176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 376aa662cSKarthik Bhat // The LLVM Compiler Infrastructure 476aa662cSKarthik Bhat // 576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source 676aa662cSKarthik Bhat // License. See LICENSE.TXT for details. 776aa662cSKarthik Bhat // 876aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 976aa662cSKarthik Bhat // 1076aa662cSKarthik Bhat // This file defines common loop utility functions. 1176aa662cSKarthik Bhat // 1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1376aa662cSKarthik Bhat 142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 1531088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 1631088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 1731088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 182f2bd8caSAdam Nemet #include "llvm/Analysis/GlobalsModRef.h" 192f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 20c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h" 2145d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 222f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 23c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h" 2445d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 2531088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 2676aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 2745d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 2876aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 2976aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 3031088a9dSChandler Carruth #include "llvm/Pass.h" 3176aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 3276aa662cSKarthik Bhat 3376aa662cSKarthik Bhat using namespace llvm; 3476aa662cSKarthik Bhat using namespace llvm::PatternMatch; 3576aa662cSKarthik Bhat 3676aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 3776aa662cSKarthik Bhat 380a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 3976aa662cSKarthik Bhat SmallPtrSetImpl<Instruction *> &Set) { 4076aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4176aa662cSKarthik Bhat if (!Set.count(dyn_cast<Instruction>(*Use))) 4276aa662cSKarthik Bhat return false; 4376aa662cSKarthik Bhat return true; 4476aa662cSKarthik Bhat } 4576aa662cSKarthik Bhat 46c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 47c94f8e29SChad Rosier switch (Kind) { 48c94f8e29SChad Rosier default: 49c94f8e29SChad Rosier break; 50c94f8e29SChad Rosier case RK_IntegerAdd: 51c94f8e29SChad Rosier case RK_IntegerMult: 52c94f8e29SChad Rosier case RK_IntegerOr: 53c94f8e29SChad Rosier case RK_IntegerAnd: 54c94f8e29SChad Rosier case RK_IntegerXor: 55c94f8e29SChad Rosier case RK_IntegerMinMax: 56c94f8e29SChad Rosier return true; 57c94f8e29SChad Rosier } 58c94f8e29SChad Rosier return false; 59c94f8e29SChad Rosier } 60c94f8e29SChad Rosier 61c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 62c94f8e29SChad Rosier return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 63c94f8e29SChad Rosier } 64c94f8e29SChad Rosier 65c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 66c94f8e29SChad Rosier switch (Kind) { 67c94f8e29SChad Rosier default: 68c94f8e29SChad Rosier break; 69c94f8e29SChad Rosier case RK_IntegerAdd: 70c94f8e29SChad Rosier case RK_IntegerMult: 71c94f8e29SChad Rosier case RK_FloatAdd: 72c94f8e29SChad Rosier case RK_FloatMult: 73c94f8e29SChad Rosier return true; 74c94f8e29SChad Rosier } 75c94f8e29SChad Rosier return false; 76c94f8e29SChad Rosier } 77c94f8e29SChad Rosier 78c94f8e29SChad Rosier Instruction * 79c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 80c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 81c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 82c94f8e29SChad Rosier if (!Phi->hasOneUse()) 83c94f8e29SChad Rosier return Phi; 84c94f8e29SChad Rosier 85c94f8e29SChad Rosier const APInt *M = nullptr; 86c94f8e29SChad Rosier Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 87c94f8e29SChad Rosier 88c94f8e29SChad Rosier // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 89c94f8e29SChad Rosier // with a new integer type of the corresponding bit width. 90c94f8e29SChad Rosier if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), 91c94f8e29SChad Rosier m_And(m_APInt(M), m_Instruction(I))))) { 92c94f8e29SChad Rosier int32_t Bits = (*M + 1).exactLogBase2(); 93c94f8e29SChad Rosier if (Bits > 0) { 94c94f8e29SChad Rosier RT = IntegerType::get(Phi->getContext(), Bits); 95c94f8e29SChad Rosier Visited.insert(Phi); 96c94f8e29SChad Rosier CI.insert(J); 97c94f8e29SChad Rosier return J; 98c94f8e29SChad Rosier } 99c94f8e29SChad Rosier } 100c94f8e29SChad Rosier return Phi; 101c94f8e29SChad Rosier } 102c94f8e29SChad Rosier 103c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind( 104c94f8e29SChad Rosier Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 105c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 106c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 107c94f8e29SChad Rosier 108c94f8e29SChad Rosier SmallVector<Instruction *, 8> Worklist; 109c94f8e29SChad Rosier bool FoundOneOperand = false; 11029dc0f70SMatthew Simpson unsigned DstSize = RT->getPrimitiveSizeInBits(); 111c94f8e29SChad Rosier Worklist.push_back(Exit); 112c94f8e29SChad Rosier 113c94f8e29SChad Rosier // Traverse the instructions in the reduction expression, beginning with the 114c94f8e29SChad Rosier // exit value. 115c94f8e29SChad Rosier while (!Worklist.empty()) { 116c94f8e29SChad Rosier Instruction *I = Worklist.pop_back_val(); 117c94f8e29SChad Rosier for (Use &U : I->operands()) { 118c94f8e29SChad Rosier 119c94f8e29SChad Rosier // Terminate the traversal if the operand is not an instruction, or we 120c94f8e29SChad Rosier // reach the starting value. 121c94f8e29SChad Rosier Instruction *J = dyn_cast<Instruction>(U.get()); 122c94f8e29SChad Rosier if (!J || J == Start) 123c94f8e29SChad Rosier continue; 124c94f8e29SChad Rosier 125c94f8e29SChad Rosier // Otherwise, investigate the operation if it is also in the expression. 126c94f8e29SChad Rosier if (Visited.count(J)) { 127c94f8e29SChad Rosier Worklist.push_back(J); 128c94f8e29SChad Rosier continue; 129c94f8e29SChad Rosier } 130c94f8e29SChad Rosier 131c94f8e29SChad Rosier // If the operand is not in Visited, it is not a reduction operation, but 132c94f8e29SChad Rosier // it does feed into one. Make sure it is either a single-use sign- or 13329dc0f70SMatthew Simpson // zero-extend instruction. 134c94f8e29SChad Rosier CastInst *Cast = dyn_cast<CastInst>(J); 135c94f8e29SChad Rosier bool IsSExtInst = isa<SExtInst>(J); 13629dc0f70SMatthew Simpson if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 13729dc0f70SMatthew Simpson return false; 13829dc0f70SMatthew Simpson 13929dc0f70SMatthew Simpson // Ensure the source type of the extend is no larger than the reduction 14029dc0f70SMatthew Simpson // type. It is not necessary for the types to be identical. 14129dc0f70SMatthew Simpson unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 14229dc0f70SMatthew Simpson if (SrcSize > DstSize) 143c94f8e29SChad Rosier return false; 144c94f8e29SChad Rosier 145c94f8e29SChad Rosier // Furthermore, ensure that all such extends are of the same kind. 146c94f8e29SChad Rosier if (FoundOneOperand) { 147c94f8e29SChad Rosier if (IsSigned != IsSExtInst) 148c94f8e29SChad Rosier return false; 149c94f8e29SChad Rosier } else { 150c94f8e29SChad Rosier FoundOneOperand = true; 151c94f8e29SChad Rosier IsSigned = IsSExtInst; 152c94f8e29SChad Rosier } 153c94f8e29SChad Rosier 15429dc0f70SMatthew Simpson // Lastly, if the source type of the extend matches the reduction type, 15529dc0f70SMatthew Simpson // add the extend to CI so that we can avoid accounting for it in the 15629dc0f70SMatthew Simpson // cost model. 15729dc0f70SMatthew Simpson if (SrcSize == DstSize) 158c94f8e29SChad Rosier CI.insert(Cast); 159c94f8e29SChad Rosier } 160c94f8e29SChad Rosier } 161c94f8e29SChad Rosier return true; 162c94f8e29SChad Rosier } 163c94f8e29SChad Rosier 1640a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 16576aa662cSKarthik Bhat Loop *TheLoop, bool HasFunNoNaNAttr, 1660a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 16776aa662cSKarthik Bhat if (Phi->getNumIncomingValues() != 2) 16876aa662cSKarthik Bhat return false; 16976aa662cSKarthik Bhat 17076aa662cSKarthik Bhat // Reduction variables are only found in the loop header block. 17176aa662cSKarthik Bhat if (Phi->getParent() != TheLoop->getHeader()) 17276aa662cSKarthik Bhat return false; 17376aa662cSKarthik Bhat 17476aa662cSKarthik Bhat // Obtain the reduction start value from the value that comes from the loop 17576aa662cSKarthik Bhat // preheader. 17676aa662cSKarthik Bhat Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 17776aa662cSKarthik Bhat 17876aa662cSKarthik Bhat // ExitInstruction is the single value which is used outside the loop. 17976aa662cSKarthik Bhat // We only allow for a single reduction value to be used outside the loop. 18076aa662cSKarthik Bhat // This includes users of the reduction, variables (which form a cycle 18176aa662cSKarthik Bhat // which ends in the phi node). 18276aa662cSKarthik Bhat Instruction *ExitInstruction = nullptr; 18376aa662cSKarthik Bhat // Indicates that we found a reduction operation in our scan. 18476aa662cSKarthik Bhat bool FoundReduxOp = false; 18576aa662cSKarthik Bhat 18676aa662cSKarthik Bhat // We start with the PHI node and scan for all of the users of this 18776aa662cSKarthik Bhat // instruction. All users must be instructions that can be used as reduction 18876aa662cSKarthik Bhat // variables (such as ADD). We must have a single out-of-block user. The cycle 18976aa662cSKarthik Bhat // must include the original PHI. 19076aa662cSKarthik Bhat bool FoundStartPHI = false; 19176aa662cSKarthik Bhat 19276aa662cSKarthik Bhat // To recognize min/max patterns formed by a icmp select sequence, we store 19376aa662cSKarthik Bhat // the number of instruction we saw from the recognized min/max pattern, 19476aa662cSKarthik Bhat // to make sure we only see exactly the two instructions. 19576aa662cSKarthik Bhat unsigned NumCmpSelectPatternInst = 0; 19627b2c39eSTyler Nowicki InstDesc ReduxDesc(false, nullptr); 19776aa662cSKarthik Bhat 198c94f8e29SChad Rosier // Data used for determining if the recurrence has been type-promoted. 199c94f8e29SChad Rosier Type *RecurrenceType = Phi->getType(); 200c94f8e29SChad Rosier SmallPtrSet<Instruction *, 4> CastInsts; 201c94f8e29SChad Rosier Instruction *Start = Phi; 202c94f8e29SChad Rosier bool IsSigned = false; 203c94f8e29SChad Rosier 20476aa662cSKarthik Bhat SmallPtrSet<Instruction *, 8> VisitedInsts; 20576aa662cSKarthik Bhat SmallVector<Instruction *, 8> Worklist; 206c94f8e29SChad Rosier 207c94f8e29SChad Rosier // Return early if the recurrence kind does not match the type of Phi. If the 208c94f8e29SChad Rosier // recurrence kind is arithmetic, we attempt to look through AND operations 209c94f8e29SChad Rosier // resulting from the type promotion performed by InstCombine. Vector 210c94f8e29SChad Rosier // operations are not limited to the legal integer widths, so we may be able 211c94f8e29SChad Rosier // to evaluate the reduction in the narrower width. 212c94f8e29SChad Rosier if (RecurrenceType->isFloatingPointTy()) { 213c94f8e29SChad Rosier if (!isFloatingPointRecurrenceKind(Kind)) 214c94f8e29SChad Rosier return false; 215c94f8e29SChad Rosier } else { 216c94f8e29SChad Rosier if (!isIntegerRecurrenceKind(Kind)) 217c94f8e29SChad Rosier return false; 218c94f8e29SChad Rosier if (isArithmeticRecurrenceKind(Kind)) 219c94f8e29SChad Rosier Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 220c94f8e29SChad Rosier } 221c94f8e29SChad Rosier 222c94f8e29SChad Rosier Worklist.push_back(Start); 223c94f8e29SChad Rosier VisitedInsts.insert(Start); 22476aa662cSKarthik Bhat 22576aa662cSKarthik Bhat // A value in the reduction can be used: 22676aa662cSKarthik Bhat // - By the reduction: 22776aa662cSKarthik Bhat // - Reduction operation: 22876aa662cSKarthik Bhat // - One use of reduction value (safe). 22976aa662cSKarthik Bhat // - Multiple use of reduction value (not safe). 23076aa662cSKarthik Bhat // - PHI: 23176aa662cSKarthik Bhat // - All uses of the PHI must be the reduction (safe). 23276aa662cSKarthik Bhat // - Otherwise, not safe. 23376aa662cSKarthik Bhat // - By one instruction outside of the loop (safe). 23476aa662cSKarthik Bhat // - By further instructions outside of the loop (not safe). 23576aa662cSKarthik Bhat // - By an instruction that is not part of the reduction (not safe). 23676aa662cSKarthik Bhat // This is either: 23776aa662cSKarthik Bhat // * An instruction type other than PHI or the reduction operation. 23876aa662cSKarthik Bhat // * A PHI in the header other than the initial PHI. 23976aa662cSKarthik Bhat while (!Worklist.empty()) { 24076aa662cSKarthik Bhat Instruction *Cur = Worklist.back(); 24176aa662cSKarthik Bhat Worklist.pop_back(); 24276aa662cSKarthik Bhat 24376aa662cSKarthik Bhat // No Users. 24476aa662cSKarthik Bhat // If the instruction has no users then this is a broken chain and can't be 24576aa662cSKarthik Bhat // a reduction variable. 24676aa662cSKarthik Bhat if (Cur->use_empty()) 24776aa662cSKarthik Bhat return false; 24876aa662cSKarthik Bhat 24976aa662cSKarthik Bhat bool IsAPhi = isa<PHINode>(Cur); 25076aa662cSKarthik Bhat 25176aa662cSKarthik Bhat // A header PHI use other than the original PHI. 25276aa662cSKarthik Bhat if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 25376aa662cSKarthik Bhat return false; 25476aa662cSKarthik Bhat 25576aa662cSKarthik Bhat // Reductions of instructions such as Div, and Sub is only possible if the 25676aa662cSKarthik Bhat // LHS is the reduction variable. 25776aa662cSKarthik Bhat if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 25876aa662cSKarthik Bhat !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 25976aa662cSKarthik Bhat !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 26076aa662cSKarthik Bhat return false; 26176aa662cSKarthik Bhat 262c94f8e29SChad Rosier // Any reduction instruction must be of one of the allowed kinds. We ignore 263c94f8e29SChad Rosier // the starting value (the Phi or an AND instruction if the Phi has been 264c94f8e29SChad Rosier // type-promoted). 265c94f8e29SChad Rosier if (Cur != Start) { 2660a91310cSTyler Nowicki ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 2670a91310cSTyler Nowicki if (!ReduxDesc.isRecurrence()) 26876aa662cSKarthik Bhat return false; 269c94f8e29SChad Rosier } 27076aa662cSKarthik Bhat 27176aa662cSKarthik Bhat // A reduction operation must only have one use of the reduction value. 27276aa662cSKarthik Bhat if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 27376aa662cSKarthik Bhat hasMultipleUsesOf(Cur, VisitedInsts)) 27476aa662cSKarthik Bhat return false; 27576aa662cSKarthik Bhat 27676aa662cSKarthik Bhat // All inputs to a PHI node must be a reduction value. 27776aa662cSKarthik Bhat if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 27876aa662cSKarthik Bhat return false; 27976aa662cSKarthik Bhat 28076aa662cSKarthik Bhat if (Kind == RK_IntegerMinMax && 28176aa662cSKarthik Bhat (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 28276aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28376aa662cSKarthik Bhat if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 28476aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28576aa662cSKarthik Bhat 28676aa662cSKarthik Bhat // Check whether we found a reduction operator. 287c94f8e29SChad Rosier FoundReduxOp |= !IsAPhi && Cur != Start; 28876aa662cSKarthik Bhat 28976aa662cSKarthik Bhat // Process users of current instruction. Push non-PHI nodes after PHI nodes 29076aa662cSKarthik Bhat // onto the stack. This way we are going to have seen all inputs to PHI 29176aa662cSKarthik Bhat // nodes once we get to them. 29276aa662cSKarthik Bhat SmallVector<Instruction *, 8> NonPHIs; 29376aa662cSKarthik Bhat SmallVector<Instruction *, 8> PHIs; 29476aa662cSKarthik Bhat for (User *U : Cur->users()) { 29576aa662cSKarthik Bhat Instruction *UI = cast<Instruction>(U); 29676aa662cSKarthik Bhat 29776aa662cSKarthik Bhat // Check if we found the exit user. 29876aa662cSKarthik Bhat BasicBlock *Parent = UI->getParent(); 29976aa662cSKarthik Bhat if (!TheLoop->contains(Parent)) { 30076aa662cSKarthik Bhat // Exit if you find multiple outside users or if the header phi node is 30176aa662cSKarthik Bhat // being used. In this case the user uses the value of the previous 30276aa662cSKarthik Bhat // iteration, in which case we would loose "VF-1" iterations of the 30376aa662cSKarthik Bhat // reduction operation if we vectorize. 30476aa662cSKarthik Bhat if (ExitInstruction != nullptr || Cur == Phi) 30576aa662cSKarthik Bhat return false; 30676aa662cSKarthik Bhat 30776aa662cSKarthik Bhat // The instruction used by an outside user must be the last instruction 30876aa662cSKarthik Bhat // before we feed back to the reduction phi. Otherwise, we loose VF-1 30976aa662cSKarthik Bhat // operations on the value. 31042531260SDavid Majnemer if (!is_contained(Phi->operands(), Cur)) 31176aa662cSKarthik Bhat return false; 31276aa662cSKarthik Bhat 31376aa662cSKarthik Bhat ExitInstruction = Cur; 31476aa662cSKarthik Bhat continue; 31576aa662cSKarthik Bhat } 31676aa662cSKarthik Bhat 31776aa662cSKarthik Bhat // Process instructions only once (termination). Each reduction cycle 31876aa662cSKarthik Bhat // value must only be used once, except by phi nodes and min/max 31976aa662cSKarthik Bhat // reductions which are represented as a cmp followed by a select. 32027b2c39eSTyler Nowicki InstDesc IgnoredVal(false, nullptr); 32176aa662cSKarthik Bhat if (VisitedInsts.insert(UI).second) { 32276aa662cSKarthik Bhat if (isa<PHINode>(UI)) 32376aa662cSKarthik Bhat PHIs.push_back(UI); 32476aa662cSKarthik Bhat else 32576aa662cSKarthik Bhat NonPHIs.push_back(UI); 32676aa662cSKarthik Bhat } else if (!isa<PHINode>(UI) && 32776aa662cSKarthik Bhat ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 32876aa662cSKarthik Bhat !isa<SelectInst>(UI)) || 3290a91310cSTyler Nowicki !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 33076aa662cSKarthik Bhat return false; 33176aa662cSKarthik Bhat 33276aa662cSKarthik Bhat // Remember that we completed the cycle. 33376aa662cSKarthik Bhat if (UI == Phi) 33476aa662cSKarthik Bhat FoundStartPHI = true; 33576aa662cSKarthik Bhat } 33676aa662cSKarthik Bhat Worklist.append(PHIs.begin(), PHIs.end()); 33776aa662cSKarthik Bhat Worklist.append(NonPHIs.begin(), NonPHIs.end()); 33876aa662cSKarthik Bhat } 33976aa662cSKarthik Bhat 34076aa662cSKarthik Bhat // This means we have seen one but not the other instruction of the 34176aa662cSKarthik Bhat // pattern or more than just a select and cmp. 34276aa662cSKarthik Bhat if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 34376aa662cSKarthik Bhat NumCmpSelectPatternInst != 2) 34476aa662cSKarthik Bhat return false; 34576aa662cSKarthik Bhat 34676aa662cSKarthik Bhat if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 34776aa662cSKarthik Bhat return false; 34876aa662cSKarthik Bhat 349c94f8e29SChad Rosier // If we think Phi may have been type-promoted, we also need to ensure that 350c94f8e29SChad Rosier // all source operands of the reduction are either SExtInsts or ZEstInsts. If 351c94f8e29SChad Rosier // so, we will be able to evaluate the reduction in the narrower bit width. 352c94f8e29SChad Rosier if (Start != Phi) 353c94f8e29SChad Rosier if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 354c94f8e29SChad Rosier IsSigned, VisitedInsts, CastInsts)) 355c94f8e29SChad Rosier return false; 356c94f8e29SChad Rosier 35776aa662cSKarthik Bhat // We found a reduction var if we have reached the original phi node and we 35876aa662cSKarthik Bhat // only have a single instruction with out-of-loop users. 35976aa662cSKarthik Bhat 36076aa662cSKarthik Bhat // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 3610a91310cSTyler Nowicki // is saved as part of the RecurrenceDescriptor. 36276aa662cSKarthik Bhat 36376aa662cSKarthik Bhat // Save the description of this reduction variable. 364c94f8e29SChad Rosier RecurrenceDescriptor RD( 365c94f8e29SChad Rosier RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 366c94f8e29SChad Rosier ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 36776aa662cSKarthik Bhat RedDes = RD; 36876aa662cSKarthik Bhat 36976aa662cSKarthik Bhat return true; 37076aa662cSKarthik Bhat } 37176aa662cSKarthik Bhat 37276aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 37376aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y). 37427b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 37527b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 37676aa662cSKarthik Bhat 37776aa662cSKarthik Bhat assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 37876aa662cSKarthik Bhat "Expect a select instruction"); 37976aa662cSKarthik Bhat Instruction *Cmp = nullptr; 38076aa662cSKarthik Bhat SelectInst *Select = nullptr; 38176aa662cSKarthik Bhat 38276aa662cSKarthik Bhat // We must handle the select(cmp()) as a single instruction. Advance to the 38376aa662cSKarthik Bhat // select. 38476aa662cSKarthik Bhat if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 38576aa662cSKarthik Bhat if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 38627b2c39eSTyler Nowicki return InstDesc(false, I); 38727b2c39eSTyler Nowicki return InstDesc(Select, Prev.getMinMaxKind()); 38876aa662cSKarthik Bhat } 38976aa662cSKarthik Bhat 39076aa662cSKarthik Bhat // Only handle single use cases for now. 39176aa662cSKarthik Bhat if (!(Select = dyn_cast<SelectInst>(I))) 39227b2c39eSTyler Nowicki return InstDesc(false, I); 39376aa662cSKarthik Bhat if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 39476aa662cSKarthik Bhat !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 39527b2c39eSTyler Nowicki return InstDesc(false, I); 39676aa662cSKarthik Bhat if (!Cmp->hasOneUse()) 39727b2c39eSTyler Nowicki return InstDesc(false, I); 39876aa662cSKarthik Bhat 39976aa662cSKarthik Bhat Value *CmpLeft; 40076aa662cSKarthik Bhat Value *CmpRight; 40176aa662cSKarthik Bhat 40276aa662cSKarthik Bhat // Look for a min/max pattern. 40376aa662cSKarthik Bhat if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 40427b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMin); 40576aa662cSKarthik Bhat else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 40627b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMax); 40776aa662cSKarthik Bhat else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 40827b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMax); 40976aa662cSKarthik Bhat else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41027b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMin); 41176aa662cSKarthik Bhat else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41227b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 41376aa662cSKarthik Bhat else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41427b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 41576aa662cSKarthik Bhat else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41627b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 41776aa662cSKarthik Bhat else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41827b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 41976aa662cSKarthik Bhat 42027b2c39eSTyler Nowicki return InstDesc(false, I); 42176aa662cSKarthik Bhat } 42276aa662cSKarthik Bhat 42327b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 4240a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 42527b2c39eSTyler Nowicki InstDesc &Prev, bool HasFunNoNaNAttr) { 42676aa662cSKarthik Bhat bool FP = I->getType()->isFloatingPointTy(); 427c1a86f58STyler Nowicki Instruction *UAI = Prev.getUnsafeAlgebraInst(); 428c1a86f58STyler Nowicki if (!UAI && FP && !I->hasUnsafeAlgebra()) 429c1a86f58STyler Nowicki UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 430c1a86f58STyler Nowicki 43176aa662cSKarthik Bhat switch (I->getOpcode()) { 43276aa662cSKarthik Bhat default: 43327b2c39eSTyler Nowicki return InstDesc(false, I); 43476aa662cSKarthik Bhat case Instruction::PHI: 43510a1e8b1STim Northover return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 43676aa662cSKarthik Bhat case Instruction::Sub: 43776aa662cSKarthik Bhat case Instruction::Add: 43827b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAdd, I); 43976aa662cSKarthik Bhat case Instruction::Mul: 44027b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerMult, I); 44176aa662cSKarthik Bhat case Instruction::And: 44227b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAnd, I); 44376aa662cSKarthik Bhat case Instruction::Or: 44427b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerOr, I); 44576aa662cSKarthik Bhat case Instruction::Xor: 44627b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerXor, I); 44776aa662cSKarthik Bhat case Instruction::FMul: 448c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatMult, I, UAI); 44976aa662cSKarthik Bhat case Instruction::FSub: 45076aa662cSKarthik Bhat case Instruction::FAdd: 451c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatAdd, I, UAI); 45276aa662cSKarthik Bhat case Instruction::FCmp: 45376aa662cSKarthik Bhat case Instruction::ICmp: 45476aa662cSKarthik Bhat case Instruction::Select: 45576aa662cSKarthik Bhat if (Kind != RK_IntegerMinMax && 45676aa662cSKarthik Bhat (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 45727b2c39eSTyler Nowicki return InstDesc(false, I); 45876aa662cSKarthik Bhat return isMinMaxSelectCmpPattern(I, Prev); 45976aa662cSKarthik Bhat } 46076aa662cSKarthik Bhat } 46176aa662cSKarthik Bhat 4620a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf( 46376aa662cSKarthik Bhat Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 46476aa662cSKarthik Bhat unsigned NumUses = 0; 46576aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 46676aa662cSKarthik Bhat ++Use) { 46776aa662cSKarthik Bhat if (Insts.count(dyn_cast<Instruction>(*Use))) 46876aa662cSKarthik Bhat ++NumUses; 46976aa662cSKarthik Bhat if (NumUses > 1) 47076aa662cSKarthik Bhat return true; 47176aa662cSKarthik Bhat } 47276aa662cSKarthik Bhat 47376aa662cSKarthik Bhat return false; 47476aa662cSKarthik Bhat } 4750a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 4760a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 47776aa662cSKarthik Bhat 47876aa662cSKarthik Bhat BasicBlock *Header = TheLoop->getHeader(); 47976aa662cSKarthik Bhat Function &F = *Header->getParent(); 4808dd66e57SNirav Dave bool HasFunNoNaNAttr = 48176aa662cSKarthik Bhat F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 48276aa662cSKarthik Bhat 48376aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 48476aa662cSKarthik Bhat DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 48576aa662cSKarthik Bhat return true; 48676aa662cSKarthik Bhat } 48776aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 48876aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 48976aa662cSKarthik Bhat return true; 49076aa662cSKarthik Bhat } 49176aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 49276aa662cSKarthik Bhat DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 49376aa662cSKarthik Bhat return true; 49476aa662cSKarthik Bhat } 49576aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 49676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 49776aa662cSKarthik Bhat return true; 49876aa662cSKarthik Bhat } 49976aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 50076aa662cSKarthik Bhat DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 50176aa662cSKarthik Bhat return true; 50276aa662cSKarthik Bhat } 50376aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 50476aa662cSKarthik Bhat RedDes)) { 50576aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 50676aa662cSKarthik Bhat return true; 50776aa662cSKarthik Bhat } 50876aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 50976aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 51076aa662cSKarthik Bhat return true; 51176aa662cSKarthik Bhat } 51276aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 51376aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 51476aa662cSKarthik Bhat return true; 51576aa662cSKarthik Bhat } 51676aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 51776aa662cSKarthik Bhat DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 51876aa662cSKarthik Bhat return true; 51976aa662cSKarthik Bhat } 52076aa662cSKarthik Bhat // Not a reduction of known type. 52176aa662cSKarthik Bhat return false; 52276aa662cSKarthik Bhat } 52376aa662cSKarthik Bhat 52429c997c1SMatthew Simpson bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, 52529c997c1SMatthew Simpson DominatorTree *DT) { 52629c997c1SMatthew Simpson 52729c997c1SMatthew Simpson // Ensure the phi node is in the loop header and has two incoming values. 52829c997c1SMatthew Simpson if (Phi->getParent() != TheLoop->getHeader() || 52929c997c1SMatthew Simpson Phi->getNumIncomingValues() != 2) 53029c997c1SMatthew Simpson return false; 53129c997c1SMatthew Simpson 53229c997c1SMatthew Simpson // Ensure the loop has a preheader and a single latch block. The loop 53329c997c1SMatthew Simpson // vectorizer will need the latch to set up the next iteration of the loop. 53429c997c1SMatthew Simpson auto *Preheader = TheLoop->getLoopPreheader(); 53529c997c1SMatthew Simpson auto *Latch = TheLoop->getLoopLatch(); 53629c997c1SMatthew Simpson if (!Preheader || !Latch) 53729c997c1SMatthew Simpson return false; 53829c997c1SMatthew Simpson 53929c997c1SMatthew Simpson // Ensure the phi node's incoming blocks are the loop preheader and latch. 54029c997c1SMatthew Simpson if (Phi->getBasicBlockIndex(Preheader) < 0 || 54129c997c1SMatthew Simpson Phi->getBasicBlockIndex(Latch) < 0) 54229c997c1SMatthew Simpson return false; 54329c997c1SMatthew Simpson 54429c997c1SMatthew Simpson // Get the previous value. The previous value comes from the latch edge while 54529c997c1SMatthew Simpson // the initial value comes form the preheader edge. 54629c997c1SMatthew Simpson auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 54753207a99SMatthew Simpson if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) 54829c997c1SMatthew Simpson return false; 54929c997c1SMatthew Simpson 55029c997c1SMatthew Simpson // Ensure every user of the phi node is dominated by the previous value. The 55129c997c1SMatthew Simpson // dominance requirement ensures the loop vectorizer will not need to 55229c997c1SMatthew Simpson // vectorize the initial value prior to the first iteration of the loop. 55329c997c1SMatthew Simpson for (User *U : Phi->users()) 55429c997c1SMatthew Simpson if (auto *I = dyn_cast<Instruction>(U)) 55529c997c1SMatthew Simpson if (!DT->dominates(Previous, I)) 55629c997c1SMatthew Simpson return false; 55729c997c1SMatthew Simpson 55829c997c1SMatthew Simpson return true; 55929c997c1SMatthew Simpson } 56029c997c1SMatthew Simpson 56176aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for 56276aa662cSKarthik Bhat /// the operation K. 5630a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 5640a91310cSTyler Nowicki Type *Tp) { 56576aa662cSKarthik Bhat switch (K) { 56676aa662cSKarthik Bhat case RK_IntegerXor: 56776aa662cSKarthik Bhat case RK_IntegerAdd: 56876aa662cSKarthik Bhat case RK_IntegerOr: 56976aa662cSKarthik Bhat // Adding, Xoring, Oring zero to a number does not change it. 57076aa662cSKarthik Bhat return ConstantInt::get(Tp, 0); 57176aa662cSKarthik Bhat case RK_IntegerMult: 57276aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 57376aa662cSKarthik Bhat return ConstantInt::get(Tp, 1); 57476aa662cSKarthik Bhat case RK_IntegerAnd: 57576aa662cSKarthik Bhat // AND-ing a number with an all-1 value does not change it. 57676aa662cSKarthik Bhat return ConstantInt::get(Tp, -1, true); 57776aa662cSKarthik Bhat case RK_FloatMult: 57876aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 57976aa662cSKarthik Bhat return ConstantFP::get(Tp, 1.0L); 58076aa662cSKarthik Bhat case RK_FloatAdd: 58176aa662cSKarthik Bhat // Adding zero to a number does not change it. 58276aa662cSKarthik Bhat return ConstantFP::get(Tp, 0.0L); 58376aa662cSKarthik Bhat default: 5840a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence kind"); 58576aa662cSKarthik Bhat } 58676aa662cSKarthik Bhat } 58776aa662cSKarthik Bhat 5880a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator. 5890a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 59076aa662cSKarthik Bhat switch (Kind) { 59176aa662cSKarthik Bhat case RK_IntegerAdd: 59276aa662cSKarthik Bhat return Instruction::Add; 59376aa662cSKarthik Bhat case RK_IntegerMult: 59476aa662cSKarthik Bhat return Instruction::Mul; 59576aa662cSKarthik Bhat case RK_IntegerOr: 59676aa662cSKarthik Bhat return Instruction::Or; 59776aa662cSKarthik Bhat case RK_IntegerAnd: 59876aa662cSKarthik Bhat return Instruction::And; 59976aa662cSKarthik Bhat case RK_IntegerXor: 60076aa662cSKarthik Bhat return Instruction::Xor; 60176aa662cSKarthik Bhat case RK_FloatMult: 60276aa662cSKarthik Bhat return Instruction::FMul; 60376aa662cSKarthik Bhat case RK_FloatAdd: 60476aa662cSKarthik Bhat return Instruction::FAdd; 60576aa662cSKarthik Bhat case RK_IntegerMinMax: 60676aa662cSKarthik Bhat return Instruction::ICmp; 60776aa662cSKarthik Bhat case RK_FloatMinMax: 60876aa662cSKarthik Bhat return Instruction::FCmp; 60976aa662cSKarthik Bhat default: 6100a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence operation"); 61176aa662cSKarthik Bhat } 61276aa662cSKarthik Bhat } 61376aa662cSKarthik Bhat 61427b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 61527b2c39eSTyler Nowicki MinMaxRecurrenceKind RK, 61676aa662cSKarthik Bhat Value *Left, Value *Right) { 61776aa662cSKarthik Bhat CmpInst::Predicate P = CmpInst::ICMP_NE; 61876aa662cSKarthik Bhat switch (RK) { 61976aa662cSKarthik Bhat default: 6200a91310cSTyler Nowicki llvm_unreachable("Unknown min/max recurrence kind"); 62127b2c39eSTyler Nowicki case MRK_UIntMin: 62276aa662cSKarthik Bhat P = CmpInst::ICMP_ULT; 62376aa662cSKarthik Bhat break; 62427b2c39eSTyler Nowicki case MRK_UIntMax: 62576aa662cSKarthik Bhat P = CmpInst::ICMP_UGT; 62676aa662cSKarthik Bhat break; 62727b2c39eSTyler Nowicki case MRK_SIntMin: 62876aa662cSKarthik Bhat P = CmpInst::ICMP_SLT; 62976aa662cSKarthik Bhat break; 63027b2c39eSTyler Nowicki case MRK_SIntMax: 63176aa662cSKarthik Bhat P = CmpInst::ICMP_SGT; 63276aa662cSKarthik Bhat break; 63327b2c39eSTyler Nowicki case MRK_FloatMin: 63476aa662cSKarthik Bhat P = CmpInst::FCMP_OLT; 63576aa662cSKarthik Bhat break; 63627b2c39eSTyler Nowicki case MRK_FloatMax: 63776aa662cSKarthik Bhat P = CmpInst::FCMP_OGT; 63876aa662cSKarthik Bhat break; 63976aa662cSKarthik Bhat } 64076aa662cSKarthik Bhat 64150a4c27fSJames Molloy // We only match FP sequences with unsafe algebra, so we can unconditionally 64250a4c27fSJames Molloy // set it on any generated instructions. 64350a4c27fSJames Molloy IRBuilder<>::FastMathFlagGuard FMFG(Builder); 64450a4c27fSJames Molloy FastMathFlags FMF; 64550a4c27fSJames Molloy FMF.setUnsafeAlgebra(); 646a252815bSSanjay Patel Builder.setFastMathFlags(FMF); 64750a4c27fSJames Molloy 64876aa662cSKarthik Bhat Value *Cmp; 64927b2c39eSTyler Nowicki if (RK == MRK_FloatMin || RK == MRK_FloatMax) 65076aa662cSKarthik Bhat Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 65176aa662cSKarthik Bhat else 65276aa662cSKarthik Bhat Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 65376aa662cSKarthik Bhat 65476aa662cSKarthik Bhat Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 65576aa662cSKarthik Bhat return Select; 65676aa662cSKarthik Bhat } 65724e6cc2dSKarthik Bhat 6581bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 659376a18bdSElena Demikhovsky const SCEV *Step, BinaryOperator *BOp) 660376a18bdSElena Demikhovsky : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 6611bbf15c5SJames Molloy assert(IK != IK_NoInduction && "Not an induction"); 662c434d091SElena Demikhovsky 663c434d091SElena Demikhovsky // Start value type should match the induction kind and the value 664c434d091SElena Demikhovsky // itself should not be null. 6651bbf15c5SJames Molloy assert(StartValue && "StartValue is null"); 6661bbf15c5SJames Molloy assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 6671bbf15c5SJames Molloy "StartValue is not a pointer for pointer induction"); 6681bbf15c5SJames Molloy assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 6691bbf15c5SJames Molloy "StartValue is not an integer for integer induction"); 670c434d091SElena Demikhovsky 671c434d091SElena Demikhovsky // Check the Step Value. It should be non-zero integer value. 672c434d091SElena Demikhovsky assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 673c434d091SElena Demikhovsky "Step value is zero"); 674c434d091SElena Demikhovsky 675c434d091SElena Demikhovsky assert((IK != IK_PtrInduction || getConstIntStepValue()) && 676c434d091SElena Demikhovsky "Step value should be constant for pointer induction"); 677376a18bdSElena Demikhovsky assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 678376a18bdSElena Demikhovsky "StepValue is not an integer"); 679376a18bdSElena Demikhovsky 680376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 681376a18bdSElena Demikhovsky "StepValue is not FP for FpInduction"); 682376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || (InductionBinOp && 683376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 684376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub))) && 685376a18bdSElena Demikhovsky "Binary opcode should be specified for FP induction"); 6861bbf15c5SJames Molloy } 6871bbf15c5SJames Molloy 6881bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const { 689c434d091SElena Demikhovsky ConstantInt *ConstStep = getConstIntStepValue(); 690c434d091SElena Demikhovsky if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 691c434d091SElena Demikhovsky return ConstStep->getSExtValue(); 6921bbf15c5SJames Molloy return 0; 6931bbf15c5SJames Molloy } 6941bbf15c5SJames Molloy 695c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const { 696c434d091SElena Demikhovsky if (isa<SCEVConstant>(Step)) 697c434d091SElena Demikhovsky return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 698c434d091SElena Demikhovsky return nullptr; 699c434d091SElena Demikhovsky } 700c434d091SElena Demikhovsky 701c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 702c434d091SElena Demikhovsky ScalarEvolution *SE, 703c434d091SElena Demikhovsky const DataLayout& DL) const { 704c434d091SElena Demikhovsky 705c434d091SElena Demikhovsky SCEVExpander Exp(*SE, DL, "induction"); 706376a18bdSElena Demikhovsky assert(Index->getType() == Step->getType() && 707376a18bdSElena Demikhovsky "Index type does not match StepValue type"); 7081bbf15c5SJames Molloy switch (IK) { 709c434d091SElena Demikhovsky case IK_IntInduction: { 7101bbf15c5SJames Molloy assert(Index->getType() == StartValue->getType() && 7111bbf15c5SJames Molloy "Index type does not match StartValue type"); 712c434d091SElena Demikhovsky 713c434d091SElena Demikhovsky // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 714c434d091SElena Demikhovsky // and calculate (Start + Index * Step) for all cases, without 715c434d091SElena Demikhovsky // special handling for "isOne" and "isMinusOne". 716c434d091SElena Demikhovsky // But in the real life the result code getting worse. We mix SCEV 717c434d091SElena Demikhovsky // expressions and ADD/SUB operations and receive redundant 718c434d091SElena Demikhovsky // intermediate values being calculated in different ways and 719c434d091SElena Demikhovsky // Instcombine is unable to reduce them all. 720c434d091SElena Demikhovsky 721c434d091SElena Demikhovsky if (getConstIntStepValue() && 722c434d091SElena Demikhovsky getConstIntStepValue()->isMinusOne()) 7231bbf15c5SJames Molloy return B.CreateSub(StartValue, Index); 724c434d091SElena Demikhovsky if (getConstIntStepValue() && 725c434d091SElena Demikhovsky getConstIntStepValue()->isOne()) 7261bbf15c5SJames Molloy return B.CreateAdd(StartValue, Index); 727c434d091SElena Demikhovsky const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 728c434d091SElena Demikhovsky SE->getMulExpr(Step, SE->getSCEV(Index))); 729c434d091SElena Demikhovsky return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 730c434d091SElena Demikhovsky } 731c434d091SElena Demikhovsky case IK_PtrInduction: { 732c434d091SElena Demikhovsky assert(isa<SCEVConstant>(Step) && 733c434d091SElena Demikhovsky "Expected constant step for pointer induction"); 734c434d091SElena Demikhovsky const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 735c434d091SElena Demikhovsky Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 7361bbf15c5SJames Molloy return B.CreateGEP(nullptr, StartValue, Index); 737c434d091SElena Demikhovsky } 738376a18bdSElena Demikhovsky case IK_FpInduction: { 739376a18bdSElena Demikhovsky assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 740376a18bdSElena Demikhovsky assert(InductionBinOp && 741376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 742376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub) && 743376a18bdSElena Demikhovsky "Original bin op should be defined for FP induction"); 744376a18bdSElena Demikhovsky 745376a18bdSElena Demikhovsky Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 746376a18bdSElena Demikhovsky 747376a18bdSElena Demikhovsky // Floating point operations had to be 'fast' to enable the induction. 748376a18bdSElena Demikhovsky FastMathFlags Flags; 749376a18bdSElena Demikhovsky Flags.setUnsafeAlgebra(); 750376a18bdSElena Demikhovsky 751376a18bdSElena Demikhovsky Value *MulExp = B.CreateFMul(StepValue, Index); 752376a18bdSElena Demikhovsky if (isa<Instruction>(MulExp)) 753376a18bdSElena Demikhovsky // We have to check, the MulExp may be a constant. 754376a18bdSElena Demikhovsky cast<Instruction>(MulExp)->setFastMathFlags(Flags); 755376a18bdSElena Demikhovsky 756376a18bdSElena Demikhovsky Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 757376a18bdSElena Demikhovsky MulExp, "induction"); 758376a18bdSElena Demikhovsky if (isa<Instruction>(BOp)) 759376a18bdSElena Demikhovsky cast<Instruction>(BOp)->setFastMathFlags(Flags); 760376a18bdSElena Demikhovsky 761376a18bdSElena Demikhovsky return BOp; 762376a18bdSElena Demikhovsky } 7631bbf15c5SJames Molloy case IK_NoInduction: 7641bbf15c5SJames Molloy return nullptr; 7651bbf15c5SJames Molloy } 7661bbf15c5SJames Molloy llvm_unreachable("invalid enum"); 7671bbf15c5SJames Molloy } 7681bbf15c5SJames Molloy 769376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 770376a18bdSElena Demikhovsky ScalarEvolution *SE, 771376a18bdSElena Demikhovsky InductionDescriptor &D) { 772376a18bdSElena Demikhovsky 773376a18bdSElena Demikhovsky // Here we only handle FP induction variables. 774376a18bdSElena Demikhovsky assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 775376a18bdSElena Demikhovsky 776376a18bdSElena Demikhovsky if (TheLoop->getHeader() != Phi->getParent()) 777376a18bdSElena Demikhovsky return false; 778376a18bdSElena Demikhovsky 779376a18bdSElena Demikhovsky // The loop may have multiple entrances or multiple exits; we can analyze 780376a18bdSElena Demikhovsky // this phi if it has a unique entry value and a unique backedge value. 781376a18bdSElena Demikhovsky if (Phi->getNumIncomingValues() != 2) 782376a18bdSElena Demikhovsky return false; 783376a18bdSElena Demikhovsky Value *BEValue = nullptr, *StartValue = nullptr; 784376a18bdSElena Demikhovsky if (TheLoop->contains(Phi->getIncomingBlock(0))) { 785376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(0); 786376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(1); 787376a18bdSElena Demikhovsky } else { 788376a18bdSElena Demikhovsky assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 789376a18bdSElena Demikhovsky "Unexpected Phi node in the loop"); 790376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(1); 791376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(0); 792376a18bdSElena Demikhovsky } 793376a18bdSElena Demikhovsky 794376a18bdSElena Demikhovsky BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 795376a18bdSElena Demikhovsky if (!BOp) 796376a18bdSElena Demikhovsky return false; 797376a18bdSElena Demikhovsky 798376a18bdSElena Demikhovsky Value *Addend = nullptr; 799376a18bdSElena Demikhovsky if (BOp->getOpcode() == Instruction::FAdd) { 800376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 801376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 802376a18bdSElena Demikhovsky else if (BOp->getOperand(1) == Phi) 803376a18bdSElena Demikhovsky Addend = BOp->getOperand(0); 804376a18bdSElena Demikhovsky } else if (BOp->getOpcode() == Instruction::FSub) 805376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 806376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 807376a18bdSElena Demikhovsky 808376a18bdSElena Demikhovsky if (!Addend) 809376a18bdSElena Demikhovsky return false; 810376a18bdSElena Demikhovsky 811376a18bdSElena Demikhovsky // The addend should be loop invariant 812376a18bdSElena Demikhovsky if (auto *I = dyn_cast<Instruction>(Addend)) 813376a18bdSElena Demikhovsky if (TheLoop->contains(I)) 814376a18bdSElena Demikhovsky return false; 815376a18bdSElena Demikhovsky 816376a18bdSElena Demikhovsky // FP Step has unknown SCEV 817376a18bdSElena Demikhovsky const SCEV *Step = SE->getUnknown(Addend); 818376a18bdSElena Demikhovsky D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 819376a18bdSElena Demikhovsky return true; 820376a18bdSElena Demikhovsky } 821376a18bdSElena Demikhovsky 822376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 823c05bab8aSSilviu Baranga PredicatedScalarEvolution &PSE, 824c05bab8aSSilviu Baranga InductionDescriptor &D, 825c05bab8aSSilviu Baranga bool Assume) { 826c05bab8aSSilviu Baranga Type *PhiTy = Phi->getType(); 827376a18bdSElena Demikhovsky 828376a18bdSElena Demikhovsky // Handle integer and pointer inductions variables. 829376a18bdSElena Demikhovsky // Now we handle also FP induction but not trying to make a 830376a18bdSElena Demikhovsky // recurrent expression from the PHI node in-place. 831376a18bdSElena Demikhovsky 832376a18bdSElena Demikhovsky if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 833376a18bdSElena Demikhovsky !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 834c05bab8aSSilviu Baranga return false; 835c05bab8aSSilviu Baranga 836376a18bdSElena Demikhovsky if (PhiTy->isFloatingPointTy()) 837376a18bdSElena Demikhovsky return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 838376a18bdSElena Demikhovsky 839c05bab8aSSilviu Baranga const SCEV *PhiScev = PSE.getSCEV(Phi); 840c05bab8aSSilviu Baranga const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 841c05bab8aSSilviu Baranga 842c05bab8aSSilviu Baranga // We need this expression to be an AddRecExpr. 843c05bab8aSSilviu Baranga if (Assume && !AR) 844c05bab8aSSilviu Baranga AR = PSE.getAsAddRec(Phi); 845c05bab8aSSilviu Baranga 846c05bab8aSSilviu Baranga if (!AR) { 847c05bab8aSSilviu Baranga DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 848c05bab8aSSilviu Baranga return false; 849c05bab8aSSilviu Baranga } 850c05bab8aSSilviu Baranga 851376a18bdSElena Demikhovsky return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 852c05bab8aSSilviu Baranga } 853c05bab8aSSilviu Baranga 854376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 855c05bab8aSSilviu Baranga ScalarEvolution *SE, 856c05bab8aSSilviu Baranga InductionDescriptor &D, 857c05bab8aSSilviu Baranga const SCEV *Expr) { 85824e6cc2dSKarthik Bhat Type *PhiTy = Phi->getType(); 85924e6cc2dSKarthik Bhat // We only handle integer and pointer inductions variables. 86024e6cc2dSKarthik Bhat if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 86124e6cc2dSKarthik Bhat return false; 86224e6cc2dSKarthik Bhat 86324e6cc2dSKarthik Bhat // Check that the PHI is consecutive. 864c05bab8aSSilviu Baranga const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 86524e6cc2dSKarthik Bhat const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 866c05bab8aSSilviu Baranga 86724e6cc2dSKarthik Bhat if (!AR) { 86824e6cc2dSKarthik Bhat DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 86924e6cc2dSKarthik Bhat return false; 87024e6cc2dSKarthik Bhat } 87124e6cc2dSKarthik Bhat 872*ee31cbe3SMichael Kuperstein if (AR->getLoop() != TheLoop) { 873*ee31cbe3SMichael Kuperstein // FIXME: We should treat this as a uniform. Unfortunately, we 874*ee31cbe3SMichael Kuperstein // don't currently know how to handled uniform PHIs. 875*ee31cbe3SMichael Kuperstein DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 876*ee31cbe3SMichael Kuperstein return false; 877*ee31cbe3SMichael Kuperstein } 878*ee31cbe3SMichael Kuperstein 8791bbf15c5SJames Molloy Value *StartValue = 8801bbf15c5SJames Molloy Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 88124e6cc2dSKarthik Bhat const SCEV *Step = AR->getStepRecurrence(*SE); 88224e6cc2dSKarthik Bhat // Calculate the pointer stride and check if it is consecutive. 883c434d091SElena Demikhovsky // The stride may be a constant or a loop invariant integer value. 884c434d091SElena Demikhovsky const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 885376a18bdSElena Demikhovsky if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 88624e6cc2dSKarthik Bhat return false; 88724e6cc2dSKarthik Bhat 88824e6cc2dSKarthik Bhat if (PhiTy->isIntegerTy()) { 889c434d091SElena Demikhovsky D = InductionDescriptor(StartValue, IK_IntInduction, Step); 89024e6cc2dSKarthik Bhat return true; 89124e6cc2dSKarthik Bhat } 89224e6cc2dSKarthik Bhat 89324e6cc2dSKarthik Bhat assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 894c434d091SElena Demikhovsky // Pointer induction should be a constant. 895c434d091SElena Demikhovsky if (!ConstStep) 896c434d091SElena Demikhovsky return false; 897c434d091SElena Demikhovsky 898c434d091SElena Demikhovsky ConstantInt *CV = ConstStep->getValue(); 89924e6cc2dSKarthik Bhat Type *PointerElementType = PhiTy->getPointerElementType(); 90024e6cc2dSKarthik Bhat // The pointer stride cannot be determined if the pointer element type is not 90124e6cc2dSKarthik Bhat // sized. 90224e6cc2dSKarthik Bhat if (!PointerElementType->isSized()) 90324e6cc2dSKarthik Bhat return false; 90424e6cc2dSKarthik Bhat 90524e6cc2dSKarthik Bhat const DataLayout &DL = Phi->getModule()->getDataLayout(); 90624e6cc2dSKarthik Bhat int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 907b58f32f7SDavid Majnemer if (!Size) 908b58f32f7SDavid Majnemer return false; 909b58f32f7SDavid Majnemer 91024e6cc2dSKarthik Bhat int64_t CVSize = CV->getSExtValue(); 91124e6cc2dSKarthik Bhat if (CVSize % Size) 91224e6cc2dSKarthik Bhat return false; 913c434d091SElena Demikhovsky auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 914c434d091SElena Demikhovsky true /* signed */); 9151bbf15c5SJames Molloy D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 91624e6cc2dSKarthik Bhat return true; 91724e6cc2dSKarthik Bhat } 918c5b7b555SAshutosh Nema 919c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop. 920c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 921c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 922c5b7b555SAshutosh Nema 923c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 924c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 925c5b7b555SAshutosh Nema // be adapted into a pointer. 926c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 927c5b7b555SAshutosh Nema auto Users = Inst.users(); 9280a16c228SDavid Majnemer if (any_of(Users, [&](User *U) { 929c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 930c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 931c5b7b555SAshutosh Nema })) 932c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 933c5b7b555SAshutosh Nema } 934c5b7b555SAshutosh Nema 935c5b7b555SAshutosh Nema return UsedOutside; 936c5b7b555SAshutosh Nema } 93731088a9dSChandler Carruth 93831088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 93931088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 94031088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 94131088a9dSChandler Carruth // pass manager, they must also preserve these. 94231088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 94331088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 94431088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 94531088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 94631088a9dSChandler Carruth 94731088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 94831088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 94931088a9dSChandler Carruth extern char &LoopSimplifyID; 95031088a9dSChandler Carruth extern char &LCSSAID; 95131088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 95231088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 95331088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 95431088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 955c3ccf5d7SIgor Laevsky // This is used in the LPPassManager to perform LCSSA verification on passes 956c3ccf5d7SIgor Laevsky // which preserve lcssa form 957c3ccf5d7SIgor Laevsky AU.addRequired<LCSSAVerificationPass>(); 958c3ccf5d7SIgor Laevsky AU.addPreserved<LCSSAVerificationPass>(); 95931088a9dSChandler Carruth 96031088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 96131088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 96231088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 96331088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 96431088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 96531088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 96631088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 96731088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 96831088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 96931088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 97031088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 97131088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 97231088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 97331088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 97431088a9dSChandler Carruth } 97531088a9dSChandler Carruth 97631088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 97731088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 97831088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 97931088a9dSChandler Carruth /// with: 98031088a9dSChandler Carruth /// 98131088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 98231088a9dSChandler Carruth /// 98331088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 98431088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 98531088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 98631088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 98731088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 988e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 98931088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 99031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 99131088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 99231088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 99331088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 99431088a9dSChandler Carruth } 995963341c8SAdam Nemet 996fe3def7cSAdam Nemet /// \brief Find string metadata for loop 997fe3def7cSAdam Nemet /// 998fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 999fe3def7cSAdam Nemet /// operand or null otherwise. If the string metadata is not found return 1000fe3def7cSAdam Nemet /// Optional's not-a-value. 1001fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 1002fe3def7cSAdam Nemet StringRef Name) { 1003963341c8SAdam Nemet MDNode *LoopID = TheLoop->getLoopID(); 1004fe3def7cSAdam Nemet // Return none if LoopID is false. 1005963341c8SAdam Nemet if (!LoopID) 1006fe3def7cSAdam Nemet return None; 1007293be666SAdam Nemet 1008293be666SAdam Nemet // First operand should refer to the loop id itself. 1009293be666SAdam Nemet assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1010293be666SAdam Nemet assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1011293be666SAdam Nemet 1012963341c8SAdam Nemet // Iterate over LoopID operands and look for MDString Metadata 1013963341c8SAdam Nemet for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1014963341c8SAdam Nemet MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1015963341c8SAdam Nemet if (!MD) 1016963341c8SAdam Nemet continue; 1017963341c8SAdam Nemet MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1018963341c8SAdam Nemet if (!S) 1019963341c8SAdam Nemet continue; 1020963341c8SAdam Nemet // Return true if MDString holds expected MetaData. 1021963341c8SAdam Nemet if (Name.equals(S->getString())) 1022fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 1023fe3def7cSAdam Nemet case 1: 1024fe3def7cSAdam Nemet return nullptr; 1025fe3def7cSAdam Nemet case 2: 1026fe3def7cSAdam Nemet return &MD->getOperand(1); 1027fe3def7cSAdam Nemet default: 1028fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 1029963341c8SAdam Nemet } 1030fe3def7cSAdam Nemet } 1031fe3def7cSAdam Nemet return None; 1032963341c8SAdam Nemet } 1033122f984aSEvgeniy Stepanov 1034122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least 1035122f984aSEvgeniy Stepanov /// once. 1036122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst, 1037122f984aSEvgeniy Stepanov const DominatorTree *DT, const Loop *CurLoop, 1038122f984aSEvgeniy Stepanov const LoopSafetyInfo *SafetyInfo) { 1039122f984aSEvgeniy Stepanov // We have to check to make sure that the instruction dominates all 1040122f984aSEvgeniy Stepanov // of the exit blocks. If it doesn't, then there is a path out of the loop 1041122f984aSEvgeniy Stepanov // which does not execute this instruction, so we can't hoist it. 1042122f984aSEvgeniy Stepanov 1043122f984aSEvgeniy Stepanov // If the instruction is in the header block for the loop (which is very 1044122f984aSEvgeniy Stepanov // common), it is always guaranteed to dominate the exit blocks. Since this 1045122f984aSEvgeniy Stepanov // is a common case, and can save some work, check it now. 1046122f984aSEvgeniy Stepanov if (Inst.getParent() == CurLoop->getHeader()) 1047122f984aSEvgeniy Stepanov // If there's a throw in the header block, we can't guarantee we'll reach 1048122f984aSEvgeniy Stepanov // Inst. 1049122f984aSEvgeniy Stepanov return !SafetyInfo->HeaderMayThrow; 1050122f984aSEvgeniy Stepanov 1051122f984aSEvgeniy Stepanov // Somewhere in this loop there is an instruction which may throw and make us 1052122f984aSEvgeniy Stepanov // exit the loop. 1053122f984aSEvgeniy Stepanov if (SafetyInfo->MayThrow) 1054122f984aSEvgeniy Stepanov return false; 1055122f984aSEvgeniy Stepanov 1056122f984aSEvgeniy Stepanov // Get the exit blocks for the current loop. 1057122f984aSEvgeniy Stepanov SmallVector<BasicBlock *, 8> ExitBlocks; 1058122f984aSEvgeniy Stepanov CurLoop->getExitBlocks(ExitBlocks); 1059122f984aSEvgeniy Stepanov 1060122f984aSEvgeniy Stepanov // Verify that the block dominates each of the exit blocks of the loop. 1061122f984aSEvgeniy Stepanov for (BasicBlock *ExitBlock : ExitBlocks) 1062122f984aSEvgeniy Stepanov if (!DT->dominates(Inst.getParent(), ExitBlock)) 1063122f984aSEvgeniy Stepanov return false; 1064122f984aSEvgeniy Stepanov 1065122f984aSEvgeniy Stepanov // As a degenerate case, if the loop is statically infinite then we haven't 1066122f984aSEvgeniy Stepanov // proven anything since there are no exit blocks. 1067122f984aSEvgeniy Stepanov if (ExitBlocks.empty()) 1068122f984aSEvgeniy Stepanov return false; 1069122f984aSEvgeniy Stepanov 1070f1da33e4SEli Friedman // FIXME: In general, we have to prove that the loop isn't an infinite loop. 1071f1da33e4SEli Friedman // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 1072f1da33e4SEli Friedman // just a special case of this.) 1073122f984aSEvgeniy Stepanov return true; 1074122f984aSEvgeniy Stepanov } 107541d72a86SDehao Chen 107641d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 107741d72a86SDehao Chen // Only support loops with a unique exiting block, and a latch. 107841d72a86SDehao Chen if (!L->getExitingBlock()) 107941d72a86SDehao Chen return None; 108041d72a86SDehao Chen 108141d72a86SDehao Chen // Get the branch weights for the the loop's backedge. 108241d72a86SDehao Chen BranchInst *LatchBR = 108341d72a86SDehao Chen dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 108441d72a86SDehao Chen if (!LatchBR || LatchBR->getNumSuccessors() != 2) 108541d72a86SDehao Chen return None; 108641d72a86SDehao Chen 108741d72a86SDehao Chen assert((LatchBR->getSuccessor(0) == L->getHeader() || 108841d72a86SDehao Chen LatchBR->getSuccessor(1) == L->getHeader()) && 108941d72a86SDehao Chen "At least one edge out of the latch must go to the header"); 109041d72a86SDehao Chen 109141d72a86SDehao Chen // To estimate the number of times the loop body was executed, we want to 109241d72a86SDehao Chen // know the number of times the backedge was taken, vs. the number of times 109341d72a86SDehao Chen // we exited the loop. 109441d72a86SDehao Chen uint64_t TrueVal, FalseVal; 1095b151a641SMichael Kuperstein if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 109641d72a86SDehao Chen return None; 109741d72a86SDehao Chen 1098b151a641SMichael Kuperstein if (!TrueVal || !FalseVal) 1099b151a641SMichael Kuperstein return 0; 110041d72a86SDehao Chen 1101b151a641SMichael Kuperstein // Divide the count of the backedge by the count of the edge exiting the loop, 1102b151a641SMichael Kuperstein // rounding to nearest. 110341d72a86SDehao Chen if (LatchBR->getSuccessor(0) == L->getHeader()) 1104b151a641SMichael Kuperstein return (TrueVal + (FalseVal / 2)) / FalseVal; 110541d72a86SDehao Chen else 1106b151a641SMichael Kuperstein return (FalseVal + (TrueVal / 2)) / TrueVal; 110741d72a86SDehao Chen } 1108