176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 376aa662cSKarthik Bhat // The LLVM Compiler Infrastructure 476aa662cSKarthik Bhat // 576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source 676aa662cSKarthik Bhat // License. See LICENSE.TXT for details. 776aa662cSKarthik Bhat // 876aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 976aa662cSKarthik Bhat // 1076aa662cSKarthik Bhat // This file defines common loop utility functions. 1176aa662cSKarthik Bhat // 1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1376aa662cSKarthik Bhat 142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 154a000883SChandler Carruth #include "llvm/ADT/ScopeExit.h" 1631088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 1731088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 1831088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 192f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 20c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h" 2145d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 222f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 23c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h" 2445d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 256bda14b3SChandler Carruth #include "llvm/Analysis/TargetTransformInfo.h" 2631088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 2776aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 2845d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 2976aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 3076aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 3131088a9dSChandler Carruth #include "llvm/Pass.h" 3276aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 334a000883SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 3476aa662cSKarthik Bhat 3576aa662cSKarthik Bhat using namespace llvm; 3676aa662cSKarthik Bhat using namespace llvm::PatternMatch; 3776aa662cSKarthik Bhat 3876aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 3976aa662cSKarthik Bhat 400a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 4176aa662cSKarthik Bhat SmallPtrSetImpl<Instruction *> &Set) { 4276aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4376aa662cSKarthik Bhat if (!Set.count(dyn_cast<Instruction>(*Use))) 4476aa662cSKarthik Bhat return false; 4576aa662cSKarthik Bhat return true; 4676aa662cSKarthik Bhat } 4776aa662cSKarthik Bhat 48c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 49c94f8e29SChad Rosier switch (Kind) { 50c94f8e29SChad Rosier default: 51c94f8e29SChad Rosier break; 52c94f8e29SChad Rosier case RK_IntegerAdd: 53c94f8e29SChad Rosier case RK_IntegerMult: 54c94f8e29SChad Rosier case RK_IntegerOr: 55c94f8e29SChad Rosier case RK_IntegerAnd: 56c94f8e29SChad Rosier case RK_IntegerXor: 57c94f8e29SChad Rosier case RK_IntegerMinMax: 58c94f8e29SChad Rosier return true; 59c94f8e29SChad Rosier } 60c94f8e29SChad Rosier return false; 61c94f8e29SChad Rosier } 62c94f8e29SChad Rosier 63c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 64c94f8e29SChad Rosier return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 65c94f8e29SChad Rosier } 66c94f8e29SChad Rosier 67c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 68c94f8e29SChad Rosier switch (Kind) { 69c94f8e29SChad Rosier default: 70c94f8e29SChad Rosier break; 71c94f8e29SChad Rosier case RK_IntegerAdd: 72c94f8e29SChad Rosier case RK_IntegerMult: 73c94f8e29SChad Rosier case RK_FloatAdd: 74c94f8e29SChad Rosier case RK_FloatMult: 75c94f8e29SChad Rosier return true; 76c94f8e29SChad Rosier } 77c94f8e29SChad Rosier return false; 78c94f8e29SChad Rosier } 79c94f8e29SChad Rosier 80c94f8e29SChad Rosier Instruction * 81c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 82c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 83c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 84c94f8e29SChad Rosier if (!Phi->hasOneUse()) 85c94f8e29SChad Rosier return Phi; 86c94f8e29SChad Rosier 87c94f8e29SChad Rosier const APInt *M = nullptr; 88c94f8e29SChad Rosier Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 89c94f8e29SChad Rosier 90c94f8e29SChad Rosier // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 91c94f8e29SChad Rosier // with a new integer type of the corresponding bit width. 9272ee6945SCraig Topper if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 93c94f8e29SChad Rosier int32_t Bits = (*M + 1).exactLogBase2(); 94c94f8e29SChad Rosier if (Bits > 0) { 95c94f8e29SChad Rosier RT = IntegerType::get(Phi->getContext(), Bits); 96c94f8e29SChad Rosier Visited.insert(Phi); 97c94f8e29SChad Rosier CI.insert(J); 98c94f8e29SChad Rosier return J; 99c94f8e29SChad Rosier } 100c94f8e29SChad Rosier } 101c94f8e29SChad Rosier return Phi; 102c94f8e29SChad Rosier } 103c94f8e29SChad Rosier 104c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind( 105c94f8e29SChad Rosier Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 106c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 107c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 108c94f8e29SChad Rosier 109c94f8e29SChad Rosier SmallVector<Instruction *, 8> Worklist; 110c94f8e29SChad Rosier bool FoundOneOperand = false; 11129dc0f70SMatthew Simpson unsigned DstSize = RT->getPrimitiveSizeInBits(); 112c94f8e29SChad Rosier Worklist.push_back(Exit); 113c94f8e29SChad Rosier 114c94f8e29SChad Rosier // Traverse the instructions in the reduction expression, beginning with the 115c94f8e29SChad Rosier // exit value. 116c94f8e29SChad Rosier while (!Worklist.empty()) { 117c94f8e29SChad Rosier Instruction *I = Worklist.pop_back_val(); 118c94f8e29SChad Rosier for (Use &U : I->operands()) { 119c94f8e29SChad Rosier 120c94f8e29SChad Rosier // Terminate the traversal if the operand is not an instruction, or we 121c94f8e29SChad Rosier // reach the starting value. 122c94f8e29SChad Rosier Instruction *J = dyn_cast<Instruction>(U.get()); 123c94f8e29SChad Rosier if (!J || J == Start) 124c94f8e29SChad Rosier continue; 125c94f8e29SChad Rosier 126c94f8e29SChad Rosier // Otherwise, investigate the operation if it is also in the expression. 127c94f8e29SChad Rosier if (Visited.count(J)) { 128c94f8e29SChad Rosier Worklist.push_back(J); 129c94f8e29SChad Rosier continue; 130c94f8e29SChad Rosier } 131c94f8e29SChad Rosier 132c94f8e29SChad Rosier // If the operand is not in Visited, it is not a reduction operation, but 133c94f8e29SChad Rosier // it does feed into one. Make sure it is either a single-use sign- or 13429dc0f70SMatthew Simpson // zero-extend instruction. 135c94f8e29SChad Rosier CastInst *Cast = dyn_cast<CastInst>(J); 136c94f8e29SChad Rosier bool IsSExtInst = isa<SExtInst>(J); 13729dc0f70SMatthew Simpson if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 13829dc0f70SMatthew Simpson return false; 13929dc0f70SMatthew Simpson 14029dc0f70SMatthew Simpson // Ensure the source type of the extend is no larger than the reduction 14129dc0f70SMatthew Simpson // type. It is not necessary for the types to be identical. 14229dc0f70SMatthew Simpson unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 14329dc0f70SMatthew Simpson if (SrcSize > DstSize) 144c94f8e29SChad Rosier return false; 145c94f8e29SChad Rosier 146c94f8e29SChad Rosier // Furthermore, ensure that all such extends are of the same kind. 147c94f8e29SChad Rosier if (FoundOneOperand) { 148c94f8e29SChad Rosier if (IsSigned != IsSExtInst) 149c94f8e29SChad Rosier return false; 150c94f8e29SChad Rosier } else { 151c94f8e29SChad Rosier FoundOneOperand = true; 152c94f8e29SChad Rosier IsSigned = IsSExtInst; 153c94f8e29SChad Rosier } 154c94f8e29SChad Rosier 15529dc0f70SMatthew Simpson // Lastly, if the source type of the extend matches the reduction type, 15629dc0f70SMatthew Simpson // add the extend to CI so that we can avoid accounting for it in the 15729dc0f70SMatthew Simpson // cost model. 15829dc0f70SMatthew Simpson if (SrcSize == DstSize) 159c94f8e29SChad Rosier CI.insert(Cast); 160c94f8e29SChad Rosier } 161c94f8e29SChad Rosier } 162c94f8e29SChad Rosier return true; 163c94f8e29SChad Rosier } 164c94f8e29SChad Rosier 1650a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 16676aa662cSKarthik Bhat Loop *TheLoop, bool HasFunNoNaNAttr, 1670a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 16876aa662cSKarthik Bhat if (Phi->getNumIncomingValues() != 2) 16976aa662cSKarthik Bhat return false; 17076aa662cSKarthik Bhat 17176aa662cSKarthik Bhat // Reduction variables are only found in the loop header block. 17276aa662cSKarthik Bhat if (Phi->getParent() != TheLoop->getHeader()) 17376aa662cSKarthik Bhat return false; 17476aa662cSKarthik Bhat 17576aa662cSKarthik Bhat // Obtain the reduction start value from the value that comes from the loop 17676aa662cSKarthik Bhat // preheader. 17776aa662cSKarthik Bhat Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 17876aa662cSKarthik Bhat 17976aa662cSKarthik Bhat // ExitInstruction is the single value which is used outside the loop. 18076aa662cSKarthik Bhat // We only allow for a single reduction value to be used outside the loop. 18176aa662cSKarthik Bhat // This includes users of the reduction, variables (which form a cycle 18276aa662cSKarthik Bhat // which ends in the phi node). 18376aa662cSKarthik Bhat Instruction *ExitInstruction = nullptr; 18476aa662cSKarthik Bhat // Indicates that we found a reduction operation in our scan. 18576aa662cSKarthik Bhat bool FoundReduxOp = false; 18676aa662cSKarthik Bhat 18776aa662cSKarthik Bhat // We start with the PHI node and scan for all of the users of this 18876aa662cSKarthik Bhat // instruction. All users must be instructions that can be used as reduction 18976aa662cSKarthik Bhat // variables (such as ADD). We must have a single out-of-block user. The cycle 19076aa662cSKarthik Bhat // must include the original PHI. 19176aa662cSKarthik Bhat bool FoundStartPHI = false; 19276aa662cSKarthik Bhat 19376aa662cSKarthik Bhat // To recognize min/max patterns formed by a icmp select sequence, we store 19476aa662cSKarthik Bhat // the number of instruction we saw from the recognized min/max pattern, 19576aa662cSKarthik Bhat // to make sure we only see exactly the two instructions. 19676aa662cSKarthik Bhat unsigned NumCmpSelectPatternInst = 0; 19727b2c39eSTyler Nowicki InstDesc ReduxDesc(false, nullptr); 19876aa662cSKarthik Bhat 199c94f8e29SChad Rosier // Data used for determining if the recurrence has been type-promoted. 200c94f8e29SChad Rosier Type *RecurrenceType = Phi->getType(); 201c94f8e29SChad Rosier SmallPtrSet<Instruction *, 4> CastInsts; 202c94f8e29SChad Rosier Instruction *Start = Phi; 203c94f8e29SChad Rosier bool IsSigned = false; 204c94f8e29SChad Rosier 20576aa662cSKarthik Bhat SmallPtrSet<Instruction *, 8> VisitedInsts; 20676aa662cSKarthik Bhat SmallVector<Instruction *, 8> Worklist; 207c94f8e29SChad Rosier 208c94f8e29SChad Rosier // Return early if the recurrence kind does not match the type of Phi. If the 209c94f8e29SChad Rosier // recurrence kind is arithmetic, we attempt to look through AND operations 210c94f8e29SChad Rosier // resulting from the type promotion performed by InstCombine. Vector 211c94f8e29SChad Rosier // operations are not limited to the legal integer widths, so we may be able 212c94f8e29SChad Rosier // to evaluate the reduction in the narrower width. 213c94f8e29SChad Rosier if (RecurrenceType->isFloatingPointTy()) { 214c94f8e29SChad Rosier if (!isFloatingPointRecurrenceKind(Kind)) 215c94f8e29SChad Rosier return false; 216c94f8e29SChad Rosier } else { 217c94f8e29SChad Rosier if (!isIntegerRecurrenceKind(Kind)) 218c94f8e29SChad Rosier return false; 219c94f8e29SChad Rosier if (isArithmeticRecurrenceKind(Kind)) 220c94f8e29SChad Rosier Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 221c94f8e29SChad Rosier } 222c94f8e29SChad Rosier 223c94f8e29SChad Rosier Worklist.push_back(Start); 224c94f8e29SChad Rosier VisitedInsts.insert(Start); 22576aa662cSKarthik Bhat 22676aa662cSKarthik Bhat // A value in the reduction can be used: 22776aa662cSKarthik Bhat // - By the reduction: 22876aa662cSKarthik Bhat // - Reduction operation: 22976aa662cSKarthik Bhat // - One use of reduction value (safe). 23076aa662cSKarthik Bhat // - Multiple use of reduction value (not safe). 23176aa662cSKarthik Bhat // - PHI: 23276aa662cSKarthik Bhat // - All uses of the PHI must be the reduction (safe). 23376aa662cSKarthik Bhat // - Otherwise, not safe. 2347cefb409SMichael Kuperstein // - By instructions outside of the loop (safe). 2357cefb409SMichael Kuperstein // * One value may have several outside users, but all outside 2367cefb409SMichael Kuperstein // uses must be of the same value. 23776aa662cSKarthik Bhat // - By an instruction that is not part of the reduction (not safe). 23876aa662cSKarthik Bhat // This is either: 23976aa662cSKarthik Bhat // * An instruction type other than PHI or the reduction operation. 24076aa662cSKarthik Bhat // * A PHI in the header other than the initial PHI. 24176aa662cSKarthik Bhat while (!Worklist.empty()) { 24276aa662cSKarthik Bhat Instruction *Cur = Worklist.back(); 24376aa662cSKarthik Bhat Worklist.pop_back(); 24476aa662cSKarthik Bhat 24576aa662cSKarthik Bhat // No Users. 24676aa662cSKarthik Bhat // If the instruction has no users then this is a broken chain and can't be 24776aa662cSKarthik Bhat // a reduction variable. 24876aa662cSKarthik Bhat if (Cur->use_empty()) 24976aa662cSKarthik Bhat return false; 25076aa662cSKarthik Bhat 25176aa662cSKarthik Bhat bool IsAPhi = isa<PHINode>(Cur); 25276aa662cSKarthik Bhat 25376aa662cSKarthik Bhat // A header PHI use other than the original PHI. 25476aa662cSKarthik Bhat if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 25576aa662cSKarthik Bhat return false; 25676aa662cSKarthik Bhat 25776aa662cSKarthik Bhat // Reductions of instructions such as Div, and Sub is only possible if the 25876aa662cSKarthik Bhat // LHS is the reduction variable. 25976aa662cSKarthik Bhat if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 26076aa662cSKarthik Bhat !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 26176aa662cSKarthik Bhat !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 26276aa662cSKarthik Bhat return false; 26376aa662cSKarthik Bhat 264c94f8e29SChad Rosier // Any reduction instruction must be of one of the allowed kinds. We ignore 265c94f8e29SChad Rosier // the starting value (the Phi or an AND instruction if the Phi has been 266c94f8e29SChad Rosier // type-promoted). 267c94f8e29SChad Rosier if (Cur != Start) { 2680a91310cSTyler Nowicki ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 2690a91310cSTyler Nowicki if (!ReduxDesc.isRecurrence()) 27076aa662cSKarthik Bhat return false; 271c94f8e29SChad Rosier } 27276aa662cSKarthik Bhat 27376aa662cSKarthik Bhat // A reduction operation must only have one use of the reduction value. 27476aa662cSKarthik Bhat if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 27576aa662cSKarthik Bhat hasMultipleUsesOf(Cur, VisitedInsts)) 27676aa662cSKarthik Bhat return false; 27776aa662cSKarthik Bhat 27876aa662cSKarthik Bhat // All inputs to a PHI node must be a reduction value. 27976aa662cSKarthik Bhat if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 28076aa662cSKarthik Bhat return false; 28176aa662cSKarthik Bhat 28276aa662cSKarthik Bhat if (Kind == RK_IntegerMinMax && 28376aa662cSKarthik Bhat (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 28476aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28576aa662cSKarthik Bhat if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 28676aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28776aa662cSKarthik Bhat 28876aa662cSKarthik Bhat // Check whether we found a reduction operator. 289c94f8e29SChad Rosier FoundReduxOp |= !IsAPhi && Cur != Start; 29076aa662cSKarthik Bhat 29176aa662cSKarthik Bhat // Process users of current instruction. Push non-PHI nodes after PHI nodes 29276aa662cSKarthik Bhat // onto the stack. This way we are going to have seen all inputs to PHI 29376aa662cSKarthik Bhat // nodes once we get to them. 29476aa662cSKarthik Bhat SmallVector<Instruction *, 8> NonPHIs; 29576aa662cSKarthik Bhat SmallVector<Instruction *, 8> PHIs; 29676aa662cSKarthik Bhat for (User *U : Cur->users()) { 29776aa662cSKarthik Bhat Instruction *UI = cast<Instruction>(U); 29876aa662cSKarthik Bhat 29976aa662cSKarthik Bhat // Check if we found the exit user. 30076aa662cSKarthik Bhat BasicBlock *Parent = UI->getParent(); 30176aa662cSKarthik Bhat if (!TheLoop->contains(Parent)) { 3027cefb409SMichael Kuperstein // If we already know this instruction is used externally, move on to 3037cefb409SMichael Kuperstein // the next user. 3047cefb409SMichael Kuperstein if (ExitInstruction == Cur) 3057cefb409SMichael Kuperstein continue; 3067cefb409SMichael Kuperstein 3077cefb409SMichael Kuperstein // Exit if you find multiple values used outside or if the header phi 3087cefb409SMichael Kuperstein // node is being used. In this case the user uses the value of the 3097cefb409SMichael Kuperstein // previous iteration, in which case we would loose "VF-1" iterations of 3107cefb409SMichael Kuperstein // the reduction operation if we vectorize. 31176aa662cSKarthik Bhat if (ExitInstruction != nullptr || Cur == Phi) 31276aa662cSKarthik Bhat return false; 31376aa662cSKarthik Bhat 31476aa662cSKarthik Bhat // The instruction used by an outside user must be the last instruction 31576aa662cSKarthik Bhat // before we feed back to the reduction phi. Otherwise, we loose VF-1 31676aa662cSKarthik Bhat // operations on the value. 31742531260SDavid Majnemer if (!is_contained(Phi->operands(), Cur)) 31876aa662cSKarthik Bhat return false; 31976aa662cSKarthik Bhat 32076aa662cSKarthik Bhat ExitInstruction = Cur; 32176aa662cSKarthik Bhat continue; 32276aa662cSKarthik Bhat } 32376aa662cSKarthik Bhat 32476aa662cSKarthik Bhat // Process instructions only once (termination). Each reduction cycle 32576aa662cSKarthik Bhat // value must only be used once, except by phi nodes and min/max 32676aa662cSKarthik Bhat // reductions which are represented as a cmp followed by a select. 32727b2c39eSTyler Nowicki InstDesc IgnoredVal(false, nullptr); 32876aa662cSKarthik Bhat if (VisitedInsts.insert(UI).second) { 32976aa662cSKarthik Bhat if (isa<PHINode>(UI)) 33076aa662cSKarthik Bhat PHIs.push_back(UI); 33176aa662cSKarthik Bhat else 33276aa662cSKarthik Bhat NonPHIs.push_back(UI); 33376aa662cSKarthik Bhat } else if (!isa<PHINode>(UI) && 33476aa662cSKarthik Bhat ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 33576aa662cSKarthik Bhat !isa<SelectInst>(UI)) || 3360a91310cSTyler Nowicki !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 33776aa662cSKarthik Bhat return false; 33876aa662cSKarthik Bhat 33976aa662cSKarthik Bhat // Remember that we completed the cycle. 34076aa662cSKarthik Bhat if (UI == Phi) 34176aa662cSKarthik Bhat FoundStartPHI = true; 34276aa662cSKarthik Bhat } 34376aa662cSKarthik Bhat Worklist.append(PHIs.begin(), PHIs.end()); 34476aa662cSKarthik Bhat Worklist.append(NonPHIs.begin(), NonPHIs.end()); 34576aa662cSKarthik Bhat } 34676aa662cSKarthik Bhat 34776aa662cSKarthik Bhat // This means we have seen one but not the other instruction of the 34876aa662cSKarthik Bhat // pattern or more than just a select and cmp. 34976aa662cSKarthik Bhat if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 35076aa662cSKarthik Bhat NumCmpSelectPatternInst != 2) 35176aa662cSKarthik Bhat return false; 35276aa662cSKarthik Bhat 35376aa662cSKarthik Bhat if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 35476aa662cSKarthik Bhat return false; 35576aa662cSKarthik Bhat 356c94f8e29SChad Rosier // If we think Phi may have been type-promoted, we also need to ensure that 357c94f8e29SChad Rosier // all source operands of the reduction are either SExtInsts or ZEstInsts. If 358c94f8e29SChad Rosier // so, we will be able to evaluate the reduction in the narrower bit width. 359c94f8e29SChad Rosier if (Start != Phi) 360c94f8e29SChad Rosier if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 361c94f8e29SChad Rosier IsSigned, VisitedInsts, CastInsts)) 362c94f8e29SChad Rosier return false; 363c94f8e29SChad Rosier 36476aa662cSKarthik Bhat // We found a reduction var if we have reached the original phi node and we 36576aa662cSKarthik Bhat // only have a single instruction with out-of-loop users. 36676aa662cSKarthik Bhat 36776aa662cSKarthik Bhat // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 3680a91310cSTyler Nowicki // is saved as part of the RecurrenceDescriptor. 36976aa662cSKarthik Bhat 37076aa662cSKarthik Bhat // Save the description of this reduction variable. 371c94f8e29SChad Rosier RecurrenceDescriptor RD( 372c94f8e29SChad Rosier RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 373c94f8e29SChad Rosier ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 37476aa662cSKarthik Bhat RedDes = RD; 37576aa662cSKarthik Bhat 37676aa662cSKarthik Bhat return true; 37776aa662cSKarthik Bhat } 37876aa662cSKarthik Bhat 37976aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 38076aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y). 38127b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 38227b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 38376aa662cSKarthik Bhat 38476aa662cSKarthik Bhat assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 38576aa662cSKarthik Bhat "Expect a select instruction"); 38676aa662cSKarthik Bhat Instruction *Cmp = nullptr; 38776aa662cSKarthik Bhat SelectInst *Select = nullptr; 38876aa662cSKarthik Bhat 38976aa662cSKarthik Bhat // We must handle the select(cmp()) as a single instruction. Advance to the 39076aa662cSKarthik Bhat // select. 39176aa662cSKarthik Bhat if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 39276aa662cSKarthik Bhat if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 39327b2c39eSTyler Nowicki return InstDesc(false, I); 39427b2c39eSTyler Nowicki return InstDesc(Select, Prev.getMinMaxKind()); 39576aa662cSKarthik Bhat } 39676aa662cSKarthik Bhat 39776aa662cSKarthik Bhat // Only handle single use cases for now. 39876aa662cSKarthik Bhat if (!(Select = dyn_cast<SelectInst>(I))) 39927b2c39eSTyler Nowicki return InstDesc(false, I); 40076aa662cSKarthik Bhat if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 40176aa662cSKarthik Bhat !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 40227b2c39eSTyler Nowicki return InstDesc(false, I); 40376aa662cSKarthik Bhat if (!Cmp->hasOneUse()) 40427b2c39eSTyler Nowicki return InstDesc(false, I); 40576aa662cSKarthik Bhat 40676aa662cSKarthik Bhat Value *CmpLeft; 40776aa662cSKarthik Bhat Value *CmpRight; 40876aa662cSKarthik Bhat 40976aa662cSKarthik Bhat // Look for a min/max pattern. 41076aa662cSKarthik Bhat if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41127b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMin); 41276aa662cSKarthik Bhat else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41327b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMax); 41476aa662cSKarthik Bhat else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41527b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMax); 41676aa662cSKarthik Bhat else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41727b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMin); 41876aa662cSKarthik Bhat else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41927b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 42076aa662cSKarthik Bhat else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42127b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 42276aa662cSKarthik Bhat else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42327b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 42476aa662cSKarthik Bhat else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42527b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 42676aa662cSKarthik Bhat 42727b2c39eSTyler Nowicki return InstDesc(false, I); 42876aa662cSKarthik Bhat } 42976aa662cSKarthik Bhat 43027b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 4310a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 43227b2c39eSTyler Nowicki InstDesc &Prev, bool HasFunNoNaNAttr) { 43376aa662cSKarthik Bhat bool FP = I->getType()->isFloatingPointTy(); 434c1a86f58STyler Nowicki Instruction *UAI = Prev.getUnsafeAlgebraInst(); 435629c4115SSanjay Patel if (!UAI && FP && !I->isFast()) 436c1a86f58STyler Nowicki UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 437c1a86f58STyler Nowicki 43876aa662cSKarthik Bhat switch (I->getOpcode()) { 43976aa662cSKarthik Bhat default: 44027b2c39eSTyler Nowicki return InstDesc(false, I); 44176aa662cSKarthik Bhat case Instruction::PHI: 44210a1e8b1STim Northover return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 44376aa662cSKarthik Bhat case Instruction::Sub: 44476aa662cSKarthik Bhat case Instruction::Add: 44527b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAdd, I); 44676aa662cSKarthik Bhat case Instruction::Mul: 44727b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerMult, I); 44876aa662cSKarthik Bhat case Instruction::And: 44927b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAnd, I); 45076aa662cSKarthik Bhat case Instruction::Or: 45127b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerOr, I); 45276aa662cSKarthik Bhat case Instruction::Xor: 45327b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerXor, I); 45476aa662cSKarthik Bhat case Instruction::FMul: 455c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatMult, I, UAI); 45676aa662cSKarthik Bhat case Instruction::FSub: 45776aa662cSKarthik Bhat case Instruction::FAdd: 458c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatAdd, I, UAI); 45976aa662cSKarthik Bhat case Instruction::FCmp: 46076aa662cSKarthik Bhat case Instruction::ICmp: 46176aa662cSKarthik Bhat case Instruction::Select: 46276aa662cSKarthik Bhat if (Kind != RK_IntegerMinMax && 46376aa662cSKarthik Bhat (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 46427b2c39eSTyler Nowicki return InstDesc(false, I); 46576aa662cSKarthik Bhat return isMinMaxSelectCmpPattern(I, Prev); 46676aa662cSKarthik Bhat } 46776aa662cSKarthik Bhat } 46876aa662cSKarthik Bhat 4690a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf( 47076aa662cSKarthik Bhat Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 47176aa662cSKarthik Bhat unsigned NumUses = 0; 47276aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 47376aa662cSKarthik Bhat ++Use) { 47476aa662cSKarthik Bhat if (Insts.count(dyn_cast<Instruction>(*Use))) 47576aa662cSKarthik Bhat ++NumUses; 47676aa662cSKarthik Bhat if (NumUses > 1) 47776aa662cSKarthik Bhat return true; 47876aa662cSKarthik Bhat } 47976aa662cSKarthik Bhat 48076aa662cSKarthik Bhat return false; 48176aa662cSKarthik Bhat } 4820a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 4830a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 48476aa662cSKarthik Bhat 48576aa662cSKarthik Bhat BasicBlock *Header = TheLoop->getHeader(); 48676aa662cSKarthik Bhat Function &F = *Header->getParent(); 4878dd66e57SNirav Dave bool HasFunNoNaNAttr = 48876aa662cSKarthik Bhat F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 48976aa662cSKarthik Bhat 49076aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 49176aa662cSKarthik Bhat DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 49276aa662cSKarthik Bhat return true; 49376aa662cSKarthik Bhat } 49476aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 49576aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 49676aa662cSKarthik Bhat return true; 49776aa662cSKarthik Bhat } 49876aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 49976aa662cSKarthik Bhat DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 50076aa662cSKarthik Bhat return true; 50176aa662cSKarthik Bhat } 50276aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 50376aa662cSKarthik Bhat DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 50476aa662cSKarthik Bhat return true; 50576aa662cSKarthik Bhat } 50676aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 50776aa662cSKarthik Bhat DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 50876aa662cSKarthik Bhat return true; 50976aa662cSKarthik Bhat } 51076aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 51176aa662cSKarthik Bhat RedDes)) { 51276aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 51376aa662cSKarthik Bhat return true; 51476aa662cSKarthik Bhat } 51576aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 51676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 51776aa662cSKarthik Bhat return true; 51876aa662cSKarthik Bhat } 51976aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 52076aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 52176aa662cSKarthik Bhat return true; 52276aa662cSKarthik Bhat } 52376aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 52476aa662cSKarthik Bhat DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 52576aa662cSKarthik Bhat return true; 52676aa662cSKarthik Bhat } 52776aa662cSKarthik Bhat // Not a reduction of known type. 52876aa662cSKarthik Bhat return false; 52976aa662cSKarthik Bhat } 53076aa662cSKarthik Bhat 5312ff59d43SAyal Zaks bool RecurrenceDescriptor::isFirstOrderRecurrence( 5322ff59d43SAyal Zaks PHINode *Phi, Loop *TheLoop, 5332ff59d43SAyal Zaks DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 53429c997c1SMatthew Simpson 53529c997c1SMatthew Simpson // Ensure the phi node is in the loop header and has two incoming values. 53629c997c1SMatthew Simpson if (Phi->getParent() != TheLoop->getHeader() || 53729c997c1SMatthew Simpson Phi->getNumIncomingValues() != 2) 53829c997c1SMatthew Simpson return false; 53929c997c1SMatthew Simpson 54029c997c1SMatthew Simpson // Ensure the loop has a preheader and a single latch block. The loop 54129c997c1SMatthew Simpson // vectorizer will need the latch to set up the next iteration of the loop. 54229c997c1SMatthew Simpson auto *Preheader = TheLoop->getLoopPreheader(); 54329c997c1SMatthew Simpson auto *Latch = TheLoop->getLoopLatch(); 54429c997c1SMatthew Simpson if (!Preheader || !Latch) 54529c997c1SMatthew Simpson return false; 54629c997c1SMatthew Simpson 54729c997c1SMatthew Simpson // Ensure the phi node's incoming blocks are the loop preheader and latch. 54829c997c1SMatthew Simpson if (Phi->getBasicBlockIndex(Preheader) < 0 || 54929c997c1SMatthew Simpson Phi->getBasicBlockIndex(Latch) < 0) 55029c997c1SMatthew Simpson return false; 55129c997c1SMatthew Simpson 55229c997c1SMatthew Simpson // Get the previous value. The previous value comes from the latch edge while 55329c997c1SMatthew Simpson // the initial value comes form the preheader edge. 55429c997c1SMatthew Simpson auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 5552ff59d43SAyal Zaks if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 5562ff59d43SAyal Zaks SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 55729c997c1SMatthew Simpson return false; 55829c997c1SMatthew Simpson 55900dc1b74SAnna Thomas // Ensure every user of the phi node is dominated by the previous value. 56000dc1b74SAnna Thomas // The dominance requirement ensures the loop vectorizer will not need to 56100dc1b74SAnna Thomas // vectorize the initial value prior to the first iteration of the loop. 5622ff59d43SAyal Zaks // TODO: Consider extending this sinking to handle other kinds of instructions 5632ff59d43SAyal Zaks // and expressions, beyond sinking a single cast past Previous. 5642ff59d43SAyal Zaks if (Phi->hasOneUse()) { 5652ff59d43SAyal Zaks auto *I = Phi->user_back(); 5662ff59d43SAyal Zaks if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && 5672ff59d43SAyal Zaks DT->dominates(Previous, I->user_back())) { 56825e2800eSAyal Zaks if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. 5692ff59d43SAyal Zaks SinkAfter[I] = Previous; 5702ff59d43SAyal Zaks return true; 5712ff59d43SAyal Zaks } 5722ff59d43SAyal Zaks } 5732ff59d43SAyal Zaks 574dcdb325fSAnna Thomas for (User *U : Phi->users()) 575dcdb325fSAnna Thomas if (auto *I = dyn_cast<Instruction>(U)) { 57629c997c1SMatthew Simpson if (!DT->dominates(Previous, I)) 57729c997c1SMatthew Simpson return false; 57800dc1b74SAnna Thomas } 57929c997c1SMatthew Simpson 58029c997c1SMatthew Simpson return true; 58129c997c1SMatthew Simpson } 58229c997c1SMatthew Simpson 58376aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for 58476aa662cSKarthik Bhat /// the operation K. 5850a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 5860a91310cSTyler Nowicki Type *Tp) { 58776aa662cSKarthik Bhat switch (K) { 58876aa662cSKarthik Bhat case RK_IntegerXor: 58976aa662cSKarthik Bhat case RK_IntegerAdd: 59076aa662cSKarthik Bhat case RK_IntegerOr: 59176aa662cSKarthik Bhat // Adding, Xoring, Oring zero to a number does not change it. 59276aa662cSKarthik Bhat return ConstantInt::get(Tp, 0); 59376aa662cSKarthik Bhat case RK_IntegerMult: 59476aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 59576aa662cSKarthik Bhat return ConstantInt::get(Tp, 1); 59676aa662cSKarthik Bhat case RK_IntegerAnd: 59776aa662cSKarthik Bhat // AND-ing a number with an all-1 value does not change it. 59876aa662cSKarthik Bhat return ConstantInt::get(Tp, -1, true); 59976aa662cSKarthik Bhat case RK_FloatMult: 60076aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 60176aa662cSKarthik Bhat return ConstantFP::get(Tp, 1.0L); 60276aa662cSKarthik Bhat case RK_FloatAdd: 60376aa662cSKarthik Bhat // Adding zero to a number does not change it. 60476aa662cSKarthik Bhat return ConstantFP::get(Tp, 0.0L); 60576aa662cSKarthik Bhat default: 6060a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence kind"); 60776aa662cSKarthik Bhat } 60876aa662cSKarthik Bhat } 60976aa662cSKarthik Bhat 6100a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator. 6110a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 61276aa662cSKarthik Bhat switch (Kind) { 61376aa662cSKarthik Bhat case RK_IntegerAdd: 61476aa662cSKarthik Bhat return Instruction::Add; 61576aa662cSKarthik Bhat case RK_IntegerMult: 61676aa662cSKarthik Bhat return Instruction::Mul; 61776aa662cSKarthik Bhat case RK_IntegerOr: 61876aa662cSKarthik Bhat return Instruction::Or; 61976aa662cSKarthik Bhat case RK_IntegerAnd: 62076aa662cSKarthik Bhat return Instruction::And; 62176aa662cSKarthik Bhat case RK_IntegerXor: 62276aa662cSKarthik Bhat return Instruction::Xor; 62376aa662cSKarthik Bhat case RK_FloatMult: 62476aa662cSKarthik Bhat return Instruction::FMul; 62576aa662cSKarthik Bhat case RK_FloatAdd: 62676aa662cSKarthik Bhat return Instruction::FAdd; 62776aa662cSKarthik Bhat case RK_IntegerMinMax: 62876aa662cSKarthik Bhat return Instruction::ICmp; 62976aa662cSKarthik Bhat case RK_FloatMinMax: 63076aa662cSKarthik Bhat return Instruction::FCmp; 63176aa662cSKarthik Bhat default: 6320a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence operation"); 63376aa662cSKarthik Bhat } 63476aa662cSKarthik Bhat } 63576aa662cSKarthik Bhat 63627b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 63727b2c39eSTyler Nowicki MinMaxRecurrenceKind RK, 63876aa662cSKarthik Bhat Value *Left, Value *Right) { 63976aa662cSKarthik Bhat CmpInst::Predicate P = CmpInst::ICMP_NE; 64076aa662cSKarthik Bhat switch (RK) { 64176aa662cSKarthik Bhat default: 6420a91310cSTyler Nowicki llvm_unreachable("Unknown min/max recurrence kind"); 64327b2c39eSTyler Nowicki case MRK_UIntMin: 64476aa662cSKarthik Bhat P = CmpInst::ICMP_ULT; 64576aa662cSKarthik Bhat break; 64627b2c39eSTyler Nowicki case MRK_UIntMax: 64776aa662cSKarthik Bhat P = CmpInst::ICMP_UGT; 64876aa662cSKarthik Bhat break; 64927b2c39eSTyler Nowicki case MRK_SIntMin: 65076aa662cSKarthik Bhat P = CmpInst::ICMP_SLT; 65176aa662cSKarthik Bhat break; 65227b2c39eSTyler Nowicki case MRK_SIntMax: 65376aa662cSKarthik Bhat P = CmpInst::ICMP_SGT; 65476aa662cSKarthik Bhat break; 65527b2c39eSTyler Nowicki case MRK_FloatMin: 65676aa662cSKarthik Bhat P = CmpInst::FCMP_OLT; 65776aa662cSKarthik Bhat break; 65827b2c39eSTyler Nowicki case MRK_FloatMax: 65976aa662cSKarthik Bhat P = CmpInst::FCMP_OGT; 66076aa662cSKarthik Bhat break; 66176aa662cSKarthik Bhat } 66276aa662cSKarthik Bhat 663629c4115SSanjay Patel // We only match FP sequences that are 'fast', so we can unconditionally 66450a4c27fSJames Molloy // set it on any generated instructions. 66550a4c27fSJames Molloy IRBuilder<>::FastMathFlagGuard FMFG(Builder); 66650a4c27fSJames Molloy FastMathFlags FMF; 667629c4115SSanjay Patel FMF.setFast(); 668a252815bSSanjay Patel Builder.setFastMathFlags(FMF); 66950a4c27fSJames Molloy 67076aa662cSKarthik Bhat Value *Cmp; 67127b2c39eSTyler Nowicki if (RK == MRK_FloatMin || RK == MRK_FloatMax) 67276aa662cSKarthik Bhat Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 67376aa662cSKarthik Bhat else 67476aa662cSKarthik Bhat Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 67576aa662cSKarthik Bhat 67676aa662cSKarthik Bhat Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 67776aa662cSKarthik Bhat return Select; 67876aa662cSKarthik Bhat } 67924e6cc2dSKarthik Bhat 6801bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 6814750c785SDorit Nuzman const SCEV *Step, BinaryOperator *BOp, 6824750c785SDorit Nuzman SmallVectorImpl<Instruction *> *Casts) 683376a18bdSElena Demikhovsky : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 6841bbf15c5SJames Molloy assert(IK != IK_NoInduction && "Not an induction"); 685c434d091SElena Demikhovsky 686c434d091SElena Demikhovsky // Start value type should match the induction kind and the value 687c434d091SElena Demikhovsky // itself should not be null. 6881bbf15c5SJames Molloy assert(StartValue && "StartValue is null"); 6891bbf15c5SJames Molloy assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 6901bbf15c5SJames Molloy "StartValue is not a pointer for pointer induction"); 6911bbf15c5SJames Molloy assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 6921bbf15c5SJames Molloy "StartValue is not an integer for integer induction"); 693c434d091SElena Demikhovsky 694c434d091SElena Demikhovsky // Check the Step Value. It should be non-zero integer value. 695c434d091SElena Demikhovsky assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 696c434d091SElena Demikhovsky "Step value is zero"); 697c434d091SElena Demikhovsky 698c434d091SElena Demikhovsky assert((IK != IK_PtrInduction || getConstIntStepValue()) && 699c434d091SElena Demikhovsky "Step value should be constant for pointer induction"); 700376a18bdSElena Demikhovsky assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 701376a18bdSElena Demikhovsky "StepValue is not an integer"); 702376a18bdSElena Demikhovsky 703376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 704376a18bdSElena Demikhovsky "StepValue is not FP for FpInduction"); 705376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || (InductionBinOp && 706376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 707376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub))) && 708376a18bdSElena Demikhovsky "Binary opcode should be specified for FP induction"); 7094750c785SDorit Nuzman 7104750c785SDorit Nuzman if (Casts) { 7114750c785SDorit Nuzman for (auto &Inst : *Casts) { 7124750c785SDorit Nuzman RedundantCasts.push_back(Inst); 7134750c785SDorit Nuzman } 7144750c785SDorit Nuzman } 7151bbf15c5SJames Molloy } 7161bbf15c5SJames Molloy 7171bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const { 718c434d091SElena Demikhovsky ConstantInt *ConstStep = getConstIntStepValue(); 719c434d091SElena Demikhovsky if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 720c434d091SElena Demikhovsky return ConstStep->getSExtValue(); 7211bbf15c5SJames Molloy return 0; 7221bbf15c5SJames Molloy } 7231bbf15c5SJames Molloy 724c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const { 725c434d091SElena Demikhovsky if (isa<SCEVConstant>(Step)) 726c434d091SElena Demikhovsky return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 727c434d091SElena Demikhovsky return nullptr; 728c434d091SElena Demikhovsky } 729c434d091SElena Demikhovsky 730c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 731c434d091SElena Demikhovsky ScalarEvolution *SE, 732c434d091SElena Demikhovsky const DataLayout& DL) const { 733c434d091SElena Demikhovsky 734c434d091SElena Demikhovsky SCEVExpander Exp(*SE, DL, "induction"); 735376a18bdSElena Demikhovsky assert(Index->getType() == Step->getType() && 736376a18bdSElena Demikhovsky "Index type does not match StepValue type"); 7371bbf15c5SJames Molloy switch (IK) { 738c434d091SElena Demikhovsky case IK_IntInduction: { 7391bbf15c5SJames Molloy assert(Index->getType() == StartValue->getType() && 7401bbf15c5SJames Molloy "Index type does not match StartValue type"); 741c434d091SElena Demikhovsky 742c434d091SElena Demikhovsky // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 743c434d091SElena Demikhovsky // and calculate (Start + Index * Step) for all cases, without 744c434d091SElena Demikhovsky // special handling for "isOne" and "isMinusOne". 745c434d091SElena Demikhovsky // But in the real life the result code getting worse. We mix SCEV 746c434d091SElena Demikhovsky // expressions and ADD/SUB operations and receive redundant 747c434d091SElena Demikhovsky // intermediate values being calculated in different ways and 748c434d091SElena Demikhovsky // Instcombine is unable to reduce them all. 749c434d091SElena Demikhovsky 750c434d091SElena Demikhovsky if (getConstIntStepValue() && 751c434d091SElena Demikhovsky getConstIntStepValue()->isMinusOne()) 7521bbf15c5SJames Molloy return B.CreateSub(StartValue, Index); 753c434d091SElena Demikhovsky if (getConstIntStepValue() && 754c434d091SElena Demikhovsky getConstIntStepValue()->isOne()) 7551bbf15c5SJames Molloy return B.CreateAdd(StartValue, Index); 756c434d091SElena Demikhovsky const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 757c434d091SElena Demikhovsky SE->getMulExpr(Step, SE->getSCEV(Index))); 758c434d091SElena Demikhovsky return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 759c434d091SElena Demikhovsky } 760c434d091SElena Demikhovsky case IK_PtrInduction: { 761c434d091SElena Demikhovsky assert(isa<SCEVConstant>(Step) && 762c434d091SElena Demikhovsky "Expected constant step for pointer induction"); 763c434d091SElena Demikhovsky const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 764c434d091SElena Demikhovsky Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 7651bbf15c5SJames Molloy return B.CreateGEP(nullptr, StartValue, Index); 766c434d091SElena Demikhovsky } 767376a18bdSElena Demikhovsky case IK_FpInduction: { 768376a18bdSElena Demikhovsky assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 769376a18bdSElena Demikhovsky assert(InductionBinOp && 770376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 771376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub) && 772376a18bdSElena Demikhovsky "Original bin op should be defined for FP induction"); 773376a18bdSElena Demikhovsky 774376a18bdSElena Demikhovsky Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 775376a18bdSElena Demikhovsky 776376a18bdSElena Demikhovsky // Floating point operations had to be 'fast' to enable the induction. 777376a18bdSElena Demikhovsky FastMathFlags Flags; 778629c4115SSanjay Patel Flags.setFast(); 779376a18bdSElena Demikhovsky 780376a18bdSElena Demikhovsky Value *MulExp = B.CreateFMul(StepValue, Index); 781376a18bdSElena Demikhovsky if (isa<Instruction>(MulExp)) 782376a18bdSElena Demikhovsky // We have to check, the MulExp may be a constant. 783376a18bdSElena Demikhovsky cast<Instruction>(MulExp)->setFastMathFlags(Flags); 784376a18bdSElena Demikhovsky 785376a18bdSElena Demikhovsky Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 786376a18bdSElena Demikhovsky MulExp, "induction"); 787376a18bdSElena Demikhovsky if (isa<Instruction>(BOp)) 788376a18bdSElena Demikhovsky cast<Instruction>(BOp)->setFastMathFlags(Flags); 789376a18bdSElena Demikhovsky 790376a18bdSElena Demikhovsky return BOp; 791376a18bdSElena Demikhovsky } 7921bbf15c5SJames Molloy case IK_NoInduction: 7931bbf15c5SJames Molloy return nullptr; 7941bbf15c5SJames Molloy } 7951bbf15c5SJames Molloy llvm_unreachable("invalid enum"); 7961bbf15c5SJames Molloy } 7971bbf15c5SJames Molloy 798376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 799376a18bdSElena Demikhovsky ScalarEvolution *SE, 800376a18bdSElena Demikhovsky InductionDescriptor &D) { 801376a18bdSElena Demikhovsky 802376a18bdSElena Demikhovsky // Here we only handle FP induction variables. 803376a18bdSElena Demikhovsky assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 804376a18bdSElena Demikhovsky 805376a18bdSElena Demikhovsky if (TheLoop->getHeader() != Phi->getParent()) 806376a18bdSElena Demikhovsky return false; 807376a18bdSElena Demikhovsky 808376a18bdSElena Demikhovsky // The loop may have multiple entrances or multiple exits; we can analyze 809376a18bdSElena Demikhovsky // this phi if it has a unique entry value and a unique backedge value. 810376a18bdSElena Demikhovsky if (Phi->getNumIncomingValues() != 2) 811376a18bdSElena Demikhovsky return false; 812376a18bdSElena Demikhovsky Value *BEValue = nullptr, *StartValue = nullptr; 813376a18bdSElena Demikhovsky if (TheLoop->contains(Phi->getIncomingBlock(0))) { 814376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(0); 815376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(1); 816376a18bdSElena Demikhovsky } else { 817376a18bdSElena Demikhovsky assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 818376a18bdSElena Demikhovsky "Unexpected Phi node in the loop"); 819376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(1); 820376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(0); 821376a18bdSElena Demikhovsky } 822376a18bdSElena Demikhovsky 823376a18bdSElena Demikhovsky BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 824376a18bdSElena Demikhovsky if (!BOp) 825376a18bdSElena Demikhovsky return false; 826376a18bdSElena Demikhovsky 827376a18bdSElena Demikhovsky Value *Addend = nullptr; 828376a18bdSElena Demikhovsky if (BOp->getOpcode() == Instruction::FAdd) { 829376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 830376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 831376a18bdSElena Demikhovsky else if (BOp->getOperand(1) == Phi) 832376a18bdSElena Demikhovsky Addend = BOp->getOperand(0); 833376a18bdSElena Demikhovsky } else if (BOp->getOpcode() == Instruction::FSub) 834376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 835376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 836376a18bdSElena Demikhovsky 837376a18bdSElena Demikhovsky if (!Addend) 838376a18bdSElena Demikhovsky return false; 839376a18bdSElena Demikhovsky 840376a18bdSElena Demikhovsky // The addend should be loop invariant 841376a18bdSElena Demikhovsky if (auto *I = dyn_cast<Instruction>(Addend)) 842376a18bdSElena Demikhovsky if (TheLoop->contains(I)) 843376a18bdSElena Demikhovsky return false; 844376a18bdSElena Demikhovsky 845376a18bdSElena Demikhovsky // FP Step has unknown SCEV 846376a18bdSElena Demikhovsky const SCEV *Step = SE->getUnknown(Addend); 847376a18bdSElena Demikhovsky D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 848376a18bdSElena Demikhovsky return true; 849376a18bdSElena Demikhovsky } 850376a18bdSElena Demikhovsky 8514750c785SDorit Nuzman /// This function is called when we suspect that the update-chain of a phi node 8524750c785SDorit Nuzman /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 8534750c785SDorit Nuzman /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 8544750c785SDorit Nuzman /// predicate P under which the SCEV expression for the phi can be the 8554750c785SDorit Nuzman /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 8564750c785SDorit Nuzman /// cast instructions that are involved in the update-chain of this induction. 8574750c785SDorit Nuzman /// A caller that adds the required runtime predicate can be free to drop these 8584750c785SDorit Nuzman /// cast instructions, and compute the phi using \p AR (instead of some scev 8594750c785SDorit Nuzman /// expression with casts). 8604750c785SDorit Nuzman /// 8614750c785SDorit Nuzman /// For example, without a predicate the scev expression can take the following 8624750c785SDorit Nuzman /// form: 8634750c785SDorit Nuzman /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 8644750c785SDorit Nuzman /// 8654750c785SDorit Nuzman /// It corresponds to the following IR sequence: 8664750c785SDorit Nuzman /// %for.body: 8674750c785SDorit Nuzman /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 8684750c785SDorit Nuzman /// %casted_phi = "ExtTrunc i64 %x" 8694750c785SDorit Nuzman /// %add = add i64 %casted_phi, %step 8704750c785SDorit Nuzman /// 8714750c785SDorit Nuzman /// where %x is given in \p PN, 8724750c785SDorit Nuzman /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 8734750c785SDorit Nuzman /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 8744750c785SDorit Nuzman /// several forms, for example, such as: 8754750c785SDorit Nuzman /// ExtTrunc1: %casted_phi = and %x, 2^n-1 8764750c785SDorit Nuzman /// or: 8774750c785SDorit Nuzman /// ExtTrunc2: %t = shl %x, m 8784750c785SDorit Nuzman /// %casted_phi = ashr %t, m 8794750c785SDorit Nuzman /// 8804750c785SDorit Nuzman /// If we are able to find such sequence, we return the instructions 8814750c785SDorit Nuzman /// we found, namely %casted_phi and the instructions on its use-def chain up 8824750c785SDorit Nuzman /// to the phi (not including the phi). 883802e6255SBenjamin Kramer static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 884802e6255SBenjamin Kramer const SCEVUnknown *PhiScev, 885802e6255SBenjamin Kramer const SCEVAddRecExpr *AR, 886802e6255SBenjamin Kramer SmallVectorImpl<Instruction *> &CastInsts) { 8874750c785SDorit Nuzman 8884750c785SDorit Nuzman assert(CastInsts.empty() && "CastInsts is expected to be empty."); 8894750c785SDorit Nuzman auto *PN = cast<PHINode>(PhiScev->getValue()); 8904750c785SDorit Nuzman assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 8914750c785SDorit Nuzman const Loop *L = AR->getLoop(); 8924750c785SDorit Nuzman 8934750c785SDorit Nuzman // Find any cast instructions that participate in the def-use chain of 8944750c785SDorit Nuzman // PhiScev in the loop. 8954750c785SDorit Nuzman // FORNOW/TODO: We currently expect the def-use chain to include only 8964750c785SDorit Nuzman // two-operand instructions, where one of the operands is an invariant. 8974750c785SDorit Nuzman // createAddRecFromPHIWithCasts() currently does not support anything more 8984750c785SDorit Nuzman // involved than that, so we keep the search simple. This can be 8994750c785SDorit Nuzman // extended/generalized as needed. 9004750c785SDorit Nuzman 9014750c785SDorit Nuzman auto getDef = [&](const Value *Val) -> Value * { 9024750c785SDorit Nuzman const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 9034750c785SDorit Nuzman if (!BinOp) 9044750c785SDorit Nuzman return nullptr; 9054750c785SDorit Nuzman Value *Op0 = BinOp->getOperand(0); 9064750c785SDorit Nuzman Value *Op1 = BinOp->getOperand(1); 9074750c785SDorit Nuzman Value *Def = nullptr; 9084750c785SDorit Nuzman if (L->isLoopInvariant(Op0)) 9094750c785SDorit Nuzman Def = Op1; 9104750c785SDorit Nuzman else if (L->isLoopInvariant(Op1)) 9114750c785SDorit Nuzman Def = Op0; 9124750c785SDorit Nuzman return Def; 9134750c785SDorit Nuzman }; 9144750c785SDorit Nuzman 9154750c785SDorit Nuzman // Look for the instruction that defines the induction via the 9164750c785SDorit Nuzman // loop backedge. 9174750c785SDorit Nuzman BasicBlock *Latch = L->getLoopLatch(); 9184750c785SDorit Nuzman if (!Latch) 9194750c785SDorit Nuzman return false; 9204750c785SDorit Nuzman Value *Val = PN->getIncomingValueForBlock(Latch); 9214750c785SDorit Nuzman if (!Val) 9224750c785SDorit Nuzman return false; 9234750c785SDorit Nuzman 9244750c785SDorit Nuzman // Follow the def-use chain until the induction phi is reached. 9254750c785SDorit Nuzman // If on the way we encounter a Value that has the same SCEV Expr as the 9264750c785SDorit Nuzman // phi node, we can consider the instructions we visit from that point 9274750c785SDorit Nuzman // as part of the cast-sequence that can be ignored. 9284750c785SDorit Nuzman bool InCastSequence = false; 9294750c785SDorit Nuzman auto *Inst = dyn_cast<Instruction>(Val); 9304750c785SDorit Nuzman while (Val != PN) { 9314750c785SDorit Nuzman // If we encountered a phi node other than PN, or if we left the loop, 9324750c785SDorit Nuzman // we bail out. 9334750c785SDorit Nuzman if (!Inst || !L->contains(Inst)) { 9344750c785SDorit Nuzman return false; 9354750c785SDorit Nuzman } 9364750c785SDorit Nuzman auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 9374750c785SDorit Nuzman if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 9384750c785SDorit Nuzman InCastSequence = true; 9394750c785SDorit Nuzman if (InCastSequence) { 9404750c785SDorit Nuzman // Only the last instruction in the cast sequence is expected to have 9414750c785SDorit Nuzman // uses outside the induction def-use chain. 9424750c785SDorit Nuzman if (!CastInsts.empty()) 9434750c785SDorit Nuzman if (!Inst->hasOneUse()) 9444750c785SDorit Nuzman return false; 9454750c785SDorit Nuzman CastInsts.push_back(Inst); 9464750c785SDorit Nuzman } 9474750c785SDorit Nuzman Val = getDef(Val); 9484750c785SDorit Nuzman if (!Val) 9494750c785SDorit Nuzman return false; 9504750c785SDorit Nuzman Inst = dyn_cast<Instruction>(Val); 9514750c785SDorit Nuzman } 9524750c785SDorit Nuzman 9534750c785SDorit Nuzman return InCastSequence; 9544750c785SDorit Nuzman } 9554750c785SDorit Nuzman 956376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 957c05bab8aSSilviu Baranga PredicatedScalarEvolution &PSE, 958c05bab8aSSilviu Baranga InductionDescriptor &D, 959c05bab8aSSilviu Baranga bool Assume) { 960c05bab8aSSilviu Baranga Type *PhiTy = Phi->getType(); 961376a18bdSElena Demikhovsky 962376a18bdSElena Demikhovsky // Handle integer and pointer inductions variables. 963376a18bdSElena Demikhovsky // Now we handle also FP induction but not trying to make a 964376a18bdSElena Demikhovsky // recurrent expression from the PHI node in-place. 965376a18bdSElena Demikhovsky 966376a18bdSElena Demikhovsky if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 967376a18bdSElena Demikhovsky !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 968c05bab8aSSilviu Baranga return false; 969c05bab8aSSilviu Baranga 970376a18bdSElena Demikhovsky if (PhiTy->isFloatingPointTy()) 971376a18bdSElena Demikhovsky return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 972376a18bdSElena Demikhovsky 973c05bab8aSSilviu Baranga const SCEV *PhiScev = PSE.getSCEV(Phi); 974c05bab8aSSilviu Baranga const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 975c05bab8aSSilviu Baranga 976c05bab8aSSilviu Baranga // We need this expression to be an AddRecExpr. 977c05bab8aSSilviu Baranga if (Assume && !AR) 978c05bab8aSSilviu Baranga AR = PSE.getAsAddRec(Phi); 979c05bab8aSSilviu Baranga 980c05bab8aSSilviu Baranga if (!AR) { 981c05bab8aSSilviu Baranga DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 982c05bab8aSSilviu Baranga return false; 983c05bab8aSSilviu Baranga } 984c05bab8aSSilviu Baranga 9854750c785SDorit Nuzman // Record any Cast instructions that participate in the induction update 9864750c785SDorit Nuzman const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 9874750c785SDorit Nuzman // If we started from an UnknownSCEV, and managed to build an addRecurrence 9884750c785SDorit Nuzman // only after enabling Assume with PSCEV, this means we may have encountered 9894750c785SDorit Nuzman // cast instructions that required adding a runtime check in order to 9904750c785SDorit Nuzman // guarantee the correctness of the AddRecurence respresentation of the 9914750c785SDorit Nuzman // induction. 9924750c785SDorit Nuzman if (PhiScev != AR && SymbolicPhi) { 9934750c785SDorit Nuzman SmallVector<Instruction *, 2> Casts; 9944750c785SDorit Nuzman if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 9954750c785SDorit Nuzman return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 9964750c785SDorit Nuzman } 9974750c785SDorit Nuzman 998376a18bdSElena Demikhovsky return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 999c05bab8aSSilviu Baranga } 1000c05bab8aSSilviu Baranga 10014750c785SDorit Nuzman bool InductionDescriptor::isInductionPHI( 10024750c785SDorit Nuzman PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 10034750c785SDorit Nuzman InductionDescriptor &D, const SCEV *Expr, 10044750c785SDorit Nuzman SmallVectorImpl<Instruction *> *CastsToIgnore) { 100524e6cc2dSKarthik Bhat Type *PhiTy = Phi->getType(); 100624e6cc2dSKarthik Bhat // We only handle integer and pointer inductions variables. 100724e6cc2dSKarthik Bhat if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 100824e6cc2dSKarthik Bhat return false; 100924e6cc2dSKarthik Bhat 101024e6cc2dSKarthik Bhat // Check that the PHI is consecutive. 1011c05bab8aSSilviu Baranga const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 101224e6cc2dSKarthik Bhat const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1013c05bab8aSSilviu Baranga 101424e6cc2dSKarthik Bhat if (!AR) { 101524e6cc2dSKarthik Bhat DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 101624e6cc2dSKarthik Bhat return false; 101724e6cc2dSKarthik Bhat } 101824e6cc2dSKarthik Bhat 1019ee31cbe3SMichael Kuperstein if (AR->getLoop() != TheLoop) { 1020ee31cbe3SMichael Kuperstein // FIXME: We should treat this as a uniform. Unfortunately, we 1021ee31cbe3SMichael Kuperstein // don't currently know how to handled uniform PHIs. 1022ee31cbe3SMichael Kuperstein DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1023ee31cbe3SMichael Kuperstein return false; 1024ee31cbe3SMichael Kuperstein } 1025ee31cbe3SMichael Kuperstein 10261bbf15c5SJames Molloy Value *StartValue = 10271bbf15c5SJames Molloy Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 102824e6cc2dSKarthik Bhat const SCEV *Step = AR->getStepRecurrence(*SE); 102924e6cc2dSKarthik Bhat // Calculate the pointer stride and check if it is consecutive. 1030c434d091SElena Demikhovsky // The stride may be a constant or a loop invariant integer value. 1031c434d091SElena Demikhovsky const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1032376a18bdSElena Demikhovsky if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 103324e6cc2dSKarthik Bhat return false; 103424e6cc2dSKarthik Bhat 103524e6cc2dSKarthik Bhat if (PhiTy->isIntegerTy()) { 10364750c785SDorit Nuzman D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr, 10374750c785SDorit Nuzman CastsToIgnore); 103824e6cc2dSKarthik Bhat return true; 103924e6cc2dSKarthik Bhat } 104024e6cc2dSKarthik Bhat 104124e6cc2dSKarthik Bhat assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1042c434d091SElena Demikhovsky // Pointer induction should be a constant. 1043c434d091SElena Demikhovsky if (!ConstStep) 1044c434d091SElena Demikhovsky return false; 1045c434d091SElena Demikhovsky 1046c434d091SElena Demikhovsky ConstantInt *CV = ConstStep->getValue(); 104724e6cc2dSKarthik Bhat Type *PointerElementType = PhiTy->getPointerElementType(); 104824e6cc2dSKarthik Bhat // The pointer stride cannot be determined if the pointer element type is not 104924e6cc2dSKarthik Bhat // sized. 105024e6cc2dSKarthik Bhat if (!PointerElementType->isSized()) 105124e6cc2dSKarthik Bhat return false; 105224e6cc2dSKarthik Bhat 105324e6cc2dSKarthik Bhat const DataLayout &DL = Phi->getModule()->getDataLayout(); 105424e6cc2dSKarthik Bhat int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1055b58f32f7SDavid Majnemer if (!Size) 1056b58f32f7SDavid Majnemer return false; 1057b58f32f7SDavid Majnemer 105824e6cc2dSKarthik Bhat int64_t CVSize = CV->getSExtValue(); 105924e6cc2dSKarthik Bhat if (CVSize % Size) 106024e6cc2dSKarthik Bhat return false; 1061c434d091SElena Demikhovsky auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 1062c434d091SElena Demikhovsky true /* signed */); 10631bbf15c5SJames Molloy D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 106424e6cc2dSKarthik Bhat return true; 106524e6cc2dSKarthik Bhat } 1066c5b7b555SAshutosh Nema 10674a000883SChandler Carruth bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 10684a000883SChandler Carruth bool PreserveLCSSA) { 10694a000883SChandler Carruth bool Changed = false; 10704a000883SChandler Carruth 10714a000883SChandler Carruth // We re-use a vector for the in-loop predecesosrs. 10724a000883SChandler Carruth SmallVector<BasicBlock *, 4> InLoopPredecessors; 10734a000883SChandler Carruth 10744a000883SChandler Carruth auto RewriteExit = [&](BasicBlock *BB) { 10754a000883SChandler Carruth assert(InLoopPredecessors.empty() && 10764a000883SChandler Carruth "Must start with an empty predecessors list!"); 10774a000883SChandler Carruth auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 10784a000883SChandler Carruth 10794a000883SChandler Carruth // See if there are any non-loop predecessors of this exit block and 10804a000883SChandler Carruth // keep track of the in-loop predecessors. 10814a000883SChandler Carruth bool IsDedicatedExit = true; 10824a000883SChandler Carruth for (auto *PredBB : predecessors(BB)) 10834a000883SChandler Carruth if (L->contains(PredBB)) { 10844a000883SChandler Carruth if (isa<IndirectBrInst>(PredBB->getTerminator())) 10854a000883SChandler Carruth // We cannot rewrite exiting edges from an indirectbr. 10864a000883SChandler Carruth return false; 10874a000883SChandler Carruth 10884a000883SChandler Carruth InLoopPredecessors.push_back(PredBB); 10894a000883SChandler Carruth } else { 10904a000883SChandler Carruth IsDedicatedExit = false; 10914a000883SChandler Carruth } 10924a000883SChandler Carruth 10934a000883SChandler Carruth assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 10944a000883SChandler Carruth 10954a000883SChandler Carruth // Nothing to do if this is already a dedicated exit. 10964a000883SChandler Carruth if (IsDedicatedExit) 10974a000883SChandler Carruth return false; 10984a000883SChandler Carruth 10994a000883SChandler Carruth auto *NewExitBB = SplitBlockPredecessors( 11004a000883SChandler Carruth BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA); 11014a000883SChandler Carruth 11024a000883SChandler Carruth if (!NewExitBB) 11034a000883SChandler Carruth DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 11044a000883SChandler Carruth << *L << "\n"); 11054a000883SChandler Carruth else 11064a000883SChandler Carruth DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 11074a000883SChandler Carruth << NewExitBB->getName() << "\n"); 11084a000883SChandler Carruth return true; 11094a000883SChandler Carruth }; 11104a000883SChandler Carruth 11114a000883SChandler Carruth // Walk the exit blocks directly rather than building up a data structure for 11124a000883SChandler Carruth // them, but only visit each one once. 11134a000883SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 11144a000883SChandler Carruth for (auto *BB : L->blocks()) 11154a000883SChandler Carruth for (auto *SuccBB : successors(BB)) { 11164a000883SChandler Carruth // We're looking for exit blocks so skip in-loop successors. 11174a000883SChandler Carruth if (L->contains(SuccBB)) 11184a000883SChandler Carruth continue; 11194a000883SChandler Carruth 11204a000883SChandler Carruth // Visit each exit block exactly once. 11214a000883SChandler Carruth if (!Visited.insert(SuccBB).second) 11224a000883SChandler Carruth continue; 11234a000883SChandler Carruth 11244a000883SChandler Carruth Changed |= RewriteExit(SuccBB); 11254a000883SChandler Carruth } 11264a000883SChandler Carruth 11274a000883SChandler Carruth return Changed; 11284a000883SChandler Carruth } 11294a000883SChandler Carruth 1130c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop. 1131c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 1132c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 1133c5b7b555SAshutosh Nema 1134c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 1135c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 1136c5b7b555SAshutosh Nema // be adapted into a pointer. 1137c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 1138c5b7b555SAshutosh Nema auto Users = Inst.users(); 11390a16c228SDavid Majnemer if (any_of(Users, [&](User *U) { 1140c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 1141c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 1142c5b7b555SAshutosh Nema })) 1143c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 1144c5b7b555SAshutosh Nema } 1145c5b7b555SAshutosh Nema 1146c5b7b555SAshutosh Nema return UsedOutside; 1147c5b7b555SAshutosh Nema } 114831088a9dSChandler Carruth 114931088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 115031088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 115131088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 115231088a9dSChandler Carruth // pass manager, they must also preserve these. 115331088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 115431088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 115531088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 115631088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 115731088a9dSChandler Carruth 115831088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 115931088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 116031088a9dSChandler Carruth extern char &LoopSimplifyID; 116131088a9dSChandler Carruth extern char &LCSSAID; 116231088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 116331088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 116431088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 116531088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 1166c3ccf5d7SIgor Laevsky // This is used in the LPPassManager to perform LCSSA verification on passes 1167c3ccf5d7SIgor Laevsky // which preserve lcssa form 1168c3ccf5d7SIgor Laevsky AU.addRequired<LCSSAVerificationPass>(); 1169c3ccf5d7SIgor Laevsky AU.addPreserved<LCSSAVerificationPass>(); 117031088a9dSChandler Carruth 117131088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 117231088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 117331088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 117431088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 117531088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 117631088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 117731088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 117831088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 117931088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 118031088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 118131088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 118231088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 118331088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 118431088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 118531088a9dSChandler Carruth } 118631088a9dSChandler Carruth 118731088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 118831088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 118931088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 119031088a9dSChandler Carruth /// with: 119131088a9dSChandler Carruth /// 119231088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 119331088a9dSChandler Carruth /// 119431088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 119531088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 119631088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 119731088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 119831088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1199e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 120031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 120131088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 120231088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 120331088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 120431088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 120531088a9dSChandler Carruth } 1206963341c8SAdam Nemet 1207fe3def7cSAdam Nemet /// \brief Find string metadata for loop 1208fe3def7cSAdam Nemet /// 1209fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1210fe3def7cSAdam Nemet /// operand or null otherwise. If the string metadata is not found return 1211fe3def7cSAdam Nemet /// Optional's not-a-value. 1212fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 1213fe3def7cSAdam Nemet StringRef Name) { 1214963341c8SAdam Nemet MDNode *LoopID = TheLoop->getLoopID(); 1215fe3def7cSAdam Nemet // Return none if LoopID is false. 1216963341c8SAdam Nemet if (!LoopID) 1217fe3def7cSAdam Nemet return None; 1218293be666SAdam Nemet 1219293be666SAdam Nemet // First operand should refer to the loop id itself. 1220293be666SAdam Nemet assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1221293be666SAdam Nemet assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1222293be666SAdam Nemet 1223963341c8SAdam Nemet // Iterate over LoopID operands and look for MDString Metadata 1224963341c8SAdam Nemet for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1225963341c8SAdam Nemet MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1226963341c8SAdam Nemet if (!MD) 1227963341c8SAdam Nemet continue; 1228963341c8SAdam Nemet MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1229963341c8SAdam Nemet if (!S) 1230963341c8SAdam Nemet continue; 1231963341c8SAdam Nemet // Return true if MDString holds expected MetaData. 1232963341c8SAdam Nemet if (Name.equals(S->getString())) 1233fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 1234fe3def7cSAdam Nemet case 1: 1235fe3def7cSAdam Nemet return nullptr; 1236fe3def7cSAdam Nemet case 2: 1237fe3def7cSAdam Nemet return &MD->getOperand(1); 1238fe3def7cSAdam Nemet default: 1239fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 1240963341c8SAdam Nemet } 1241fe3def7cSAdam Nemet } 1242fe3def7cSAdam Nemet return None; 1243963341c8SAdam Nemet } 1244122f984aSEvgeniy Stepanov 12457ed5856aSAlina Sbirlea /// Does a BFS from a given node to all of its children inside a given loop. 12467ed5856aSAlina Sbirlea /// The returned vector of nodes includes the starting point. 12477ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> 12487ed5856aSAlina Sbirlea llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 12497ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> Worklist; 12507ed5856aSAlina Sbirlea auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 12517ed5856aSAlina Sbirlea // Only include subregions in the top level loop. 12527ed5856aSAlina Sbirlea BasicBlock *BB = DTN->getBlock(); 12537ed5856aSAlina Sbirlea if (CurLoop->contains(BB)) 12547ed5856aSAlina Sbirlea Worklist.push_back(DTN); 12557ed5856aSAlina Sbirlea }; 12567ed5856aSAlina Sbirlea 12577ed5856aSAlina Sbirlea AddRegionToWorklist(N); 12587ed5856aSAlina Sbirlea 12597ed5856aSAlina Sbirlea for (size_t I = 0; I < Worklist.size(); I++) 12607ed5856aSAlina Sbirlea for (DomTreeNode *Child : Worklist[I]->getChildren()) 12617ed5856aSAlina Sbirlea AddRegionToWorklist(Child); 12627ed5856aSAlina Sbirlea 12637ed5856aSAlina Sbirlea return Worklist; 12647ed5856aSAlina Sbirlea } 12657ed5856aSAlina Sbirlea 1266df3e71e0SMarcello Maggioni void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 1267df3e71e0SMarcello Maggioni ScalarEvolution *SE = nullptr, 1268df3e71e0SMarcello Maggioni LoopInfo *LI = nullptr) { 1269899809d5SHans Wennborg assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 1270df3e71e0SMarcello Maggioni auto *Preheader = L->getLoopPreheader(); 1271df3e71e0SMarcello Maggioni assert(Preheader && "Preheader should exist!"); 1272df3e71e0SMarcello Maggioni 1273df3e71e0SMarcello Maggioni // Now that we know the removal is safe, remove the loop by changing the 1274df3e71e0SMarcello Maggioni // branch from the preheader to go to the single exit block. 1275df3e71e0SMarcello Maggioni // 1276df3e71e0SMarcello Maggioni // Because we're deleting a large chunk of code at once, the sequence in which 1277df3e71e0SMarcello Maggioni // we remove things is very important to avoid invalidation issues. 1278df3e71e0SMarcello Maggioni 1279df3e71e0SMarcello Maggioni // Tell ScalarEvolution that the loop is deleted. Do this before 1280df3e71e0SMarcello Maggioni // deleting the loop so that ScalarEvolution can look at the loop 1281df3e71e0SMarcello Maggioni // to determine what it needs to clean up. 1282df3e71e0SMarcello Maggioni if (SE) 1283df3e71e0SMarcello Maggioni SE->forgetLoop(L); 1284df3e71e0SMarcello Maggioni 1285df3e71e0SMarcello Maggioni auto *ExitBlock = L->getUniqueExitBlock(); 1286df3e71e0SMarcello Maggioni assert(ExitBlock && "Should have a unique exit block!"); 1287df3e71e0SMarcello Maggioni assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 1288df3e71e0SMarcello Maggioni 1289df3e71e0SMarcello Maggioni auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 1290df3e71e0SMarcello Maggioni assert(OldBr && "Preheader must end with a branch"); 1291df3e71e0SMarcello Maggioni assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 1292df3e71e0SMarcello Maggioni // Connect the preheader to the exit block. Keep the old edge to the header 1293df3e71e0SMarcello Maggioni // around to perform the dominator tree update in two separate steps 1294df3e71e0SMarcello Maggioni // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 1295df3e71e0SMarcello Maggioni // preheader -> header. 1296df3e71e0SMarcello Maggioni // 1297df3e71e0SMarcello Maggioni // 1298df3e71e0SMarcello Maggioni // 0. Preheader 1. Preheader 2. Preheader 1299df3e71e0SMarcello Maggioni // | | | | 1300df3e71e0SMarcello Maggioni // V | V | 1301df3e71e0SMarcello Maggioni // Header <--\ | Header <--\ | Header <--\ 1302df3e71e0SMarcello Maggioni // | | | | | | | | | | | 1303df3e71e0SMarcello Maggioni // | V | | | V | | | V | 1304df3e71e0SMarcello Maggioni // | Body --/ | | Body --/ | | Body --/ 1305df3e71e0SMarcello Maggioni // V V V V V 1306df3e71e0SMarcello Maggioni // Exit Exit Exit 1307df3e71e0SMarcello Maggioni // 1308df3e71e0SMarcello Maggioni // By doing this is two separate steps we can perform the dominator tree 1309df3e71e0SMarcello Maggioni // update without using the batch update API. 1310df3e71e0SMarcello Maggioni // 1311df3e71e0SMarcello Maggioni // Even when the loop is never executed, we cannot remove the edge from the 1312df3e71e0SMarcello Maggioni // source block to the exit block. Consider the case where the unexecuted loop 1313df3e71e0SMarcello Maggioni // branches back to an outer loop. If we deleted the loop and removed the edge 1314df3e71e0SMarcello Maggioni // coming to this inner loop, this will break the outer loop structure (by 1315df3e71e0SMarcello Maggioni // deleting the backedge of the outer loop). If the outer loop is indeed a 1316df3e71e0SMarcello Maggioni // non-loop, it will be deleted in a future iteration of loop deletion pass. 1317df3e71e0SMarcello Maggioni IRBuilder<> Builder(OldBr); 1318df3e71e0SMarcello Maggioni Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 1319df3e71e0SMarcello Maggioni // Remove the old branch. The conditional branch becomes a new terminator. 1320df3e71e0SMarcello Maggioni OldBr->eraseFromParent(); 1321df3e71e0SMarcello Maggioni 1322df3e71e0SMarcello Maggioni // Rewrite phis in the exit block to get their inputs from the Preheader 1323df3e71e0SMarcello Maggioni // instead of the exiting block. 1324c7fc81e6SBenjamin Kramer for (PHINode &P : ExitBlock->phis()) { 1325df3e71e0SMarcello Maggioni // Set the zero'th element of Phi to be from the preheader and remove all 1326df3e71e0SMarcello Maggioni // other incoming values. Given the loop has dedicated exits, all other 1327df3e71e0SMarcello Maggioni // incoming values must be from the exiting blocks. 1328df3e71e0SMarcello Maggioni int PredIndex = 0; 1329c7fc81e6SBenjamin Kramer P.setIncomingBlock(PredIndex, Preheader); 1330df3e71e0SMarcello Maggioni // Removes all incoming values from all other exiting blocks (including 1331df3e71e0SMarcello Maggioni // duplicate values from an exiting block). 1332df3e71e0SMarcello Maggioni // Nuke all entries except the zero'th entry which is the preheader entry. 1333df3e71e0SMarcello Maggioni // NOTE! We need to remove Incoming Values in the reverse order as done 1334df3e71e0SMarcello Maggioni // below, to keep the indices valid for deletion (removeIncomingValues 1335df3e71e0SMarcello Maggioni // updates getNumIncomingValues and shifts all values down into the operand 1336df3e71e0SMarcello Maggioni // being deleted). 1337c7fc81e6SBenjamin Kramer for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 1338c7fc81e6SBenjamin Kramer P.removeIncomingValue(e - i, false); 1339df3e71e0SMarcello Maggioni 1340c7fc81e6SBenjamin Kramer assert((P.getNumIncomingValues() == 1 && 1341c7fc81e6SBenjamin Kramer P.getIncomingBlock(PredIndex) == Preheader) && 1342df3e71e0SMarcello Maggioni "Should have exactly one value and that's from the preheader!"); 1343df3e71e0SMarcello Maggioni } 1344df3e71e0SMarcello Maggioni 1345df3e71e0SMarcello Maggioni // Disconnect the loop body by branching directly to its exit. 1346df3e71e0SMarcello Maggioni Builder.SetInsertPoint(Preheader->getTerminator()); 1347df3e71e0SMarcello Maggioni Builder.CreateBr(ExitBlock); 1348df3e71e0SMarcello Maggioni // Remove the old branch. 1349df3e71e0SMarcello Maggioni Preheader->getTerminator()->eraseFromParent(); 1350df3e71e0SMarcello Maggioni 1351df3e71e0SMarcello Maggioni if (DT) { 1352df3e71e0SMarcello Maggioni // Update the dominator tree by informing it about the new edge from the 1353df3e71e0SMarcello Maggioni // preheader to the exit. 1354df3e71e0SMarcello Maggioni DT->insertEdge(Preheader, ExitBlock); 1355df3e71e0SMarcello Maggioni // Inform the dominator tree about the removed edge. 1356df3e71e0SMarcello Maggioni DT->deleteEdge(Preheader, L->getHeader()); 1357df3e71e0SMarcello Maggioni } 1358df3e71e0SMarcello Maggioni 1359a757d65cSSerguei Katkov // Given LCSSA form is satisfied, we should not have users of instructions 1360a757d65cSSerguei Katkov // within the dead loop outside of the loop. However, LCSSA doesn't take 1361a757d65cSSerguei Katkov // unreachable uses into account. We handle them here. 1362a757d65cSSerguei Katkov // We could do it after drop all references (in this case all users in the 1363a757d65cSSerguei Katkov // loop will be already eliminated and we have less work to do but according 1364a757d65cSSerguei Katkov // to API doc of User::dropAllReferences only valid operation after dropping 1365a757d65cSSerguei Katkov // references, is deletion. So let's substitute all usages of 1366a757d65cSSerguei Katkov // instruction from the loop with undef value of corresponding type first. 1367a757d65cSSerguei Katkov for (auto *Block : L->blocks()) 1368a757d65cSSerguei Katkov for (Instruction &I : *Block) { 1369a757d65cSSerguei Katkov auto *Undef = UndefValue::get(I.getType()); 1370a757d65cSSerguei Katkov for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 1371a757d65cSSerguei Katkov Use &U = *UI; 1372a757d65cSSerguei Katkov ++UI; 1373a757d65cSSerguei Katkov if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 1374a757d65cSSerguei Katkov if (L->contains(Usr->getParent())) 1375a757d65cSSerguei Katkov continue; 1376a757d65cSSerguei Katkov // If we have a DT then we can check that uses outside a loop only in 1377a757d65cSSerguei Katkov // unreachable block. 1378a757d65cSSerguei Katkov if (DT) 1379a757d65cSSerguei Katkov assert(!DT->isReachableFromEntry(U) && 1380a757d65cSSerguei Katkov "Unexpected user in reachable block"); 1381a757d65cSSerguei Katkov U.set(Undef); 1382a757d65cSSerguei Katkov } 1383a757d65cSSerguei Katkov } 1384a757d65cSSerguei Katkov 1385df3e71e0SMarcello Maggioni // Remove the block from the reference counting scheme, so that we can 1386df3e71e0SMarcello Maggioni // delete it freely later. 1387df3e71e0SMarcello Maggioni for (auto *Block : L->blocks()) 1388df3e71e0SMarcello Maggioni Block->dropAllReferences(); 1389df3e71e0SMarcello Maggioni 1390df3e71e0SMarcello Maggioni if (LI) { 1391df3e71e0SMarcello Maggioni // Erase the instructions and the blocks without having to worry 1392df3e71e0SMarcello Maggioni // about ordering because we already dropped the references. 1393df3e71e0SMarcello Maggioni // NOTE: This iteration is safe because erasing the block does not remove 1394df3e71e0SMarcello Maggioni // its entry from the loop's block list. We do that in the next section. 1395df3e71e0SMarcello Maggioni for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 1396df3e71e0SMarcello Maggioni LpI != LpE; ++LpI) 1397df3e71e0SMarcello Maggioni (*LpI)->eraseFromParent(); 1398df3e71e0SMarcello Maggioni 1399df3e71e0SMarcello Maggioni // Finally, the blocks from loopinfo. This has to happen late because 1400df3e71e0SMarcello Maggioni // otherwise our loop iterators won't work. 1401df3e71e0SMarcello Maggioni 1402df3e71e0SMarcello Maggioni SmallPtrSet<BasicBlock *, 8> blocks; 1403df3e71e0SMarcello Maggioni blocks.insert(L->block_begin(), L->block_end()); 1404df3e71e0SMarcello Maggioni for (BasicBlock *BB : blocks) 1405df3e71e0SMarcello Maggioni LI->removeBlock(BB); 1406df3e71e0SMarcello Maggioni 1407df3e71e0SMarcello Maggioni // The last step is to update LoopInfo now that we've eliminated this loop. 1408df3e71e0SMarcello Maggioni LI->erase(L); 1409df3e71e0SMarcello Maggioni } 1410df3e71e0SMarcello Maggioni } 1411df3e71e0SMarcello Maggioni 1412122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least 1413122f984aSEvgeniy Stepanov /// once. 1414122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst, 1415122f984aSEvgeniy Stepanov const DominatorTree *DT, const Loop *CurLoop, 1416122f984aSEvgeniy Stepanov const LoopSafetyInfo *SafetyInfo) { 1417122f984aSEvgeniy Stepanov // We have to check to make sure that the instruction dominates all 141858ccc094SEvgeniy Stepanov // of the exit blocks. If it doesn't, then there is a path out of the loop 141958ccc094SEvgeniy Stepanov // which does not execute this instruction, so we can't hoist it. 142058ccc094SEvgeniy Stepanov 142158ccc094SEvgeniy Stepanov // If the instruction is in the header block for the loop (which is very 142258ccc094SEvgeniy Stepanov // common), it is always guaranteed to dominate the exit blocks. Since this 142358ccc094SEvgeniy Stepanov // is a common case, and can save some work, check it now. 142458ccc094SEvgeniy Stepanov if (Inst.getParent() == CurLoop->getHeader()) 142558ccc094SEvgeniy Stepanov // If there's a throw in the header block, we can't guarantee we'll reach 142658ccc094SEvgeniy Stepanov // Inst. 142758ccc094SEvgeniy Stepanov return !SafetyInfo->HeaderMayThrow; 142858ccc094SEvgeniy Stepanov 142958ccc094SEvgeniy Stepanov // Somewhere in this loop there is an instruction which may throw and make us 143058ccc094SEvgeniy Stepanov // exit the loop. 143158ccc094SEvgeniy Stepanov if (SafetyInfo->MayThrow) 1432122f984aSEvgeniy Stepanov return false; 1433122f984aSEvgeniy Stepanov 1434122f984aSEvgeniy Stepanov // Get the exit blocks for the current loop. 1435122f984aSEvgeniy Stepanov SmallVector<BasicBlock *, 8> ExitBlocks; 1436122f984aSEvgeniy Stepanov CurLoop->getExitBlocks(ExitBlocks); 1437122f984aSEvgeniy Stepanov 1438122f984aSEvgeniy Stepanov // Verify that the block dominates each of the exit blocks of the loop. 1439122f984aSEvgeniy Stepanov for (BasicBlock *ExitBlock : ExitBlocks) 1440122f984aSEvgeniy Stepanov if (!DT->dominates(Inst.getParent(), ExitBlock)) 1441122f984aSEvgeniy Stepanov return false; 1442122f984aSEvgeniy Stepanov 1443122f984aSEvgeniy Stepanov // As a degenerate case, if the loop is statically infinite then we haven't 1444122f984aSEvgeniy Stepanov // proven anything since there are no exit blocks. 144558ccc094SEvgeniy Stepanov if (ExitBlocks.empty()) 1446122f984aSEvgeniy Stepanov return false; 1447122f984aSEvgeniy Stepanov 1448f1da33e4SEli Friedman // FIXME: In general, we have to prove that the loop isn't an infinite loop. 1449f1da33e4SEli Friedman // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 1450f1da33e4SEli Friedman // just a special case of this.) 1451122f984aSEvgeniy Stepanov return true; 1452122f984aSEvgeniy Stepanov } 145341d72a86SDehao Chen 145441d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 145541d72a86SDehao Chen // Only support loops with a unique exiting block, and a latch. 145641d72a86SDehao Chen if (!L->getExitingBlock()) 145741d72a86SDehao Chen return None; 145841d72a86SDehao Chen 1459*d24ddcd6SHiroshi Inoue // Get the branch weights for the loop's backedge. 146041d72a86SDehao Chen BranchInst *LatchBR = 146141d72a86SDehao Chen dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 146241d72a86SDehao Chen if (!LatchBR || LatchBR->getNumSuccessors() != 2) 146341d72a86SDehao Chen return None; 146441d72a86SDehao Chen 146541d72a86SDehao Chen assert((LatchBR->getSuccessor(0) == L->getHeader() || 146641d72a86SDehao Chen LatchBR->getSuccessor(1) == L->getHeader()) && 146741d72a86SDehao Chen "At least one edge out of the latch must go to the header"); 146841d72a86SDehao Chen 146941d72a86SDehao Chen // To estimate the number of times the loop body was executed, we want to 147041d72a86SDehao Chen // know the number of times the backedge was taken, vs. the number of times 147141d72a86SDehao Chen // we exited the loop. 147241d72a86SDehao Chen uint64_t TrueVal, FalseVal; 1473b151a641SMichael Kuperstein if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 147441d72a86SDehao Chen return None; 147541d72a86SDehao Chen 1476b151a641SMichael Kuperstein if (!TrueVal || !FalseVal) 1477b151a641SMichael Kuperstein return 0; 147841d72a86SDehao Chen 1479b151a641SMichael Kuperstein // Divide the count of the backedge by the count of the edge exiting the loop, 1480b151a641SMichael Kuperstein // rounding to nearest. 148141d72a86SDehao Chen if (LatchBR->getSuccessor(0) == L->getHeader()) 1482b151a641SMichael Kuperstein return (TrueVal + (FalseVal / 2)) / FalseVal; 148341d72a86SDehao Chen else 1484b151a641SMichael Kuperstein return (FalseVal + (TrueVal / 2)) / TrueVal; 148541d72a86SDehao Chen } 1486cf9daa33SAmara Emerson 1487cf9daa33SAmara Emerson /// \brief Adds a 'fast' flag to floating point operations. 1488cf9daa33SAmara Emerson static Value *addFastMathFlag(Value *V) { 1489cf9daa33SAmara Emerson if (isa<FPMathOperator>(V)) { 1490cf9daa33SAmara Emerson FastMathFlags Flags; 1491629c4115SSanjay Patel Flags.setFast(); 1492cf9daa33SAmara Emerson cast<Instruction>(V)->setFastMathFlags(Flags); 1493cf9daa33SAmara Emerson } 1494cf9daa33SAmara Emerson return V; 1495cf9daa33SAmara Emerson } 1496cf9daa33SAmara Emerson 1497cf9daa33SAmara Emerson // Helper to generate a log2 shuffle reduction. 1498836b0f48SAmara Emerson Value * 1499836b0f48SAmara Emerson llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 1500836b0f48SAmara Emerson RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 1501836b0f48SAmara Emerson ArrayRef<Value *> RedOps) { 1502cf9daa33SAmara Emerson unsigned VF = Src->getType()->getVectorNumElements(); 1503cf9daa33SAmara Emerson // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1504cf9daa33SAmara Emerson // and vector ops, reducing the set of values being computed by half each 1505cf9daa33SAmara Emerson // round. 1506cf9daa33SAmara Emerson assert(isPowerOf2_32(VF) && 1507cf9daa33SAmara Emerson "Reduction emission only supported for pow2 vectors!"); 1508cf9daa33SAmara Emerson Value *TmpVec = Src; 1509cf9daa33SAmara Emerson SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 1510cf9daa33SAmara Emerson for (unsigned i = VF; i != 1; i >>= 1) { 1511cf9daa33SAmara Emerson // Move the upper half of the vector to the lower half. 1512cf9daa33SAmara Emerson for (unsigned j = 0; j != i / 2; ++j) 1513cf9daa33SAmara Emerson ShuffleMask[j] = Builder.getInt32(i / 2 + j); 1514cf9daa33SAmara Emerson 1515cf9daa33SAmara Emerson // Fill the rest of the mask with undef. 1516cf9daa33SAmara Emerson std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 1517cf9daa33SAmara Emerson UndefValue::get(Builder.getInt32Ty())); 1518cf9daa33SAmara Emerson 1519cf9daa33SAmara Emerson Value *Shuf = Builder.CreateShuffleVector( 1520cf9daa33SAmara Emerson TmpVec, UndefValue::get(TmpVec->getType()), 1521cf9daa33SAmara Emerson ConstantVector::get(ShuffleMask), "rdx.shuf"); 1522cf9daa33SAmara Emerson 1523cf9daa33SAmara Emerson if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1524cf9daa33SAmara Emerson // Floating point operations had to be 'fast' to enable the reduction. 1525cf9daa33SAmara Emerson TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 1526cf9daa33SAmara Emerson TmpVec, Shuf, "bin.rdx")); 1527cf9daa33SAmara Emerson } else { 1528cf9daa33SAmara Emerson assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 1529cf9daa33SAmara Emerson "Invalid min/max"); 1530cf9daa33SAmara Emerson TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, 1531cf9daa33SAmara Emerson Shuf); 1532cf9daa33SAmara Emerson } 1533cf9daa33SAmara Emerson if (!RedOps.empty()) 1534cf9daa33SAmara Emerson propagateIRFlags(TmpVec, RedOps); 1535cf9daa33SAmara Emerson } 1536cf9daa33SAmara Emerson // The result is in the first element of the vector. 1537cf9daa33SAmara Emerson return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1538cf9daa33SAmara Emerson } 1539cf9daa33SAmara Emerson 1540cf9daa33SAmara Emerson /// Create a simple vector reduction specified by an opcode and some 1541cf9daa33SAmara Emerson /// flags (if generating min/max reductions). 1542cf9daa33SAmara Emerson Value *llvm::createSimpleTargetReduction( 1543cf9daa33SAmara Emerson IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 1544cf9daa33SAmara Emerson Value *Src, TargetTransformInfo::ReductionFlags Flags, 1545cf9daa33SAmara Emerson ArrayRef<Value *> RedOps) { 1546cf9daa33SAmara Emerson assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 1547cf9daa33SAmara Emerson 1548cf9daa33SAmara Emerson Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 1549cf9daa33SAmara Emerson std::function<Value*()> BuildFunc; 1550cf9daa33SAmara Emerson using RD = RecurrenceDescriptor; 1551cf9daa33SAmara Emerson RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 1552cf9daa33SAmara Emerson // TODO: Support creating ordered reductions. 15531ea7b6f7SSanjay Patel FastMathFlags FMFFast; 15541ea7b6f7SSanjay Patel FMFFast.setFast(); 1555cf9daa33SAmara Emerson 1556cf9daa33SAmara Emerson switch (Opcode) { 1557cf9daa33SAmara Emerson case Instruction::Add: 1558cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 1559cf9daa33SAmara Emerson break; 1560cf9daa33SAmara Emerson case Instruction::Mul: 1561cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 1562cf9daa33SAmara Emerson break; 1563cf9daa33SAmara Emerson case Instruction::And: 1564cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 1565cf9daa33SAmara Emerson break; 1566cf9daa33SAmara Emerson case Instruction::Or: 1567cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 1568cf9daa33SAmara Emerson break; 1569cf9daa33SAmara Emerson case Instruction::Xor: 1570cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 1571cf9daa33SAmara Emerson break; 1572cf9daa33SAmara Emerson case Instruction::FAdd: 1573cf9daa33SAmara Emerson BuildFunc = [&]() { 1574cf9daa33SAmara Emerson auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 15751ea7b6f7SSanjay Patel cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 1576cf9daa33SAmara Emerson return Rdx; 1577cf9daa33SAmara Emerson }; 1578cf9daa33SAmara Emerson break; 1579cf9daa33SAmara Emerson case Instruction::FMul: 1580cf9daa33SAmara Emerson BuildFunc = [&]() { 1581cf9daa33SAmara Emerson auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 15821ea7b6f7SSanjay Patel cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 1583cf9daa33SAmara Emerson return Rdx; 1584cf9daa33SAmara Emerson }; 1585cf9daa33SAmara Emerson break; 1586cf9daa33SAmara Emerson case Instruction::ICmp: 1587cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1588cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 1589cf9daa33SAmara Emerson BuildFunc = [&]() { 1590cf9daa33SAmara Emerson return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1591cf9daa33SAmara Emerson }; 1592cf9daa33SAmara Emerson } else { 1593cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1594cf9daa33SAmara Emerson BuildFunc = [&]() { 1595cf9daa33SAmara Emerson return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1596cf9daa33SAmara Emerson }; 1597cf9daa33SAmara Emerson } 1598cf9daa33SAmara Emerson break; 1599cf9daa33SAmara Emerson case Instruction::FCmp: 1600cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1601cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMax; 1602cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1603cf9daa33SAmara Emerson } else { 1604cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMin; 1605cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1606cf9daa33SAmara Emerson } 1607cf9daa33SAmara Emerson break; 1608cf9daa33SAmara Emerson default: 1609cf9daa33SAmara Emerson llvm_unreachable("Unhandled opcode"); 1610cf9daa33SAmara Emerson break; 1611cf9daa33SAmara Emerson } 1612cf9daa33SAmara Emerson if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1613cf9daa33SAmara Emerson return BuildFunc(); 1614cf9daa33SAmara Emerson return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1615cf9daa33SAmara Emerson } 1616cf9daa33SAmara Emerson 1617cf9daa33SAmara Emerson /// Create a vector reduction using a given recurrence descriptor. 16183e069f57SSanjay Patel Value *llvm::createTargetReduction(IRBuilder<> &B, 1619cf9daa33SAmara Emerson const TargetTransformInfo *TTI, 1620cf9daa33SAmara Emerson RecurrenceDescriptor &Desc, Value *Src, 1621cf9daa33SAmara Emerson bool NoNaN) { 1622cf9daa33SAmara Emerson // TODO: Support in-order reductions based on the recurrence descriptor. 16233e069f57SSanjay Patel using RD = RecurrenceDescriptor; 16243e069f57SSanjay Patel RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1625cf9daa33SAmara Emerson TargetTransformInfo::ReductionFlags Flags; 1626cf9daa33SAmara Emerson Flags.NoNaN = NoNaN; 1627cf9daa33SAmara Emerson switch (RecKind) { 16283e069f57SSanjay Patel case RD::RK_FloatAdd: 16293e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 16303e069f57SSanjay Patel case RD::RK_FloatMult: 16313e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 16323e069f57SSanjay Patel case RD::RK_IntegerAdd: 16333e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 16343e069f57SSanjay Patel case RD::RK_IntegerMult: 16353e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 16363e069f57SSanjay Patel case RD::RK_IntegerAnd: 16373e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 16383e069f57SSanjay Patel case RD::RK_IntegerOr: 16393e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 16403e069f57SSanjay Patel case RD::RK_IntegerXor: 16413e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 16423e069f57SSanjay Patel case RD::RK_IntegerMinMax: { 16433e069f57SSanjay Patel RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 16443e069f57SSanjay Patel Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 16453e069f57SSanjay Patel Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 16463e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 1647cf9daa33SAmara Emerson } 16483e069f57SSanjay Patel case RD::RK_FloatMinMax: { 16493e069f57SSanjay Patel Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 16503e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 1651cf9daa33SAmara Emerson } 1652cf9daa33SAmara Emerson default: 1653cf9daa33SAmara Emerson llvm_unreachable("Unhandled RecKind"); 1654cf9daa33SAmara Emerson } 1655cf9daa33SAmara Emerson } 1656cf9daa33SAmara Emerson 1657a61f4b89SDinar Temirbulatov void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1658a61f4b89SDinar Temirbulatov auto *VecOp = dyn_cast<Instruction>(I); 1659a61f4b89SDinar Temirbulatov if (!VecOp) 1660a61f4b89SDinar Temirbulatov return; 1661a61f4b89SDinar Temirbulatov auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1662a61f4b89SDinar Temirbulatov : dyn_cast<Instruction>(OpValue); 1663a61f4b89SDinar Temirbulatov if (!Intersection) 1664a61f4b89SDinar Temirbulatov return; 1665a61f4b89SDinar Temirbulatov const unsigned Opcode = Intersection->getOpcode(); 1666a61f4b89SDinar Temirbulatov VecOp->copyIRFlags(Intersection); 1667a61f4b89SDinar Temirbulatov for (auto *V : VL) { 1668a61f4b89SDinar Temirbulatov auto *Instr = dyn_cast<Instruction>(V); 1669a61f4b89SDinar Temirbulatov if (!Instr) 1670a61f4b89SDinar Temirbulatov continue; 1671a61f4b89SDinar Temirbulatov if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1672a61f4b89SDinar Temirbulatov VecOp->andIRFlags(V); 1673cf9daa33SAmara Emerson } 1674cf9daa33SAmara Emerson } 1675