176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
276aa662cSKarthik Bhat //
376aa662cSKarthik Bhat //                     The LLVM Compiler Infrastructure
476aa662cSKarthik Bhat //
576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source
676aa662cSKarthik Bhat // License. See LICENSE.TXT for details.
776aa662cSKarthik Bhat //
876aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
976aa662cSKarthik Bhat //
1076aa662cSKarthik Bhat // This file defines common loop utility functions.
1176aa662cSKarthik Bhat //
1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
1376aa662cSKarthik Bhat 
142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h"
1531088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h"
1631088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h"
1731088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h"
182f2bd8caSAdam Nemet #include "llvm/Analysis/GlobalsModRef.h"
192f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
20c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h"
2145d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h"
222f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
23c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h"
2445d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h"
2531088a9dSChandler Carruth #include "llvm/IR/Dominators.h"
2676aa662cSKarthik Bhat #include "llvm/IR/Instructions.h"
2745d4cb9aSWeiming Zhao #include "llvm/IR/Module.h"
2876aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h"
2976aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h"
3031088a9dSChandler Carruth #include "llvm/Pass.h"
3176aa662cSKarthik Bhat #include "llvm/Support/Debug.h"
3276aa662cSKarthik Bhat 
3376aa662cSKarthik Bhat using namespace llvm;
3476aa662cSKarthik Bhat using namespace llvm::PatternMatch;
3576aa662cSKarthik Bhat 
3676aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils"
3776aa662cSKarthik Bhat 
380a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
3976aa662cSKarthik Bhat                                         SmallPtrSetImpl<Instruction *> &Set) {
4076aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4176aa662cSKarthik Bhat     if (!Set.count(dyn_cast<Instruction>(*Use)))
4276aa662cSKarthik Bhat       return false;
4376aa662cSKarthik Bhat   return true;
4476aa662cSKarthik Bhat }
4576aa662cSKarthik Bhat 
46c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
47c94f8e29SChad Rosier   switch (Kind) {
48c94f8e29SChad Rosier   default:
49c94f8e29SChad Rosier     break;
50c94f8e29SChad Rosier   case RK_IntegerAdd:
51c94f8e29SChad Rosier   case RK_IntegerMult:
52c94f8e29SChad Rosier   case RK_IntegerOr:
53c94f8e29SChad Rosier   case RK_IntegerAnd:
54c94f8e29SChad Rosier   case RK_IntegerXor:
55c94f8e29SChad Rosier   case RK_IntegerMinMax:
56c94f8e29SChad Rosier     return true;
57c94f8e29SChad Rosier   }
58c94f8e29SChad Rosier   return false;
59c94f8e29SChad Rosier }
60c94f8e29SChad Rosier 
61c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
62c94f8e29SChad Rosier   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
63c94f8e29SChad Rosier }
64c94f8e29SChad Rosier 
65c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
66c94f8e29SChad Rosier   switch (Kind) {
67c94f8e29SChad Rosier   default:
68c94f8e29SChad Rosier     break;
69c94f8e29SChad Rosier   case RK_IntegerAdd:
70c94f8e29SChad Rosier   case RK_IntegerMult:
71c94f8e29SChad Rosier   case RK_FloatAdd:
72c94f8e29SChad Rosier   case RK_FloatMult:
73c94f8e29SChad Rosier     return true;
74c94f8e29SChad Rosier   }
75c94f8e29SChad Rosier   return false;
76c94f8e29SChad Rosier }
77c94f8e29SChad Rosier 
78c94f8e29SChad Rosier Instruction *
79c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
80c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &Visited,
81c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &CI) {
82c94f8e29SChad Rosier   if (!Phi->hasOneUse())
83c94f8e29SChad Rosier     return Phi;
84c94f8e29SChad Rosier 
85c94f8e29SChad Rosier   const APInt *M = nullptr;
86c94f8e29SChad Rosier   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
87c94f8e29SChad Rosier 
88c94f8e29SChad Rosier   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
89c94f8e29SChad Rosier   // with a new integer type of the corresponding bit width.
90c94f8e29SChad Rosier   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
91c94f8e29SChad Rosier                            m_And(m_APInt(M), m_Instruction(I))))) {
92c94f8e29SChad Rosier     int32_t Bits = (*M + 1).exactLogBase2();
93c94f8e29SChad Rosier     if (Bits > 0) {
94c94f8e29SChad Rosier       RT = IntegerType::get(Phi->getContext(), Bits);
95c94f8e29SChad Rosier       Visited.insert(Phi);
96c94f8e29SChad Rosier       CI.insert(J);
97c94f8e29SChad Rosier       return J;
98c94f8e29SChad Rosier     }
99c94f8e29SChad Rosier   }
100c94f8e29SChad Rosier   return Phi;
101c94f8e29SChad Rosier }
102c94f8e29SChad Rosier 
103c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind(
104c94f8e29SChad Rosier     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
105c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &Visited,
106c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &CI) {
107c94f8e29SChad Rosier 
108c94f8e29SChad Rosier   SmallVector<Instruction *, 8> Worklist;
109c94f8e29SChad Rosier   bool FoundOneOperand = false;
11029dc0f70SMatthew Simpson   unsigned DstSize = RT->getPrimitiveSizeInBits();
111c94f8e29SChad Rosier   Worklist.push_back(Exit);
112c94f8e29SChad Rosier 
113c94f8e29SChad Rosier   // Traverse the instructions in the reduction expression, beginning with the
114c94f8e29SChad Rosier   // exit value.
115c94f8e29SChad Rosier   while (!Worklist.empty()) {
116c94f8e29SChad Rosier     Instruction *I = Worklist.pop_back_val();
117c94f8e29SChad Rosier     for (Use &U : I->operands()) {
118c94f8e29SChad Rosier 
119c94f8e29SChad Rosier       // Terminate the traversal if the operand is not an instruction, or we
120c94f8e29SChad Rosier       // reach the starting value.
121c94f8e29SChad Rosier       Instruction *J = dyn_cast<Instruction>(U.get());
122c94f8e29SChad Rosier       if (!J || J == Start)
123c94f8e29SChad Rosier         continue;
124c94f8e29SChad Rosier 
125c94f8e29SChad Rosier       // Otherwise, investigate the operation if it is also in the expression.
126c94f8e29SChad Rosier       if (Visited.count(J)) {
127c94f8e29SChad Rosier         Worklist.push_back(J);
128c94f8e29SChad Rosier         continue;
129c94f8e29SChad Rosier       }
130c94f8e29SChad Rosier 
131c94f8e29SChad Rosier       // If the operand is not in Visited, it is not a reduction operation, but
132c94f8e29SChad Rosier       // it does feed into one. Make sure it is either a single-use sign- or
13329dc0f70SMatthew Simpson       // zero-extend instruction.
134c94f8e29SChad Rosier       CastInst *Cast = dyn_cast<CastInst>(J);
135c94f8e29SChad Rosier       bool IsSExtInst = isa<SExtInst>(J);
13629dc0f70SMatthew Simpson       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
13729dc0f70SMatthew Simpson         return false;
13829dc0f70SMatthew Simpson 
13929dc0f70SMatthew Simpson       // Ensure the source type of the extend is no larger than the reduction
14029dc0f70SMatthew Simpson       // type. It is not necessary for the types to be identical.
14129dc0f70SMatthew Simpson       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
14229dc0f70SMatthew Simpson       if (SrcSize > DstSize)
143c94f8e29SChad Rosier         return false;
144c94f8e29SChad Rosier 
145c94f8e29SChad Rosier       // Furthermore, ensure that all such extends are of the same kind.
146c94f8e29SChad Rosier       if (FoundOneOperand) {
147c94f8e29SChad Rosier         if (IsSigned != IsSExtInst)
148c94f8e29SChad Rosier           return false;
149c94f8e29SChad Rosier       } else {
150c94f8e29SChad Rosier         FoundOneOperand = true;
151c94f8e29SChad Rosier         IsSigned = IsSExtInst;
152c94f8e29SChad Rosier       }
153c94f8e29SChad Rosier 
15429dc0f70SMatthew Simpson       // Lastly, if the source type of the extend matches the reduction type,
15529dc0f70SMatthew Simpson       // add the extend to CI so that we can avoid accounting for it in the
15629dc0f70SMatthew Simpson       // cost model.
15729dc0f70SMatthew Simpson       if (SrcSize == DstSize)
158c94f8e29SChad Rosier         CI.insert(Cast);
159c94f8e29SChad Rosier     }
160c94f8e29SChad Rosier   }
161c94f8e29SChad Rosier   return true;
162c94f8e29SChad Rosier }
163c94f8e29SChad Rosier 
1640a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
16576aa662cSKarthik Bhat                                            Loop *TheLoop, bool HasFunNoNaNAttr,
1660a91310cSTyler Nowicki                                            RecurrenceDescriptor &RedDes) {
16776aa662cSKarthik Bhat   if (Phi->getNumIncomingValues() != 2)
16876aa662cSKarthik Bhat     return false;
16976aa662cSKarthik Bhat 
17076aa662cSKarthik Bhat   // Reduction variables are only found in the loop header block.
17176aa662cSKarthik Bhat   if (Phi->getParent() != TheLoop->getHeader())
17276aa662cSKarthik Bhat     return false;
17376aa662cSKarthik Bhat 
17476aa662cSKarthik Bhat   // Obtain the reduction start value from the value that comes from the loop
17576aa662cSKarthik Bhat   // preheader.
17676aa662cSKarthik Bhat   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
17776aa662cSKarthik Bhat 
17876aa662cSKarthik Bhat   // ExitInstruction is the single value which is used outside the loop.
17976aa662cSKarthik Bhat   // We only allow for a single reduction value to be used outside the loop.
18076aa662cSKarthik Bhat   // This includes users of the reduction, variables (which form a cycle
18176aa662cSKarthik Bhat   // which ends in the phi node).
18276aa662cSKarthik Bhat   Instruction *ExitInstruction = nullptr;
18376aa662cSKarthik Bhat   // Indicates that we found a reduction operation in our scan.
18476aa662cSKarthik Bhat   bool FoundReduxOp = false;
18576aa662cSKarthik Bhat 
18676aa662cSKarthik Bhat   // We start with the PHI node and scan for all of the users of this
18776aa662cSKarthik Bhat   // instruction. All users must be instructions that can be used as reduction
18876aa662cSKarthik Bhat   // variables (such as ADD). We must have a single out-of-block user. The cycle
18976aa662cSKarthik Bhat   // must include the original PHI.
19076aa662cSKarthik Bhat   bool FoundStartPHI = false;
19176aa662cSKarthik Bhat 
19276aa662cSKarthik Bhat   // To recognize min/max patterns formed by a icmp select sequence, we store
19376aa662cSKarthik Bhat   // the number of instruction we saw from the recognized min/max pattern,
19476aa662cSKarthik Bhat   //  to make sure we only see exactly the two instructions.
19576aa662cSKarthik Bhat   unsigned NumCmpSelectPatternInst = 0;
19627b2c39eSTyler Nowicki   InstDesc ReduxDesc(false, nullptr);
19776aa662cSKarthik Bhat 
198c94f8e29SChad Rosier   // Data used for determining if the recurrence has been type-promoted.
199c94f8e29SChad Rosier   Type *RecurrenceType = Phi->getType();
200c94f8e29SChad Rosier   SmallPtrSet<Instruction *, 4> CastInsts;
201c94f8e29SChad Rosier   Instruction *Start = Phi;
202c94f8e29SChad Rosier   bool IsSigned = false;
203c94f8e29SChad Rosier 
20476aa662cSKarthik Bhat   SmallPtrSet<Instruction *, 8> VisitedInsts;
20576aa662cSKarthik Bhat   SmallVector<Instruction *, 8> Worklist;
206c94f8e29SChad Rosier 
207c94f8e29SChad Rosier   // Return early if the recurrence kind does not match the type of Phi. If the
208c94f8e29SChad Rosier   // recurrence kind is arithmetic, we attempt to look through AND operations
209c94f8e29SChad Rosier   // resulting from the type promotion performed by InstCombine.  Vector
210c94f8e29SChad Rosier   // operations are not limited to the legal integer widths, so we may be able
211c94f8e29SChad Rosier   // to evaluate the reduction in the narrower width.
212c94f8e29SChad Rosier   if (RecurrenceType->isFloatingPointTy()) {
213c94f8e29SChad Rosier     if (!isFloatingPointRecurrenceKind(Kind))
214c94f8e29SChad Rosier       return false;
215c94f8e29SChad Rosier   } else {
216c94f8e29SChad Rosier     if (!isIntegerRecurrenceKind(Kind))
217c94f8e29SChad Rosier       return false;
218c94f8e29SChad Rosier     if (isArithmeticRecurrenceKind(Kind))
219c94f8e29SChad Rosier       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
220c94f8e29SChad Rosier   }
221c94f8e29SChad Rosier 
222c94f8e29SChad Rosier   Worklist.push_back(Start);
223c94f8e29SChad Rosier   VisitedInsts.insert(Start);
22476aa662cSKarthik Bhat 
22576aa662cSKarthik Bhat   // A value in the reduction can be used:
22676aa662cSKarthik Bhat   //  - By the reduction:
22776aa662cSKarthik Bhat   //      - Reduction operation:
22876aa662cSKarthik Bhat   //        - One use of reduction value (safe).
22976aa662cSKarthik Bhat   //        - Multiple use of reduction value (not safe).
23076aa662cSKarthik Bhat   //      - PHI:
23176aa662cSKarthik Bhat   //        - All uses of the PHI must be the reduction (safe).
23276aa662cSKarthik Bhat   //        - Otherwise, not safe.
23376aa662cSKarthik Bhat   //  - By one instruction outside of the loop (safe).
23476aa662cSKarthik Bhat   //  - By further instructions outside of the loop (not safe).
23576aa662cSKarthik Bhat   //  - By an instruction that is not part of the reduction (not safe).
23676aa662cSKarthik Bhat   //    This is either:
23776aa662cSKarthik Bhat   //      * An instruction type other than PHI or the reduction operation.
23876aa662cSKarthik Bhat   //      * A PHI in the header other than the initial PHI.
23976aa662cSKarthik Bhat   while (!Worklist.empty()) {
24076aa662cSKarthik Bhat     Instruction *Cur = Worklist.back();
24176aa662cSKarthik Bhat     Worklist.pop_back();
24276aa662cSKarthik Bhat 
24376aa662cSKarthik Bhat     // No Users.
24476aa662cSKarthik Bhat     // If the instruction has no users then this is a broken chain and can't be
24576aa662cSKarthik Bhat     // a reduction variable.
24676aa662cSKarthik Bhat     if (Cur->use_empty())
24776aa662cSKarthik Bhat       return false;
24876aa662cSKarthik Bhat 
24976aa662cSKarthik Bhat     bool IsAPhi = isa<PHINode>(Cur);
25076aa662cSKarthik Bhat 
25176aa662cSKarthik Bhat     // A header PHI use other than the original PHI.
25276aa662cSKarthik Bhat     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
25376aa662cSKarthik Bhat       return false;
25476aa662cSKarthik Bhat 
25576aa662cSKarthik Bhat     // Reductions of instructions such as Div, and Sub is only possible if the
25676aa662cSKarthik Bhat     // LHS is the reduction variable.
25776aa662cSKarthik Bhat     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
25876aa662cSKarthik Bhat         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
25976aa662cSKarthik Bhat         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
26076aa662cSKarthik Bhat       return false;
26176aa662cSKarthik Bhat 
262c94f8e29SChad Rosier     // Any reduction instruction must be of one of the allowed kinds. We ignore
263c94f8e29SChad Rosier     // the starting value (the Phi or an AND instruction if the Phi has been
264c94f8e29SChad Rosier     // type-promoted).
265c94f8e29SChad Rosier     if (Cur != Start) {
2660a91310cSTyler Nowicki       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
2670a91310cSTyler Nowicki       if (!ReduxDesc.isRecurrence())
26876aa662cSKarthik Bhat         return false;
269c94f8e29SChad Rosier     }
27076aa662cSKarthik Bhat 
27176aa662cSKarthik Bhat     // A reduction operation must only have one use of the reduction value.
27276aa662cSKarthik Bhat     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
27376aa662cSKarthik Bhat         hasMultipleUsesOf(Cur, VisitedInsts))
27476aa662cSKarthik Bhat       return false;
27576aa662cSKarthik Bhat 
27676aa662cSKarthik Bhat     // All inputs to a PHI node must be a reduction value.
27776aa662cSKarthik Bhat     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
27876aa662cSKarthik Bhat       return false;
27976aa662cSKarthik Bhat 
28076aa662cSKarthik Bhat     if (Kind == RK_IntegerMinMax &&
28176aa662cSKarthik Bhat         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
28276aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28376aa662cSKarthik Bhat     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
28476aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28576aa662cSKarthik Bhat 
28676aa662cSKarthik Bhat     // Check  whether we found a reduction operator.
287c94f8e29SChad Rosier     FoundReduxOp |= !IsAPhi && Cur != Start;
28876aa662cSKarthik Bhat 
28976aa662cSKarthik Bhat     // Process users of current instruction. Push non-PHI nodes after PHI nodes
29076aa662cSKarthik Bhat     // onto the stack. This way we are going to have seen all inputs to PHI
29176aa662cSKarthik Bhat     // nodes once we get to them.
29276aa662cSKarthik Bhat     SmallVector<Instruction *, 8> NonPHIs;
29376aa662cSKarthik Bhat     SmallVector<Instruction *, 8> PHIs;
29476aa662cSKarthik Bhat     for (User *U : Cur->users()) {
29576aa662cSKarthik Bhat       Instruction *UI = cast<Instruction>(U);
29676aa662cSKarthik Bhat 
29776aa662cSKarthik Bhat       // Check if we found the exit user.
29876aa662cSKarthik Bhat       BasicBlock *Parent = UI->getParent();
29976aa662cSKarthik Bhat       if (!TheLoop->contains(Parent)) {
30076aa662cSKarthik Bhat         // Exit if you find multiple outside users or if the header phi node is
30176aa662cSKarthik Bhat         // being used. In this case the user uses the value of the previous
30276aa662cSKarthik Bhat         // iteration, in which case we would loose "VF-1" iterations of the
30376aa662cSKarthik Bhat         // reduction operation if we vectorize.
30476aa662cSKarthik Bhat         if (ExitInstruction != nullptr || Cur == Phi)
30576aa662cSKarthik Bhat           return false;
30676aa662cSKarthik Bhat 
30776aa662cSKarthik Bhat         // The instruction used by an outside user must be the last instruction
30876aa662cSKarthik Bhat         // before we feed back to the reduction phi. Otherwise, we loose VF-1
30976aa662cSKarthik Bhat         // operations on the value.
31042531260SDavid Majnemer         if (!is_contained(Phi->operands(), Cur))
31176aa662cSKarthik Bhat           return false;
31276aa662cSKarthik Bhat 
31376aa662cSKarthik Bhat         ExitInstruction = Cur;
31476aa662cSKarthik Bhat         continue;
31576aa662cSKarthik Bhat       }
31676aa662cSKarthik Bhat 
31776aa662cSKarthik Bhat       // Process instructions only once (termination). Each reduction cycle
31876aa662cSKarthik Bhat       // value must only be used once, except by phi nodes and min/max
31976aa662cSKarthik Bhat       // reductions which are represented as a cmp followed by a select.
32027b2c39eSTyler Nowicki       InstDesc IgnoredVal(false, nullptr);
32176aa662cSKarthik Bhat       if (VisitedInsts.insert(UI).second) {
32276aa662cSKarthik Bhat         if (isa<PHINode>(UI))
32376aa662cSKarthik Bhat           PHIs.push_back(UI);
32476aa662cSKarthik Bhat         else
32576aa662cSKarthik Bhat           NonPHIs.push_back(UI);
32676aa662cSKarthik Bhat       } else if (!isa<PHINode>(UI) &&
32776aa662cSKarthik Bhat                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
32876aa662cSKarthik Bhat                    !isa<SelectInst>(UI)) ||
3290a91310cSTyler Nowicki                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
33076aa662cSKarthik Bhat         return false;
33176aa662cSKarthik Bhat 
33276aa662cSKarthik Bhat       // Remember that we completed the cycle.
33376aa662cSKarthik Bhat       if (UI == Phi)
33476aa662cSKarthik Bhat         FoundStartPHI = true;
33576aa662cSKarthik Bhat     }
33676aa662cSKarthik Bhat     Worklist.append(PHIs.begin(), PHIs.end());
33776aa662cSKarthik Bhat     Worklist.append(NonPHIs.begin(), NonPHIs.end());
33876aa662cSKarthik Bhat   }
33976aa662cSKarthik Bhat 
34076aa662cSKarthik Bhat   // This means we have seen one but not the other instruction of the
34176aa662cSKarthik Bhat   // pattern or more than just a select and cmp.
34276aa662cSKarthik Bhat   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
34376aa662cSKarthik Bhat       NumCmpSelectPatternInst != 2)
34476aa662cSKarthik Bhat     return false;
34576aa662cSKarthik Bhat 
34676aa662cSKarthik Bhat   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
34776aa662cSKarthik Bhat     return false;
34876aa662cSKarthik Bhat 
349c94f8e29SChad Rosier   // If we think Phi may have been type-promoted, we also need to ensure that
350c94f8e29SChad Rosier   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
351c94f8e29SChad Rosier   // so, we will be able to evaluate the reduction in the narrower bit width.
352c94f8e29SChad Rosier   if (Start != Phi)
353c94f8e29SChad Rosier     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
354c94f8e29SChad Rosier                                 IsSigned, VisitedInsts, CastInsts))
355c94f8e29SChad Rosier       return false;
356c94f8e29SChad Rosier 
35776aa662cSKarthik Bhat   // We found a reduction var if we have reached the original phi node and we
35876aa662cSKarthik Bhat   // only have a single instruction with out-of-loop users.
35976aa662cSKarthik Bhat 
36076aa662cSKarthik Bhat   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
3610a91310cSTyler Nowicki   // is saved as part of the RecurrenceDescriptor.
36276aa662cSKarthik Bhat 
36376aa662cSKarthik Bhat   // Save the description of this reduction variable.
364c94f8e29SChad Rosier   RecurrenceDescriptor RD(
365c94f8e29SChad Rosier       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
366c94f8e29SChad Rosier       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
36776aa662cSKarthik Bhat   RedDes = RD;
36876aa662cSKarthik Bhat 
36976aa662cSKarthik Bhat   return true;
37076aa662cSKarthik Bhat }
37176aa662cSKarthik Bhat 
37276aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
37376aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y).
37427b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
37527b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
37676aa662cSKarthik Bhat 
37776aa662cSKarthik Bhat   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
37876aa662cSKarthik Bhat          "Expect a select instruction");
37976aa662cSKarthik Bhat   Instruction *Cmp = nullptr;
38076aa662cSKarthik Bhat   SelectInst *Select = nullptr;
38176aa662cSKarthik Bhat 
38276aa662cSKarthik Bhat   // We must handle the select(cmp()) as a single instruction. Advance to the
38376aa662cSKarthik Bhat   // select.
38476aa662cSKarthik Bhat   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
38576aa662cSKarthik Bhat     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
38627b2c39eSTyler Nowicki       return InstDesc(false, I);
38727b2c39eSTyler Nowicki     return InstDesc(Select, Prev.getMinMaxKind());
38876aa662cSKarthik Bhat   }
38976aa662cSKarthik Bhat 
39076aa662cSKarthik Bhat   // Only handle single use cases for now.
39176aa662cSKarthik Bhat   if (!(Select = dyn_cast<SelectInst>(I)))
39227b2c39eSTyler Nowicki     return InstDesc(false, I);
39376aa662cSKarthik Bhat   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
39476aa662cSKarthik Bhat       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
39527b2c39eSTyler Nowicki     return InstDesc(false, I);
39676aa662cSKarthik Bhat   if (!Cmp->hasOneUse())
39727b2c39eSTyler Nowicki     return InstDesc(false, I);
39876aa662cSKarthik Bhat 
39976aa662cSKarthik Bhat   Value *CmpLeft;
40076aa662cSKarthik Bhat   Value *CmpRight;
40176aa662cSKarthik Bhat 
40276aa662cSKarthik Bhat   // Look for a min/max pattern.
40376aa662cSKarthik Bhat   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40427b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMin);
40576aa662cSKarthik Bhat   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40627b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMax);
40776aa662cSKarthik Bhat   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40827b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMax);
40976aa662cSKarthik Bhat   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41027b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMin);
41176aa662cSKarthik Bhat   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41227b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
41376aa662cSKarthik Bhat   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41427b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
41576aa662cSKarthik Bhat   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41627b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
41776aa662cSKarthik Bhat   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41827b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
41976aa662cSKarthik Bhat 
42027b2c39eSTyler Nowicki   return InstDesc(false, I);
42176aa662cSKarthik Bhat }
42276aa662cSKarthik Bhat 
42327b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
4240a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
42527b2c39eSTyler Nowicki                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
42676aa662cSKarthik Bhat   bool FP = I->getType()->isFloatingPointTy();
427c1a86f58STyler Nowicki   Instruction *UAI = Prev.getUnsafeAlgebraInst();
428c1a86f58STyler Nowicki   if (!UAI && FP && !I->hasUnsafeAlgebra())
429c1a86f58STyler Nowicki     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
430c1a86f58STyler Nowicki 
43176aa662cSKarthik Bhat   switch (I->getOpcode()) {
43276aa662cSKarthik Bhat   default:
43327b2c39eSTyler Nowicki     return InstDesc(false, I);
43476aa662cSKarthik Bhat   case Instruction::PHI:
43510a1e8b1STim Northover     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
43676aa662cSKarthik Bhat   case Instruction::Sub:
43776aa662cSKarthik Bhat   case Instruction::Add:
43827b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAdd, I);
43976aa662cSKarthik Bhat   case Instruction::Mul:
44027b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerMult, I);
44176aa662cSKarthik Bhat   case Instruction::And:
44227b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAnd, I);
44376aa662cSKarthik Bhat   case Instruction::Or:
44427b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerOr, I);
44576aa662cSKarthik Bhat   case Instruction::Xor:
44627b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerXor, I);
44776aa662cSKarthik Bhat   case Instruction::FMul:
448c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatMult, I, UAI);
44976aa662cSKarthik Bhat   case Instruction::FSub:
45076aa662cSKarthik Bhat   case Instruction::FAdd:
451c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatAdd, I, UAI);
45276aa662cSKarthik Bhat   case Instruction::FCmp:
45376aa662cSKarthik Bhat   case Instruction::ICmp:
45476aa662cSKarthik Bhat   case Instruction::Select:
45576aa662cSKarthik Bhat     if (Kind != RK_IntegerMinMax &&
45676aa662cSKarthik Bhat         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
45727b2c39eSTyler Nowicki       return InstDesc(false, I);
45876aa662cSKarthik Bhat     return isMinMaxSelectCmpPattern(I, Prev);
45976aa662cSKarthik Bhat   }
46076aa662cSKarthik Bhat }
46176aa662cSKarthik Bhat 
4620a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf(
46376aa662cSKarthik Bhat     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
46476aa662cSKarthik Bhat   unsigned NumUses = 0;
46576aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
46676aa662cSKarthik Bhat        ++Use) {
46776aa662cSKarthik Bhat     if (Insts.count(dyn_cast<Instruction>(*Use)))
46876aa662cSKarthik Bhat       ++NumUses;
46976aa662cSKarthik Bhat     if (NumUses > 1)
47076aa662cSKarthik Bhat       return true;
47176aa662cSKarthik Bhat   }
47276aa662cSKarthik Bhat 
47376aa662cSKarthik Bhat   return false;
47476aa662cSKarthik Bhat }
4750a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
4760a91310cSTyler Nowicki                                           RecurrenceDescriptor &RedDes) {
47776aa662cSKarthik Bhat 
47876aa662cSKarthik Bhat   BasicBlock *Header = TheLoop->getHeader();
47976aa662cSKarthik Bhat   Function &F = *Header->getParent();
4808dd66e57SNirav Dave   bool HasFunNoNaNAttr =
48176aa662cSKarthik Bhat       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
48276aa662cSKarthik Bhat 
48376aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
48476aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
48576aa662cSKarthik Bhat     return true;
48676aa662cSKarthik Bhat   }
48776aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
48876aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
48976aa662cSKarthik Bhat     return true;
49076aa662cSKarthik Bhat   }
49176aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
49276aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
49376aa662cSKarthik Bhat     return true;
49476aa662cSKarthik Bhat   }
49576aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
49676aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
49776aa662cSKarthik Bhat     return true;
49876aa662cSKarthik Bhat   }
49976aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
50076aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
50176aa662cSKarthik Bhat     return true;
50276aa662cSKarthik Bhat   }
50376aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
50476aa662cSKarthik Bhat                       RedDes)) {
50576aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
50676aa662cSKarthik Bhat     return true;
50776aa662cSKarthik Bhat   }
50876aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
50976aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
51076aa662cSKarthik Bhat     return true;
51176aa662cSKarthik Bhat   }
51276aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
51376aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
51476aa662cSKarthik Bhat     return true;
51576aa662cSKarthik Bhat   }
51676aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
51776aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
51876aa662cSKarthik Bhat     return true;
51976aa662cSKarthik Bhat   }
52076aa662cSKarthik Bhat   // Not a reduction of known type.
52176aa662cSKarthik Bhat   return false;
52276aa662cSKarthik Bhat }
52376aa662cSKarthik Bhat 
52429c997c1SMatthew Simpson bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
52529c997c1SMatthew Simpson                                                   DominatorTree *DT) {
52629c997c1SMatthew Simpson 
52729c997c1SMatthew Simpson   // Ensure the phi node is in the loop header and has two incoming values.
52829c997c1SMatthew Simpson   if (Phi->getParent() != TheLoop->getHeader() ||
52929c997c1SMatthew Simpson       Phi->getNumIncomingValues() != 2)
53029c997c1SMatthew Simpson     return false;
53129c997c1SMatthew Simpson 
53229c997c1SMatthew Simpson   // Ensure the loop has a preheader and a single latch block. The loop
53329c997c1SMatthew Simpson   // vectorizer will need the latch to set up the next iteration of the loop.
53429c997c1SMatthew Simpson   auto *Preheader = TheLoop->getLoopPreheader();
53529c997c1SMatthew Simpson   auto *Latch = TheLoop->getLoopLatch();
53629c997c1SMatthew Simpson   if (!Preheader || !Latch)
53729c997c1SMatthew Simpson     return false;
53829c997c1SMatthew Simpson 
53929c997c1SMatthew Simpson   // Ensure the phi node's incoming blocks are the loop preheader and latch.
54029c997c1SMatthew Simpson   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
54129c997c1SMatthew Simpson       Phi->getBasicBlockIndex(Latch) < 0)
54229c997c1SMatthew Simpson     return false;
54329c997c1SMatthew Simpson 
54429c997c1SMatthew Simpson   // Get the previous value. The previous value comes from the latch edge while
54529c997c1SMatthew Simpson   // the initial value comes form the preheader edge.
54629c997c1SMatthew Simpson   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
54753207a99SMatthew Simpson   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
54829c997c1SMatthew Simpson     return false;
54929c997c1SMatthew Simpson 
55029c997c1SMatthew Simpson   // Ensure every user of the phi node is dominated by the previous value. The
55129c997c1SMatthew Simpson   // dominance requirement ensures the loop vectorizer will not need to
55229c997c1SMatthew Simpson   // vectorize the initial value prior to the first iteration of the loop.
55329c997c1SMatthew Simpson   for (User *U : Phi->users())
55429c997c1SMatthew Simpson     if (auto *I = dyn_cast<Instruction>(U))
55529c997c1SMatthew Simpson       if (!DT->dominates(Previous, I))
55629c997c1SMatthew Simpson         return false;
55729c997c1SMatthew Simpson 
55829c997c1SMatthew Simpson   return true;
55929c997c1SMatthew Simpson }
56029c997c1SMatthew Simpson 
56176aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for
56276aa662cSKarthik Bhat /// the operation K.
5630a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
5640a91310cSTyler Nowicki                                                       Type *Tp) {
56576aa662cSKarthik Bhat   switch (K) {
56676aa662cSKarthik Bhat   case RK_IntegerXor:
56776aa662cSKarthik Bhat   case RK_IntegerAdd:
56876aa662cSKarthik Bhat   case RK_IntegerOr:
56976aa662cSKarthik Bhat     // Adding, Xoring, Oring zero to a number does not change it.
57076aa662cSKarthik Bhat     return ConstantInt::get(Tp, 0);
57176aa662cSKarthik Bhat   case RK_IntegerMult:
57276aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
57376aa662cSKarthik Bhat     return ConstantInt::get(Tp, 1);
57476aa662cSKarthik Bhat   case RK_IntegerAnd:
57576aa662cSKarthik Bhat     // AND-ing a number with an all-1 value does not change it.
57676aa662cSKarthik Bhat     return ConstantInt::get(Tp, -1, true);
57776aa662cSKarthik Bhat   case RK_FloatMult:
57876aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
57976aa662cSKarthik Bhat     return ConstantFP::get(Tp, 1.0L);
58076aa662cSKarthik Bhat   case RK_FloatAdd:
58176aa662cSKarthik Bhat     // Adding zero to a number does not change it.
58276aa662cSKarthik Bhat     return ConstantFP::get(Tp, 0.0L);
58376aa662cSKarthik Bhat   default:
5840a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence kind");
58576aa662cSKarthik Bhat   }
58676aa662cSKarthik Bhat }
58776aa662cSKarthik Bhat 
5880a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator.
5890a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
59076aa662cSKarthik Bhat   switch (Kind) {
59176aa662cSKarthik Bhat   case RK_IntegerAdd:
59276aa662cSKarthik Bhat     return Instruction::Add;
59376aa662cSKarthik Bhat   case RK_IntegerMult:
59476aa662cSKarthik Bhat     return Instruction::Mul;
59576aa662cSKarthik Bhat   case RK_IntegerOr:
59676aa662cSKarthik Bhat     return Instruction::Or;
59776aa662cSKarthik Bhat   case RK_IntegerAnd:
59876aa662cSKarthik Bhat     return Instruction::And;
59976aa662cSKarthik Bhat   case RK_IntegerXor:
60076aa662cSKarthik Bhat     return Instruction::Xor;
60176aa662cSKarthik Bhat   case RK_FloatMult:
60276aa662cSKarthik Bhat     return Instruction::FMul;
60376aa662cSKarthik Bhat   case RK_FloatAdd:
60476aa662cSKarthik Bhat     return Instruction::FAdd;
60576aa662cSKarthik Bhat   case RK_IntegerMinMax:
60676aa662cSKarthik Bhat     return Instruction::ICmp;
60776aa662cSKarthik Bhat   case RK_FloatMinMax:
60876aa662cSKarthik Bhat     return Instruction::FCmp;
60976aa662cSKarthik Bhat   default:
6100a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence operation");
61176aa662cSKarthik Bhat   }
61276aa662cSKarthik Bhat }
61376aa662cSKarthik Bhat 
61427b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
61527b2c39eSTyler Nowicki                                             MinMaxRecurrenceKind RK,
61676aa662cSKarthik Bhat                                             Value *Left, Value *Right) {
61776aa662cSKarthik Bhat   CmpInst::Predicate P = CmpInst::ICMP_NE;
61876aa662cSKarthik Bhat   switch (RK) {
61976aa662cSKarthik Bhat   default:
6200a91310cSTyler Nowicki     llvm_unreachable("Unknown min/max recurrence kind");
62127b2c39eSTyler Nowicki   case MRK_UIntMin:
62276aa662cSKarthik Bhat     P = CmpInst::ICMP_ULT;
62376aa662cSKarthik Bhat     break;
62427b2c39eSTyler Nowicki   case MRK_UIntMax:
62576aa662cSKarthik Bhat     P = CmpInst::ICMP_UGT;
62676aa662cSKarthik Bhat     break;
62727b2c39eSTyler Nowicki   case MRK_SIntMin:
62876aa662cSKarthik Bhat     P = CmpInst::ICMP_SLT;
62976aa662cSKarthik Bhat     break;
63027b2c39eSTyler Nowicki   case MRK_SIntMax:
63176aa662cSKarthik Bhat     P = CmpInst::ICMP_SGT;
63276aa662cSKarthik Bhat     break;
63327b2c39eSTyler Nowicki   case MRK_FloatMin:
63476aa662cSKarthik Bhat     P = CmpInst::FCMP_OLT;
63576aa662cSKarthik Bhat     break;
63627b2c39eSTyler Nowicki   case MRK_FloatMax:
63776aa662cSKarthik Bhat     P = CmpInst::FCMP_OGT;
63876aa662cSKarthik Bhat     break;
63976aa662cSKarthik Bhat   }
64076aa662cSKarthik Bhat 
64150a4c27fSJames Molloy   // We only match FP sequences with unsafe algebra, so we can unconditionally
64250a4c27fSJames Molloy   // set it on any generated instructions.
64350a4c27fSJames Molloy   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
64450a4c27fSJames Molloy   FastMathFlags FMF;
64550a4c27fSJames Molloy   FMF.setUnsafeAlgebra();
646a252815bSSanjay Patel   Builder.setFastMathFlags(FMF);
64750a4c27fSJames Molloy 
64876aa662cSKarthik Bhat   Value *Cmp;
64927b2c39eSTyler Nowicki   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
65076aa662cSKarthik Bhat     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
65176aa662cSKarthik Bhat   else
65276aa662cSKarthik Bhat     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
65376aa662cSKarthik Bhat 
65476aa662cSKarthik Bhat   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
65576aa662cSKarthik Bhat   return Select;
65676aa662cSKarthik Bhat }
65724e6cc2dSKarthik Bhat 
6581bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
659376a18bdSElena Demikhovsky                                          const SCEV *Step, BinaryOperator *BOp)
660376a18bdSElena Demikhovsky   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
6611bbf15c5SJames Molloy   assert(IK != IK_NoInduction && "Not an induction");
662c434d091SElena Demikhovsky 
663c434d091SElena Demikhovsky   // Start value type should match the induction kind and the value
664c434d091SElena Demikhovsky   // itself should not be null.
6651bbf15c5SJames Molloy   assert(StartValue && "StartValue is null");
6661bbf15c5SJames Molloy   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
6671bbf15c5SJames Molloy          "StartValue is not a pointer for pointer induction");
6681bbf15c5SJames Molloy   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
6691bbf15c5SJames Molloy          "StartValue is not an integer for integer induction");
670c434d091SElena Demikhovsky 
671c434d091SElena Demikhovsky   // Check the Step Value. It should be non-zero integer value.
672c434d091SElena Demikhovsky   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
673c434d091SElena Demikhovsky          "Step value is zero");
674c434d091SElena Demikhovsky 
675c434d091SElena Demikhovsky   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
676c434d091SElena Demikhovsky          "Step value should be constant for pointer induction");
677376a18bdSElena Demikhovsky   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
678376a18bdSElena Demikhovsky          "StepValue is not an integer");
679376a18bdSElena Demikhovsky 
680376a18bdSElena Demikhovsky   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
681376a18bdSElena Demikhovsky          "StepValue is not FP for FpInduction");
682376a18bdSElena Demikhovsky   assert((IK != IK_FpInduction || (InductionBinOp &&
683376a18bdSElena Demikhovsky           (InductionBinOp->getOpcode() == Instruction::FAdd ||
684376a18bdSElena Demikhovsky            InductionBinOp->getOpcode() == Instruction::FSub))) &&
685376a18bdSElena Demikhovsky          "Binary opcode should be specified for FP induction");
6861bbf15c5SJames Molloy }
6871bbf15c5SJames Molloy 
6881bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const {
689c434d091SElena Demikhovsky   ConstantInt *ConstStep = getConstIntStepValue();
690c434d091SElena Demikhovsky   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
691c434d091SElena Demikhovsky     return ConstStep->getSExtValue();
6921bbf15c5SJames Molloy   return 0;
6931bbf15c5SJames Molloy }
6941bbf15c5SJames Molloy 
695c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const {
696c434d091SElena Demikhovsky   if (isa<SCEVConstant>(Step))
697c434d091SElena Demikhovsky     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
698c434d091SElena Demikhovsky   return nullptr;
699c434d091SElena Demikhovsky }
700c434d091SElena Demikhovsky 
701c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
702c434d091SElena Demikhovsky                                       ScalarEvolution *SE,
703c434d091SElena Demikhovsky                                       const DataLayout& DL) const {
704c434d091SElena Demikhovsky 
705c434d091SElena Demikhovsky   SCEVExpander Exp(*SE, DL, "induction");
706376a18bdSElena Demikhovsky   assert(Index->getType() == Step->getType() &&
707376a18bdSElena Demikhovsky          "Index type does not match StepValue type");
7081bbf15c5SJames Molloy   switch (IK) {
709c434d091SElena Demikhovsky   case IK_IntInduction: {
7101bbf15c5SJames Molloy     assert(Index->getType() == StartValue->getType() &&
7111bbf15c5SJames Molloy            "Index type does not match StartValue type");
712c434d091SElena Demikhovsky 
713c434d091SElena Demikhovsky     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
714c434d091SElena Demikhovsky     // and calculate (Start + Index * Step) for all cases, without
715c434d091SElena Demikhovsky     // special handling for "isOne" and "isMinusOne".
716c434d091SElena Demikhovsky     // But in the real life the result code getting worse. We mix SCEV
717c434d091SElena Demikhovsky     // expressions and ADD/SUB operations and receive redundant
718c434d091SElena Demikhovsky     // intermediate values being calculated in different ways and
719c434d091SElena Demikhovsky     // Instcombine is unable to reduce them all.
720c434d091SElena Demikhovsky 
721c434d091SElena Demikhovsky     if (getConstIntStepValue() &&
722c434d091SElena Demikhovsky         getConstIntStepValue()->isMinusOne())
7231bbf15c5SJames Molloy       return B.CreateSub(StartValue, Index);
724c434d091SElena Demikhovsky     if (getConstIntStepValue() &&
725c434d091SElena Demikhovsky         getConstIntStepValue()->isOne())
7261bbf15c5SJames Molloy       return B.CreateAdd(StartValue, Index);
727c434d091SElena Demikhovsky     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
728c434d091SElena Demikhovsky                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
729c434d091SElena Demikhovsky     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
730c434d091SElena Demikhovsky   }
731c434d091SElena Demikhovsky   case IK_PtrInduction: {
732c434d091SElena Demikhovsky     assert(isa<SCEVConstant>(Step) &&
733c434d091SElena Demikhovsky            "Expected constant step for pointer induction");
734c434d091SElena Demikhovsky     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
735c434d091SElena Demikhovsky     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
7361bbf15c5SJames Molloy     return B.CreateGEP(nullptr, StartValue, Index);
737c434d091SElena Demikhovsky   }
738376a18bdSElena Demikhovsky   case IK_FpInduction: {
739376a18bdSElena Demikhovsky     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
740376a18bdSElena Demikhovsky     assert(InductionBinOp &&
741376a18bdSElena Demikhovsky            (InductionBinOp->getOpcode() == Instruction::FAdd ||
742376a18bdSElena Demikhovsky             InductionBinOp->getOpcode() == Instruction::FSub) &&
743376a18bdSElena Demikhovsky            "Original bin op should be defined for FP induction");
744376a18bdSElena Demikhovsky 
745376a18bdSElena Demikhovsky     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
746376a18bdSElena Demikhovsky 
747376a18bdSElena Demikhovsky     // Floating point operations had to be 'fast' to enable the induction.
748376a18bdSElena Demikhovsky     FastMathFlags Flags;
749376a18bdSElena Demikhovsky     Flags.setUnsafeAlgebra();
750376a18bdSElena Demikhovsky 
751376a18bdSElena Demikhovsky     Value *MulExp = B.CreateFMul(StepValue, Index);
752376a18bdSElena Demikhovsky     if (isa<Instruction>(MulExp))
753376a18bdSElena Demikhovsky       // We have to check, the MulExp may be a constant.
754376a18bdSElena Demikhovsky       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
755376a18bdSElena Demikhovsky 
756376a18bdSElena Demikhovsky     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
757376a18bdSElena Demikhovsky                                MulExp, "induction");
758376a18bdSElena Demikhovsky     if (isa<Instruction>(BOp))
759376a18bdSElena Demikhovsky       cast<Instruction>(BOp)->setFastMathFlags(Flags);
760376a18bdSElena Demikhovsky 
761376a18bdSElena Demikhovsky     return BOp;
762376a18bdSElena Demikhovsky   }
7631bbf15c5SJames Molloy   case IK_NoInduction:
7641bbf15c5SJames Molloy     return nullptr;
7651bbf15c5SJames Molloy   }
7661bbf15c5SJames Molloy   llvm_unreachable("invalid enum");
7671bbf15c5SJames Molloy }
7681bbf15c5SJames Molloy 
769376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
770376a18bdSElena Demikhovsky                                            ScalarEvolution *SE,
771376a18bdSElena Demikhovsky                                            InductionDescriptor &D) {
772376a18bdSElena Demikhovsky 
773376a18bdSElena Demikhovsky   // Here we only handle FP induction variables.
774376a18bdSElena Demikhovsky   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
775376a18bdSElena Demikhovsky 
776376a18bdSElena Demikhovsky   if (TheLoop->getHeader() != Phi->getParent())
777376a18bdSElena Demikhovsky     return false;
778376a18bdSElena Demikhovsky 
779376a18bdSElena Demikhovsky   // The loop may have multiple entrances or multiple exits; we can analyze
780376a18bdSElena Demikhovsky   // this phi if it has a unique entry value and a unique backedge value.
781376a18bdSElena Demikhovsky   if (Phi->getNumIncomingValues() != 2)
782376a18bdSElena Demikhovsky     return false;
783376a18bdSElena Demikhovsky   Value *BEValue = nullptr, *StartValue = nullptr;
784376a18bdSElena Demikhovsky   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
785376a18bdSElena Demikhovsky     BEValue = Phi->getIncomingValue(0);
786376a18bdSElena Demikhovsky     StartValue = Phi->getIncomingValue(1);
787376a18bdSElena Demikhovsky   } else {
788376a18bdSElena Demikhovsky     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
789376a18bdSElena Demikhovsky            "Unexpected Phi node in the loop");
790376a18bdSElena Demikhovsky     BEValue = Phi->getIncomingValue(1);
791376a18bdSElena Demikhovsky     StartValue = Phi->getIncomingValue(0);
792376a18bdSElena Demikhovsky   }
793376a18bdSElena Demikhovsky 
794376a18bdSElena Demikhovsky   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
795376a18bdSElena Demikhovsky   if (!BOp)
796376a18bdSElena Demikhovsky     return false;
797376a18bdSElena Demikhovsky 
798376a18bdSElena Demikhovsky   Value *Addend = nullptr;
799376a18bdSElena Demikhovsky   if (BOp->getOpcode() == Instruction::FAdd) {
800376a18bdSElena Demikhovsky     if (BOp->getOperand(0) == Phi)
801376a18bdSElena Demikhovsky       Addend = BOp->getOperand(1);
802376a18bdSElena Demikhovsky     else if (BOp->getOperand(1) == Phi)
803376a18bdSElena Demikhovsky       Addend = BOp->getOperand(0);
804376a18bdSElena Demikhovsky   } else if (BOp->getOpcode() == Instruction::FSub)
805376a18bdSElena Demikhovsky     if (BOp->getOperand(0) == Phi)
806376a18bdSElena Demikhovsky       Addend = BOp->getOperand(1);
807376a18bdSElena Demikhovsky 
808376a18bdSElena Demikhovsky   if (!Addend)
809376a18bdSElena Demikhovsky     return false;
810376a18bdSElena Demikhovsky 
811376a18bdSElena Demikhovsky   // The addend should be loop invariant
812376a18bdSElena Demikhovsky   if (auto *I = dyn_cast<Instruction>(Addend))
813376a18bdSElena Demikhovsky     if (TheLoop->contains(I))
814376a18bdSElena Demikhovsky       return false;
815376a18bdSElena Demikhovsky 
816376a18bdSElena Demikhovsky   // FP Step has unknown SCEV
817376a18bdSElena Demikhovsky   const SCEV *Step = SE->getUnknown(Addend);
818376a18bdSElena Demikhovsky   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
819376a18bdSElena Demikhovsky   return true;
820376a18bdSElena Demikhovsky }
821376a18bdSElena Demikhovsky 
822376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
823c05bab8aSSilviu Baranga                                          PredicatedScalarEvolution &PSE,
824c05bab8aSSilviu Baranga                                          InductionDescriptor &D,
825c05bab8aSSilviu Baranga                                          bool Assume) {
826c05bab8aSSilviu Baranga   Type *PhiTy = Phi->getType();
827376a18bdSElena Demikhovsky 
828376a18bdSElena Demikhovsky   // Handle integer and pointer inductions variables.
829376a18bdSElena Demikhovsky   // Now we handle also FP induction but not trying to make a
830376a18bdSElena Demikhovsky   // recurrent expression from the PHI node in-place.
831376a18bdSElena Demikhovsky 
832376a18bdSElena Demikhovsky   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
833376a18bdSElena Demikhovsky       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
834c05bab8aSSilviu Baranga     return false;
835c05bab8aSSilviu Baranga 
836376a18bdSElena Demikhovsky   if (PhiTy->isFloatingPointTy())
837376a18bdSElena Demikhovsky     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
838376a18bdSElena Demikhovsky 
839c05bab8aSSilviu Baranga   const SCEV *PhiScev = PSE.getSCEV(Phi);
840c05bab8aSSilviu Baranga   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
841c05bab8aSSilviu Baranga 
842c05bab8aSSilviu Baranga   // We need this expression to be an AddRecExpr.
843c05bab8aSSilviu Baranga   if (Assume && !AR)
844c05bab8aSSilviu Baranga     AR = PSE.getAsAddRec(Phi);
845c05bab8aSSilviu Baranga 
846c05bab8aSSilviu Baranga   if (!AR) {
847c05bab8aSSilviu Baranga     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
848c05bab8aSSilviu Baranga     return false;
849c05bab8aSSilviu Baranga   }
850c05bab8aSSilviu Baranga 
851376a18bdSElena Demikhovsky   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
852c05bab8aSSilviu Baranga }
853c05bab8aSSilviu Baranga 
854376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
855c05bab8aSSilviu Baranga                                          ScalarEvolution *SE,
856c05bab8aSSilviu Baranga                                          InductionDescriptor &D,
857c05bab8aSSilviu Baranga                                          const SCEV *Expr) {
85824e6cc2dSKarthik Bhat   Type *PhiTy = Phi->getType();
85924e6cc2dSKarthik Bhat   // We only handle integer and pointer inductions variables.
86024e6cc2dSKarthik Bhat   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
86124e6cc2dSKarthik Bhat     return false;
86224e6cc2dSKarthik Bhat 
86324e6cc2dSKarthik Bhat   // Check that the PHI is consecutive.
864c05bab8aSSilviu Baranga   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
86524e6cc2dSKarthik Bhat   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
866c05bab8aSSilviu Baranga 
86724e6cc2dSKarthik Bhat   if (!AR) {
86824e6cc2dSKarthik Bhat     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
86924e6cc2dSKarthik Bhat     return false;
87024e6cc2dSKarthik Bhat   }
87124e6cc2dSKarthik Bhat 
872*ee31cbe3SMichael Kuperstein   if (AR->getLoop() != TheLoop) {
873*ee31cbe3SMichael Kuperstein     // FIXME: We should treat this as a uniform. Unfortunately, we
874*ee31cbe3SMichael Kuperstein     // don't currently know how to handled uniform PHIs.
875*ee31cbe3SMichael Kuperstein     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
876*ee31cbe3SMichael Kuperstein     return false;
877*ee31cbe3SMichael Kuperstein   }
878*ee31cbe3SMichael Kuperstein 
8791bbf15c5SJames Molloy   Value *StartValue =
8801bbf15c5SJames Molloy     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
88124e6cc2dSKarthik Bhat   const SCEV *Step = AR->getStepRecurrence(*SE);
88224e6cc2dSKarthik Bhat   // Calculate the pointer stride and check if it is consecutive.
883c434d091SElena Demikhovsky   // The stride may be a constant or a loop invariant integer value.
884c434d091SElena Demikhovsky   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
885376a18bdSElena Demikhovsky   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
88624e6cc2dSKarthik Bhat     return false;
88724e6cc2dSKarthik Bhat 
88824e6cc2dSKarthik Bhat   if (PhiTy->isIntegerTy()) {
889c434d091SElena Demikhovsky     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
89024e6cc2dSKarthik Bhat     return true;
89124e6cc2dSKarthik Bhat   }
89224e6cc2dSKarthik Bhat 
89324e6cc2dSKarthik Bhat   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
894c434d091SElena Demikhovsky   // Pointer induction should be a constant.
895c434d091SElena Demikhovsky   if (!ConstStep)
896c434d091SElena Demikhovsky     return false;
897c434d091SElena Demikhovsky 
898c434d091SElena Demikhovsky   ConstantInt *CV = ConstStep->getValue();
89924e6cc2dSKarthik Bhat   Type *PointerElementType = PhiTy->getPointerElementType();
90024e6cc2dSKarthik Bhat   // The pointer stride cannot be determined if the pointer element type is not
90124e6cc2dSKarthik Bhat   // sized.
90224e6cc2dSKarthik Bhat   if (!PointerElementType->isSized())
90324e6cc2dSKarthik Bhat     return false;
90424e6cc2dSKarthik Bhat 
90524e6cc2dSKarthik Bhat   const DataLayout &DL = Phi->getModule()->getDataLayout();
90624e6cc2dSKarthik Bhat   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
907b58f32f7SDavid Majnemer   if (!Size)
908b58f32f7SDavid Majnemer     return false;
909b58f32f7SDavid Majnemer 
91024e6cc2dSKarthik Bhat   int64_t CVSize = CV->getSExtValue();
91124e6cc2dSKarthik Bhat   if (CVSize % Size)
91224e6cc2dSKarthik Bhat     return false;
913c434d091SElena Demikhovsky   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
914c434d091SElena Demikhovsky                                     true /* signed */);
9151bbf15c5SJames Molloy   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
91624e6cc2dSKarthik Bhat   return true;
91724e6cc2dSKarthik Bhat }
918c5b7b555SAshutosh Nema 
919c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop.
920c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
921c5b7b555SAshutosh Nema   SmallVector<Instruction *, 8> UsedOutside;
922c5b7b555SAshutosh Nema 
923c5b7b555SAshutosh Nema   for (auto *Block : L->getBlocks())
924c5b7b555SAshutosh Nema     // FIXME: I believe that this could use copy_if if the Inst reference could
925c5b7b555SAshutosh Nema     // be adapted into a pointer.
926c5b7b555SAshutosh Nema     for (auto &Inst : *Block) {
927c5b7b555SAshutosh Nema       auto Users = Inst.users();
9280a16c228SDavid Majnemer       if (any_of(Users, [&](User *U) {
929c5b7b555SAshutosh Nema             auto *Use = cast<Instruction>(U);
930c5b7b555SAshutosh Nema             return !L->contains(Use->getParent());
931c5b7b555SAshutosh Nema           }))
932c5b7b555SAshutosh Nema         UsedOutside.push_back(&Inst);
933c5b7b555SAshutosh Nema     }
934c5b7b555SAshutosh Nema 
935c5b7b555SAshutosh Nema   return UsedOutside;
936c5b7b555SAshutosh Nema }
93731088a9dSChandler Carruth 
93831088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
93931088a9dSChandler Carruth   // By definition, all loop passes need the LoopInfo analysis and the
94031088a9dSChandler Carruth   // Dominator tree it depends on. Because they all participate in the loop
94131088a9dSChandler Carruth   // pass manager, they must also preserve these.
94231088a9dSChandler Carruth   AU.addRequired<DominatorTreeWrapperPass>();
94331088a9dSChandler Carruth   AU.addPreserved<DominatorTreeWrapperPass>();
94431088a9dSChandler Carruth   AU.addRequired<LoopInfoWrapperPass>();
94531088a9dSChandler Carruth   AU.addPreserved<LoopInfoWrapperPass>();
94631088a9dSChandler Carruth 
94731088a9dSChandler Carruth   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
94831088a9dSChandler Carruth   // here because users shouldn't directly get them from this header.
94931088a9dSChandler Carruth   extern char &LoopSimplifyID;
95031088a9dSChandler Carruth   extern char &LCSSAID;
95131088a9dSChandler Carruth   AU.addRequiredID(LoopSimplifyID);
95231088a9dSChandler Carruth   AU.addPreservedID(LoopSimplifyID);
95331088a9dSChandler Carruth   AU.addRequiredID(LCSSAID);
95431088a9dSChandler Carruth   AU.addPreservedID(LCSSAID);
955c3ccf5d7SIgor Laevsky   // This is used in the LPPassManager to perform LCSSA verification on passes
956c3ccf5d7SIgor Laevsky   // which preserve lcssa form
957c3ccf5d7SIgor Laevsky   AU.addRequired<LCSSAVerificationPass>();
958c3ccf5d7SIgor Laevsky   AU.addPreserved<LCSSAVerificationPass>();
95931088a9dSChandler Carruth 
96031088a9dSChandler Carruth   // Loop passes are designed to run inside of a loop pass manager which means
96131088a9dSChandler Carruth   // that any function analyses they require must be required by the first loop
96231088a9dSChandler Carruth   // pass in the manager (so that it is computed before the loop pass manager
96331088a9dSChandler Carruth   // runs) and preserved by all loop pasess in the manager. To make this
96431088a9dSChandler Carruth   // reasonably robust, the set needed for most loop passes is maintained here.
96531088a9dSChandler Carruth   // If your loop pass requires an analysis not listed here, you will need to
96631088a9dSChandler Carruth   // carefully audit the loop pass manager nesting structure that results.
96731088a9dSChandler Carruth   AU.addRequired<AAResultsWrapperPass>();
96831088a9dSChandler Carruth   AU.addPreserved<AAResultsWrapperPass>();
96931088a9dSChandler Carruth   AU.addPreserved<BasicAAWrapperPass>();
97031088a9dSChandler Carruth   AU.addPreserved<GlobalsAAWrapperPass>();
97131088a9dSChandler Carruth   AU.addPreserved<SCEVAAWrapperPass>();
97231088a9dSChandler Carruth   AU.addRequired<ScalarEvolutionWrapperPass>();
97331088a9dSChandler Carruth   AU.addPreserved<ScalarEvolutionWrapperPass>();
97431088a9dSChandler Carruth }
97531088a9dSChandler Carruth 
97631088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used
97731088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c
97831088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
97931088a9dSChandler Carruth /// with:
98031088a9dSChandler Carruth ///
98131088a9dSChandler Carruth ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
98231088a9dSChandler Carruth ///
98331088a9dSChandler Carruth /// As-if "LoopPass" were a pass.
98431088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) {
98531088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
98631088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
98731088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
988e12c487bSEaswaran Raman   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
98931088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
99031088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
99131088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
99231088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
99331088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
99431088a9dSChandler Carruth }
995963341c8SAdam Nemet 
996fe3def7cSAdam Nemet /// \brief Find string metadata for loop
997fe3def7cSAdam Nemet ///
998fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
999fe3def7cSAdam Nemet /// operand or null otherwise.  If the string metadata is not found return
1000fe3def7cSAdam Nemet /// Optional's not-a-value.
1001fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1002fe3def7cSAdam Nemet                                                             StringRef Name) {
1003963341c8SAdam Nemet   MDNode *LoopID = TheLoop->getLoopID();
1004fe3def7cSAdam Nemet   // Return none if LoopID is false.
1005963341c8SAdam Nemet   if (!LoopID)
1006fe3def7cSAdam Nemet     return None;
1007293be666SAdam Nemet 
1008293be666SAdam Nemet   // First operand should refer to the loop id itself.
1009293be666SAdam Nemet   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1010293be666SAdam Nemet   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1011293be666SAdam Nemet 
1012963341c8SAdam Nemet   // Iterate over LoopID operands and look for MDString Metadata
1013963341c8SAdam Nemet   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1014963341c8SAdam Nemet     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1015963341c8SAdam Nemet     if (!MD)
1016963341c8SAdam Nemet       continue;
1017963341c8SAdam Nemet     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1018963341c8SAdam Nemet     if (!S)
1019963341c8SAdam Nemet       continue;
1020963341c8SAdam Nemet     // Return true if MDString holds expected MetaData.
1021963341c8SAdam Nemet     if (Name.equals(S->getString()))
1022fe3def7cSAdam Nemet       switch (MD->getNumOperands()) {
1023fe3def7cSAdam Nemet       case 1:
1024fe3def7cSAdam Nemet         return nullptr;
1025fe3def7cSAdam Nemet       case 2:
1026fe3def7cSAdam Nemet         return &MD->getOperand(1);
1027fe3def7cSAdam Nemet       default:
1028fe3def7cSAdam Nemet         llvm_unreachable("loop metadata has 0 or 1 operand");
1029963341c8SAdam Nemet       }
1030fe3def7cSAdam Nemet   }
1031fe3def7cSAdam Nemet   return None;
1032963341c8SAdam Nemet }
1033122f984aSEvgeniy Stepanov 
1034122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least
1035122f984aSEvgeniy Stepanov /// once.
1036122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1037122f984aSEvgeniy Stepanov                                  const DominatorTree *DT, const Loop *CurLoop,
1038122f984aSEvgeniy Stepanov                                  const LoopSafetyInfo *SafetyInfo) {
1039122f984aSEvgeniy Stepanov   // We have to check to make sure that the instruction dominates all
1040122f984aSEvgeniy Stepanov   // of the exit blocks.  If it doesn't, then there is a path out of the loop
1041122f984aSEvgeniy Stepanov   // which does not execute this instruction, so we can't hoist it.
1042122f984aSEvgeniy Stepanov 
1043122f984aSEvgeniy Stepanov   // If the instruction is in the header block for the loop (which is very
1044122f984aSEvgeniy Stepanov   // common), it is always guaranteed to dominate the exit blocks.  Since this
1045122f984aSEvgeniy Stepanov   // is a common case, and can save some work, check it now.
1046122f984aSEvgeniy Stepanov   if (Inst.getParent() == CurLoop->getHeader())
1047122f984aSEvgeniy Stepanov     // If there's a throw in the header block, we can't guarantee we'll reach
1048122f984aSEvgeniy Stepanov     // Inst.
1049122f984aSEvgeniy Stepanov     return !SafetyInfo->HeaderMayThrow;
1050122f984aSEvgeniy Stepanov 
1051122f984aSEvgeniy Stepanov   // Somewhere in this loop there is an instruction which may throw and make us
1052122f984aSEvgeniy Stepanov   // exit the loop.
1053122f984aSEvgeniy Stepanov   if (SafetyInfo->MayThrow)
1054122f984aSEvgeniy Stepanov     return false;
1055122f984aSEvgeniy Stepanov 
1056122f984aSEvgeniy Stepanov   // Get the exit blocks for the current loop.
1057122f984aSEvgeniy Stepanov   SmallVector<BasicBlock *, 8> ExitBlocks;
1058122f984aSEvgeniy Stepanov   CurLoop->getExitBlocks(ExitBlocks);
1059122f984aSEvgeniy Stepanov 
1060122f984aSEvgeniy Stepanov   // Verify that the block dominates each of the exit blocks of the loop.
1061122f984aSEvgeniy Stepanov   for (BasicBlock *ExitBlock : ExitBlocks)
1062122f984aSEvgeniy Stepanov     if (!DT->dominates(Inst.getParent(), ExitBlock))
1063122f984aSEvgeniy Stepanov       return false;
1064122f984aSEvgeniy Stepanov 
1065122f984aSEvgeniy Stepanov   // As a degenerate case, if the loop is statically infinite then we haven't
1066122f984aSEvgeniy Stepanov   // proven anything since there are no exit blocks.
1067122f984aSEvgeniy Stepanov   if (ExitBlocks.empty())
1068122f984aSEvgeniy Stepanov     return false;
1069122f984aSEvgeniy Stepanov 
1070f1da33e4SEli Friedman   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1071f1da33e4SEli Friedman   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
1072f1da33e4SEli Friedman   // just a special case of this.)
1073122f984aSEvgeniy Stepanov   return true;
1074122f984aSEvgeniy Stepanov }
107541d72a86SDehao Chen 
107641d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
107741d72a86SDehao Chen   // Only support loops with a unique exiting block, and a latch.
107841d72a86SDehao Chen   if (!L->getExitingBlock())
107941d72a86SDehao Chen     return None;
108041d72a86SDehao Chen 
108141d72a86SDehao Chen   // Get the branch weights for the the loop's backedge.
108241d72a86SDehao Chen   BranchInst *LatchBR =
108341d72a86SDehao Chen       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
108441d72a86SDehao Chen   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
108541d72a86SDehao Chen     return None;
108641d72a86SDehao Chen 
108741d72a86SDehao Chen   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
108841d72a86SDehao Chen           LatchBR->getSuccessor(1) == L->getHeader()) &&
108941d72a86SDehao Chen          "At least one edge out of the latch must go to the header");
109041d72a86SDehao Chen 
109141d72a86SDehao Chen   // To estimate the number of times the loop body was executed, we want to
109241d72a86SDehao Chen   // know the number of times the backedge was taken, vs. the number of times
109341d72a86SDehao Chen   // we exited the loop.
109441d72a86SDehao Chen   uint64_t TrueVal, FalseVal;
1095b151a641SMichael Kuperstein   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
109641d72a86SDehao Chen     return None;
109741d72a86SDehao Chen 
1098b151a641SMichael Kuperstein   if (!TrueVal || !FalseVal)
1099b151a641SMichael Kuperstein     return 0;
110041d72a86SDehao Chen 
1101b151a641SMichael Kuperstein   // Divide the count of the backedge by the count of the edge exiting the loop,
1102b151a641SMichael Kuperstein   // rounding to nearest.
110341d72a86SDehao Chen   if (LatchBR->getSuccessor(0) == L->getHeader())
1104b151a641SMichael Kuperstein     return (TrueVal + (FalseVal / 2)) / FalseVal;
110541d72a86SDehao Chen   else
1106b151a641SMichael Kuperstein     return (FalseVal + (TrueVal / 2)) / TrueVal;
110741d72a86SDehao Chen }
1108