176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
276aa662cSKarthik Bhat //
376aa662cSKarthik Bhat //                     The LLVM Compiler Infrastructure
476aa662cSKarthik Bhat //
576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source
676aa662cSKarthik Bhat // License. See LICENSE.TXT for details.
776aa662cSKarthik Bhat //
876aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
976aa662cSKarthik Bhat //
1076aa662cSKarthik Bhat // This file defines common loop utility functions.
1176aa662cSKarthik Bhat //
1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
1376aa662cSKarthik Bhat 
142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h"
1531088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h"
1631088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h"
1731088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h"
182f2bd8caSAdam Nemet #include "llvm/Analysis/GlobalsModRef.h"
192f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
20c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h"
21*cf9daa33SAmara Emerson #include "llvm/Analysis/TargetTransformInfo.h"
2245d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h"
232f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
24c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h"
2545d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h"
2631088a9dSChandler Carruth #include "llvm/IR/Dominators.h"
2776aa662cSKarthik Bhat #include "llvm/IR/Instructions.h"
2845d4cb9aSWeiming Zhao #include "llvm/IR/Module.h"
2976aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h"
3076aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h"
3131088a9dSChandler Carruth #include "llvm/Pass.h"
3276aa662cSKarthik Bhat #include "llvm/Support/Debug.h"
3376aa662cSKarthik Bhat 
3476aa662cSKarthik Bhat using namespace llvm;
3576aa662cSKarthik Bhat using namespace llvm::PatternMatch;
3676aa662cSKarthik Bhat 
3776aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils"
3876aa662cSKarthik Bhat 
390a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
4076aa662cSKarthik Bhat                                         SmallPtrSetImpl<Instruction *> &Set) {
4176aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4276aa662cSKarthik Bhat     if (!Set.count(dyn_cast<Instruction>(*Use)))
4376aa662cSKarthik Bhat       return false;
4476aa662cSKarthik Bhat   return true;
4576aa662cSKarthik Bhat }
4676aa662cSKarthik Bhat 
47c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
48c94f8e29SChad Rosier   switch (Kind) {
49c94f8e29SChad Rosier   default:
50c94f8e29SChad Rosier     break;
51c94f8e29SChad Rosier   case RK_IntegerAdd:
52c94f8e29SChad Rosier   case RK_IntegerMult:
53c94f8e29SChad Rosier   case RK_IntegerOr:
54c94f8e29SChad Rosier   case RK_IntegerAnd:
55c94f8e29SChad Rosier   case RK_IntegerXor:
56c94f8e29SChad Rosier   case RK_IntegerMinMax:
57c94f8e29SChad Rosier     return true;
58c94f8e29SChad Rosier   }
59c94f8e29SChad Rosier   return false;
60c94f8e29SChad Rosier }
61c94f8e29SChad Rosier 
62c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
63c94f8e29SChad Rosier   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
64c94f8e29SChad Rosier }
65c94f8e29SChad Rosier 
66c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
67c94f8e29SChad Rosier   switch (Kind) {
68c94f8e29SChad Rosier   default:
69c94f8e29SChad Rosier     break;
70c94f8e29SChad Rosier   case RK_IntegerAdd:
71c94f8e29SChad Rosier   case RK_IntegerMult:
72c94f8e29SChad Rosier   case RK_FloatAdd:
73c94f8e29SChad Rosier   case RK_FloatMult:
74c94f8e29SChad Rosier     return true;
75c94f8e29SChad Rosier   }
76c94f8e29SChad Rosier   return false;
77c94f8e29SChad Rosier }
78c94f8e29SChad Rosier 
79c94f8e29SChad Rosier Instruction *
80c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
81c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &Visited,
82c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &CI) {
83c94f8e29SChad Rosier   if (!Phi->hasOneUse())
84c94f8e29SChad Rosier     return Phi;
85c94f8e29SChad Rosier 
86c94f8e29SChad Rosier   const APInt *M = nullptr;
87c94f8e29SChad Rosier   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
88c94f8e29SChad Rosier 
89c94f8e29SChad Rosier   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
90c94f8e29SChad Rosier   // with a new integer type of the corresponding bit width.
91c94f8e29SChad Rosier   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
92c94f8e29SChad Rosier                            m_And(m_APInt(M), m_Instruction(I))))) {
93c94f8e29SChad Rosier     int32_t Bits = (*M + 1).exactLogBase2();
94c94f8e29SChad Rosier     if (Bits > 0) {
95c94f8e29SChad Rosier       RT = IntegerType::get(Phi->getContext(), Bits);
96c94f8e29SChad Rosier       Visited.insert(Phi);
97c94f8e29SChad Rosier       CI.insert(J);
98c94f8e29SChad Rosier       return J;
99c94f8e29SChad Rosier     }
100c94f8e29SChad Rosier   }
101c94f8e29SChad Rosier   return Phi;
102c94f8e29SChad Rosier }
103c94f8e29SChad Rosier 
104c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind(
105c94f8e29SChad Rosier     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
106c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &Visited,
107c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &CI) {
108c94f8e29SChad Rosier 
109c94f8e29SChad Rosier   SmallVector<Instruction *, 8> Worklist;
110c94f8e29SChad Rosier   bool FoundOneOperand = false;
11129dc0f70SMatthew Simpson   unsigned DstSize = RT->getPrimitiveSizeInBits();
112c94f8e29SChad Rosier   Worklist.push_back(Exit);
113c94f8e29SChad Rosier 
114c94f8e29SChad Rosier   // Traverse the instructions in the reduction expression, beginning with the
115c94f8e29SChad Rosier   // exit value.
116c94f8e29SChad Rosier   while (!Worklist.empty()) {
117c94f8e29SChad Rosier     Instruction *I = Worklist.pop_back_val();
118c94f8e29SChad Rosier     for (Use &U : I->operands()) {
119c94f8e29SChad Rosier 
120c94f8e29SChad Rosier       // Terminate the traversal if the operand is not an instruction, or we
121c94f8e29SChad Rosier       // reach the starting value.
122c94f8e29SChad Rosier       Instruction *J = dyn_cast<Instruction>(U.get());
123c94f8e29SChad Rosier       if (!J || J == Start)
124c94f8e29SChad Rosier         continue;
125c94f8e29SChad Rosier 
126c94f8e29SChad Rosier       // Otherwise, investigate the operation if it is also in the expression.
127c94f8e29SChad Rosier       if (Visited.count(J)) {
128c94f8e29SChad Rosier         Worklist.push_back(J);
129c94f8e29SChad Rosier         continue;
130c94f8e29SChad Rosier       }
131c94f8e29SChad Rosier 
132c94f8e29SChad Rosier       // If the operand is not in Visited, it is not a reduction operation, but
133c94f8e29SChad Rosier       // it does feed into one. Make sure it is either a single-use sign- or
13429dc0f70SMatthew Simpson       // zero-extend instruction.
135c94f8e29SChad Rosier       CastInst *Cast = dyn_cast<CastInst>(J);
136c94f8e29SChad Rosier       bool IsSExtInst = isa<SExtInst>(J);
13729dc0f70SMatthew Simpson       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
13829dc0f70SMatthew Simpson         return false;
13929dc0f70SMatthew Simpson 
14029dc0f70SMatthew Simpson       // Ensure the source type of the extend is no larger than the reduction
14129dc0f70SMatthew Simpson       // type. It is not necessary for the types to be identical.
14229dc0f70SMatthew Simpson       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
14329dc0f70SMatthew Simpson       if (SrcSize > DstSize)
144c94f8e29SChad Rosier         return false;
145c94f8e29SChad Rosier 
146c94f8e29SChad Rosier       // Furthermore, ensure that all such extends are of the same kind.
147c94f8e29SChad Rosier       if (FoundOneOperand) {
148c94f8e29SChad Rosier         if (IsSigned != IsSExtInst)
149c94f8e29SChad Rosier           return false;
150c94f8e29SChad Rosier       } else {
151c94f8e29SChad Rosier         FoundOneOperand = true;
152c94f8e29SChad Rosier         IsSigned = IsSExtInst;
153c94f8e29SChad Rosier       }
154c94f8e29SChad Rosier 
15529dc0f70SMatthew Simpson       // Lastly, if the source type of the extend matches the reduction type,
15629dc0f70SMatthew Simpson       // add the extend to CI so that we can avoid accounting for it in the
15729dc0f70SMatthew Simpson       // cost model.
15829dc0f70SMatthew Simpson       if (SrcSize == DstSize)
159c94f8e29SChad Rosier         CI.insert(Cast);
160c94f8e29SChad Rosier     }
161c94f8e29SChad Rosier   }
162c94f8e29SChad Rosier   return true;
163c94f8e29SChad Rosier }
164c94f8e29SChad Rosier 
1650a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
16676aa662cSKarthik Bhat                                            Loop *TheLoop, bool HasFunNoNaNAttr,
1670a91310cSTyler Nowicki                                            RecurrenceDescriptor &RedDes) {
16876aa662cSKarthik Bhat   if (Phi->getNumIncomingValues() != 2)
16976aa662cSKarthik Bhat     return false;
17076aa662cSKarthik Bhat 
17176aa662cSKarthik Bhat   // Reduction variables are only found in the loop header block.
17276aa662cSKarthik Bhat   if (Phi->getParent() != TheLoop->getHeader())
17376aa662cSKarthik Bhat     return false;
17476aa662cSKarthik Bhat 
17576aa662cSKarthik Bhat   // Obtain the reduction start value from the value that comes from the loop
17676aa662cSKarthik Bhat   // preheader.
17776aa662cSKarthik Bhat   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
17876aa662cSKarthik Bhat 
17976aa662cSKarthik Bhat   // ExitInstruction is the single value which is used outside the loop.
18076aa662cSKarthik Bhat   // We only allow for a single reduction value to be used outside the loop.
18176aa662cSKarthik Bhat   // This includes users of the reduction, variables (which form a cycle
18276aa662cSKarthik Bhat   // which ends in the phi node).
18376aa662cSKarthik Bhat   Instruction *ExitInstruction = nullptr;
18476aa662cSKarthik Bhat   // Indicates that we found a reduction operation in our scan.
18576aa662cSKarthik Bhat   bool FoundReduxOp = false;
18676aa662cSKarthik Bhat 
18776aa662cSKarthik Bhat   // We start with the PHI node and scan for all of the users of this
18876aa662cSKarthik Bhat   // instruction. All users must be instructions that can be used as reduction
18976aa662cSKarthik Bhat   // variables (such as ADD). We must have a single out-of-block user. The cycle
19076aa662cSKarthik Bhat   // must include the original PHI.
19176aa662cSKarthik Bhat   bool FoundStartPHI = false;
19276aa662cSKarthik Bhat 
19376aa662cSKarthik Bhat   // To recognize min/max patterns formed by a icmp select sequence, we store
19476aa662cSKarthik Bhat   // the number of instruction we saw from the recognized min/max pattern,
19576aa662cSKarthik Bhat   //  to make sure we only see exactly the two instructions.
19676aa662cSKarthik Bhat   unsigned NumCmpSelectPatternInst = 0;
19727b2c39eSTyler Nowicki   InstDesc ReduxDesc(false, nullptr);
19876aa662cSKarthik Bhat 
199c94f8e29SChad Rosier   // Data used for determining if the recurrence has been type-promoted.
200c94f8e29SChad Rosier   Type *RecurrenceType = Phi->getType();
201c94f8e29SChad Rosier   SmallPtrSet<Instruction *, 4> CastInsts;
202c94f8e29SChad Rosier   Instruction *Start = Phi;
203c94f8e29SChad Rosier   bool IsSigned = false;
204c94f8e29SChad Rosier 
20576aa662cSKarthik Bhat   SmallPtrSet<Instruction *, 8> VisitedInsts;
20676aa662cSKarthik Bhat   SmallVector<Instruction *, 8> Worklist;
207c94f8e29SChad Rosier 
208c94f8e29SChad Rosier   // Return early if the recurrence kind does not match the type of Phi. If the
209c94f8e29SChad Rosier   // recurrence kind is arithmetic, we attempt to look through AND operations
210c94f8e29SChad Rosier   // resulting from the type promotion performed by InstCombine.  Vector
211c94f8e29SChad Rosier   // operations are not limited to the legal integer widths, so we may be able
212c94f8e29SChad Rosier   // to evaluate the reduction in the narrower width.
213c94f8e29SChad Rosier   if (RecurrenceType->isFloatingPointTy()) {
214c94f8e29SChad Rosier     if (!isFloatingPointRecurrenceKind(Kind))
215c94f8e29SChad Rosier       return false;
216c94f8e29SChad Rosier   } else {
217c94f8e29SChad Rosier     if (!isIntegerRecurrenceKind(Kind))
218c94f8e29SChad Rosier       return false;
219c94f8e29SChad Rosier     if (isArithmeticRecurrenceKind(Kind))
220c94f8e29SChad Rosier       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
221c94f8e29SChad Rosier   }
222c94f8e29SChad Rosier 
223c94f8e29SChad Rosier   Worklist.push_back(Start);
224c94f8e29SChad Rosier   VisitedInsts.insert(Start);
22576aa662cSKarthik Bhat 
22676aa662cSKarthik Bhat   // A value in the reduction can be used:
22776aa662cSKarthik Bhat   //  - By the reduction:
22876aa662cSKarthik Bhat   //      - Reduction operation:
22976aa662cSKarthik Bhat   //        - One use of reduction value (safe).
23076aa662cSKarthik Bhat   //        - Multiple use of reduction value (not safe).
23176aa662cSKarthik Bhat   //      - PHI:
23276aa662cSKarthik Bhat   //        - All uses of the PHI must be the reduction (safe).
23376aa662cSKarthik Bhat   //        - Otherwise, not safe.
2347cefb409SMichael Kuperstein   //  - By instructions outside of the loop (safe).
2357cefb409SMichael Kuperstein   //      * One value may have several outside users, but all outside
2367cefb409SMichael Kuperstein   //        uses must be of the same value.
23776aa662cSKarthik Bhat   //  - By an instruction that is not part of the reduction (not safe).
23876aa662cSKarthik Bhat   //    This is either:
23976aa662cSKarthik Bhat   //      * An instruction type other than PHI or the reduction operation.
24076aa662cSKarthik Bhat   //      * A PHI in the header other than the initial PHI.
24176aa662cSKarthik Bhat   while (!Worklist.empty()) {
24276aa662cSKarthik Bhat     Instruction *Cur = Worklist.back();
24376aa662cSKarthik Bhat     Worklist.pop_back();
24476aa662cSKarthik Bhat 
24576aa662cSKarthik Bhat     // No Users.
24676aa662cSKarthik Bhat     // If the instruction has no users then this is a broken chain and can't be
24776aa662cSKarthik Bhat     // a reduction variable.
24876aa662cSKarthik Bhat     if (Cur->use_empty())
24976aa662cSKarthik Bhat       return false;
25076aa662cSKarthik Bhat 
25176aa662cSKarthik Bhat     bool IsAPhi = isa<PHINode>(Cur);
25276aa662cSKarthik Bhat 
25376aa662cSKarthik Bhat     // A header PHI use other than the original PHI.
25476aa662cSKarthik Bhat     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
25576aa662cSKarthik Bhat       return false;
25676aa662cSKarthik Bhat 
25776aa662cSKarthik Bhat     // Reductions of instructions such as Div, and Sub is only possible if the
25876aa662cSKarthik Bhat     // LHS is the reduction variable.
25976aa662cSKarthik Bhat     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
26076aa662cSKarthik Bhat         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
26176aa662cSKarthik Bhat         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
26276aa662cSKarthik Bhat       return false;
26376aa662cSKarthik Bhat 
264c94f8e29SChad Rosier     // Any reduction instruction must be of one of the allowed kinds. We ignore
265c94f8e29SChad Rosier     // the starting value (the Phi or an AND instruction if the Phi has been
266c94f8e29SChad Rosier     // type-promoted).
267c94f8e29SChad Rosier     if (Cur != Start) {
2680a91310cSTyler Nowicki       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
2690a91310cSTyler Nowicki       if (!ReduxDesc.isRecurrence())
27076aa662cSKarthik Bhat         return false;
271c94f8e29SChad Rosier     }
27276aa662cSKarthik Bhat 
27376aa662cSKarthik Bhat     // A reduction operation must only have one use of the reduction value.
27476aa662cSKarthik Bhat     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
27576aa662cSKarthik Bhat         hasMultipleUsesOf(Cur, VisitedInsts))
27676aa662cSKarthik Bhat       return false;
27776aa662cSKarthik Bhat 
27876aa662cSKarthik Bhat     // All inputs to a PHI node must be a reduction value.
27976aa662cSKarthik Bhat     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
28076aa662cSKarthik Bhat       return false;
28176aa662cSKarthik Bhat 
28276aa662cSKarthik Bhat     if (Kind == RK_IntegerMinMax &&
28376aa662cSKarthik Bhat         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
28476aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28576aa662cSKarthik Bhat     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
28676aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28776aa662cSKarthik Bhat 
28876aa662cSKarthik Bhat     // Check  whether we found a reduction operator.
289c94f8e29SChad Rosier     FoundReduxOp |= !IsAPhi && Cur != Start;
29076aa662cSKarthik Bhat 
29176aa662cSKarthik Bhat     // Process users of current instruction. Push non-PHI nodes after PHI nodes
29276aa662cSKarthik Bhat     // onto the stack. This way we are going to have seen all inputs to PHI
29376aa662cSKarthik Bhat     // nodes once we get to them.
29476aa662cSKarthik Bhat     SmallVector<Instruction *, 8> NonPHIs;
29576aa662cSKarthik Bhat     SmallVector<Instruction *, 8> PHIs;
29676aa662cSKarthik Bhat     for (User *U : Cur->users()) {
29776aa662cSKarthik Bhat       Instruction *UI = cast<Instruction>(U);
29876aa662cSKarthik Bhat 
29976aa662cSKarthik Bhat       // Check if we found the exit user.
30076aa662cSKarthik Bhat       BasicBlock *Parent = UI->getParent();
30176aa662cSKarthik Bhat       if (!TheLoop->contains(Parent)) {
3027cefb409SMichael Kuperstein         // If we already know this instruction is used externally, move on to
3037cefb409SMichael Kuperstein         // the next user.
3047cefb409SMichael Kuperstein         if (ExitInstruction == Cur)
3057cefb409SMichael Kuperstein           continue;
3067cefb409SMichael Kuperstein 
3077cefb409SMichael Kuperstein         // Exit if you find multiple values used outside or if the header phi
3087cefb409SMichael Kuperstein         // node is being used. In this case the user uses the value of the
3097cefb409SMichael Kuperstein         // previous iteration, in which case we would loose "VF-1" iterations of
3107cefb409SMichael Kuperstein         // the reduction operation if we vectorize.
31176aa662cSKarthik Bhat         if (ExitInstruction != nullptr || Cur == Phi)
31276aa662cSKarthik Bhat           return false;
31376aa662cSKarthik Bhat 
31476aa662cSKarthik Bhat         // The instruction used by an outside user must be the last instruction
31576aa662cSKarthik Bhat         // before we feed back to the reduction phi. Otherwise, we loose VF-1
31676aa662cSKarthik Bhat         // operations on the value.
31742531260SDavid Majnemer         if (!is_contained(Phi->operands(), Cur))
31876aa662cSKarthik Bhat           return false;
31976aa662cSKarthik Bhat 
32076aa662cSKarthik Bhat         ExitInstruction = Cur;
32176aa662cSKarthik Bhat         continue;
32276aa662cSKarthik Bhat       }
32376aa662cSKarthik Bhat 
32476aa662cSKarthik Bhat       // Process instructions only once (termination). Each reduction cycle
32576aa662cSKarthik Bhat       // value must only be used once, except by phi nodes and min/max
32676aa662cSKarthik Bhat       // reductions which are represented as a cmp followed by a select.
32727b2c39eSTyler Nowicki       InstDesc IgnoredVal(false, nullptr);
32876aa662cSKarthik Bhat       if (VisitedInsts.insert(UI).second) {
32976aa662cSKarthik Bhat         if (isa<PHINode>(UI))
33076aa662cSKarthik Bhat           PHIs.push_back(UI);
33176aa662cSKarthik Bhat         else
33276aa662cSKarthik Bhat           NonPHIs.push_back(UI);
33376aa662cSKarthik Bhat       } else if (!isa<PHINode>(UI) &&
33476aa662cSKarthik Bhat                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
33576aa662cSKarthik Bhat                    !isa<SelectInst>(UI)) ||
3360a91310cSTyler Nowicki                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
33776aa662cSKarthik Bhat         return false;
33876aa662cSKarthik Bhat 
33976aa662cSKarthik Bhat       // Remember that we completed the cycle.
34076aa662cSKarthik Bhat       if (UI == Phi)
34176aa662cSKarthik Bhat         FoundStartPHI = true;
34276aa662cSKarthik Bhat     }
34376aa662cSKarthik Bhat     Worklist.append(PHIs.begin(), PHIs.end());
34476aa662cSKarthik Bhat     Worklist.append(NonPHIs.begin(), NonPHIs.end());
34576aa662cSKarthik Bhat   }
34676aa662cSKarthik Bhat 
34776aa662cSKarthik Bhat   // This means we have seen one but not the other instruction of the
34876aa662cSKarthik Bhat   // pattern or more than just a select and cmp.
34976aa662cSKarthik Bhat   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
35076aa662cSKarthik Bhat       NumCmpSelectPatternInst != 2)
35176aa662cSKarthik Bhat     return false;
35276aa662cSKarthik Bhat 
35376aa662cSKarthik Bhat   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
35476aa662cSKarthik Bhat     return false;
35576aa662cSKarthik Bhat 
356c94f8e29SChad Rosier   // If we think Phi may have been type-promoted, we also need to ensure that
357c94f8e29SChad Rosier   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
358c94f8e29SChad Rosier   // so, we will be able to evaluate the reduction in the narrower bit width.
359c94f8e29SChad Rosier   if (Start != Phi)
360c94f8e29SChad Rosier     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
361c94f8e29SChad Rosier                                 IsSigned, VisitedInsts, CastInsts))
362c94f8e29SChad Rosier       return false;
363c94f8e29SChad Rosier 
36476aa662cSKarthik Bhat   // We found a reduction var if we have reached the original phi node and we
36576aa662cSKarthik Bhat   // only have a single instruction with out-of-loop users.
36676aa662cSKarthik Bhat 
36776aa662cSKarthik Bhat   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
3680a91310cSTyler Nowicki   // is saved as part of the RecurrenceDescriptor.
36976aa662cSKarthik Bhat 
37076aa662cSKarthik Bhat   // Save the description of this reduction variable.
371c94f8e29SChad Rosier   RecurrenceDescriptor RD(
372c94f8e29SChad Rosier       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
373c94f8e29SChad Rosier       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
37476aa662cSKarthik Bhat   RedDes = RD;
37576aa662cSKarthik Bhat 
37676aa662cSKarthik Bhat   return true;
37776aa662cSKarthik Bhat }
37876aa662cSKarthik Bhat 
37976aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
38076aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y).
38127b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
38227b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
38376aa662cSKarthik Bhat 
38476aa662cSKarthik Bhat   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
38576aa662cSKarthik Bhat          "Expect a select instruction");
38676aa662cSKarthik Bhat   Instruction *Cmp = nullptr;
38776aa662cSKarthik Bhat   SelectInst *Select = nullptr;
38876aa662cSKarthik Bhat 
38976aa662cSKarthik Bhat   // We must handle the select(cmp()) as a single instruction. Advance to the
39076aa662cSKarthik Bhat   // select.
39176aa662cSKarthik Bhat   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
39276aa662cSKarthik Bhat     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
39327b2c39eSTyler Nowicki       return InstDesc(false, I);
39427b2c39eSTyler Nowicki     return InstDesc(Select, Prev.getMinMaxKind());
39576aa662cSKarthik Bhat   }
39676aa662cSKarthik Bhat 
39776aa662cSKarthik Bhat   // Only handle single use cases for now.
39876aa662cSKarthik Bhat   if (!(Select = dyn_cast<SelectInst>(I)))
39927b2c39eSTyler Nowicki     return InstDesc(false, I);
40076aa662cSKarthik Bhat   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
40176aa662cSKarthik Bhat       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
40227b2c39eSTyler Nowicki     return InstDesc(false, I);
40376aa662cSKarthik Bhat   if (!Cmp->hasOneUse())
40427b2c39eSTyler Nowicki     return InstDesc(false, I);
40576aa662cSKarthik Bhat 
40676aa662cSKarthik Bhat   Value *CmpLeft;
40776aa662cSKarthik Bhat   Value *CmpRight;
40876aa662cSKarthik Bhat 
40976aa662cSKarthik Bhat   // Look for a min/max pattern.
41076aa662cSKarthik Bhat   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41127b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMin);
41276aa662cSKarthik Bhat   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41327b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMax);
41476aa662cSKarthik Bhat   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41527b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMax);
41676aa662cSKarthik Bhat   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41727b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMin);
41876aa662cSKarthik Bhat   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41927b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
42076aa662cSKarthik Bhat   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
42127b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
42276aa662cSKarthik Bhat   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
42327b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
42476aa662cSKarthik Bhat   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
42527b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
42676aa662cSKarthik Bhat 
42727b2c39eSTyler Nowicki   return InstDesc(false, I);
42876aa662cSKarthik Bhat }
42976aa662cSKarthik Bhat 
43027b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
4310a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
43227b2c39eSTyler Nowicki                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
43376aa662cSKarthik Bhat   bool FP = I->getType()->isFloatingPointTy();
434c1a86f58STyler Nowicki   Instruction *UAI = Prev.getUnsafeAlgebraInst();
435c1a86f58STyler Nowicki   if (!UAI && FP && !I->hasUnsafeAlgebra())
436c1a86f58STyler Nowicki     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
437c1a86f58STyler Nowicki 
43876aa662cSKarthik Bhat   switch (I->getOpcode()) {
43976aa662cSKarthik Bhat   default:
44027b2c39eSTyler Nowicki     return InstDesc(false, I);
44176aa662cSKarthik Bhat   case Instruction::PHI:
44210a1e8b1STim Northover     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
44376aa662cSKarthik Bhat   case Instruction::Sub:
44476aa662cSKarthik Bhat   case Instruction::Add:
44527b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAdd, I);
44676aa662cSKarthik Bhat   case Instruction::Mul:
44727b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerMult, I);
44876aa662cSKarthik Bhat   case Instruction::And:
44927b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAnd, I);
45076aa662cSKarthik Bhat   case Instruction::Or:
45127b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerOr, I);
45276aa662cSKarthik Bhat   case Instruction::Xor:
45327b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerXor, I);
45476aa662cSKarthik Bhat   case Instruction::FMul:
455c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatMult, I, UAI);
45676aa662cSKarthik Bhat   case Instruction::FSub:
45776aa662cSKarthik Bhat   case Instruction::FAdd:
458c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatAdd, I, UAI);
45976aa662cSKarthik Bhat   case Instruction::FCmp:
46076aa662cSKarthik Bhat   case Instruction::ICmp:
46176aa662cSKarthik Bhat   case Instruction::Select:
46276aa662cSKarthik Bhat     if (Kind != RK_IntegerMinMax &&
46376aa662cSKarthik Bhat         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
46427b2c39eSTyler Nowicki       return InstDesc(false, I);
46576aa662cSKarthik Bhat     return isMinMaxSelectCmpPattern(I, Prev);
46676aa662cSKarthik Bhat   }
46776aa662cSKarthik Bhat }
46876aa662cSKarthik Bhat 
4690a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf(
47076aa662cSKarthik Bhat     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
47176aa662cSKarthik Bhat   unsigned NumUses = 0;
47276aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
47376aa662cSKarthik Bhat        ++Use) {
47476aa662cSKarthik Bhat     if (Insts.count(dyn_cast<Instruction>(*Use)))
47576aa662cSKarthik Bhat       ++NumUses;
47676aa662cSKarthik Bhat     if (NumUses > 1)
47776aa662cSKarthik Bhat       return true;
47876aa662cSKarthik Bhat   }
47976aa662cSKarthik Bhat 
48076aa662cSKarthik Bhat   return false;
48176aa662cSKarthik Bhat }
4820a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
4830a91310cSTyler Nowicki                                           RecurrenceDescriptor &RedDes) {
48476aa662cSKarthik Bhat 
48576aa662cSKarthik Bhat   BasicBlock *Header = TheLoop->getHeader();
48676aa662cSKarthik Bhat   Function &F = *Header->getParent();
4878dd66e57SNirav Dave   bool HasFunNoNaNAttr =
48876aa662cSKarthik Bhat       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
48976aa662cSKarthik Bhat 
49076aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
49176aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
49276aa662cSKarthik Bhat     return true;
49376aa662cSKarthik Bhat   }
49476aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
49576aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
49676aa662cSKarthik Bhat     return true;
49776aa662cSKarthik Bhat   }
49876aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
49976aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
50076aa662cSKarthik Bhat     return true;
50176aa662cSKarthik Bhat   }
50276aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
50376aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
50476aa662cSKarthik Bhat     return true;
50576aa662cSKarthik Bhat   }
50676aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
50776aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
50876aa662cSKarthik Bhat     return true;
50976aa662cSKarthik Bhat   }
51076aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
51176aa662cSKarthik Bhat                       RedDes)) {
51276aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
51376aa662cSKarthik Bhat     return true;
51476aa662cSKarthik Bhat   }
51576aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
51676aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
51776aa662cSKarthik Bhat     return true;
51876aa662cSKarthik Bhat   }
51976aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
52076aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
52176aa662cSKarthik Bhat     return true;
52276aa662cSKarthik Bhat   }
52376aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
52476aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
52576aa662cSKarthik Bhat     return true;
52676aa662cSKarthik Bhat   }
52776aa662cSKarthik Bhat   // Not a reduction of known type.
52876aa662cSKarthik Bhat   return false;
52976aa662cSKarthik Bhat }
53076aa662cSKarthik Bhat 
53129c997c1SMatthew Simpson bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
53229c997c1SMatthew Simpson                                                   DominatorTree *DT) {
53329c997c1SMatthew Simpson 
53429c997c1SMatthew Simpson   // Ensure the phi node is in the loop header and has two incoming values.
53529c997c1SMatthew Simpson   if (Phi->getParent() != TheLoop->getHeader() ||
53629c997c1SMatthew Simpson       Phi->getNumIncomingValues() != 2)
53729c997c1SMatthew Simpson     return false;
53829c997c1SMatthew Simpson 
53929c997c1SMatthew Simpson   // Ensure the loop has a preheader and a single latch block. The loop
54029c997c1SMatthew Simpson   // vectorizer will need the latch to set up the next iteration of the loop.
54129c997c1SMatthew Simpson   auto *Preheader = TheLoop->getLoopPreheader();
54229c997c1SMatthew Simpson   auto *Latch = TheLoop->getLoopLatch();
54329c997c1SMatthew Simpson   if (!Preheader || !Latch)
54429c997c1SMatthew Simpson     return false;
54529c997c1SMatthew Simpson 
54629c997c1SMatthew Simpson   // Ensure the phi node's incoming blocks are the loop preheader and latch.
54729c997c1SMatthew Simpson   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
54829c997c1SMatthew Simpson       Phi->getBasicBlockIndex(Latch) < 0)
54929c997c1SMatthew Simpson     return false;
55029c997c1SMatthew Simpson 
55129c997c1SMatthew Simpson   // Get the previous value. The previous value comes from the latch edge while
55229c997c1SMatthew Simpson   // the initial value comes form the preheader edge.
55329c997c1SMatthew Simpson   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
55453207a99SMatthew Simpson   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
55529c997c1SMatthew Simpson     return false;
55629c997c1SMatthew Simpson 
55700dc1b74SAnna Thomas   // Ensure every user of the phi node is dominated by the previous value.
55800dc1b74SAnna Thomas   // The dominance requirement ensures the loop vectorizer will not need to
55900dc1b74SAnna Thomas   // vectorize the initial value prior to the first iteration of the loop.
560dcdb325fSAnna Thomas   for (User *U : Phi->users())
561dcdb325fSAnna Thomas     if (auto *I = dyn_cast<Instruction>(U)) {
56229c997c1SMatthew Simpson       if (!DT->dominates(Previous, I))
56329c997c1SMatthew Simpson         return false;
56400dc1b74SAnna Thomas     }
56529c997c1SMatthew Simpson 
56629c997c1SMatthew Simpson   return true;
56729c997c1SMatthew Simpson }
56829c997c1SMatthew Simpson 
56976aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for
57076aa662cSKarthik Bhat /// the operation K.
5710a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
5720a91310cSTyler Nowicki                                                       Type *Tp) {
57376aa662cSKarthik Bhat   switch (K) {
57476aa662cSKarthik Bhat   case RK_IntegerXor:
57576aa662cSKarthik Bhat   case RK_IntegerAdd:
57676aa662cSKarthik Bhat   case RK_IntegerOr:
57776aa662cSKarthik Bhat     // Adding, Xoring, Oring zero to a number does not change it.
57876aa662cSKarthik Bhat     return ConstantInt::get(Tp, 0);
57976aa662cSKarthik Bhat   case RK_IntegerMult:
58076aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
58176aa662cSKarthik Bhat     return ConstantInt::get(Tp, 1);
58276aa662cSKarthik Bhat   case RK_IntegerAnd:
58376aa662cSKarthik Bhat     // AND-ing a number with an all-1 value does not change it.
58476aa662cSKarthik Bhat     return ConstantInt::get(Tp, -1, true);
58576aa662cSKarthik Bhat   case RK_FloatMult:
58676aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
58776aa662cSKarthik Bhat     return ConstantFP::get(Tp, 1.0L);
58876aa662cSKarthik Bhat   case RK_FloatAdd:
58976aa662cSKarthik Bhat     // Adding zero to a number does not change it.
59076aa662cSKarthik Bhat     return ConstantFP::get(Tp, 0.0L);
59176aa662cSKarthik Bhat   default:
5920a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence kind");
59376aa662cSKarthik Bhat   }
59476aa662cSKarthik Bhat }
59576aa662cSKarthik Bhat 
5960a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator.
5970a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
59876aa662cSKarthik Bhat   switch (Kind) {
59976aa662cSKarthik Bhat   case RK_IntegerAdd:
60076aa662cSKarthik Bhat     return Instruction::Add;
60176aa662cSKarthik Bhat   case RK_IntegerMult:
60276aa662cSKarthik Bhat     return Instruction::Mul;
60376aa662cSKarthik Bhat   case RK_IntegerOr:
60476aa662cSKarthik Bhat     return Instruction::Or;
60576aa662cSKarthik Bhat   case RK_IntegerAnd:
60676aa662cSKarthik Bhat     return Instruction::And;
60776aa662cSKarthik Bhat   case RK_IntegerXor:
60876aa662cSKarthik Bhat     return Instruction::Xor;
60976aa662cSKarthik Bhat   case RK_FloatMult:
61076aa662cSKarthik Bhat     return Instruction::FMul;
61176aa662cSKarthik Bhat   case RK_FloatAdd:
61276aa662cSKarthik Bhat     return Instruction::FAdd;
61376aa662cSKarthik Bhat   case RK_IntegerMinMax:
61476aa662cSKarthik Bhat     return Instruction::ICmp;
61576aa662cSKarthik Bhat   case RK_FloatMinMax:
61676aa662cSKarthik Bhat     return Instruction::FCmp;
61776aa662cSKarthik Bhat   default:
6180a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence operation");
61976aa662cSKarthik Bhat   }
62076aa662cSKarthik Bhat }
62176aa662cSKarthik Bhat 
62227b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
62327b2c39eSTyler Nowicki                                             MinMaxRecurrenceKind RK,
62476aa662cSKarthik Bhat                                             Value *Left, Value *Right) {
62576aa662cSKarthik Bhat   CmpInst::Predicate P = CmpInst::ICMP_NE;
62676aa662cSKarthik Bhat   switch (RK) {
62776aa662cSKarthik Bhat   default:
6280a91310cSTyler Nowicki     llvm_unreachable("Unknown min/max recurrence kind");
62927b2c39eSTyler Nowicki   case MRK_UIntMin:
63076aa662cSKarthik Bhat     P = CmpInst::ICMP_ULT;
63176aa662cSKarthik Bhat     break;
63227b2c39eSTyler Nowicki   case MRK_UIntMax:
63376aa662cSKarthik Bhat     P = CmpInst::ICMP_UGT;
63476aa662cSKarthik Bhat     break;
63527b2c39eSTyler Nowicki   case MRK_SIntMin:
63676aa662cSKarthik Bhat     P = CmpInst::ICMP_SLT;
63776aa662cSKarthik Bhat     break;
63827b2c39eSTyler Nowicki   case MRK_SIntMax:
63976aa662cSKarthik Bhat     P = CmpInst::ICMP_SGT;
64076aa662cSKarthik Bhat     break;
64127b2c39eSTyler Nowicki   case MRK_FloatMin:
64276aa662cSKarthik Bhat     P = CmpInst::FCMP_OLT;
64376aa662cSKarthik Bhat     break;
64427b2c39eSTyler Nowicki   case MRK_FloatMax:
64576aa662cSKarthik Bhat     P = CmpInst::FCMP_OGT;
64676aa662cSKarthik Bhat     break;
64776aa662cSKarthik Bhat   }
64876aa662cSKarthik Bhat 
64950a4c27fSJames Molloy   // We only match FP sequences with unsafe algebra, so we can unconditionally
65050a4c27fSJames Molloy   // set it on any generated instructions.
65150a4c27fSJames Molloy   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
65250a4c27fSJames Molloy   FastMathFlags FMF;
65350a4c27fSJames Molloy   FMF.setUnsafeAlgebra();
654a252815bSSanjay Patel   Builder.setFastMathFlags(FMF);
65550a4c27fSJames Molloy 
65676aa662cSKarthik Bhat   Value *Cmp;
65727b2c39eSTyler Nowicki   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
65876aa662cSKarthik Bhat     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
65976aa662cSKarthik Bhat   else
66076aa662cSKarthik Bhat     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
66176aa662cSKarthik Bhat 
66276aa662cSKarthik Bhat   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
66376aa662cSKarthik Bhat   return Select;
66476aa662cSKarthik Bhat }
66524e6cc2dSKarthik Bhat 
6661bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
667376a18bdSElena Demikhovsky                                          const SCEV *Step, BinaryOperator *BOp)
668376a18bdSElena Demikhovsky   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
6691bbf15c5SJames Molloy   assert(IK != IK_NoInduction && "Not an induction");
670c434d091SElena Demikhovsky 
671c434d091SElena Demikhovsky   // Start value type should match the induction kind and the value
672c434d091SElena Demikhovsky   // itself should not be null.
6731bbf15c5SJames Molloy   assert(StartValue && "StartValue is null");
6741bbf15c5SJames Molloy   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
6751bbf15c5SJames Molloy          "StartValue is not a pointer for pointer induction");
6761bbf15c5SJames Molloy   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
6771bbf15c5SJames Molloy          "StartValue is not an integer for integer induction");
678c434d091SElena Demikhovsky 
679c434d091SElena Demikhovsky   // Check the Step Value. It should be non-zero integer value.
680c434d091SElena Demikhovsky   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
681c434d091SElena Demikhovsky          "Step value is zero");
682c434d091SElena Demikhovsky 
683c434d091SElena Demikhovsky   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
684c434d091SElena Demikhovsky          "Step value should be constant for pointer induction");
685376a18bdSElena Demikhovsky   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
686376a18bdSElena Demikhovsky          "StepValue is not an integer");
687376a18bdSElena Demikhovsky 
688376a18bdSElena Demikhovsky   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
689376a18bdSElena Demikhovsky          "StepValue is not FP for FpInduction");
690376a18bdSElena Demikhovsky   assert((IK != IK_FpInduction || (InductionBinOp &&
691376a18bdSElena Demikhovsky           (InductionBinOp->getOpcode() == Instruction::FAdd ||
692376a18bdSElena Demikhovsky            InductionBinOp->getOpcode() == Instruction::FSub))) &&
693376a18bdSElena Demikhovsky          "Binary opcode should be specified for FP induction");
6941bbf15c5SJames Molloy }
6951bbf15c5SJames Molloy 
6961bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const {
697c434d091SElena Demikhovsky   ConstantInt *ConstStep = getConstIntStepValue();
698c434d091SElena Demikhovsky   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
699c434d091SElena Demikhovsky     return ConstStep->getSExtValue();
7001bbf15c5SJames Molloy   return 0;
7011bbf15c5SJames Molloy }
7021bbf15c5SJames Molloy 
703c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const {
704c434d091SElena Demikhovsky   if (isa<SCEVConstant>(Step))
705c434d091SElena Demikhovsky     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
706c434d091SElena Demikhovsky   return nullptr;
707c434d091SElena Demikhovsky }
708c434d091SElena Demikhovsky 
709c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
710c434d091SElena Demikhovsky                                       ScalarEvolution *SE,
711c434d091SElena Demikhovsky                                       const DataLayout& DL) const {
712c434d091SElena Demikhovsky 
713c434d091SElena Demikhovsky   SCEVExpander Exp(*SE, DL, "induction");
714376a18bdSElena Demikhovsky   assert(Index->getType() == Step->getType() &&
715376a18bdSElena Demikhovsky          "Index type does not match StepValue type");
7161bbf15c5SJames Molloy   switch (IK) {
717c434d091SElena Demikhovsky   case IK_IntInduction: {
7181bbf15c5SJames Molloy     assert(Index->getType() == StartValue->getType() &&
7191bbf15c5SJames Molloy            "Index type does not match StartValue type");
720c434d091SElena Demikhovsky 
721c434d091SElena Demikhovsky     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
722c434d091SElena Demikhovsky     // and calculate (Start + Index * Step) for all cases, without
723c434d091SElena Demikhovsky     // special handling for "isOne" and "isMinusOne".
724c434d091SElena Demikhovsky     // But in the real life the result code getting worse. We mix SCEV
725c434d091SElena Demikhovsky     // expressions and ADD/SUB operations and receive redundant
726c434d091SElena Demikhovsky     // intermediate values being calculated in different ways and
727c434d091SElena Demikhovsky     // Instcombine is unable to reduce them all.
728c434d091SElena Demikhovsky 
729c434d091SElena Demikhovsky     if (getConstIntStepValue() &&
730c434d091SElena Demikhovsky         getConstIntStepValue()->isMinusOne())
7311bbf15c5SJames Molloy       return B.CreateSub(StartValue, Index);
732c434d091SElena Demikhovsky     if (getConstIntStepValue() &&
733c434d091SElena Demikhovsky         getConstIntStepValue()->isOne())
7341bbf15c5SJames Molloy       return B.CreateAdd(StartValue, Index);
735c434d091SElena Demikhovsky     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
736c434d091SElena Demikhovsky                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
737c434d091SElena Demikhovsky     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
738c434d091SElena Demikhovsky   }
739c434d091SElena Demikhovsky   case IK_PtrInduction: {
740c434d091SElena Demikhovsky     assert(isa<SCEVConstant>(Step) &&
741c434d091SElena Demikhovsky            "Expected constant step for pointer induction");
742c434d091SElena Demikhovsky     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
743c434d091SElena Demikhovsky     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
7441bbf15c5SJames Molloy     return B.CreateGEP(nullptr, StartValue, Index);
745c434d091SElena Demikhovsky   }
746376a18bdSElena Demikhovsky   case IK_FpInduction: {
747376a18bdSElena Demikhovsky     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
748376a18bdSElena Demikhovsky     assert(InductionBinOp &&
749376a18bdSElena Demikhovsky            (InductionBinOp->getOpcode() == Instruction::FAdd ||
750376a18bdSElena Demikhovsky             InductionBinOp->getOpcode() == Instruction::FSub) &&
751376a18bdSElena Demikhovsky            "Original bin op should be defined for FP induction");
752376a18bdSElena Demikhovsky 
753376a18bdSElena Demikhovsky     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
754376a18bdSElena Demikhovsky 
755376a18bdSElena Demikhovsky     // Floating point operations had to be 'fast' to enable the induction.
756376a18bdSElena Demikhovsky     FastMathFlags Flags;
757376a18bdSElena Demikhovsky     Flags.setUnsafeAlgebra();
758376a18bdSElena Demikhovsky 
759376a18bdSElena Demikhovsky     Value *MulExp = B.CreateFMul(StepValue, Index);
760376a18bdSElena Demikhovsky     if (isa<Instruction>(MulExp))
761376a18bdSElena Demikhovsky       // We have to check, the MulExp may be a constant.
762376a18bdSElena Demikhovsky       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
763376a18bdSElena Demikhovsky 
764376a18bdSElena Demikhovsky     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
765376a18bdSElena Demikhovsky                                MulExp, "induction");
766376a18bdSElena Demikhovsky     if (isa<Instruction>(BOp))
767376a18bdSElena Demikhovsky       cast<Instruction>(BOp)->setFastMathFlags(Flags);
768376a18bdSElena Demikhovsky 
769376a18bdSElena Demikhovsky     return BOp;
770376a18bdSElena Demikhovsky   }
7711bbf15c5SJames Molloy   case IK_NoInduction:
7721bbf15c5SJames Molloy     return nullptr;
7731bbf15c5SJames Molloy   }
7741bbf15c5SJames Molloy   llvm_unreachable("invalid enum");
7751bbf15c5SJames Molloy }
7761bbf15c5SJames Molloy 
777376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
778376a18bdSElena Demikhovsky                                            ScalarEvolution *SE,
779376a18bdSElena Demikhovsky                                            InductionDescriptor &D) {
780376a18bdSElena Demikhovsky 
781376a18bdSElena Demikhovsky   // Here we only handle FP induction variables.
782376a18bdSElena Demikhovsky   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
783376a18bdSElena Demikhovsky 
784376a18bdSElena Demikhovsky   if (TheLoop->getHeader() != Phi->getParent())
785376a18bdSElena Demikhovsky     return false;
786376a18bdSElena Demikhovsky 
787376a18bdSElena Demikhovsky   // The loop may have multiple entrances or multiple exits; we can analyze
788376a18bdSElena Demikhovsky   // this phi if it has a unique entry value and a unique backedge value.
789376a18bdSElena Demikhovsky   if (Phi->getNumIncomingValues() != 2)
790376a18bdSElena Demikhovsky     return false;
791376a18bdSElena Demikhovsky   Value *BEValue = nullptr, *StartValue = nullptr;
792376a18bdSElena Demikhovsky   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
793376a18bdSElena Demikhovsky     BEValue = Phi->getIncomingValue(0);
794376a18bdSElena Demikhovsky     StartValue = Phi->getIncomingValue(1);
795376a18bdSElena Demikhovsky   } else {
796376a18bdSElena Demikhovsky     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
797376a18bdSElena Demikhovsky            "Unexpected Phi node in the loop");
798376a18bdSElena Demikhovsky     BEValue = Phi->getIncomingValue(1);
799376a18bdSElena Demikhovsky     StartValue = Phi->getIncomingValue(0);
800376a18bdSElena Demikhovsky   }
801376a18bdSElena Demikhovsky 
802376a18bdSElena Demikhovsky   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
803376a18bdSElena Demikhovsky   if (!BOp)
804376a18bdSElena Demikhovsky     return false;
805376a18bdSElena Demikhovsky 
806376a18bdSElena Demikhovsky   Value *Addend = nullptr;
807376a18bdSElena Demikhovsky   if (BOp->getOpcode() == Instruction::FAdd) {
808376a18bdSElena Demikhovsky     if (BOp->getOperand(0) == Phi)
809376a18bdSElena Demikhovsky       Addend = BOp->getOperand(1);
810376a18bdSElena Demikhovsky     else if (BOp->getOperand(1) == Phi)
811376a18bdSElena Demikhovsky       Addend = BOp->getOperand(0);
812376a18bdSElena Demikhovsky   } else if (BOp->getOpcode() == Instruction::FSub)
813376a18bdSElena Demikhovsky     if (BOp->getOperand(0) == Phi)
814376a18bdSElena Demikhovsky       Addend = BOp->getOperand(1);
815376a18bdSElena Demikhovsky 
816376a18bdSElena Demikhovsky   if (!Addend)
817376a18bdSElena Demikhovsky     return false;
818376a18bdSElena Demikhovsky 
819376a18bdSElena Demikhovsky   // The addend should be loop invariant
820376a18bdSElena Demikhovsky   if (auto *I = dyn_cast<Instruction>(Addend))
821376a18bdSElena Demikhovsky     if (TheLoop->contains(I))
822376a18bdSElena Demikhovsky       return false;
823376a18bdSElena Demikhovsky 
824376a18bdSElena Demikhovsky   // FP Step has unknown SCEV
825376a18bdSElena Demikhovsky   const SCEV *Step = SE->getUnknown(Addend);
826376a18bdSElena Demikhovsky   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
827376a18bdSElena Demikhovsky   return true;
828376a18bdSElena Demikhovsky }
829376a18bdSElena Demikhovsky 
830376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
831c05bab8aSSilviu Baranga                                          PredicatedScalarEvolution &PSE,
832c05bab8aSSilviu Baranga                                          InductionDescriptor &D,
833c05bab8aSSilviu Baranga                                          bool Assume) {
834c05bab8aSSilviu Baranga   Type *PhiTy = Phi->getType();
835376a18bdSElena Demikhovsky 
836376a18bdSElena Demikhovsky   // Handle integer and pointer inductions variables.
837376a18bdSElena Demikhovsky   // Now we handle also FP induction but not trying to make a
838376a18bdSElena Demikhovsky   // recurrent expression from the PHI node in-place.
839376a18bdSElena Demikhovsky 
840376a18bdSElena Demikhovsky   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
841376a18bdSElena Demikhovsky       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
842c05bab8aSSilviu Baranga     return false;
843c05bab8aSSilviu Baranga 
844376a18bdSElena Demikhovsky   if (PhiTy->isFloatingPointTy())
845376a18bdSElena Demikhovsky     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
846376a18bdSElena Demikhovsky 
847c05bab8aSSilviu Baranga   const SCEV *PhiScev = PSE.getSCEV(Phi);
848c05bab8aSSilviu Baranga   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
849c05bab8aSSilviu Baranga 
850c05bab8aSSilviu Baranga   // We need this expression to be an AddRecExpr.
851c05bab8aSSilviu Baranga   if (Assume && !AR)
852c05bab8aSSilviu Baranga     AR = PSE.getAsAddRec(Phi);
853c05bab8aSSilviu Baranga 
854c05bab8aSSilviu Baranga   if (!AR) {
855c05bab8aSSilviu Baranga     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
856c05bab8aSSilviu Baranga     return false;
857c05bab8aSSilviu Baranga   }
858c05bab8aSSilviu Baranga 
859376a18bdSElena Demikhovsky   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
860c05bab8aSSilviu Baranga }
861c05bab8aSSilviu Baranga 
862376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
863c05bab8aSSilviu Baranga                                          ScalarEvolution *SE,
864c05bab8aSSilviu Baranga                                          InductionDescriptor &D,
865c05bab8aSSilviu Baranga                                          const SCEV *Expr) {
86624e6cc2dSKarthik Bhat   Type *PhiTy = Phi->getType();
86724e6cc2dSKarthik Bhat   // We only handle integer and pointer inductions variables.
86824e6cc2dSKarthik Bhat   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
86924e6cc2dSKarthik Bhat     return false;
87024e6cc2dSKarthik Bhat 
87124e6cc2dSKarthik Bhat   // Check that the PHI is consecutive.
872c05bab8aSSilviu Baranga   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
87324e6cc2dSKarthik Bhat   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
874c05bab8aSSilviu Baranga 
87524e6cc2dSKarthik Bhat   if (!AR) {
87624e6cc2dSKarthik Bhat     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
87724e6cc2dSKarthik Bhat     return false;
87824e6cc2dSKarthik Bhat   }
87924e6cc2dSKarthik Bhat 
880ee31cbe3SMichael Kuperstein   if (AR->getLoop() != TheLoop) {
881ee31cbe3SMichael Kuperstein     // FIXME: We should treat this as a uniform. Unfortunately, we
882ee31cbe3SMichael Kuperstein     // don't currently know how to handled uniform PHIs.
883ee31cbe3SMichael Kuperstein     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
884ee31cbe3SMichael Kuperstein     return false;
885ee31cbe3SMichael Kuperstein   }
886ee31cbe3SMichael Kuperstein 
8871bbf15c5SJames Molloy   Value *StartValue =
8881bbf15c5SJames Molloy     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
88924e6cc2dSKarthik Bhat   const SCEV *Step = AR->getStepRecurrence(*SE);
89024e6cc2dSKarthik Bhat   // Calculate the pointer stride and check if it is consecutive.
891c434d091SElena Demikhovsky   // The stride may be a constant or a loop invariant integer value.
892c434d091SElena Demikhovsky   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
893376a18bdSElena Demikhovsky   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
89424e6cc2dSKarthik Bhat     return false;
89524e6cc2dSKarthik Bhat 
89624e6cc2dSKarthik Bhat   if (PhiTy->isIntegerTy()) {
897c434d091SElena Demikhovsky     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
89824e6cc2dSKarthik Bhat     return true;
89924e6cc2dSKarthik Bhat   }
90024e6cc2dSKarthik Bhat 
90124e6cc2dSKarthik Bhat   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
902c434d091SElena Demikhovsky   // Pointer induction should be a constant.
903c434d091SElena Demikhovsky   if (!ConstStep)
904c434d091SElena Demikhovsky     return false;
905c434d091SElena Demikhovsky 
906c434d091SElena Demikhovsky   ConstantInt *CV = ConstStep->getValue();
90724e6cc2dSKarthik Bhat   Type *PointerElementType = PhiTy->getPointerElementType();
90824e6cc2dSKarthik Bhat   // The pointer stride cannot be determined if the pointer element type is not
90924e6cc2dSKarthik Bhat   // sized.
91024e6cc2dSKarthik Bhat   if (!PointerElementType->isSized())
91124e6cc2dSKarthik Bhat     return false;
91224e6cc2dSKarthik Bhat 
91324e6cc2dSKarthik Bhat   const DataLayout &DL = Phi->getModule()->getDataLayout();
91424e6cc2dSKarthik Bhat   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
915b58f32f7SDavid Majnemer   if (!Size)
916b58f32f7SDavid Majnemer     return false;
917b58f32f7SDavid Majnemer 
91824e6cc2dSKarthik Bhat   int64_t CVSize = CV->getSExtValue();
91924e6cc2dSKarthik Bhat   if (CVSize % Size)
92024e6cc2dSKarthik Bhat     return false;
921c434d091SElena Demikhovsky   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
922c434d091SElena Demikhovsky                                     true /* signed */);
9231bbf15c5SJames Molloy   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
92424e6cc2dSKarthik Bhat   return true;
92524e6cc2dSKarthik Bhat }
926c5b7b555SAshutosh Nema 
927c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop.
928c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
929c5b7b555SAshutosh Nema   SmallVector<Instruction *, 8> UsedOutside;
930c5b7b555SAshutosh Nema 
931c5b7b555SAshutosh Nema   for (auto *Block : L->getBlocks())
932c5b7b555SAshutosh Nema     // FIXME: I believe that this could use copy_if if the Inst reference could
933c5b7b555SAshutosh Nema     // be adapted into a pointer.
934c5b7b555SAshutosh Nema     for (auto &Inst : *Block) {
935c5b7b555SAshutosh Nema       auto Users = Inst.users();
9360a16c228SDavid Majnemer       if (any_of(Users, [&](User *U) {
937c5b7b555SAshutosh Nema             auto *Use = cast<Instruction>(U);
938c5b7b555SAshutosh Nema             return !L->contains(Use->getParent());
939c5b7b555SAshutosh Nema           }))
940c5b7b555SAshutosh Nema         UsedOutside.push_back(&Inst);
941c5b7b555SAshutosh Nema     }
942c5b7b555SAshutosh Nema 
943c5b7b555SAshutosh Nema   return UsedOutside;
944c5b7b555SAshutosh Nema }
94531088a9dSChandler Carruth 
94631088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
94731088a9dSChandler Carruth   // By definition, all loop passes need the LoopInfo analysis and the
94831088a9dSChandler Carruth   // Dominator tree it depends on. Because they all participate in the loop
94931088a9dSChandler Carruth   // pass manager, they must also preserve these.
95031088a9dSChandler Carruth   AU.addRequired<DominatorTreeWrapperPass>();
95131088a9dSChandler Carruth   AU.addPreserved<DominatorTreeWrapperPass>();
95231088a9dSChandler Carruth   AU.addRequired<LoopInfoWrapperPass>();
95331088a9dSChandler Carruth   AU.addPreserved<LoopInfoWrapperPass>();
95431088a9dSChandler Carruth 
95531088a9dSChandler Carruth   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
95631088a9dSChandler Carruth   // here because users shouldn't directly get them from this header.
95731088a9dSChandler Carruth   extern char &LoopSimplifyID;
95831088a9dSChandler Carruth   extern char &LCSSAID;
95931088a9dSChandler Carruth   AU.addRequiredID(LoopSimplifyID);
96031088a9dSChandler Carruth   AU.addPreservedID(LoopSimplifyID);
96131088a9dSChandler Carruth   AU.addRequiredID(LCSSAID);
96231088a9dSChandler Carruth   AU.addPreservedID(LCSSAID);
963c3ccf5d7SIgor Laevsky   // This is used in the LPPassManager to perform LCSSA verification on passes
964c3ccf5d7SIgor Laevsky   // which preserve lcssa form
965c3ccf5d7SIgor Laevsky   AU.addRequired<LCSSAVerificationPass>();
966c3ccf5d7SIgor Laevsky   AU.addPreserved<LCSSAVerificationPass>();
96731088a9dSChandler Carruth 
96831088a9dSChandler Carruth   // Loop passes are designed to run inside of a loop pass manager which means
96931088a9dSChandler Carruth   // that any function analyses they require must be required by the first loop
97031088a9dSChandler Carruth   // pass in the manager (so that it is computed before the loop pass manager
97131088a9dSChandler Carruth   // runs) and preserved by all loop pasess in the manager. To make this
97231088a9dSChandler Carruth   // reasonably robust, the set needed for most loop passes is maintained here.
97331088a9dSChandler Carruth   // If your loop pass requires an analysis not listed here, you will need to
97431088a9dSChandler Carruth   // carefully audit the loop pass manager nesting structure that results.
97531088a9dSChandler Carruth   AU.addRequired<AAResultsWrapperPass>();
97631088a9dSChandler Carruth   AU.addPreserved<AAResultsWrapperPass>();
97731088a9dSChandler Carruth   AU.addPreserved<BasicAAWrapperPass>();
97831088a9dSChandler Carruth   AU.addPreserved<GlobalsAAWrapperPass>();
97931088a9dSChandler Carruth   AU.addPreserved<SCEVAAWrapperPass>();
98031088a9dSChandler Carruth   AU.addRequired<ScalarEvolutionWrapperPass>();
98131088a9dSChandler Carruth   AU.addPreserved<ScalarEvolutionWrapperPass>();
98231088a9dSChandler Carruth }
98331088a9dSChandler Carruth 
98431088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used
98531088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c
98631088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
98731088a9dSChandler Carruth /// with:
98831088a9dSChandler Carruth ///
98931088a9dSChandler Carruth ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
99031088a9dSChandler Carruth ///
99131088a9dSChandler Carruth /// As-if "LoopPass" were a pass.
99231088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) {
99331088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
99431088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
99531088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
996e12c487bSEaswaran Raman   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
99731088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
99831088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
99931088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
100031088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
100131088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
100231088a9dSChandler Carruth }
1003963341c8SAdam Nemet 
1004fe3def7cSAdam Nemet /// \brief Find string metadata for loop
1005fe3def7cSAdam Nemet ///
1006fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1007fe3def7cSAdam Nemet /// operand or null otherwise.  If the string metadata is not found return
1008fe3def7cSAdam Nemet /// Optional's not-a-value.
1009fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1010fe3def7cSAdam Nemet                                                             StringRef Name) {
1011963341c8SAdam Nemet   MDNode *LoopID = TheLoop->getLoopID();
1012fe3def7cSAdam Nemet   // Return none if LoopID is false.
1013963341c8SAdam Nemet   if (!LoopID)
1014fe3def7cSAdam Nemet     return None;
1015293be666SAdam Nemet 
1016293be666SAdam Nemet   // First operand should refer to the loop id itself.
1017293be666SAdam Nemet   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1018293be666SAdam Nemet   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1019293be666SAdam Nemet 
1020963341c8SAdam Nemet   // Iterate over LoopID operands and look for MDString Metadata
1021963341c8SAdam Nemet   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1022963341c8SAdam Nemet     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1023963341c8SAdam Nemet     if (!MD)
1024963341c8SAdam Nemet       continue;
1025963341c8SAdam Nemet     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1026963341c8SAdam Nemet     if (!S)
1027963341c8SAdam Nemet       continue;
1028963341c8SAdam Nemet     // Return true if MDString holds expected MetaData.
1029963341c8SAdam Nemet     if (Name.equals(S->getString()))
1030fe3def7cSAdam Nemet       switch (MD->getNumOperands()) {
1031fe3def7cSAdam Nemet       case 1:
1032fe3def7cSAdam Nemet         return nullptr;
1033fe3def7cSAdam Nemet       case 2:
1034fe3def7cSAdam Nemet         return &MD->getOperand(1);
1035fe3def7cSAdam Nemet       default:
1036fe3def7cSAdam Nemet         llvm_unreachable("loop metadata has 0 or 1 operand");
1037963341c8SAdam Nemet       }
1038fe3def7cSAdam Nemet   }
1039fe3def7cSAdam Nemet   return None;
1040963341c8SAdam Nemet }
1041122f984aSEvgeniy Stepanov 
1042122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least
1043122f984aSEvgeniy Stepanov /// once.
1044122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1045122f984aSEvgeniy Stepanov                                  const DominatorTree *DT, const Loop *CurLoop,
1046122f984aSEvgeniy Stepanov                                  const LoopSafetyInfo *SafetyInfo) {
1047122f984aSEvgeniy Stepanov   // We have to check to make sure that the instruction dominates all
104858ccc094SEvgeniy Stepanov   // of the exit blocks.  If it doesn't, then there is a path out of the loop
104958ccc094SEvgeniy Stepanov   // which does not execute this instruction, so we can't hoist it.
105058ccc094SEvgeniy Stepanov 
105158ccc094SEvgeniy Stepanov   // If the instruction is in the header block for the loop (which is very
105258ccc094SEvgeniy Stepanov   // common), it is always guaranteed to dominate the exit blocks.  Since this
105358ccc094SEvgeniy Stepanov   // is a common case, and can save some work, check it now.
105458ccc094SEvgeniy Stepanov   if (Inst.getParent() == CurLoop->getHeader())
105558ccc094SEvgeniy Stepanov     // If there's a throw in the header block, we can't guarantee we'll reach
105658ccc094SEvgeniy Stepanov     // Inst.
105758ccc094SEvgeniy Stepanov     return !SafetyInfo->HeaderMayThrow;
105858ccc094SEvgeniy Stepanov 
105958ccc094SEvgeniy Stepanov   // Somewhere in this loop there is an instruction which may throw and make us
106058ccc094SEvgeniy Stepanov   // exit the loop.
106158ccc094SEvgeniy Stepanov   if (SafetyInfo->MayThrow)
1062122f984aSEvgeniy Stepanov     return false;
1063122f984aSEvgeniy Stepanov 
1064122f984aSEvgeniy Stepanov   // Get the exit blocks for the current loop.
1065122f984aSEvgeniy Stepanov   SmallVector<BasicBlock *, 8> ExitBlocks;
1066122f984aSEvgeniy Stepanov   CurLoop->getExitBlocks(ExitBlocks);
1067122f984aSEvgeniy Stepanov 
1068122f984aSEvgeniy Stepanov   // Verify that the block dominates each of the exit blocks of the loop.
1069122f984aSEvgeniy Stepanov   for (BasicBlock *ExitBlock : ExitBlocks)
1070122f984aSEvgeniy Stepanov     if (!DT->dominates(Inst.getParent(), ExitBlock))
1071122f984aSEvgeniy Stepanov       return false;
1072122f984aSEvgeniy Stepanov 
1073122f984aSEvgeniy Stepanov   // As a degenerate case, if the loop is statically infinite then we haven't
1074122f984aSEvgeniy Stepanov   // proven anything since there are no exit blocks.
107558ccc094SEvgeniy Stepanov   if (ExitBlocks.empty())
1076122f984aSEvgeniy Stepanov     return false;
1077122f984aSEvgeniy Stepanov 
1078f1da33e4SEli Friedman   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1079f1da33e4SEli Friedman   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
1080f1da33e4SEli Friedman   // just a special case of this.)
1081122f984aSEvgeniy Stepanov   return true;
1082122f984aSEvgeniy Stepanov }
108341d72a86SDehao Chen 
108441d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
108541d72a86SDehao Chen   // Only support loops with a unique exiting block, and a latch.
108641d72a86SDehao Chen   if (!L->getExitingBlock())
108741d72a86SDehao Chen     return None;
108841d72a86SDehao Chen 
108941d72a86SDehao Chen   // Get the branch weights for the the loop's backedge.
109041d72a86SDehao Chen   BranchInst *LatchBR =
109141d72a86SDehao Chen       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
109241d72a86SDehao Chen   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
109341d72a86SDehao Chen     return None;
109441d72a86SDehao Chen 
109541d72a86SDehao Chen   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
109641d72a86SDehao Chen           LatchBR->getSuccessor(1) == L->getHeader()) &&
109741d72a86SDehao Chen          "At least one edge out of the latch must go to the header");
109841d72a86SDehao Chen 
109941d72a86SDehao Chen   // To estimate the number of times the loop body was executed, we want to
110041d72a86SDehao Chen   // know the number of times the backedge was taken, vs. the number of times
110141d72a86SDehao Chen   // we exited the loop.
110241d72a86SDehao Chen   uint64_t TrueVal, FalseVal;
1103b151a641SMichael Kuperstein   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
110441d72a86SDehao Chen     return None;
110541d72a86SDehao Chen 
1106b151a641SMichael Kuperstein   if (!TrueVal || !FalseVal)
1107b151a641SMichael Kuperstein     return 0;
110841d72a86SDehao Chen 
1109b151a641SMichael Kuperstein   // Divide the count of the backedge by the count of the edge exiting the loop,
1110b151a641SMichael Kuperstein   // rounding to nearest.
111141d72a86SDehao Chen   if (LatchBR->getSuccessor(0) == L->getHeader())
1112b151a641SMichael Kuperstein     return (TrueVal + (FalseVal / 2)) / FalseVal;
111341d72a86SDehao Chen   else
1114b151a641SMichael Kuperstein     return (FalseVal + (TrueVal / 2)) / TrueVal;
111541d72a86SDehao Chen }
1116*cf9daa33SAmara Emerson 
1117*cf9daa33SAmara Emerson /// \brief Adds a 'fast' flag to floating point operations.
1118*cf9daa33SAmara Emerson static Value *addFastMathFlag(Value *V) {
1119*cf9daa33SAmara Emerson   if (isa<FPMathOperator>(V)) {
1120*cf9daa33SAmara Emerson     FastMathFlags Flags;
1121*cf9daa33SAmara Emerson     Flags.setUnsafeAlgebra();
1122*cf9daa33SAmara Emerson     cast<Instruction>(V)->setFastMathFlags(Flags);
1123*cf9daa33SAmara Emerson   }
1124*cf9daa33SAmara Emerson   return V;
1125*cf9daa33SAmara Emerson }
1126*cf9daa33SAmara Emerson 
1127*cf9daa33SAmara Emerson // Helper to generate a log2 shuffle reduction.
1128*cf9daa33SAmara Emerson static Value *
1129*cf9daa33SAmara Emerson getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1130*cf9daa33SAmara Emerson                     RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
1131*cf9daa33SAmara Emerson                         RecurrenceDescriptor::MRK_Invalid,
1132*cf9daa33SAmara Emerson                     ArrayRef<Value *> RedOps = ArrayRef<Value *>()) {
1133*cf9daa33SAmara Emerson   unsigned VF = Src->getType()->getVectorNumElements();
1134*cf9daa33SAmara Emerson   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1135*cf9daa33SAmara Emerson   // and vector ops, reducing the set of values being computed by half each
1136*cf9daa33SAmara Emerson   // round.
1137*cf9daa33SAmara Emerson   assert(isPowerOf2_32(VF) &&
1138*cf9daa33SAmara Emerson          "Reduction emission only supported for pow2 vectors!");
1139*cf9daa33SAmara Emerson   Value *TmpVec = Src;
1140*cf9daa33SAmara Emerson   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1141*cf9daa33SAmara Emerson   for (unsigned i = VF; i != 1; i >>= 1) {
1142*cf9daa33SAmara Emerson     // Move the upper half of the vector to the lower half.
1143*cf9daa33SAmara Emerson     for (unsigned j = 0; j != i / 2; ++j)
1144*cf9daa33SAmara Emerson       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1145*cf9daa33SAmara Emerson 
1146*cf9daa33SAmara Emerson     // Fill the rest of the mask with undef.
1147*cf9daa33SAmara Emerson     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1148*cf9daa33SAmara Emerson               UndefValue::get(Builder.getInt32Ty()));
1149*cf9daa33SAmara Emerson 
1150*cf9daa33SAmara Emerson     Value *Shuf = Builder.CreateShuffleVector(
1151*cf9daa33SAmara Emerson         TmpVec, UndefValue::get(TmpVec->getType()),
1152*cf9daa33SAmara Emerson         ConstantVector::get(ShuffleMask), "rdx.shuf");
1153*cf9daa33SAmara Emerson 
1154*cf9daa33SAmara Emerson     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1155*cf9daa33SAmara Emerson       // Floating point operations had to be 'fast' to enable the reduction.
1156*cf9daa33SAmara Emerson       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1157*cf9daa33SAmara Emerson                                                    TmpVec, Shuf, "bin.rdx"));
1158*cf9daa33SAmara Emerson     } else {
1159*cf9daa33SAmara Emerson       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1160*cf9daa33SAmara Emerson              "Invalid min/max");
1161*cf9daa33SAmara Emerson       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1162*cf9daa33SAmara Emerson                                                     Shuf);
1163*cf9daa33SAmara Emerson     }
1164*cf9daa33SAmara Emerson     if (!RedOps.empty())
1165*cf9daa33SAmara Emerson       propagateIRFlags(TmpVec, RedOps);
1166*cf9daa33SAmara Emerson   }
1167*cf9daa33SAmara Emerson   // The result is in the first element of the vector.
1168*cf9daa33SAmara Emerson   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1169*cf9daa33SAmara Emerson }
1170*cf9daa33SAmara Emerson 
1171*cf9daa33SAmara Emerson /// Create a simple vector reduction specified by an opcode and some
1172*cf9daa33SAmara Emerson /// flags (if generating min/max reductions).
1173*cf9daa33SAmara Emerson Value *llvm::createSimpleTargetReduction(
1174*cf9daa33SAmara Emerson     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1175*cf9daa33SAmara Emerson     Value *Src, TargetTransformInfo::ReductionFlags Flags,
1176*cf9daa33SAmara Emerson     ArrayRef<Value *> RedOps) {
1177*cf9daa33SAmara Emerson   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1178*cf9daa33SAmara Emerson 
1179*cf9daa33SAmara Emerson   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1180*cf9daa33SAmara Emerson   std::function<Value*()> BuildFunc;
1181*cf9daa33SAmara Emerson   using RD = RecurrenceDescriptor;
1182*cf9daa33SAmara Emerson   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1183*cf9daa33SAmara Emerson   // TODO: Support creating ordered reductions.
1184*cf9daa33SAmara Emerson   FastMathFlags FMFUnsafe;
1185*cf9daa33SAmara Emerson   FMFUnsafe.setUnsafeAlgebra();
1186*cf9daa33SAmara Emerson 
1187*cf9daa33SAmara Emerson   switch (Opcode) {
1188*cf9daa33SAmara Emerson   case Instruction::Add:
1189*cf9daa33SAmara Emerson     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1190*cf9daa33SAmara Emerson     break;
1191*cf9daa33SAmara Emerson   case Instruction::Mul:
1192*cf9daa33SAmara Emerson     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1193*cf9daa33SAmara Emerson     break;
1194*cf9daa33SAmara Emerson   case Instruction::And:
1195*cf9daa33SAmara Emerson     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1196*cf9daa33SAmara Emerson     break;
1197*cf9daa33SAmara Emerson   case Instruction::Or:
1198*cf9daa33SAmara Emerson     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1199*cf9daa33SAmara Emerson     break;
1200*cf9daa33SAmara Emerson   case Instruction::Xor:
1201*cf9daa33SAmara Emerson     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1202*cf9daa33SAmara Emerson     break;
1203*cf9daa33SAmara Emerson   case Instruction::FAdd:
1204*cf9daa33SAmara Emerson     BuildFunc = [&]() {
1205*cf9daa33SAmara Emerson       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1206*cf9daa33SAmara Emerson       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1207*cf9daa33SAmara Emerson       return Rdx;
1208*cf9daa33SAmara Emerson     };
1209*cf9daa33SAmara Emerson     break;
1210*cf9daa33SAmara Emerson   case Instruction::FMul:
1211*cf9daa33SAmara Emerson     BuildFunc = [&]() {
1212*cf9daa33SAmara Emerson       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1213*cf9daa33SAmara Emerson       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1214*cf9daa33SAmara Emerson       return Rdx;
1215*cf9daa33SAmara Emerson     };
1216*cf9daa33SAmara Emerson     break;
1217*cf9daa33SAmara Emerson   case Instruction::ICmp:
1218*cf9daa33SAmara Emerson     if (Flags.IsMaxOp) {
1219*cf9daa33SAmara Emerson       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1220*cf9daa33SAmara Emerson       BuildFunc = [&]() {
1221*cf9daa33SAmara Emerson         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1222*cf9daa33SAmara Emerson       };
1223*cf9daa33SAmara Emerson     } else {
1224*cf9daa33SAmara Emerson       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1225*cf9daa33SAmara Emerson       BuildFunc = [&]() {
1226*cf9daa33SAmara Emerson         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1227*cf9daa33SAmara Emerson       };
1228*cf9daa33SAmara Emerson     }
1229*cf9daa33SAmara Emerson     break;
1230*cf9daa33SAmara Emerson   case Instruction::FCmp:
1231*cf9daa33SAmara Emerson     if (Flags.IsMaxOp) {
1232*cf9daa33SAmara Emerson       MinMaxKind = RD::MRK_FloatMax;
1233*cf9daa33SAmara Emerson       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1234*cf9daa33SAmara Emerson     } else {
1235*cf9daa33SAmara Emerson       MinMaxKind = RD::MRK_FloatMin;
1236*cf9daa33SAmara Emerson       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1237*cf9daa33SAmara Emerson     }
1238*cf9daa33SAmara Emerson     break;
1239*cf9daa33SAmara Emerson   default:
1240*cf9daa33SAmara Emerson     llvm_unreachable("Unhandled opcode");
1241*cf9daa33SAmara Emerson     break;
1242*cf9daa33SAmara Emerson   }
1243*cf9daa33SAmara Emerson   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1244*cf9daa33SAmara Emerson     return BuildFunc();
1245*cf9daa33SAmara Emerson   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1246*cf9daa33SAmara Emerson }
1247*cf9daa33SAmara Emerson 
1248*cf9daa33SAmara Emerson /// Create a vector reduction using a given recurrence descriptor.
1249*cf9daa33SAmara Emerson Value *llvm::createTargetReduction(IRBuilder<> &Builder,
1250*cf9daa33SAmara Emerson                                    const TargetTransformInfo *TTI,
1251*cf9daa33SAmara Emerson                                    RecurrenceDescriptor &Desc, Value *Src,
1252*cf9daa33SAmara Emerson                                    bool NoNaN) {
1253*cf9daa33SAmara Emerson   // TODO: Support in-order reductions based on the recurrence descriptor.
1254*cf9daa33SAmara Emerson   RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1255*cf9daa33SAmara Emerson   TargetTransformInfo::ReductionFlags Flags;
1256*cf9daa33SAmara Emerson   Flags.NoNaN = NoNaN;
1257*cf9daa33SAmara Emerson   auto getSimpleRdx = [&](unsigned Opc) {
1258*cf9daa33SAmara Emerson     return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
1259*cf9daa33SAmara Emerson   };
1260*cf9daa33SAmara Emerson   switch (RecKind) {
1261*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_FloatAdd:
1262*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::FAdd);
1263*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_FloatMult:
1264*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::FMul);
1265*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_IntegerAdd:
1266*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::Add);
1267*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_IntegerMult:
1268*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::Mul);
1269*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_IntegerAnd:
1270*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::And);
1271*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_IntegerOr:
1272*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::Or);
1273*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_IntegerXor:
1274*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::Xor);
1275*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_IntegerMinMax: {
1276*cf9daa33SAmara Emerson     switch (Desc.getMinMaxRecurrenceKind()) {
1277*cf9daa33SAmara Emerson     case RecurrenceDescriptor::MRK_SIntMax:
1278*cf9daa33SAmara Emerson       Flags.IsSigned = true;
1279*cf9daa33SAmara Emerson       Flags.IsMaxOp = true;
1280*cf9daa33SAmara Emerson       break;
1281*cf9daa33SAmara Emerson     case RecurrenceDescriptor::MRK_UIntMax:
1282*cf9daa33SAmara Emerson       Flags.IsMaxOp = true;
1283*cf9daa33SAmara Emerson       break;
1284*cf9daa33SAmara Emerson     case RecurrenceDescriptor::MRK_SIntMin:
1285*cf9daa33SAmara Emerson       Flags.IsSigned = true;
1286*cf9daa33SAmara Emerson       break;
1287*cf9daa33SAmara Emerson     case RecurrenceDescriptor::MRK_UIntMin:
1288*cf9daa33SAmara Emerson       break;
1289*cf9daa33SAmara Emerson     default:
1290*cf9daa33SAmara Emerson       llvm_unreachable("Unhandled MRK");
1291*cf9daa33SAmara Emerson     }
1292*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::ICmp);
1293*cf9daa33SAmara Emerson   }
1294*cf9daa33SAmara Emerson   case RecurrenceDescriptor::RK_FloatMinMax: {
1295*cf9daa33SAmara Emerson     Flags.IsMaxOp =
1296*cf9daa33SAmara Emerson         Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
1297*cf9daa33SAmara Emerson     return getSimpleRdx(Instruction::FCmp);
1298*cf9daa33SAmara Emerson   }
1299*cf9daa33SAmara Emerson   default:
1300*cf9daa33SAmara Emerson     llvm_unreachable("Unhandled RecKind");
1301*cf9daa33SAmara Emerson   }
1302*cf9daa33SAmara Emerson }
1303*cf9daa33SAmara Emerson 
1304*cf9daa33SAmara Emerson void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
1305*cf9daa33SAmara Emerson   if (auto *VecOp = dyn_cast<Instruction>(I)) {
1306*cf9daa33SAmara Emerson     if (auto *I0 = dyn_cast<Instruction>(VL[0])) {
1307*cf9daa33SAmara Emerson       // VecOVp is initialized to the 0th scalar, so start counting from index
1308*cf9daa33SAmara Emerson       // '1'.
1309*cf9daa33SAmara Emerson       VecOp->copyIRFlags(I0);
1310*cf9daa33SAmara Emerson       for (int i = 1, e = VL.size(); i < e; ++i) {
1311*cf9daa33SAmara Emerson         if (auto *Scalar = dyn_cast<Instruction>(VL[i]))
1312*cf9daa33SAmara Emerson           VecOp->andIRFlags(Scalar);
1313*cf9daa33SAmara Emerson       }
1314*cf9daa33SAmara Emerson     }
1315*cf9daa33SAmara Emerson   }
1316*cf9daa33SAmara Emerson }
1317