
1243   // The result is in the first element of the vector.
1244   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1245 }
1246 
1247 /// Create a simple vector reduction specified by an opcode and some
1248 /// flags (if generating min/max reductions).
1249 Value *llvm::createSimpleTargetReduction(
1250     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1251     Value *Src, TargetTransformInfo::ReductionFlags Flags,
1252     ArrayRef<Value *> RedOps) {
1253   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1254 
1255   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1256   std::function<Value*()> BuildFunc;
1257   using RD = RecurrenceDescriptor;
1258   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1259   // TODO: Support creating ordered reductions.
1260   FastMathFlags FMFUnsafe;
1261   FMFUnsafe.setUnsafeAlgebra();
1262 
1263   switch (Opcode) {
1264   case Instruction::Add:
1265     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1266     break;
1267   case Instruction::Mul:
1268     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1269     break;
1270   case Instruction::And:
1271     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1272     break;
1273   case Instruction::Or:
1274     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1275     break;
1276   case Instruction::Xor:
1277     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1278     break;
1279   case Instruction::FAdd:
1280     BuildFunc = [&]() {
1281       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1282       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1283       return Rdx;
1284     };
1285     break;
1286   case Instruction::FMul:
1287     BuildFunc = [&]() {
1288       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1289       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1290       return Rdx;
1291     };
1292     break;
1293   case Instruction::ICmp:
1294     if (Flags.IsMaxOp) {
1295       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1296       BuildFunc = [&]() {
1297         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1298       };
1299     } else {
1300       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1301       BuildFunc = [&]() {
1302         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1303       };
1304     }
1305     break;
1306   case Instruction::FCmp:
1307     if (Flags.IsMaxOp) {
1308       MinMaxKind = RD::MRK_FloatMax;
1309       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1310     } else {
1311       MinMaxKind = RD::MRK_FloatMin;
1312       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1313     }
1314     break;
1315   default:
1316     llvm_unreachable("Unhandled opcode");
1317     break;
1318   }
1319   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1320     return BuildFunc();
1321   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1322 }
1323 
1324 /// Create a vector reduction using a given recurrence descriptor.
1325 Value *llvm::createTargetReduction(IRBuilder<> &Builder,
1326                                    const TargetTransformInfo *TTI,
1327                                    RecurrenceDescriptor &Desc, Value *Src,
1328                                    bool NoNaN) {
1329   // TODO: Support in-order reductions based on the recurrence descriptor.
1330   RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1331   TargetTransformInfo::ReductionFlags Flags;
1332   Flags.NoNaN = NoNaN;
1333   auto getSimpleRdx = [&](unsigned Opc) {
1334     return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
1335   };
1336   switch (RecKind) {
1337   case RecurrenceDescriptor::RK_FloatAdd:
1338     return getSimpleRdx(Instruction::FAdd);
1339   case RecurrenceDescriptor::RK_FloatMult:
1340     return getSimpleRdx(Instruction::FMul);
1341   case RecurrenceDescriptor::RK_IntegerAdd:
1342     return getSimpleRdx(Instruction::Add);
1343   case RecurrenceDescriptor::RK_IntegerMult:
1344     return getSimpleRdx(Instruction::Mul);
1345   case RecurrenceDescriptor::RK_IntegerAnd:
1346     return getSimpleRdx(Instruction::And);
1347   case RecurrenceDescriptor::RK_IntegerOr:
1348     return getSimpleRdx(Instruction::Or);
1349   case RecurrenceDescriptor::RK_IntegerXor:
1350     return getSimpleRdx(Instruction::Xor);
1351   case RecurrenceDescriptor::RK_IntegerMinMax: {
1352     switch (Desc.getMinMaxRecurrenceKind()) {
1353     case RecurrenceDescriptor::MRK_SIntMax:
1354       Flags.IsSigned = true;
1355       Flags.IsMaxOp = true;
1356       break;
1357     case RecurrenceDescriptor::MRK_UIntMax:
1358       Flags.IsMaxOp = true;
1359       break;
1360     case RecurrenceDescriptor::MRK_SIntMin:
1361       Flags.IsSigned = true;
1362       break;
1363     case RecurrenceDescriptor::MRK_UIntMin:
1364       break;
1365     default:
1366       llvm_unreachable("Unhandled MRK");
1367     }
1368     return getSimpleRdx(Instruction::ICmp);
1369   }
1370   case RecurrenceDescriptor::RK_FloatMinMax: {
1371     Flags.IsMaxOp =
1372         Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
1373     return getSimpleRdx(Instruction::FCmp);
1374   }
1375   default:
1376     llvm_unreachable("Unhandled RecKind");
1377   }
1378 }
1379 
1380 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1381   auto *VecOp = dyn_cast<Instruction>(I);
1382   if (!VecOp)
1383     return;
1384   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1385                                             : dyn_cast<Instruction>(OpValue);
1386   if (!Intersection)
1387     return;
1388   const unsigned Opcode = Intersection->getOpcode();
1389   VecOp->copyIRFlags(Intersection);
1390   for (auto *V : VL) {
1391     auto *Instr = dyn_cast<Instruction>(V);
1392     if (!Instr)
1393       continue;
1394     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1395       VecOp->andIRFlags(V);
1396   }
1397 }
1398