176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 676aa662cSKarthik Bhat // 776aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 876aa662cSKarthik Bhat // 976aa662cSKarthik Bhat // This file defines common loop utility functions. 1076aa662cSKarthik Bhat // 1176aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1276aa662cSKarthik Bhat 132f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 147a87e8f9SFlorian Hahn #include "llvm/ADT/DenseSet.h" 157a87e8f9SFlorian Hahn #include "llvm/ADT/Optional.h" 167a87e8f9SFlorian Hahn #include "llvm/ADT/PriorityWorklist.h" 174a000883SChandler Carruth #include "llvm/ADT/ScopeExit.h" 187a87e8f9SFlorian Hahn #include "llvm/ADT/SetVector.h" 197a87e8f9SFlorian Hahn #include "llvm/ADT/SmallPtrSet.h" 207a87e8f9SFlorian Hahn #include "llvm/ADT/SmallVector.h" 2131088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 2231088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 235f436fc5SRichard Trieu #include "llvm/Analysis/DomTreeUpdater.h" 2431088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 25a21d5f1eSPhilip Reames #include "llvm/Analysis/InstructionSimplify.h" 26616657b3SFlorian Hahn #include "llvm/Analysis/LoopAccessAnalysis.h" 272f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 28c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h" 296da79ce1SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h" 3097468e92SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h" 3123aed5efSPhilip Reames #include "llvm/Analysis/MustExecute.h" 3245d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 332f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 3445d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 356bda14b3SChandler Carruth #include "llvm/Analysis/TargetTransformInfo.h" 36a097bc69SChad Rosier #include "llvm/Analysis/ValueTracking.h" 37744c3c32SDavide Italiano #include "llvm/IR/DIBuilder.h" 3831088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 3976aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 40744c3c32SDavide Italiano #include "llvm/IR/IntrinsicInst.h" 41af7e1588SEvgeniy Brevnov #include "llvm/IR/MDBuilder.h" 4245d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 437a87e8f9SFlorian Hahn #include "llvm/IR/Operator.h" 4476aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 4576aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 4605da2fe5SReid Kleckner #include "llvm/InitializePasses.h" 4731088a9dSChandler Carruth #include "llvm/Pass.h" 4876aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 49a097bc69SChad Rosier #include "llvm/Support/KnownBits.h" 504a000883SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 5193175a5cSSjoerd Meijer #include "llvm/Transforms/Utils/Local.h" 52bcbd26bfSFlorian Hahn #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 5376aa662cSKarthik Bhat 5476aa662cSKarthik Bhat using namespace llvm; 5576aa662cSKarthik Bhat using namespace llvm::PatternMatch; 5676aa662cSKarthik Bhat 57ec7e4a9aSDavid Green static cl::opt<bool> ForceReductionIntrinsic( 58ec7e4a9aSDavid Green "force-reduction-intrinsics", cl::Hidden, 59ec7e4a9aSDavid Green cl::desc("Force creating reduction intrinsics for testing."), 60ec7e4a9aSDavid Green cl::init(false)); 61ec7e4a9aSDavid Green 6276aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 6376aa662cSKarthik Bhat 6472448525SMichael Kruse static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 654f64f1baSTim Corringham static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 6672448525SMichael Kruse 674a000883SChandler Carruth bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 6897468e92SAlina Sbirlea MemorySSAUpdater *MSSAU, 694a000883SChandler Carruth bool PreserveLCSSA) { 704a000883SChandler Carruth bool Changed = false; 714a000883SChandler Carruth 724a000883SChandler Carruth // We re-use a vector for the in-loop predecesosrs. 734a000883SChandler Carruth SmallVector<BasicBlock *, 4> InLoopPredecessors; 744a000883SChandler Carruth 754a000883SChandler Carruth auto RewriteExit = [&](BasicBlock *BB) { 764a000883SChandler Carruth assert(InLoopPredecessors.empty() && 774a000883SChandler Carruth "Must start with an empty predecessors list!"); 784a000883SChandler Carruth auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 794a000883SChandler Carruth 804a000883SChandler Carruth // See if there are any non-loop predecessors of this exit block and 814a000883SChandler Carruth // keep track of the in-loop predecessors. 824a000883SChandler Carruth bool IsDedicatedExit = true; 834a000883SChandler Carruth for (auto *PredBB : predecessors(BB)) 844a000883SChandler Carruth if (L->contains(PredBB)) { 854a000883SChandler Carruth if (isa<IndirectBrInst>(PredBB->getTerminator())) 864a000883SChandler Carruth // We cannot rewrite exiting edges from an indirectbr. 874a000883SChandler Carruth return false; 88784929d0SCraig Topper if (isa<CallBrInst>(PredBB->getTerminator())) 89784929d0SCraig Topper // We cannot rewrite exiting edges from a callbr. 90784929d0SCraig Topper return false; 914a000883SChandler Carruth 924a000883SChandler Carruth InLoopPredecessors.push_back(PredBB); 934a000883SChandler Carruth } else { 944a000883SChandler Carruth IsDedicatedExit = false; 954a000883SChandler Carruth } 964a000883SChandler Carruth 974a000883SChandler Carruth assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 984a000883SChandler Carruth 994a000883SChandler Carruth // Nothing to do if this is already a dedicated exit. 1004a000883SChandler Carruth if (IsDedicatedExit) 1014a000883SChandler Carruth return false; 1024a000883SChandler Carruth 1034a000883SChandler Carruth auto *NewExitBB = SplitBlockPredecessors( 10497468e92SAlina Sbirlea BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 1054a000883SChandler Carruth 1064a000883SChandler Carruth if (!NewExitBB) 107d34e60caSNicola Zaghen LLVM_DEBUG( 108d34e60caSNicola Zaghen dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 1094a000883SChandler Carruth << *L << "\n"); 1104a000883SChandler Carruth else 111d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 1124a000883SChandler Carruth << NewExitBB->getName() << "\n"); 1134a000883SChandler Carruth return true; 1144a000883SChandler Carruth }; 1154a000883SChandler Carruth 1164a000883SChandler Carruth // Walk the exit blocks directly rather than building up a data structure for 1174a000883SChandler Carruth // them, but only visit each one once. 1184a000883SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 1194a000883SChandler Carruth for (auto *BB : L->blocks()) 1204a000883SChandler Carruth for (auto *SuccBB : successors(BB)) { 1214a000883SChandler Carruth // We're looking for exit blocks so skip in-loop successors. 1224a000883SChandler Carruth if (L->contains(SuccBB)) 1234a000883SChandler Carruth continue; 1244a000883SChandler Carruth 1254a000883SChandler Carruth // Visit each exit block exactly once. 1264a000883SChandler Carruth if (!Visited.insert(SuccBB).second) 1274a000883SChandler Carruth continue; 1284a000883SChandler Carruth 1294a000883SChandler Carruth Changed |= RewriteExit(SuccBB); 1304a000883SChandler Carruth } 1314a000883SChandler Carruth 1324a000883SChandler Carruth return Changed; 1334a000883SChandler Carruth } 1344a000883SChandler Carruth 1355f8f34e4SAdrian Prantl /// Returns the instructions that use values defined in the loop. 136c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 137c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 138c5b7b555SAshutosh Nema 139c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 140c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 141c5b7b555SAshutosh Nema // be adapted into a pointer. 142c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 143c5b7b555SAshutosh Nema auto Users = Inst.users(); 1440a16c228SDavid Majnemer if (any_of(Users, [&](User *U) { 145c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 146c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 147c5b7b555SAshutosh Nema })) 148c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 149c5b7b555SAshutosh Nema } 150c5b7b555SAshutosh Nema 151c5b7b555SAshutosh Nema return UsedOutside; 152c5b7b555SAshutosh Nema } 15331088a9dSChandler Carruth 15431088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 15531088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 15631088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 15731088a9dSChandler Carruth // pass manager, they must also preserve these. 15831088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 15931088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 16031088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 16131088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 16231088a9dSChandler Carruth 16331088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 16431088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 16531088a9dSChandler Carruth extern char &LoopSimplifyID; 16631088a9dSChandler Carruth extern char &LCSSAID; 16731088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 16831088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 16931088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 17031088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 171c3ccf5d7SIgor Laevsky // This is used in the LPPassManager to perform LCSSA verification on passes 172c3ccf5d7SIgor Laevsky // which preserve lcssa form 173c3ccf5d7SIgor Laevsky AU.addRequired<LCSSAVerificationPass>(); 174c3ccf5d7SIgor Laevsky AU.addPreserved<LCSSAVerificationPass>(); 17531088a9dSChandler Carruth 17631088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 17731088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 17831088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 17931088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 18031088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 18131088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 18231088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 18331088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 18431088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 18531088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 18631088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 18731088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 18831088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 18931088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 1906da79ce1SAlina Sbirlea // FIXME: When all loop passes preserve MemorySSA, it can be required and 1916da79ce1SAlina Sbirlea // preserved here instead of the individual handling in each pass. 19231088a9dSChandler Carruth } 19331088a9dSChandler Carruth 19431088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 19531088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 19631088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 19731088a9dSChandler Carruth /// with: 19831088a9dSChandler Carruth /// 19931088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 20031088a9dSChandler Carruth /// 20131088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 20231088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 20331088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 20431088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 20531088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 206e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 20731088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 20831088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 20931088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 21031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 21131088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2126da79ce1SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 21331088a9dSChandler Carruth } 214963341c8SAdam Nemet 2153c3a7652SSerguei Katkov /// Create MDNode for input string. 2163c3a7652SSerguei Katkov static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 2173c3a7652SSerguei Katkov LLVMContext &Context = TheLoop->getHeader()->getContext(); 2183c3a7652SSerguei Katkov Metadata *MDs[] = { 2193c3a7652SSerguei Katkov MDString::get(Context, Name), 2203c3a7652SSerguei Katkov ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 2213c3a7652SSerguei Katkov return MDNode::get(Context, MDs); 2223c3a7652SSerguei Katkov } 2233c3a7652SSerguei Katkov 2243c3a7652SSerguei Katkov /// Set input string into loop metadata by keeping other values intact. 2257f8c8095SSerguei Katkov /// If the string is already in loop metadata update value if it is 2267f8c8095SSerguei Katkov /// different. 2277f8c8095SSerguei Katkov void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 2283c3a7652SSerguei Katkov unsigned V) { 2293c3a7652SSerguei Katkov SmallVector<Metadata *, 4> MDs(1); 2303c3a7652SSerguei Katkov // If the loop already has metadata, retain it. 2313c3a7652SSerguei Katkov MDNode *LoopID = TheLoop->getLoopID(); 2323c3a7652SSerguei Katkov if (LoopID) { 2333c3a7652SSerguei Katkov for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 2343c3a7652SSerguei Katkov MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 2357f8c8095SSerguei Katkov // If it is of form key = value, try to parse it. 2367f8c8095SSerguei Katkov if (Node->getNumOperands() == 2) { 2377f8c8095SSerguei Katkov MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 2387f8c8095SSerguei Katkov if (S && S->getString().equals(StringMD)) { 2397f8c8095SSerguei Katkov ConstantInt *IntMD = 2407f8c8095SSerguei Katkov mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 2417f8c8095SSerguei Katkov if (IntMD && IntMD->getSExtValue() == V) 2427f8c8095SSerguei Katkov // It is already in place. Do nothing. 2437f8c8095SSerguei Katkov return; 2447f8c8095SSerguei Katkov // We need to update the value, so just skip it here and it will 2457f8c8095SSerguei Katkov // be added after copying other existed nodes. 2467f8c8095SSerguei Katkov continue; 2477f8c8095SSerguei Katkov } 2487f8c8095SSerguei Katkov } 2493c3a7652SSerguei Katkov MDs.push_back(Node); 2503c3a7652SSerguei Katkov } 2513c3a7652SSerguei Katkov } 2523c3a7652SSerguei Katkov // Add new metadata. 2537f8c8095SSerguei Katkov MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 2543c3a7652SSerguei Katkov // Replace current metadata node with new one. 2553c3a7652SSerguei Katkov LLVMContext &Context = TheLoop->getHeader()->getContext(); 2563c3a7652SSerguei Katkov MDNode *NewLoopID = MDNode::get(Context, MDs); 2573c3a7652SSerguei Katkov // Set operand 0 to refer to the loop id itself. 2583c3a7652SSerguei Katkov NewLoopID->replaceOperandWith(0, NewLoopID); 2593c3a7652SSerguei Katkov TheLoop->setLoopID(NewLoopID); 2603c3a7652SSerguei Katkov } 2613c3a7652SSerguei Katkov 26272448525SMichael Kruse /// Find string metadata for loop 26372448525SMichael Kruse /// 26472448525SMichael Kruse /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 26572448525SMichael Kruse /// operand or null otherwise. If the string metadata is not found return 26672448525SMichael Kruse /// Optional's not-a-value. 267978ba615SMichael Kruse Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 26872448525SMichael Kruse StringRef Name) { 269978ba615SMichael Kruse MDNode *MD = findOptionMDForLoop(TheLoop, Name); 27072448525SMichael Kruse if (!MD) 27172448525SMichael Kruse return None; 272fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 273fe3def7cSAdam Nemet case 1: 274fe3def7cSAdam Nemet return nullptr; 275fe3def7cSAdam Nemet case 2: 276fe3def7cSAdam Nemet return &MD->getOperand(1); 277fe3def7cSAdam Nemet default: 278fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 279963341c8SAdam Nemet } 280fe3def7cSAdam Nemet } 28172448525SMichael Kruse 28272448525SMichael Kruse static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 28372448525SMichael Kruse StringRef Name) { 284978ba615SMichael Kruse MDNode *MD = findOptionMDForLoop(TheLoop, Name); 285978ba615SMichael Kruse if (!MD) 286fe3def7cSAdam Nemet return None; 287978ba615SMichael Kruse switch (MD->getNumOperands()) { 28872448525SMichael Kruse case 1: 28972448525SMichael Kruse // When the value is absent it is interpreted as 'attribute set'. 29072448525SMichael Kruse return true; 29172448525SMichael Kruse case 2: 292f9027e55SAlina Sbirlea if (ConstantInt *IntMD = 293f9027e55SAlina Sbirlea mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 294f9027e55SAlina Sbirlea return IntMD->getZExtValue(); 295f9027e55SAlina Sbirlea return true; 29672448525SMichael Kruse } 29772448525SMichael Kruse llvm_unreachable("unexpected number of options"); 29872448525SMichael Kruse } 29972448525SMichael Kruse 30072448525SMichael Kruse static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 30172448525SMichael Kruse return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 30272448525SMichael Kruse } 30372448525SMichael Kruse 30472448525SMichael Kruse llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 30572448525SMichael Kruse StringRef Name) { 30672448525SMichael Kruse const MDOperand *AttrMD = 30772448525SMichael Kruse findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 30872448525SMichael Kruse if (!AttrMD) 30972448525SMichael Kruse return None; 31072448525SMichael Kruse 31172448525SMichael Kruse ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 31272448525SMichael Kruse if (!IntMD) 31372448525SMichael Kruse return None; 31472448525SMichael Kruse 31572448525SMichael Kruse return IntMD->getSExtValue(); 31672448525SMichael Kruse } 31772448525SMichael Kruse 31872448525SMichael Kruse Optional<MDNode *> llvm::makeFollowupLoopID( 31972448525SMichael Kruse MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 32072448525SMichael Kruse const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 32172448525SMichael Kruse if (!OrigLoopID) { 32272448525SMichael Kruse if (AlwaysNew) 32372448525SMichael Kruse return nullptr; 32472448525SMichael Kruse return None; 32572448525SMichael Kruse } 32672448525SMichael Kruse 32772448525SMichael Kruse assert(OrigLoopID->getOperand(0) == OrigLoopID); 32872448525SMichael Kruse 32972448525SMichael Kruse bool InheritAllAttrs = !InheritOptionsExceptPrefix; 33072448525SMichael Kruse bool InheritSomeAttrs = 33172448525SMichael Kruse InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 33272448525SMichael Kruse SmallVector<Metadata *, 8> MDs; 33372448525SMichael Kruse MDs.push_back(nullptr); 33472448525SMichael Kruse 33572448525SMichael Kruse bool Changed = false; 33672448525SMichael Kruse if (InheritAllAttrs || InheritSomeAttrs) { 33772448525SMichael Kruse for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 33872448525SMichael Kruse MDNode *Op = cast<MDNode>(Existing.get()); 33972448525SMichael Kruse 34072448525SMichael Kruse auto InheritThisAttribute = [InheritSomeAttrs, 34172448525SMichael Kruse InheritOptionsExceptPrefix](MDNode *Op) { 34272448525SMichael Kruse if (!InheritSomeAttrs) 34372448525SMichael Kruse return false; 34472448525SMichael Kruse 34572448525SMichael Kruse // Skip malformatted attribute metadata nodes. 34672448525SMichael Kruse if (Op->getNumOperands() == 0) 34772448525SMichael Kruse return true; 34872448525SMichael Kruse Metadata *NameMD = Op->getOperand(0).get(); 34972448525SMichael Kruse if (!isa<MDString>(NameMD)) 35072448525SMichael Kruse return true; 35172448525SMichael Kruse StringRef AttrName = cast<MDString>(NameMD)->getString(); 35272448525SMichael Kruse 35372448525SMichael Kruse // Do not inherit excluded attributes. 35472448525SMichael Kruse return !AttrName.startswith(InheritOptionsExceptPrefix); 35572448525SMichael Kruse }; 35672448525SMichael Kruse 35772448525SMichael Kruse if (InheritThisAttribute(Op)) 35872448525SMichael Kruse MDs.push_back(Op); 35972448525SMichael Kruse else 36072448525SMichael Kruse Changed = true; 36172448525SMichael Kruse } 36272448525SMichael Kruse } else { 36372448525SMichael Kruse // Modified if we dropped at least one attribute. 36472448525SMichael Kruse Changed = OrigLoopID->getNumOperands() > 1; 36572448525SMichael Kruse } 36672448525SMichael Kruse 36772448525SMichael Kruse bool HasAnyFollowup = false; 36872448525SMichael Kruse for (StringRef OptionName : FollowupOptions) { 369978ba615SMichael Kruse MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 37072448525SMichael Kruse if (!FollowupNode) 37172448525SMichael Kruse continue; 37272448525SMichael Kruse 37372448525SMichael Kruse HasAnyFollowup = true; 37472448525SMichael Kruse for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 37572448525SMichael Kruse MDs.push_back(Option.get()); 37672448525SMichael Kruse Changed = true; 37772448525SMichael Kruse } 37872448525SMichael Kruse } 37972448525SMichael Kruse 38072448525SMichael Kruse // Attributes of the followup loop not specified explicity, so signal to the 38172448525SMichael Kruse // transformation pass to add suitable attributes. 38272448525SMichael Kruse if (!AlwaysNew && !HasAnyFollowup) 38372448525SMichael Kruse return None; 38472448525SMichael Kruse 38572448525SMichael Kruse // If no attributes were added or remove, the previous loop Id can be reused. 38672448525SMichael Kruse if (!AlwaysNew && !Changed) 38772448525SMichael Kruse return OrigLoopID; 38872448525SMichael Kruse 38972448525SMichael Kruse // No attributes is equivalent to having no !llvm.loop metadata at all. 39072448525SMichael Kruse if (MDs.size() == 1) 39172448525SMichael Kruse return nullptr; 39272448525SMichael Kruse 39372448525SMichael Kruse // Build the new loop ID. 39472448525SMichael Kruse MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 39572448525SMichael Kruse FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 39672448525SMichael Kruse return FollowupLoopID; 39772448525SMichael Kruse } 39872448525SMichael Kruse 39972448525SMichael Kruse bool llvm::hasDisableAllTransformsHint(const Loop *L) { 40072448525SMichael Kruse return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 40172448525SMichael Kruse } 40272448525SMichael Kruse 4034f64f1baSTim Corringham bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 4044f64f1baSTim Corringham return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 4054f64f1baSTim Corringham } 4064f64f1baSTim Corringham 40772448525SMichael Kruse TransformationMode llvm::hasUnrollTransformation(Loop *L) { 40872448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 40972448525SMichael Kruse return TM_SuppressedByUser; 41072448525SMichael Kruse 41172448525SMichael Kruse Optional<int> Count = 41272448525SMichael Kruse getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 41372448525SMichael Kruse if (Count.hasValue()) 41472448525SMichael Kruse return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 41572448525SMichael Kruse 41672448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 41772448525SMichael Kruse return TM_ForcedByUser; 41872448525SMichael Kruse 41972448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 42072448525SMichael Kruse return TM_ForcedByUser; 42172448525SMichael Kruse 42272448525SMichael Kruse if (hasDisableAllTransformsHint(L)) 42372448525SMichael Kruse return TM_Disable; 42472448525SMichael Kruse 42572448525SMichael Kruse return TM_Unspecified; 42672448525SMichael Kruse } 42772448525SMichael Kruse 42872448525SMichael Kruse TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 42972448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 43072448525SMichael Kruse return TM_SuppressedByUser; 43172448525SMichael Kruse 43272448525SMichael Kruse Optional<int> Count = 43372448525SMichael Kruse getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 43472448525SMichael Kruse if (Count.hasValue()) 43572448525SMichael Kruse return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 43672448525SMichael Kruse 43772448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 43872448525SMichael Kruse return TM_ForcedByUser; 43972448525SMichael Kruse 44072448525SMichael Kruse if (hasDisableAllTransformsHint(L)) 44172448525SMichael Kruse return TM_Disable; 44272448525SMichael Kruse 44372448525SMichael Kruse return TM_Unspecified; 44472448525SMichael Kruse } 44572448525SMichael Kruse 44672448525SMichael Kruse TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 44772448525SMichael Kruse Optional<bool> Enable = 44872448525SMichael Kruse getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 44972448525SMichael Kruse 45072448525SMichael Kruse if (Enable == false) 45172448525SMichael Kruse return TM_SuppressedByUser; 45272448525SMichael Kruse 45372448525SMichael Kruse Optional<int> VectorizeWidth = 45472448525SMichael Kruse getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 45572448525SMichael Kruse Optional<int> InterleaveCount = 45672448525SMichael Kruse getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 45772448525SMichael Kruse 45872448525SMichael Kruse // 'Forcing' vector width and interleave count to one effectively disables 45972448525SMichael Kruse // this tranformation. 46070560a0aSMichael Kruse if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 46172448525SMichael Kruse return TM_SuppressedByUser; 46272448525SMichael Kruse 46372448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 46472448525SMichael Kruse return TM_Disable; 46572448525SMichael Kruse 46670560a0aSMichael Kruse if (Enable == true) 46770560a0aSMichael Kruse return TM_ForcedByUser; 46870560a0aSMichael Kruse 46972448525SMichael Kruse if (VectorizeWidth == 1 && InterleaveCount == 1) 47072448525SMichael Kruse return TM_Disable; 47172448525SMichael Kruse 47272448525SMichael Kruse if (VectorizeWidth > 1 || InterleaveCount > 1) 47372448525SMichael Kruse return TM_Enable; 47472448525SMichael Kruse 47572448525SMichael Kruse if (hasDisableAllTransformsHint(L)) 47672448525SMichael Kruse return TM_Disable; 47772448525SMichael Kruse 47872448525SMichael Kruse return TM_Unspecified; 47972448525SMichael Kruse } 48072448525SMichael Kruse 48172448525SMichael Kruse TransformationMode llvm::hasDistributeTransformation(Loop *L) { 48272448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 48372448525SMichael Kruse return TM_ForcedByUser; 48472448525SMichael Kruse 48572448525SMichael Kruse if (hasDisableAllTransformsHint(L)) 48672448525SMichael Kruse return TM_Disable; 48772448525SMichael Kruse 48872448525SMichael Kruse return TM_Unspecified; 48972448525SMichael Kruse } 49072448525SMichael Kruse 49172448525SMichael Kruse TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 49272448525SMichael Kruse if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 49372448525SMichael Kruse return TM_SuppressedByUser; 49472448525SMichael Kruse 49572448525SMichael Kruse if (hasDisableAllTransformsHint(L)) 49672448525SMichael Kruse return TM_Disable; 49772448525SMichael Kruse 49872448525SMichael Kruse return TM_Unspecified; 499963341c8SAdam Nemet } 500122f984aSEvgeniy Stepanov 5017ed5856aSAlina Sbirlea /// Does a BFS from a given node to all of its children inside a given loop. 5027ed5856aSAlina Sbirlea /// The returned vector of nodes includes the starting point. 5037ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> 5047ed5856aSAlina Sbirlea llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 5057ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> Worklist; 5067ed5856aSAlina Sbirlea auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 5077ed5856aSAlina Sbirlea // Only include subregions in the top level loop. 5087ed5856aSAlina Sbirlea BasicBlock *BB = DTN->getBlock(); 5097ed5856aSAlina Sbirlea if (CurLoop->contains(BB)) 5107ed5856aSAlina Sbirlea Worklist.push_back(DTN); 5117ed5856aSAlina Sbirlea }; 5127ed5856aSAlina Sbirlea 5137ed5856aSAlina Sbirlea AddRegionToWorklist(N); 5147ed5856aSAlina Sbirlea 5157ed5856aSAlina Sbirlea for (size_t I = 0; I < Worklist.size(); I++) 5167ed5856aSAlina Sbirlea for (DomTreeNode *Child : Worklist[I]->getChildren()) 5177ed5856aSAlina Sbirlea AddRegionToWorklist(Child); 5187ed5856aSAlina Sbirlea 5197ed5856aSAlina Sbirlea return Worklist; 5207ed5856aSAlina Sbirlea } 5217ed5856aSAlina Sbirlea 522efb130fcSAlina Sbirlea void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 523efb130fcSAlina Sbirlea LoopInfo *LI, MemorySSA *MSSA) { 524899809d5SHans Wennborg assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 525df3e71e0SMarcello Maggioni auto *Preheader = L->getLoopPreheader(); 526df3e71e0SMarcello Maggioni assert(Preheader && "Preheader should exist!"); 527df3e71e0SMarcello Maggioni 528efb130fcSAlina Sbirlea std::unique_ptr<MemorySSAUpdater> MSSAU; 529efb130fcSAlina Sbirlea if (MSSA) 530efb130fcSAlina Sbirlea MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 531efb130fcSAlina Sbirlea 532df3e71e0SMarcello Maggioni // Now that we know the removal is safe, remove the loop by changing the 533df3e71e0SMarcello Maggioni // branch from the preheader to go to the single exit block. 534df3e71e0SMarcello Maggioni // 535df3e71e0SMarcello Maggioni // Because we're deleting a large chunk of code at once, the sequence in which 536df3e71e0SMarcello Maggioni // we remove things is very important to avoid invalidation issues. 537df3e71e0SMarcello Maggioni 538df3e71e0SMarcello Maggioni // Tell ScalarEvolution that the loop is deleted. Do this before 539df3e71e0SMarcello Maggioni // deleting the loop so that ScalarEvolution can look at the loop 540df3e71e0SMarcello Maggioni // to determine what it needs to clean up. 541df3e71e0SMarcello Maggioni if (SE) 542df3e71e0SMarcello Maggioni SE->forgetLoop(L); 543df3e71e0SMarcello Maggioni 544df3e71e0SMarcello Maggioni auto *ExitBlock = L->getUniqueExitBlock(); 545df3e71e0SMarcello Maggioni assert(ExitBlock && "Should have a unique exit block!"); 546df3e71e0SMarcello Maggioni assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 547df3e71e0SMarcello Maggioni 548df3e71e0SMarcello Maggioni auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 549df3e71e0SMarcello Maggioni assert(OldBr && "Preheader must end with a branch"); 550df3e71e0SMarcello Maggioni assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 551df3e71e0SMarcello Maggioni // Connect the preheader to the exit block. Keep the old edge to the header 552df3e71e0SMarcello Maggioni // around to perform the dominator tree update in two separate steps 553df3e71e0SMarcello Maggioni // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 554df3e71e0SMarcello Maggioni // preheader -> header. 555df3e71e0SMarcello Maggioni // 556df3e71e0SMarcello Maggioni // 557df3e71e0SMarcello Maggioni // 0. Preheader 1. Preheader 2. Preheader 558df3e71e0SMarcello Maggioni // | | | | 559df3e71e0SMarcello Maggioni // V | V | 560df3e71e0SMarcello Maggioni // Header <--\ | Header <--\ | Header <--\ 561df3e71e0SMarcello Maggioni // | | | | | | | | | | | 562df3e71e0SMarcello Maggioni // | V | | | V | | | V | 563df3e71e0SMarcello Maggioni // | Body --/ | | Body --/ | | Body --/ 564df3e71e0SMarcello Maggioni // V V V V V 565df3e71e0SMarcello Maggioni // Exit Exit Exit 566df3e71e0SMarcello Maggioni // 567df3e71e0SMarcello Maggioni // By doing this is two separate steps we can perform the dominator tree 568df3e71e0SMarcello Maggioni // update without using the batch update API. 569df3e71e0SMarcello Maggioni // 570df3e71e0SMarcello Maggioni // Even when the loop is never executed, we cannot remove the edge from the 571df3e71e0SMarcello Maggioni // source block to the exit block. Consider the case where the unexecuted loop 572df3e71e0SMarcello Maggioni // branches back to an outer loop. If we deleted the loop and removed the edge 573df3e71e0SMarcello Maggioni // coming to this inner loop, this will break the outer loop structure (by 574df3e71e0SMarcello Maggioni // deleting the backedge of the outer loop). If the outer loop is indeed a 575df3e71e0SMarcello Maggioni // non-loop, it will be deleted in a future iteration of loop deletion pass. 576df3e71e0SMarcello Maggioni IRBuilder<> Builder(OldBr); 577df3e71e0SMarcello Maggioni Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 578df3e71e0SMarcello Maggioni // Remove the old branch. The conditional branch becomes a new terminator. 579df3e71e0SMarcello Maggioni OldBr->eraseFromParent(); 580df3e71e0SMarcello Maggioni 581df3e71e0SMarcello Maggioni // Rewrite phis in the exit block to get their inputs from the Preheader 582df3e71e0SMarcello Maggioni // instead of the exiting block. 583c7fc81e6SBenjamin Kramer for (PHINode &P : ExitBlock->phis()) { 584df3e71e0SMarcello Maggioni // Set the zero'th element of Phi to be from the preheader and remove all 585df3e71e0SMarcello Maggioni // other incoming values. Given the loop has dedicated exits, all other 586df3e71e0SMarcello Maggioni // incoming values must be from the exiting blocks. 587df3e71e0SMarcello Maggioni int PredIndex = 0; 588c7fc81e6SBenjamin Kramer P.setIncomingBlock(PredIndex, Preheader); 589df3e71e0SMarcello Maggioni // Removes all incoming values from all other exiting blocks (including 590df3e71e0SMarcello Maggioni // duplicate values from an exiting block). 591df3e71e0SMarcello Maggioni // Nuke all entries except the zero'th entry which is the preheader entry. 592df3e71e0SMarcello Maggioni // NOTE! We need to remove Incoming Values in the reverse order as done 593df3e71e0SMarcello Maggioni // below, to keep the indices valid for deletion (removeIncomingValues 594df3e71e0SMarcello Maggioni // updates getNumIncomingValues and shifts all values down into the operand 595df3e71e0SMarcello Maggioni // being deleted). 596c7fc81e6SBenjamin Kramer for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 597c7fc81e6SBenjamin Kramer P.removeIncomingValue(e - i, false); 598df3e71e0SMarcello Maggioni 599c7fc81e6SBenjamin Kramer assert((P.getNumIncomingValues() == 1 && 600c7fc81e6SBenjamin Kramer P.getIncomingBlock(PredIndex) == Preheader) && 601df3e71e0SMarcello Maggioni "Should have exactly one value and that's from the preheader!"); 602df3e71e0SMarcello Maggioni } 603df3e71e0SMarcello Maggioni 604efb130fcSAlina Sbirlea DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 605efb130fcSAlina Sbirlea if (DT) { 606efb130fcSAlina Sbirlea DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 607efb130fcSAlina Sbirlea if (MSSA) { 608efb130fcSAlina Sbirlea MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT); 609efb130fcSAlina Sbirlea if (VerifyMemorySSA) 610efb130fcSAlina Sbirlea MSSA->verifyMemorySSA(); 611efb130fcSAlina Sbirlea } 612efb130fcSAlina Sbirlea } 613efb130fcSAlina Sbirlea 614df3e71e0SMarcello Maggioni // Disconnect the loop body by branching directly to its exit. 615df3e71e0SMarcello Maggioni Builder.SetInsertPoint(Preheader->getTerminator()); 616df3e71e0SMarcello Maggioni Builder.CreateBr(ExitBlock); 617df3e71e0SMarcello Maggioni // Remove the old branch. 618df3e71e0SMarcello Maggioni Preheader->getTerminator()->eraseFromParent(); 619df3e71e0SMarcello Maggioni 620df3e71e0SMarcello Maggioni if (DT) { 621efb130fcSAlina Sbirlea DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 622efb130fcSAlina Sbirlea if (MSSA) { 623efb130fcSAlina Sbirlea MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 624efb130fcSAlina Sbirlea *DT); 625efb130fcSAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 626efb130fcSAlina Sbirlea L->block_end()); 627efb130fcSAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 628519b019aSAlina Sbirlea if (VerifyMemorySSA) 629519b019aSAlina Sbirlea MSSA->verifyMemorySSA(); 630efb130fcSAlina Sbirlea } 631df3e71e0SMarcello Maggioni } 632df3e71e0SMarcello Maggioni 633744c3c32SDavide Italiano // Use a map to unique and a vector to guarantee deterministic ordering. 6348ee59ca6SDavide Italiano llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 635744c3c32SDavide Italiano llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 636744c3c32SDavide Italiano 637a757d65cSSerguei Katkov // Given LCSSA form is satisfied, we should not have users of instructions 638a757d65cSSerguei Katkov // within the dead loop outside of the loop. However, LCSSA doesn't take 639a757d65cSSerguei Katkov // unreachable uses into account. We handle them here. 640a757d65cSSerguei Katkov // We could do it after drop all references (in this case all users in the 641a757d65cSSerguei Katkov // loop will be already eliminated and we have less work to do but according 642a757d65cSSerguei Katkov // to API doc of User::dropAllReferences only valid operation after dropping 643a757d65cSSerguei Katkov // references, is deletion. So let's substitute all usages of 644a757d65cSSerguei Katkov // instruction from the loop with undef value of corresponding type first. 645a757d65cSSerguei Katkov for (auto *Block : L->blocks()) 646a757d65cSSerguei Katkov for (Instruction &I : *Block) { 647a757d65cSSerguei Katkov auto *Undef = UndefValue::get(I.getType()); 648a757d65cSSerguei Katkov for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 649a757d65cSSerguei Katkov Use &U = *UI; 650a757d65cSSerguei Katkov ++UI; 651a757d65cSSerguei Katkov if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 652a757d65cSSerguei Katkov if (L->contains(Usr->getParent())) 653a757d65cSSerguei Katkov continue; 654a757d65cSSerguei Katkov // If we have a DT then we can check that uses outside a loop only in 655a757d65cSSerguei Katkov // unreachable block. 656a757d65cSSerguei Katkov if (DT) 657a757d65cSSerguei Katkov assert(!DT->isReachableFromEntry(U) && 658a757d65cSSerguei Katkov "Unexpected user in reachable block"); 659a757d65cSSerguei Katkov U.set(Undef); 660a757d65cSSerguei Katkov } 661744c3c32SDavide Italiano auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 662744c3c32SDavide Italiano if (!DVI) 663744c3c32SDavide Italiano continue; 6648ee59ca6SDavide Italiano auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 6658ee59ca6SDavide Italiano if (Key != DeadDebugSet.end()) 666744c3c32SDavide Italiano continue; 6678ee59ca6SDavide Italiano DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 668744c3c32SDavide Italiano DeadDebugInst.push_back(DVI); 669a757d65cSSerguei Katkov } 670a757d65cSSerguei Katkov 671744c3c32SDavide Italiano // After the loop has been deleted all the values defined and modified 672744c3c32SDavide Italiano // inside the loop are going to be unavailable. 673744c3c32SDavide Italiano // Since debug values in the loop have been deleted, inserting an undef 674744c3c32SDavide Italiano // dbg.value truncates the range of any dbg.value before the loop where the 675744c3c32SDavide Italiano // loop used to be. This is particularly important for constant values. 676744c3c32SDavide Italiano DIBuilder DIB(*ExitBlock->getModule()); 677e5be660eSRoman Lebedev Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 678e5be660eSRoman Lebedev assert(InsertDbgValueBefore && 679e5be660eSRoman Lebedev "There should be a non-PHI instruction in exit block, else these " 680e5be660eSRoman Lebedev "instructions will have no parent."); 681744c3c32SDavide Italiano for (auto *DVI : DeadDebugInst) 682e5be660eSRoman Lebedev DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 683e5be660eSRoman Lebedev DVI->getVariable(), DVI->getExpression(), 684e5be660eSRoman Lebedev DVI->getDebugLoc(), InsertDbgValueBefore); 685744c3c32SDavide Italiano 686df3e71e0SMarcello Maggioni // Remove the block from the reference counting scheme, so that we can 687df3e71e0SMarcello Maggioni // delete it freely later. 688df3e71e0SMarcello Maggioni for (auto *Block : L->blocks()) 689df3e71e0SMarcello Maggioni Block->dropAllReferences(); 690df3e71e0SMarcello Maggioni 691efb130fcSAlina Sbirlea if (MSSA && VerifyMemorySSA) 692efb130fcSAlina Sbirlea MSSA->verifyMemorySSA(); 693efb130fcSAlina Sbirlea 694df3e71e0SMarcello Maggioni if (LI) { 695df3e71e0SMarcello Maggioni // Erase the instructions and the blocks without having to worry 696df3e71e0SMarcello Maggioni // about ordering because we already dropped the references. 697df3e71e0SMarcello Maggioni // NOTE: This iteration is safe because erasing the block does not remove 698df3e71e0SMarcello Maggioni // its entry from the loop's block list. We do that in the next section. 699df3e71e0SMarcello Maggioni for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 700df3e71e0SMarcello Maggioni LpI != LpE; ++LpI) 701df3e71e0SMarcello Maggioni (*LpI)->eraseFromParent(); 702df3e71e0SMarcello Maggioni 703df3e71e0SMarcello Maggioni // Finally, the blocks from loopinfo. This has to happen late because 704df3e71e0SMarcello Maggioni // otherwise our loop iterators won't work. 705df3e71e0SMarcello Maggioni 706df3e71e0SMarcello Maggioni SmallPtrSet<BasicBlock *, 8> blocks; 707df3e71e0SMarcello Maggioni blocks.insert(L->block_begin(), L->block_end()); 708df3e71e0SMarcello Maggioni for (BasicBlock *BB : blocks) 709df3e71e0SMarcello Maggioni LI->removeBlock(BB); 710df3e71e0SMarcello Maggioni 711df3e71e0SMarcello Maggioni // The last step is to update LoopInfo now that we've eliminated this loop. 7129883d7edSWhitney Tsang // Note: LoopInfo::erase remove the given loop and relink its subloops with 7139883d7edSWhitney Tsang // its parent. While removeLoop/removeChildLoop remove the given loop but 7149883d7edSWhitney Tsang // not relink its subloops, which is what we want. 7159883d7edSWhitney Tsang if (Loop *ParentLoop = L->getParentLoop()) { 7165d6c5b46SWhitney Tsang Loop::iterator I = find(*ParentLoop, L); 7179883d7edSWhitney Tsang assert(I != ParentLoop->end() && "Couldn't find loop"); 7189883d7edSWhitney Tsang ParentLoop->removeChildLoop(I); 7199883d7edSWhitney Tsang } else { 7205d6c5b46SWhitney Tsang Loop::iterator I = find(*LI, L); 7219883d7edSWhitney Tsang assert(I != LI->end() && "Couldn't find loop"); 7229883d7edSWhitney Tsang LI->removeLoop(I); 7239883d7edSWhitney Tsang } 7249883d7edSWhitney Tsang LI->destroy(L); 725df3e71e0SMarcello Maggioni } 726df3e71e0SMarcello Maggioni } 727df3e71e0SMarcello Maggioni 728af7e1588SEvgeniy Brevnov /// Checks if \p L has single exit through latch block except possibly 729af7e1588SEvgeniy Brevnov /// "deoptimizing" exits. Returns branch instruction terminating the loop 730af7e1588SEvgeniy Brevnov /// latch if above check is successful, nullptr otherwise. 731af7e1588SEvgeniy Brevnov static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 73245c43e7dSSerguei Katkov BasicBlock *Latch = L->getLoopLatch(); 73345c43e7dSSerguei Katkov if (!Latch) 734af7e1588SEvgeniy Brevnov return nullptr; 735af7e1588SEvgeniy Brevnov 73645c43e7dSSerguei Katkov BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 73745c43e7dSSerguei Katkov if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 738af7e1588SEvgeniy Brevnov return nullptr; 73941d72a86SDehao Chen 74041d72a86SDehao Chen assert((LatchBR->getSuccessor(0) == L->getHeader() || 74141d72a86SDehao Chen LatchBR->getSuccessor(1) == L->getHeader()) && 74241d72a86SDehao Chen "At least one edge out of the latch must go to the header"); 74341d72a86SDehao Chen 74445c43e7dSSerguei Katkov SmallVector<BasicBlock *, 4> ExitBlocks; 74545c43e7dSSerguei Katkov L->getUniqueNonLatchExitBlocks(ExitBlocks); 74645c43e7dSSerguei Katkov if (any_of(ExitBlocks, [](const BasicBlock *EB) { 747*eae0d2e9SSerguei Katkov return !EB->getTerminatingDeoptimizeCall(); 74845c43e7dSSerguei Katkov })) 749af7e1588SEvgeniy Brevnov return nullptr; 750af7e1588SEvgeniy Brevnov 751af7e1588SEvgeniy Brevnov return LatchBR; 752af7e1588SEvgeniy Brevnov } 753af7e1588SEvgeniy Brevnov 754af7e1588SEvgeniy Brevnov Optional<unsigned> 755af7e1588SEvgeniy Brevnov llvm::getLoopEstimatedTripCount(Loop *L, 756af7e1588SEvgeniy Brevnov unsigned *EstimatedLoopInvocationWeight) { 757af7e1588SEvgeniy Brevnov // Support loops with an exiting latch and other existing exists only 758af7e1588SEvgeniy Brevnov // deoptimize. 759af7e1588SEvgeniy Brevnov BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 760af7e1588SEvgeniy Brevnov if (!LatchBranch) 76145c43e7dSSerguei Katkov return None; 76245c43e7dSSerguei Katkov 76341d72a86SDehao Chen // To estimate the number of times the loop body was executed, we want to 76441d72a86SDehao Chen // know the number of times the backedge was taken, vs. the number of times 76541d72a86SDehao Chen // we exited the loop. 766f0abe820SEvgeniy Brevnov uint64_t BackedgeTakenWeight, LatchExitWeight; 767af7e1588SEvgeniy Brevnov if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 76841d72a86SDehao Chen return None; 76941d72a86SDehao Chen 770af7e1588SEvgeniy Brevnov if (LatchBranch->getSuccessor(0) != L->getHeader()) 771f0abe820SEvgeniy Brevnov std::swap(BackedgeTakenWeight, LatchExitWeight); 772f0abe820SEvgeniy Brevnov 77310357e1cSEvgeniy Brevnov if (!LatchExitWeight) 77410357e1cSEvgeniy Brevnov return None; 77541d72a86SDehao Chen 776af7e1588SEvgeniy Brevnov if (EstimatedLoopInvocationWeight) 777af7e1588SEvgeniy Brevnov *EstimatedLoopInvocationWeight = LatchExitWeight; 778af7e1588SEvgeniy Brevnov 77910357e1cSEvgeniy Brevnov // Estimated backedge taken count is a ratio of the backedge taken weight by 780cfe97681SEvgeniy Brevnov // the weight of the edge exiting the loop, rounded to nearest. 78110357e1cSEvgeniy Brevnov uint64_t BackedgeTakenCount = 78210357e1cSEvgeniy Brevnov llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 78310357e1cSEvgeniy Brevnov // Estimated trip count is one plus estimated backedge taken count. 78410357e1cSEvgeniy Brevnov return BackedgeTakenCount + 1; 78541d72a86SDehao Chen } 786cf9daa33SAmara Emerson 787af7e1588SEvgeniy Brevnov bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 788af7e1588SEvgeniy Brevnov unsigned EstimatedloopInvocationWeight) { 789af7e1588SEvgeniy Brevnov // Support loops with an exiting latch and other existing exists only 790af7e1588SEvgeniy Brevnov // deoptimize. 791af7e1588SEvgeniy Brevnov BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 792af7e1588SEvgeniy Brevnov if (!LatchBranch) 793af7e1588SEvgeniy Brevnov return false; 794af7e1588SEvgeniy Brevnov 795af7e1588SEvgeniy Brevnov // Calculate taken and exit weights. 796af7e1588SEvgeniy Brevnov unsigned LatchExitWeight = 0; 797af7e1588SEvgeniy Brevnov unsigned BackedgeTakenWeight = 0; 798af7e1588SEvgeniy Brevnov 799af7e1588SEvgeniy Brevnov if (EstimatedTripCount > 0) { 800af7e1588SEvgeniy Brevnov LatchExitWeight = EstimatedloopInvocationWeight; 801af7e1588SEvgeniy Brevnov BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 802af7e1588SEvgeniy Brevnov } 803af7e1588SEvgeniy Brevnov 804af7e1588SEvgeniy Brevnov // Make a swap if back edge is taken when condition is "false". 805af7e1588SEvgeniy Brevnov if (LatchBranch->getSuccessor(0) != L->getHeader()) 806af7e1588SEvgeniy Brevnov std::swap(BackedgeTakenWeight, LatchExitWeight); 807af7e1588SEvgeniy Brevnov 808af7e1588SEvgeniy Brevnov MDBuilder MDB(LatchBranch->getContext()); 809af7e1588SEvgeniy Brevnov 810af7e1588SEvgeniy Brevnov // Set/Update profile metadata. 811af7e1588SEvgeniy Brevnov LatchBranch->setMetadata( 812af7e1588SEvgeniy Brevnov LLVMContext::MD_prof, 813af7e1588SEvgeniy Brevnov MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 814af7e1588SEvgeniy Brevnov 815af7e1588SEvgeniy Brevnov return true; 816af7e1588SEvgeniy Brevnov } 817af7e1588SEvgeniy Brevnov 8186cb64787SDavid Green bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 819395b80cdSDavid Green ScalarEvolution &SE) { 820395b80cdSDavid Green Loop *OuterL = InnerLoop->getParentLoop(); 821395b80cdSDavid Green if (!OuterL) 822395b80cdSDavid Green return true; 823395b80cdSDavid Green 824395b80cdSDavid Green // Get the backedge taken count for the inner loop 825395b80cdSDavid Green BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 826395b80cdSDavid Green const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 827395b80cdSDavid Green if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 828395b80cdSDavid Green !InnerLoopBECountSC->getType()->isIntegerTy()) 829395b80cdSDavid Green return false; 830395b80cdSDavid Green 831395b80cdSDavid Green // Get whether count is invariant to the outer loop 832395b80cdSDavid Green ScalarEvolution::LoopDisposition LD = 833395b80cdSDavid Green SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 834395b80cdSDavid Green if (LD != ScalarEvolution::LoopInvariant) 835395b80cdSDavid Green return false; 836395b80cdSDavid Green 837395b80cdSDavid Green return true; 838395b80cdSDavid Green } 839395b80cdSDavid Green 84028ffe38bSNikita Popov Value *llvm::createMinMaxOp(IRBuilderBase &Builder, 8416594dc37SVikram TV RecurrenceDescriptor::MinMaxRecurrenceKind RK, 8426594dc37SVikram TV Value *Left, Value *Right) { 8436594dc37SVikram TV CmpInst::Predicate P = CmpInst::ICMP_NE; 8446594dc37SVikram TV switch (RK) { 8456594dc37SVikram TV default: 8466594dc37SVikram TV llvm_unreachable("Unknown min/max recurrence kind"); 8476594dc37SVikram TV case RecurrenceDescriptor::MRK_UIntMin: 8486594dc37SVikram TV P = CmpInst::ICMP_ULT; 8496594dc37SVikram TV break; 8506594dc37SVikram TV case RecurrenceDescriptor::MRK_UIntMax: 8516594dc37SVikram TV P = CmpInst::ICMP_UGT; 8526594dc37SVikram TV break; 8536594dc37SVikram TV case RecurrenceDescriptor::MRK_SIntMin: 8546594dc37SVikram TV P = CmpInst::ICMP_SLT; 8556594dc37SVikram TV break; 8566594dc37SVikram TV case RecurrenceDescriptor::MRK_SIntMax: 8576594dc37SVikram TV P = CmpInst::ICMP_SGT; 8586594dc37SVikram TV break; 8596594dc37SVikram TV case RecurrenceDescriptor::MRK_FloatMin: 8606594dc37SVikram TV P = CmpInst::FCMP_OLT; 8616594dc37SVikram TV break; 8626594dc37SVikram TV case RecurrenceDescriptor::MRK_FloatMax: 8636594dc37SVikram TV P = CmpInst::FCMP_OGT; 8646594dc37SVikram TV break; 8656594dc37SVikram TV } 8666594dc37SVikram TV 8676594dc37SVikram TV // We only match FP sequences that are 'fast', so we can unconditionally 8686594dc37SVikram TV // set it on any generated instructions. 86928ffe38bSNikita Popov IRBuilderBase::FastMathFlagGuard FMFG(Builder); 8706594dc37SVikram TV FastMathFlags FMF; 8716594dc37SVikram TV FMF.setFast(); 8726594dc37SVikram TV Builder.setFastMathFlags(FMF); 87346a285adSSanjay Patel Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp"); 8746594dc37SVikram TV Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 8756594dc37SVikram TV return Select; 8766594dc37SVikram TV } 8776594dc37SVikram TV 87823c2182cSSimon Pilgrim // Helper to generate an ordered reduction. 87923c2182cSSimon Pilgrim Value * 88028ffe38bSNikita Popov llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 88123c2182cSSimon Pilgrim unsigned Op, 88223c2182cSSimon Pilgrim RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 88323c2182cSSimon Pilgrim ArrayRef<Value *> RedOps) { 8848d11ec66SChristopher Tetreault unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 88523c2182cSSimon Pilgrim 88623c2182cSSimon Pilgrim // Extract and apply reduction ops in ascending order: 88723c2182cSSimon Pilgrim // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 88823c2182cSSimon Pilgrim Value *Result = Acc; 88923c2182cSSimon Pilgrim for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 89023c2182cSSimon Pilgrim Value *Ext = 89123c2182cSSimon Pilgrim Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 89223c2182cSSimon Pilgrim 89323c2182cSSimon Pilgrim if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 89423c2182cSSimon Pilgrim Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 89523c2182cSSimon Pilgrim "bin.rdx"); 89623c2182cSSimon Pilgrim } else { 89723c2182cSSimon Pilgrim assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 89823c2182cSSimon Pilgrim "Invalid min/max"); 8996594dc37SVikram TV Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 90023c2182cSSimon Pilgrim } 90123c2182cSSimon Pilgrim 90223c2182cSSimon Pilgrim if (!RedOps.empty()) 90323c2182cSSimon Pilgrim propagateIRFlags(Result, RedOps); 90423c2182cSSimon Pilgrim } 90523c2182cSSimon Pilgrim 90623c2182cSSimon Pilgrim return Result; 90723c2182cSSimon Pilgrim } 90823c2182cSSimon Pilgrim 909cf9daa33SAmara Emerson // Helper to generate a log2 shuffle reduction. 910836b0f48SAmara Emerson Value * 91128ffe38bSNikita Popov llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, 912836b0f48SAmara Emerson RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 913ad62a3a2SSanjay Patel ArrayRef<Value *> RedOps) { 9148d11ec66SChristopher Tetreault unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 915cf9daa33SAmara Emerson // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 916cf9daa33SAmara Emerson // and vector ops, reducing the set of values being computed by half each 917cf9daa33SAmara Emerson // round. 918cf9daa33SAmara Emerson assert(isPowerOf2_32(VF) && 919cf9daa33SAmara Emerson "Reduction emission only supported for pow2 vectors!"); 920cf9daa33SAmara Emerson Value *TmpVec = Src; 9216f64dacaSBenjamin Kramer SmallVector<int, 32> ShuffleMask(VF); 922cf9daa33SAmara Emerson for (unsigned i = VF; i != 1; i >>= 1) { 923cf9daa33SAmara Emerson // Move the upper half of the vector to the lower half. 924cf9daa33SAmara Emerson for (unsigned j = 0; j != i / 2; ++j) 9256f64dacaSBenjamin Kramer ShuffleMask[j] = i / 2 + j; 926cf9daa33SAmara Emerson 927cf9daa33SAmara Emerson // Fill the rest of the mask with undef. 9286f64dacaSBenjamin Kramer std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 929cf9daa33SAmara Emerson 930cf9daa33SAmara Emerson Value *Shuf = Builder.CreateShuffleVector( 9316f64dacaSBenjamin Kramer TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf"); 932cf9daa33SAmara Emerson 933cf9daa33SAmara Emerson if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 934ad62a3a2SSanjay Patel // The builder propagates its fast-math-flags setting. 935ad62a3a2SSanjay Patel TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 936ad62a3a2SSanjay Patel "bin.rdx"); 937cf9daa33SAmara Emerson } else { 938cf9daa33SAmara Emerson assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 939cf9daa33SAmara Emerson "Invalid min/max"); 9406594dc37SVikram TV TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 941cf9daa33SAmara Emerson } 942cf9daa33SAmara Emerson if (!RedOps.empty()) 943cf9daa33SAmara Emerson propagateIRFlags(TmpVec, RedOps); 944bc1148e7SSanjay Patel 945bc1148e7SSanjay Patel // We may compute the reassociated scalar ops in a way that does not 946bc1148e7SSanjay Patel // preserve nsw/nuw etc. Conservatively, drop those flags. 947bc1148e7SSanjay Patel if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 948bc1148e7SSanjay Patel ReductionInst->dropPoisonGeneratingFlags(); 949cf9daa33SAmara Emerson } 950cf9daa33SAmara Emerson // The result is in the first element of the vector. 951cf9daa33SAmara Emerson return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 952cf9daa33SAmara Emerson } 953cf9daa33SAmara Emerson 954cf9daa33SAmara Emerson /// Create a simple vector reduction specified by an opcode and some 955cf9daa33SAmara Emerson /// flags (if generating min/max reductions). 956cf9daa33SAmara Emerson Value *llvm::createSimpleTargetReduction( 95728ffe38bSNikita Popov IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 958ad62a3a2SSanjay Patel Value *Src, TargetTransformInfo::ReductionFlags Flags, 959cf9daa33SAmara Emerson ArrayRef<Value *> RedOps) { 96000a10324SChristopher Tetreault auto *SrcVTy = cast<VectorType>(Src->getType()); 961cf9daa33SAmara Emerson 962cf9daa33SAmara Emerson std::function<Value *()> BuildFunc; 963cf9daa33SAmara Emerson using RD = RecurrenceDescriptor; 964cf9daa33SAmara Emerson RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 965cf9daa33SAmara Emerson 966cf9daa33SAmara Emerson switch (Opcode) { 967cf9daa33SAmara Emerson case Instruction::Add: 968cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 969cf9daa33SAmara Emerson break; 970cf9daa33SAmara Emerson case Instruction::Mul: 971cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 972cf9daa33SAmara Emerson break; 973cf9daa33SAmara Emerson case Instruction::And: 974cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 975cf9daa33SAmara Emerson break; 976cf9daa33SAmara Emerson case Instruction::Or: 977cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 978cf9daa33SAmara Emerson break; 979cf9daa33SAmara Emerson case Instruction::Xor: 980cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 981cf9daa33SAmara Emerson break; 982cf9daa33SAmara Emerson case Instruction::FAdd: 983cf9daa33SAmara Emerson BuildFunc = [&]() { 984cbeb563cSSander de Smalen auto Rdx = Builder.CreateFAddReduce( 98500a10324SChristopher Tetreault Constant::getNullValue(SrcVTy->getElementType()), Src); 986cf9daa33SAmara Emerson return Rdx; 987cf9daa33SAmara Emerson }; 988cf9daa33SAmara Emerson break; 989cf9daa33SAmara Emerson case Instruction::FMul: 990cf9daa33SAmara Emerson BuildFunc = [&]() { 99100a10324SChristopher Tetreault Type *Ty = SrcVTy->getElementType(); 992cbeb563cSSander de Smalen auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); 993cf9daa33SAmara Emerson return Rdx; 994cf9daa33SAmara Emerson }; 995cf9daa33SAmara Emerson break; 996cf9daa33SAmara Emerson case Instruction::ICmp: 997cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 998cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 999cf9daa33SAmara Emerson BuildFunc = [&]() { 1000cf9daa33SAmara Emerson return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1001cf9daa33SAmara Emerson }; 1002cf9daa33SAmara Emerson } else { 1003cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1004cf9daa33SAmara Emerson BuildFunc = [&]() { 1005cf9daa33SAmara Emerson return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1006cf9daa33SAmara Emerson }; 1007cf9daa33SAmara Emerson } 1008cf9daa33SAmara Emerson break; 1009cf9daa33SAmara Emerson case Instruction::FCmp: 1010cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1011cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMax; 1012cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1013cf9daa33SAmara Emerson } else { 1014cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMin; 1015cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1016cf9daa33SAmara Emerson } 1017cf9daa33SAmara Emerson break; 1018cf9daa33SAmara Emerson default: 1019cf9daa33SAmara Emerson llvm_unreachable("Unhandled opcode"); 1020cf9daa33SAmara Emerson break; 1021cf9daa33SAmara Emerson } 1022ec7e4a9aSDavid Green if (ForceReductionIntrinsic || 1023ec7e4a9aSDavid Green TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1024cf9daa33SAmara Emerson return BuildFunc(); 1025ad62a3a2SSanjay Patel return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1026cf9daa33SAmara Emerson } 1027cf9daa33SAmara Emerson 1028cf9daa33SAmara Emerson /// Create a vector reduction using a given recurrence descriptor. 102928ffe38bSNikita Popov Value *llvm::createTargetReduction(IRBuilderBase &B, 1030cf9daa33SAmara Emerson const TargetTransformInfo *TTI, 1031cf9daa33SAmara Emerson RecurrenceDescriptor &Desc, Value *Src, 1032cf9daa33SAmara Emerson bool NoNaN) { 1033cf9daa33SAmara Emerson // TODO: Support in-order reductions based on the recurrence descriptor. 10343e069f57SSanjay Patel using RD = RecurrenceDescriptor; 10353e069f57SSanjay Patel RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1036cf9daa33SAmara Emerson TargetTransformInfo::ReductionFlags Flags; 1037cf9daa33SAmara Emerson Flags.NoNaN = NoNaN; 1038ad62a3a2SSanjay Patel 1039ad62a3a2SSanjay Patel // All ops in the reduction inherit fast-math-flags from the recurrence 1040ad62a3a2SSanjay Patel // descriptor. 104128ffe38bSNikita Popov IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1042ad62a3a2SSanjay Patel B.setFastMathFlags(Desc.getFastMathFlags()); 1043ad62a3a2SSanjay Patel 1044cf9daa33SAmara Emerson switch (RecKind) { 10453e069f57SSanjay Patel case RD::RK_FloatAdd: 1046ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 10473e069f57SSanjay Patel case RD::RK_FloatMult: 1048ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 10493e069f57SSanjay Patel case RD::RK_IntegerAdd: 1050ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 10513e069f57SSanjay Patel case RD::RK_IntegerMult: 1052ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 10533e069f57SSanjay Patel case RD::RK_IntegerAnd: 1054ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 10553e069f57SSanjay Patel case RD::RK_IntegerOr: 1056ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 10573e069f57SSanjay Patel case RD::RK_IntegerXor: 1058ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 10593e069f57SSanjay Patel case RD::RK_IntegerMinMax: { 10603e069f57SSanjay Patel RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 10613e069f57SSanjay Patel Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 10623e069f57SSanjay Patel Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 1063ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 1064cf9daa33SAmara Emerson } 10653e069f57SSanjay Patel case RD::RK_FloatMinMax: { 10663e069f57SSanjay Patel Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 1067ad62a3a2SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 1068cf9daa33SAmara Emerson } 1069cf9daa33SAmara Emerson default: 1070cf9daa33SAmara Emerson llvm_unreachable("Unhandled RecKind"); 1071cf9daa33SAmara Emerson } 1072cf9daa33SAmara Emerson } 1073cf9daa33SAmara Emerson 1074a61f4b89SDinar Temirbulatov void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1075a61f4b89SDinar Temirbulatov auto *VecOp = dyn_cast<Instruction>(I); 1076a61f4b89SDinar Temirbulatov if (!VecOp) 1077a61f4b89SDinar Temirbulatov return; 1078a61f4b89SDinar Temirbulatov auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1079a61f4b89SDinar Temirbulatov : dyn_cast<Instruction>(OpValue); 1080a61f4b89SDinar Temirbulatov if (!Intersection) 1081a61f4b89SDinar Temirbulatov return; 1082a61f4b89SDinar Temirbulatov const unsigned Opcode = Intersection->getOpcode(); 1083a61f4b89SDinar Temirbulatov VecOp->copyIRFlags(Intersection); 1084a61f4b89SDinar Temirbulatov for (auto *V : VL) { 1085a61f4b89SDinar Temirbulatov auto *Instr = dyn_cast<Instruction>(V); 1086a61f4b89SDinar Temirbulatov if (!Instr) 1087a61f4b89SDinar Temirbulatov continue; 1088a61f4b89SDinar Temirbulatov if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1089a61f4b89SDinar Temirbulatov VecOp->andIRFlags(V); 1090cf9daa33SAmara Emerson } 1091cf9daa33SAmara Emerson } 1092a78dc4d6SMax Kazantsev 1093a78dc4d6SMax Kazantsev bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1094a78dc4d6SMax Kazantsev ScalarEvolution &SE) { 1095a78dc4d6SMax Kazantsev const SCEV *Zero = SE.getZero(S->getType()); 1096a78dc4d6SMax Kazantsev return SE.isAvailableAtLoopEntry(S, L) && 1097a78dc4d6SMax Kazantsev SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1098a78dc4d6SMax Kazantsev } 1099a78dc4d6SMax Kazantsev 1100a78dc4d6SMax Kazantsev bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1101a78dc4d6SMax Kazantsev ScalarEvolution &SE) { 1102a78dc4d6SMax Kazantsev const SCEV *Zero = SE.getZero(S->getType()); 1103a78dc4d6SMax Kazantsev return SE.isAvailableAtLoopEntry(S, L) && 1104a78dc4d6SMax Kazantsev SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1105a78dc4d6SMax Kazantsev } 1106a78dc4d6SMax Kazantsev 1107a78dc4d6SMax Kazantsev bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1108a78dc4d6SMax Kazantsev bool Signed) { 1109a78dc4d6SMax Kazantsev unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1110a78dc4d6SMax Kazantsev APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1111a78dc4d6SMax Kazantsev APInt::getMinValue(BitWidth); 1112a78dc4d6SMax Kazantsev auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1113a78dc4d6SMax Kazantsev return SE.isAvailableAtLoopEntry(S, L) && 1114a78dc4d6SMax Kazantsev SE.isLoopEntryGuardedByCond(L, Predicate, S, 1115a78dc4d6SMax Kazantsev SE.getConstant(Min)); 1116a78dc4d6SMax Kazantsev } 1117a78dc4d6SMax Kazantsev 1118a78dc4d6SMax Kazantsev bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1119a78dc4d6SMax Kazantsev bool Signed) { 1120a78dc4d6SMax Kazantsev unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1121a78dc4d6SMax Kazantsev APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1122a78dc4d6SMax Kazantsev APInt::getMaxValue(BitWidth); 1123a78dc4d6SMax Kazantsev auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1124a78dc4d6SMax Kazantsev return SE.isAvailableAtLoopEntry(S, L) && 1125a78dc4d6SMax Kazantsev SE.isLoopEntryGuardedByCond(L, Predicate, S, 1126a78dc4d6SMax Kazantsev SE.getConstant(Max)); 1127a78dc4d6SMax Kazantsev } 112893175a5cSSjoerd Meijer 112993175a5cSSjoerd Meijer //===----------------------------------------------------------------------===// 113093175a5cSSjoerd Meijer // rewriteLoopExitValues - Optimize IV users outside the loop. 113193175a5cSSjoerd Meijer // As a side effect, reduces the amount of IV processing within the loop. 113293175a5cSSjoerd Meijer //===----------------------------------------------------------------------===// 113393175a5cSSjoerd Meijer 113493175a5cSSjoerd Meijer // Return true if the SCEV expansion generated by the rewriter can replace the 113593175a5cSSjoerd Meijer // original value. SCEV guarantees that it produces the same value, but the way 113693175a5cSSjoerd Meijer // it is produced may be illegal IR. Ideally, this function will only be 113793175a5cSSjoerd Meijer // called for verification. 113893175a5cSSjoerd Meijer static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { 113993175a5cSSjoerd Meijer // If an SCEV expression subsumed multiple pointers, its expansion could 114093175a5cSSjoerd Meijer // reassociate the GEP changing the base pointer. This is illegal because the 114193175a5cSSjoerd Meijer // final address produced by a GEP chain must be inbounds relative to its 114293175a5cSSjoerd Meijer // underlying object. Otherwise basic alias analysis, among other things, 114393175a5cSSjoerd Meijer // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 114493175a5cSSjoerd Meijer // producing an expression involving multiple pointers. Until then, we must 114593175a5cSSjoerd Meijer // bail out here. 114693175a5cSSjoerd Meijer // 114793175a5cSSjoerd Meijer // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 114893175a5cSSjoerd Meijer // because it understands lcssa phis while SCEV does not. 114993175a5cSSjoerd Meijer Value *FromPtr = FromVal; 115093175a5cSSjoerd Meijer Value *ToPtr = ToVal; 115193175a5cSSjoerd Meijer if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) 115293175a5cSSjoerd Meijer FromPtr = GEP->getPointerOperand(); 115393175a5cSSjoerd Meijer 115493175a5cSSjoerd Meijer if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) 115593175a5cSSjoerd Meijer ToPtr = GEP->getPointerOperand(); 115693175a5cSSjoerd Meijer 115793175a5cSSjoerd Meijer if (FromPtr != FromVal || ToPtr != ToVal) { 115893175a5cSSjoerd Meijer // Quickly check the common case 115993175a5cSSjoerd Meijer if (FromPtr == ToPtr) 116093175a5cSSjoerd Meijer return true; 116193175a5cSSjoerd Meijer 116293175a5cSSjoerd Meijer // SCEV may have rewritten an expression that produces the GEP's pointer 116393175a5cSSjoerd Meijer // operand. That's ok as long as the pointer operand has the same base 116493175a5cSSjoerd Meijer // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 116593175a5cSSjoerd Meijer // base of a recurrence. This handles the case in which SCEV expansion 116693175a5cSSjoerd Meijer // converts a pointer type recurrence into a nonrecurrent pointer base 116793175a5cSSjoerd Meijer // indexed by an integer recurrence. 116893175a5cSSjoerd Meijer 116993175a5cSSjoerd Meijer // If the GEP base pointer is a vector of pointers, abort. 117093175a5cSSjoerd Meijer if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 117193175a5cSSjoerd Meijer return false; 117293175a5cSSjoerd Meijer 117393175a5cSSjoerd Meijer const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 117493175a5cSSjoerd Meijer const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 117593175a5cSSjoerd Meijer if (FromBase == ToBase) 117693175a5cSSjoerd Meijer return true; 117793175a5cSSjoerd Meijer 117893175a5cSSjoerd Meijer LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out " 117993175a5cSSjoerd Meijer << *FromBase << " != " << *ToBase << "\n"); 118093175a5cSSjoerd Meijer 118193175a5cSSjoerd Meijer return false; 118293175a5cSSjoerd Meijer } 118393175a5cSSjoerd Meijer return true; 118493175a5cSSjoerd Meijer } 118593175a5cSSjoerd Meijer 118693175a5cSSjoerd Meijer static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 118793175a5cSSjoerd Meijer SmallPtrSet<const Instruction *, 8> Visited; 118893175a5cSSjoerd Meijer SmallVector<const Instruction *, 8> WorkList; 118993175a5cSSjoerd Meijer Visited.insert(I); 119093175a5cSSjoerd Meijer WorkList.push_back(I); 119193175a5cSSjoerd Meijer while (!WorkList.empty()) { 119293175a5cSSjoerd Meijer const Instruction *Curr = WorkList.pop_back_val(); 119393175a5cSSjoerd Meijer // This use is outside the loop, nothing to do. 119493175a5cSSjoerd Meijer if (!L->contains(Curr)) 119593175a5cSSjoerd Meijer continue; 119693175a5cSSjoerd Meijer // Do we assume it is a "hard" use which will not be eliminated easily? 119793175a5cSSjoerd Meijer if (Curr->mayHaveSideEffects()) 119893175a5cSSjoerd Meijer return true; 119993175a5cSSjoerd Meijer // Otherwise, add all its users to worklist. 120093175a5cSSjoerd Meijer for (auto U : Curr->users()) { 120193175a5cSSjoerd Meijer auto *UI = cast<Instruction>(U); 120293175a5cSSjoerd Meijer if (Visited.insert(UI).second) 120393175a5cSSjoerd Meijer WorkList.push_back(UI); 120493175a5cSSjoerd Meijer } 120593175a5cSSjoerd Meijer } 120693175a5cSSjoerd Meijer return false; 120793175a5cSSjoerd Meijer } 120893175a5cSSjoerd Meijer 120993175a5cSSjoerd Meijer // Collect information about PHI nodes which can be transformed in 121093175a5cSSjoerd Meijer // rewriteLoopExitValues. 121193175a5cSSjoerd Meijer struct RewritePhi { 1212b2df9612SRoman Lebedev PHINode *PN; // For which PHI node is this replacement? 1213b2df9612SRoman Lebedev unsigned Ith; // For which incoming value? 1214b2df9612SRoman Lebedev const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1215b2df9612SRoman Lebedev Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1216b2df9612SRoman Lebedev bool HighCost; // Is this expansion a high-cost? 121793175a5cSSjoerd Meijer 1218b2df9612SRoman Lebedev Value *Expansion = nullptr; 1219b2df9612SRoman Lebedev bool ValidRewrite = false; 1220b2df9612SRoman Lebedev 1221b2df9612SRoman Lebedev RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1222b2df9612SRoman Lebedev bool H) 1223b2df9612SRoman Lebedev : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1224b2df9612SRoman Lebedev HighCost(H) {} 122593175a5cSSjoerd Meijer }; 122693175a5cSSjoerd Meijer 122793175a5cSSjoerd Meijer // Check whether it is possible to delete the loop after rewriting exit 122893175a5cSSjoerd Meijer // value. If it is possible, ignore ReplaceExitValue and do rewriting 122993175a5cSSjoerd Meijer // aggressively. 123093175a5cSSjoerd Meijer static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 123193175a5cSSjoerd Meijer BasicBlock *Preheader = L->getLoopPreheader(); 123293175a5cSSjoerd Meijer // If there is no preheader, the loop will not be deleted. 123393175a5cSSjoerd Meijer if (!Preheader) 123493175a5cSSjoerd Meijer return false; 123593175a5cSSjoerd Meijer 123693175a5cSSjoerd Meijer // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 123793175a5cSSjoerd Meijer // We obviate multiple ExitingBlocks case for simplicity. 123893175a5cSSjoerd Meijer // TODO: If we see testcase with multiple ExitingBlocks can be deleted 123993175a5cSSjoerd Meijer // after exit value rewriting, we can enhance the logic here. 124093175a5cSSjoerd Meijer SmallVector<BasicBlock *, 4> ExitingBlocks; 124193175a5cSSjoerd Meijer L->getExitingBlocks(ExitingBlocks); 124293175a5cSSjoerd Meijer SmallVector<BasicBlock *, 8> ExitBlocks; 124393175a5cSSjoerd Meijer L->getUniqueExitBlocks(ExitBlocks); 124493175a5cSSjoerd Meijer if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 124593175a5cSSjoerd Meijer return false; 124693175a5cSSjoerd Meijer 124793175a5cSSjoerd Meijer BasicBlock *ExitBlock = ExitBlocks[0]; 124893175a5cSSjoerd Meijer BasicBlock::iterator BI = ExitBlock->begin(); 124993175a5cSSjoerd Meijer while (PHINode *P = dyn_cast<PHINode>(BI)) { 125093175a5cSSjoerd Meijer Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 125193175a5cSSjoerd Meijer 125293175a5cSSjoerd Meijer // If the Incoming value of P is found in RewritePhiSet, we know it 125393175a5cSSjoerd Meijer // could be rewritten to use a loop invariant value in transformation 125493175a5cSSjoerd Meijer // phase later. Skip it in the loop invariant check below. 125593175a5cSSjoerd Meijer bool found = false; 125693175a5cSSjoerd Meijer for (const RewritePhi &Phi : RewritePhiSet) { 1257b2df9612SRoman Lebedev if (!Phi.ValidRewrite) 1258b2df9612SRoman Lebedev continue; 125993175a5cSSjoerd Meijer unsigned i = Phi.Ith; 126093175a5cSSjoerd Meijer if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 126193175a5cSSjoerd Meijer found = true; 126293175a5cSSjoerd Meijer break; 126393175a5cSSjoerd Meijer } 126493175a5cSSjoerd Meijer } 126593175a5cSSjoerd Meijer 126693175a5cSSjoerd Meijer Instruction *I; 126793175a5cSSjoerd Meijer if (!found && (I = dyn_cast<Instruction>(Incoming))) 126893175a5cSSjoerd Meijer if (!L->hasLoopInvariantOperands(I)) 126993175a5cSSjoerd Meijer return false; 127093175a5cSSjoerd Meijer 127193175a5cSSjoerd Meijer ++BI; 127293175a5cSSjoerd Meijer } 127393175a5cSSjoerd Meijer 127493175a5cSSjoerd Meijer for (auto *BB : L->blocks()) 127593175a5cSSjoerd Meijer if (llvm::any_of(*BB, [](Instruction &I) { 127693175a5cSSjoerd Meijer return I.mayHaveSideEffects(); 127793175a5cSSjoerd Meijer })) 127893175a5cSSjoerd Meijer return false; 127993175a5cSSjoerd Meijer 128093175a5cSSjoerd Meijer return true; 128193175a5cSSjoerd Meijer } 128293175a5cSSjoerd Meijer 12830789f280SRoman Lebedev int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 12840789f280SRoman Lebedev ScalarEvolution *SE, 12850789f280SRoman Lebedev const TargetTransformInfo *TTI, 12860789f280SRoman Lebedev SCEVExpander &Rewriter, DominatorTree *DT, 12870789f280SRoman Lebedev ReplaceExitVal ReplaceExitValue, 128893175a5cSSjoerd Meijer SmallVector<WeakTrackingVH, 16> &DeadInsts) { 128993175a5cSSjoerd Meijer // Check a pre-condition. 129093175a5cSSjoerd Meijer assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 129193175a5cSSjoerd Meijer "Indvars did not preserve LCSSA!"); 129293175a5cSSjoerd Meijer 129393175a5cSSjoerd Meijer SmallVector<BasicBlock*, 8> ExitBlocks; 129493175a5cSSjoerd Meijer L->getUniqueExitBlocks(ExitBlocks); 129593175a5cSSjoerd Meijer 129693175a5cSSjoerd Meijer SmallVector<RewritePhi, 8> RewritePhiSet; 129793175a5cSSjoerd Meijer // Find all values that are computed inside the loop, but used outside of it. 129893175a5cSSjoerd Meijer // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 129993175a5cSSjoerd Meijer // the exit blocks of the loop to find them. 130093175a5cSSjoerd Meijer for (BasicBlock *ExitBB : ExitBlocks) { 130193175a5cSSjoerd Meijer // If there are no PHI nodes in this exit block, then no values defined 130293175a5cSSjoerd Meijer // inside the loop are used on this path, skip it. 130393175a5cSSjoerd Meijer PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 130493175a5cSSjoerd Meijer if (!PN) continue; 130593175a5cSSjoerd Meijer 130693175a5cSSjoerd Meijer unsigned NumPreds = PN->getNumIncomingValues(); 130793175a5cSSjoerd Meijer 130893175a5cSSjoerd Meijer // Iterate over all of the PHI nodes. 130993175a5cSSjoerd Meijer BasicBlock::iterator BBI = ExitBB->begin(); 131093175a5cSSjoerd Meijer while ((PN = dyn_cast<PHINode>(BBI++))) { 131193175a5cSSjoerd Meijer if (PN->use_empty()) 131293175a5cSSjoerd Meijer continue; // dead use, don't replace it 131393175a5cSSjoerd Meijer 131493175a5cSSjoerd Meijer if (!SE->isSCEVable(PN->getType())) 131593175a5cSSjoerd Meijer continue; 131693175a5cSSjoerd Meijer 131793175a5cSSjoerd Meijer // It's necessary to tell ScalarEvolution about this explicitly so that 131893175a5cSSjoerd Meijer // it can walk the def-use list and forget all SCEVs, as it may not be 131993175a5cSSjoerd Meijer // watching the PHI itself. Once the new exit value is in place, there 132093175a5cSSjoerd Meijer // may not be a def-use connection between the loop and every instruction 132193175a5cSSjoerd Meijer // which got a SCEVAddRecExpr for that loop. 132293175a5cSSjoerd Meijer SE->forgetValue(PN); 132393175a5cSSjoerd Meijer 132493175a5cSSjoerd Meijer // Iterate over all of the values in all the PHI nodes. 132593175a5cSSjoerd Meijer for (unsigned i = 0; i != NumPreds; ++i) { 132693175a5cSSjoerd Meijer // If the value being merged in is not integer or is not defined 132793175a5cSSjoerd Meijer // in the loop, skip it. 132893175a5cSSjoerd Meijer Value *InVal = PN->getIncomingValue(i); 132993175a5cSSjoerd Meijer if (!isa<Instruction>(InVal)) 133093175a5cSSjoerd Meijer continue; 133193175a5cSSjoerd Meijer 133293175a5cSSjoerd Meijer // If this pred is for a subloop, not L itself, skip it. 133393175a5cSSjoerd Meijer if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 133493175a5cSSjoerd Meijer continue; // The Block is in a subloop, skip it. 133593175a5cSSjoerd Meijer 133693175a5cSSjoerd Meijer // Check that InVal is defined in the loop. 133793175a5cSSjoerd Meijer Instruction *Inst = cast<Instruction>(InVal); 133893175a5cSSjoerd Meijer if (!L->contains(Inst)) 133993175a5cSSjoerd Meijer continue; 134093175a5cSSjoerd Meijer 134193175a5cSSjoerd Meijer // Okay, this instruction has a user outside of the current loop 134293175a5cSSjoerd Meijer // and varies predictably *inside* the loop. Evaluate the value it 134393175a5cSSjoerd Meijer // contains when the loop exits, if possible. We prefer to start with 134493175a5cSSjoerd Meijer // expressions which are true for all exits (so as to maximize 134593175a5cSSjoerd Meijer // expression reuse by the SCEVExpander), but resort to per-exit 134693175a5cSSjoerd Meijer // evaluation if that fails. 134793175a5cSSjoerd Meijer const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 134893175a5cSSjoerd Meijer if (isa<SCEVCouldNotCompute>(ExitValue) || 134993175a5cSSjoerd Meijer !SE->isLoopInvariant(ExitValue, L) || 135093175a5cSSjoerd Meijer !isSafeToExpand(ExitValue, *SE)) { 135193175a5cSSjoerd Meijer // TODO: This should probably be sunk into SCEV in some way; maybe a 135293175a5cSSjoerd Meijer // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 135393175a5cSSjoerd Meijer // most SCEV expressions and other recurrence types (e.g. shift 135493175a5cSSjoerd Meijer // recurrences). Is there existing code we can reuse? 135593175a5cSSjoerd Meijer const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 135693175a5cSSjoerd Meijer if (isa<SCEVCouldNotCompute>(ExitCount)) 135793175a5cSSjoerd Meijer continue; 135893175a5cSSjoerd Meijer if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 135993175a5cSSjoerd Meijer if (AddRec->getLoop() == L) 136093175a5cSSjoerd Meijer ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 136193175a5cSSjoerd Meijer if (isa<SCEVCouldNotCompute>(ExitValue) || 136293175a5cSSjoerd Meijer !SE->isLoopInvariant(ExitValue, L) || 136393175a5cSSjoerd Meijer !isSafeToExpand(ExitValue, *SE)) 136493175a5cSSjoerd Meijer continue; 136593175a5cSSjoerd Meijer } 136693175a5cSSjoerd Meijer 136793175a5cSSjoerd Meijer // Computing the value outside of the loop brings no benefit if it is 136893175a5cSSjoerd Meijer // definitely used inside the loop in a way which can not be optimized 13697d572ef2SRoman Lebedev // away. Avoid doing so unless we know we have a value which computes 13707d572ef2SRoman Lebedev // the ExitValue already. TODO: This should be merged into SCEV 13717d572ef2SRoman Lebedev // expander to leverage its knowledge of existing expressions. 13727d572ef2SRoman Lebedev if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 13737d572ef2SRoman Lebedev !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 137493175a5cSSjoerd Meijer continue; 137593175a5cSSjoerd Meijer 1376b2df9612SRoman Lebedev // Check if expansions of this SCEV would count as being high cost. 13777d572ef2SRoman Lebedev bool HighCost = Rewriter.isHighCostExpansion( 13787d572ef2SRoman Lebedev ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1379b2df9612SRoman Lebedev 1380b2df9612SRoman Lebedev // Note that we must not perform expansions until after 1381b2df9612SRoman Lebedev // we query *all* the costs, because if we perform temporary expansion 1382b2df9612SRoman Lebedev // inbetween, one that we might not intend to keep, said expansion 1383b2df9612SRoman Lebedev // *may* affect cost calculation of the the next SCEV's we'll query, 1384b2df9612SRoman Lebedev // and next SCEV may errneously get smaller cost. 1385b2df9612SRoman Lebedev 1386b2df9612SRoman Lebedev // Collect all the candidate PHINodes to be rewritten. 1387b2df9612SRoman Lebedev RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1388b2df9612SRoman Lebedev } 1389b2df9612SRoman Lebedev } 1390b2df9612SRoman Lebedev } 1391b2df9612SRoman Lebedev 1392b2df9612SRoman Lebedev // Now that we've done preliminary filtering and billed all the SCEV's, 1393b2df9612SRoman Lebedev // we can perform the last sanity check - the expansion must be valid. 1394b2df9612SRoman Lebedev for (RewritePhi &Phi : RewritePhiSet) { 1395b2df9612SRoman Lebedev Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(), 1396b2df9612SRoman Lebedev Phi.ExpansionPoint); 139793175a5cSSjoerd Meijer 139893175a5cSSjoerd Meijer LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " 1399b2df9612SRoman Lebedev << *(Phi.Expansion) << '\n' 1400b2df9612SRoman Lebedev << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 140193175a5cSSjoerd Meijer 1402b2df9612SRoman Lebedev // FIXME: isValidRewrite() is a hack. it should be an assert, eventually. 1403b2df9612SRoman Lebedev Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion); 1404b2df9612SRoman Lebedev if (!Phi.ValidRewrite) { 1405b2df9612SRoman Lebedev DeadInsts.push_back(Phi.Expansion); 140693175a5cSSjoerd Meijer continue; 140793175a5cSSjoerd Meijer } 140893175a5cSSjoerd Meijer 140993175a5cSSjoerd Meijer #ifndef NDEBUG 141093175a5cSSjoerd Meijer // If we reuse an instruction from a loop which is neither L nor one of 141193175a5cSSjoerd Meijer // its containing loops, we end up breaking LCSSA form for this loop by 141293175a5cSSjoerd Meijer // creating a new use of its instruction. 1413b2df9612SRoman Lebedev if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion)) 141493175a5cSSjoerd Meijer if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 141593175a5cSSjoerd Meijer if (EVL != L) 141693175a5cSSjoerd Meijer assert(EVL->contains(L) && "LCSSA breach detected!"); 141793175a5cSSjoerd Meijer #endif 1418b2df9612SRoman Lebedev } 141993175a5cSSjoerd Meijer 1420b2df9612SRoman Lebedev // TODO: after isValidRewrite() is an assertion, evaluate whether 1421b2df9612SRoman Lebedev // it is beneficial to change how we calculate high-cost: 1422b2df9612SRoman Lebedev // if we have SCEV 'A' which we know we will expand, should we calculate 1423b2df9612SRoman Lebedev // the cost of other SCEV's after expanding SCEV 'A', 1424b2df9612SRoman Lebedev // thus potentially giving cost bonus to those other SCEV's? 142593175a5cSSjoerd Meijer 142693175a5cSSjoerd Meijer bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 142793175a5cSSjoerd Meijer int NumReplaced = 0; 142893175a5cSSjoerd Meijer 142993175a5cSSjoerd Meijer // Transformation. 143093175a5cSSjoerd Meijer for (const RewritePhi &Phi : RewritePhiSet) { 1431b2df9612SRoman Lebedev if (!Phi.ValidRewrite) 1432b2df9612SRoman Lebedev continue; 1433b2df9612SRoman Lebedev 143493175a5cSSjoerd Meijer PHINode *PN = Phi.PN; 1435b2df9612SRoman Lebedev Value *ExitVal = Phi.Expansion; 143693175a5cSSjoerd Meijer 143793175a5cSSjoerd Meijer // Only do the rewrite when the ExitValue can be expanded cheaply. 143893175a5cSSjoerd Meijer // If LoopCanBeDel is true, rewrite exit value aggressively. 143993175a5cSSjoerd Meijer if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 144093175a5cSSjoerd Meijer DeadInsts.push_back(ExitVal); 144193175a5cSSjoerd Meijer continue; 144293175a5cSSjoerd Meijer } 144393175a5cSSjoerd Meijer 144493175a5cSSjoerd Meijer NumReplaced++; 144593175a5cSSjoerd Meijer Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 144693175a5cSSjoerd Meijer PN->setIncomingValue(Phi.Ith, ExitVal); 144793175a5cSSjoerd Meijer 144893175a5cSSjoerd Meijer // If this instruction is dead now, delete it. Don't do it now to avoid 144993175a5cSSjoerd Meijer // invalidating iterators. 145093175a5cSSjoerd Meijer if (isInstructionTriviallyDead(Inst, TLI)) 145193175a5cSSjoerd Meijer DeadInsts.push_back(Inst); 145293175a5cSSjoerd Meijer 145393175a5cSSjoerd Meijer // Replace PN with ExitVal if that is legal and does not break LCSSA. 145493175a5cSSjoerd Meijer if (PN->getNumIncomingValues() == 1 && 145593175a5cSSjoerd Meijer LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 145693175a5cSSjoerd Meijer PN->replaceAllUsesWith(ExitVal); 145793175a5cSSjoerd Meijer PN->eraseFromParent(); 145893175a5cSSjoerd Meijer } 145993175a5cSSjoerd Meijer } 146093175a5cSSjoerd Meijer 146193175a5cSSjoerd Meijer // The insertion point instruction may have been deleted; clear it out 146293175a5cSSjoerd Meijer // so that the rewriter doesn't trip over it later. 146393175a5cSSjoerd Meijer Rewriter.clearInsertPoint(); 146493175a5cSSjoerd Meijer return NumReplaced; 146593175a5cSSjoerd Meijer } 1466af7e1588SEvgeniy Brevnov 1467af7e1588SEvgeniy Brevnov /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1468af7e1588SEvgeniy Brevnov /// \p OrigLoop. 1469af7e1588SEvgeniy Brevnov void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1470af7e1588SEvgeniy Brevnov Loop *RemainderLoop, uint64_t UF) { 1471af7e1588SEvgeniy Brevnov assert(UF > 0 && "Zero unrolled factor is not supported"); 1472af7e1588SEvgeniy Brevnov assert(UnrolledLoop != RemainderLoop && 1473af7e1588SEvgeniy Brevnov "Unrolled and Remainder loops are expected to distinct"); 1474af7e1588SEvgeniy Brevnov 1475af7e1588SEvgeniy Brevnov // Get number of iterations in the original scalar loop. 1476af7e1588SEvgeniy Brevnov unsigned OrigLoopInvocationWeight = 0; 1477af7e1588SEvgeniy Brevnov Optional<unsigned> OrigAverageTripCount = 1478af7e1588SEvgeniy Brevnov getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1479af7e1588SEvgeniy Brevnov if (!OrigAverageTripCount) 1480af7e1588SEvgeniy Brevnov return; 1481af7e1588SEvgeniy Brevnov 1482af7e1588SEvgeniy Brevnov // Calculate number of iterations in unrolled loop. 1483af7e1588SEvgeniy Brevnov unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1484af7e1588SEvgeniy Brevnov // Calculate number of iterations for remainder loop. 1485af7e1588SEvgeniy Brevnov unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1486af7e1588SEvgeniy Brevnov 1487af7e1588SEvgeniy Brevnov setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1488af7e1588SEvgeniy Brevnov OrigLoopInvocationWeight); 1489af7e1588SEvgeniy Brevnov setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1490af7e1588SEvgeniy Brevnov OrigLoopInvocationWeight); 1491af7e1588SEvgeniy Brevnov } 1492388de9dfSAlina Sbirlea 1493388de9dfSAlina Sbirlea /// Utility that implements appending of loops onto a worklist. 1494388de9dfSAlina Sbirlea /// Loops are added in preorder (analogous for reverse postorder for trees), 1495388de9dfSAlina Sbirlea /// and the worklist is processed LIFO. 1496388de9dfSAlina Sbirlea template <typename RangeT> 1497388de9dfSAlina Sbirlea void llvm::appendReversedLoopsToWorklist( 1498388de9dfSAlina Sbirlea RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1499388de9dfSAlina Sbirlea // We use an internal worklist to build up the preorder traversal without 1500388de9dfSAlina Sbirlea // recursion. 1501388de9dfSAlina Sbirlea SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1502388de9dfSAlina Sbirlea 1503388de9dfSAlina Sbirlea // We walk the initial sequence of loops in reverse because we generally want 1504388de9dfSAlina Sbirlea // to visit defs before uses and the worklist is LIFO. 1505388de9dfSAlina Sbirlea for (Loop *RootL : Loops) { 1506388de9dfSAlina Sbirlea assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1507388de9dfSAlina Sbirlea assert(PreOrderWorklist.empty() && 1508388de9dfSAlina Sbirlea "Must start with an empty preorder walk worklist."); 1509388de9dfSAlina Sbirlea PreOrderWorklist.push_back(RootL); 1510388de9dfSAlina Sbirlea do { 1511388de9dfSAlina Sbirlea Loop *L = PreOrderWorklist.pop_back_val(); 1512388de9dfSAlina Sbirlea PreOrderWorklist.append(L->begin(), L->end()); 1513388de9dfSAlina Sbirlea PreOrderLoops.push_back(L); 1514388de9dfSAlina Sbirlea } while (!PreOrderWorklist.empty()); 1515388de9dfSAlina Sbirlea 1516388de9dfSAlina Sbirlea Worklist.insert(std::move(PreOrderLoops)); 1517388de9dfSAlina Sbirlea PreOrderLoops.clear(); 1518388de9dfSAlina Sbirlea } 1519388de9dfSAlina Sbirlea } 1520388de9dfSAlina Sbirlea 1521388de9dfSAlina Sbirlea template <typename RangeT> 1522388de9dfSAlina Sbirlea void llvm::appendLoopsToWorklist(RangeT &&Loops, 1523388de9dfSAlina Sbirlea SmallPriorityWorklist<Loop *, 4> &Worklist) { 1524388de9dfSAlina Sbirlea appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1525388de9dfSAlina Sbirlea } 1526388de9dfSAlina Sbirlea 1527388de9dfSAlina Sbirlea template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1528388de9dfSAlina Sbirlea ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1529388de9dfSAlina Sbirlea 153067904db2SAlina Sbirlea template void 153167904db2SAlina Sbirlea llvm::appendLoopsToWorklist<Loop &>(Loop &L, 153267904db2SAlina Sbirlea SmallPriorityWorklist<Loop *, 4> &Worklist); 153367904db2SAlina Sbirlea 1534388de9dfSAlina Sbirlea void llvm::appendLoopsToWorklist(LoopInfo &LI, 1535388de9dfSAlina Sbirlea SmallPriorityWorklist<Loop *, 4> &Worklist) { 1536388de9dfSAlina Sbirlea appendReversedLoopsToWorklist(LI, Worklist); 1537388de9dfSAlina Sbirlea } 15383dcaf296SArkady Shlykov 15393dcaf296SArkady Shlykov Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 15403dcaf296SArkady Shlykov LoopInfo *LI, LPPassManager *LPM) { 15413dcaf296SArkady Shlykov Loop &New = *LI->AllocateLoop(); 15423dcaf296SArkady Shlykov if (PL) 15433dcaf296SArkady Shlykov PL->addChildLoop(&New); 15443dcaf296SArkady Shlykov else 15453dcaf296SArkady Shlykov LI->addTopLevelLoop(&New); 15463dcaf296SArkady Shlykov 15473dcaf296SArkady Shlykov if (LPM) 15483dcaf296SArkady Shlykov LPM->addLoop(New); 15493dcaf296SArkady Shlykov 15503dcaf296SArkady Shlykov // Add all of the blocks in L to the new loop. 15513dcaf296SArkady Shlykov for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 15523dcaf296SArkady Shlykov I != E; ++I) 15533dcaf296SArkady Shlykov if (LI->getLoopFor(*I) == L) 15543dcaf296SArkady Shlykov New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 15553dcaf296SArkady Shlykov 15563dcaf296SArkady Shlykov // Add all of the subloops to the new loop. 15573dcaf296SArkady Shlykov for (Loop *I : *L) 15583dcaf296SArkady Shlykov cloneLoop(I, &New, VM, LI, LPM); 15593dcaf296SArkady Shlykov 15603dcaf296SArkady Shlykov return &New; 15613dcaf296SArkady Shlykov } 15628528186bSFlorian Hahn 15638528186bSFlorian Hahn /// IR Values for the lower and upper bounds of a pointer evolution. We 15648528186bSFlorian Hahn /// need to use value-handles because SCEV expansion can invalidate previously 15658528186bSFlorian Hahn /// expanded values. Thus expansion of a pointer can invalidate the bounds for 15668528186bSFlorian Hahn /// a previous one. 15678528186bSFlorian Hahn struct PointerBounds { 15688528186bSFlorian Hahn TrackingVH<Value> Start; 15698528186bSFlorian Hahn TrackingVH<Value> End; 15708528186bSFlorian Hahn }; 15718528186bSFlorian Hahn 15728528186bSFlorian Hahn /// Expand code for the lower and upper bound of the pointer group \p CG 15738528186bSFlorian Hahn /// in \p TheLoop. \return the values for the bounds. 15748528186bSFlorian Hahn static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 15758528186bSFlorian Hahn Loop *TheLoop, Instruction *Loc, 15768528186bSFlorian Hahn SCEVExpander &Exp, ScalarEvolution *SE) { 15778528186bSFlorian Hahn // TODO: Add helper to retrieve pointers to CG. 15788528186bSFlorian Hahn Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue; 15798528186bSFlorian Hahn const SCEV *Sc = SE->getSCEV(Ptr); 15808528186bSFlorian Hahn 15818528186bSFlorian Hahn unsigned AS = Ptr->getType()->getPointerAddressSpace(); 15828528186bSFlorian Hahn LLVMContext &Ctx = Loc->getContext(); 15838528186bSFlorian Hahn 15848528186bSFlorian Hahn // Use this type for pointer arithmetic. 15858528186bSFlorian Hahn Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 15868528186bSFlorian Hahn 15878528186bSFlorian Hahn if (SE->isLoopInvariant(Sc, TheLoop)) { 15888528186bSFlorian Hahn LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 15898528186bSFlorian Hahn << *Ptr << "\n"); 15908528186bSFlorian Hahn // Ptr could be in the loop body. If so, expand a new one at the correct 15918528186bSFlorian Hahn // location. 15928528186bSFlorian Hahn Instruction *Inst = dyn_cast<Instruction>(Ptr); 15938528186bSFlorian Hahn Value *NewPtr = (Inst && TheLoop->contains(Inst)) 15948528186bSFlorian Hahn ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 15958528186bSFlorian Hahn : Ptr; 15968528186bSFlorian Hahn // We must return a half-open range, which means incrementing Sc. 15978528186bSFlorian Hahn const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 15988528186bSFlorian Hahn Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 15998528186bSFlorian Hahn return {NewPtr, NewPtrPlusOne}; 16008528186bSFlorian Hahn } else { 16018528186bSFlorian Hahn Value *Start = nullptr, *End = nullptr; 16028528186bSFlorian Hahn LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 16038528186bSFlorian Hahn Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 16048528186bSFlorian Hahn End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 16058528186bSFlorian Hahn LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 16068528186bSFlorian Hahn << "\n"); 16078528186bSFlorian Hahn return {Start, End}; 16088528186bSFlorian Hahn } 16098528186bSFlorian Hahn } 16108528186bSFlorian Hahn 16118528186bSFlorian Hahn /// Turns a collection of checks into a collection of expanded upper and 16128528186bSFlorian Hahn /// lower bounds for both pointers in the check. 16138528186bSFlorian Hahn static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 16148528186bSFlorian Hahn expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 16158528186bSFlorian Hahn Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) { 16168528186bSFlorian Hahn SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 16178528186bSFlorian Hahn 16188528186bSFlorian Hahn // Here we're relying on the SCEV Expander's cache to only emit code for the 16198528186bSFlorian Hahn // same bounds once. 16208528186bSFlorian Hahn transform(PointerChecks, std::back_inserter(ChecksWithBounds), 16218528186bSFlorian Hahn [&](const RuntimePointerCheck &Check) { 16228528186bSFlorian Hahn PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE), 16238528186bSFlorian Hahn Second = 16248528186bSFlorian Hahn expandBounds(Check.second, L, Loc, Exp, SE); 16258528186bSFlorian Hahn return std::make_pair(First, Second); 16268528186bSFlorian Hahn }); 16278528186bSFlorian Hahn 16288528186bSFlorian Hahn return ChecksWithBounds; 16298528186bSFlorian Hahn } 16308528186bSFlorian Hahn 16318528186bSFlorian Hahn std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks( 16328528186bSFlorian Hahn Instruction *Loc, Loop *TheLoop, 16338528186bSFlorian Hahn const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 16348528186bSFlorian Hahn ScalarEvolution *SE) { 16358528186bSFlorian Hahn // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 16368528186bSFlorian Hahn // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 16378528186bSFlorian Hahn const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 16388528186bSFlorian Hahn SCEVExpander Exp(*SE, DL, "induction"); 16398528186bSFlorian Hahn auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp); 16408528186bSFlorian Hahn 16418528186bSFlorian Hahn LLVMContext &Ctx = Loc->getContext(); 16428528186bSFlorian Hahn Instruction *FirstInst = nullptr; 16438528186bSFlorian Hahn IRBuilder<> ChkBuilder(Loc); 16448528186bSFlorian Hahn // Our instructions might fold to a constant. 16458528186bSFlorian Hahn Value *MemoryRuntimeCheck = nullptr; 16468528186bSFlorian Hahn 16478528186bSFlorian Hahn // FIXME: this helper is currently a duplicate of the one in 16488528186bSFlorian Hahn // LoopVectorize.cpp. 16498528186bSFlorian Hahn auto GetFirstInst = [](Instruction *FirstInst, Value *V, 16508528186bSFlorian Hahn Instruction *Loc) -> Instruction * { 16518528186bSFlorian Hahn if (FirstInst) 16528528186bSFlorian Hahn return FirstInst; 16538528186bSFlorian Hahn if (Instruction *I = dyn_cast<Instruction>(V)) 16548528186bSFlorian Hahn return I->getParent() == Loc->getParent() ? I : nullptr; 16558528186bSFlorian Hahn return nullptr; 16568528186bSFlorian Hahn }; 16578528186bSFlorian Hahn 16588528186bSFlorian Hahn for (const auto &Check : ExpandedChecks) { 16598528186bSFlorian Hahn const PointerBounds &A = Check.first, &B = Check.second; 16608528186bSFlorian Hahn // Check if two pointers (A and B) conflict where conflict is computed as: 16618528186bSFlorian Hahn // start(A) <= end(B) && start(B) <= end(A) 16628528186bSFlorian Hahn unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 16638528186bSFlorian Hahn unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 16648528186bSFlorian Hahn 16658528186bSFlorian Hahn assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 16668528186bSFlorian Hahn (AS1 == A.End->getType()->getPointerAddressSpace()) && 16678528186bSFlorian Hahn "Trying to bounds check pointers with different address spaces"); 16688528186bSFlorian Hahn 16698528186bSFlorian Hahn Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 16708528186bSFlorian Hahn Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 16718528186bSFlorian Hahn 16728528186bSFlorian Hahn Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 16738528186bSFlorian Hahn Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 16748528186bSFlorian Hahn Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 16758528186bSFlorian Hahn Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 16768528186bSFlorian Hahn 16778528186bSFlorian Hahn // [A|B].Start points to the first accessed byte under base [A|B]. 16788528186bSFlorian Hahn // [A|B].End points to the last accessed byte, plus one. 16798528186bSFlorian Hahn // There is no conflict when the intervals are disjoint: 16808528186bSFlorian Hahn // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 16818528186bSFlorian Hahn // 16828528186bSFlorian Hahn // bound0 = (B.Start < A.End) 16838528186bSFlorian Hahn // bound1 = (A.Start < B.End) 16848528186bSFlorian Hahn // IsConflict = bound0 & bound1 16858528186bSFlorian Hahn Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 16868528186bSFlorian Hahn FirstInst = GetFirstInst(FirstInst, Cmp0, Loc); 16878528186bSFlorian Hahn Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 16888528186bSFlorian Hahn FirstInst = GetFirstInst(FirstInst, Cmp1, Loc); 16898528186bSFlorian Hahn Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 16908528186bSFlorian Hahn FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 16918528186bSFlorian Hahn if (MemoryRuntimeCheck) { 16928528186bSFlorian Hahn IsConflict = 16938528186bSFlorian Hahn ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 16948528186bSFlorian Hahn FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 16958528186bSFlorian Hahn } 16968528186bSFlorian Hahn MemoryRuntimeCheck = IsConflict; 16978528186bSFlorian Hahn } 16988528186bSFlorian Hahn 16998528186bSFlorian Hahn if (!MemoryRuntimeCheck) 17008528186bSFlorian Hahn return std::make_pair(nullptr, nullptr); 17018528186bSFlorian Hahn 17028528186bSFlorian Hahn // We have to do this trickery because the IRBuilder might fold the check to a 17038528186bSFlorian Hahn // constant expression in which case there is no Instruction anchored in a 17048528186bSFlorian Hahn // the block. 17058528186bSFlorian Hahn Instruction *Check = 17068528186bSFlorian Hahn BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); 17078528186bSFlorian Hahn ChkBuilder.Insert(Check, "memcheck.conflict"); 17088528186bSFlorian Hahn FirstInst = GetFirstInst(FirstInst, Check, Loc); 17098528186bSFlorian Hahn return std::make_pair(FirstInst, Check); 17108528186bSFlorian Hahn } 1711