176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 376aa662cSKarthik Bhat // The LLVM Compiler Infrastructure 476aa662cSKarthik Bhat // 576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source 676aa662cSKarthik Bhat // License. See LICENSE.TXT for details. 776aa662cSKarthik Bhat // 876aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 976aa662cSKarthik Bhat // 1076aa662cSKarthik Bhat // This file defines common loop utility functions. 1176aa662cSKarthik Bhat // 1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1376aa662cSKarthik Bhat 142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 154a000883SChandler Carruth #include "llvm/ADT/ScopeExit.h" 1631088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 1731088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 1831088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 192f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 20c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h" 2145d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 222f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 23c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h" 2445d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 256bda14b3SChandler Carruth #include "llvm/Analysis/TargetTransformInfo.h" 26*a097bc69SChad Rosier #include "llvm/Analysis/ValueTracking.h" 2731088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 2876aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 2945d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 3076aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 3176aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 3231088a9dSChandler Carruth #include "llvm/Pass.h" 3376aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 34*a097bc69SChad Rosier #include "llvm/Support/KnownBits.h" 354a000883SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 3676aa662cSKarthik Bhat 3776aa662cSKarthik Bhat using namespace llvm; 3876aa662cSKarthik Bhat using namespace llvm::PatternMatch; 3976aa662cSKarthik Bhat 4076aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 4176aa662cSKarthik Bhat 420a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 4376aa662cSKarthik Bhat SmallPtrSetImpl<Instruction *> &Set) { 4476aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4576aa662cSKarthik Bhat if (!Set.count(dyn_cast<Instruction>(*Use))) 4676aa662cSKarthik Bhat return false; 4776aa662cSKarthik Bhat return true; 4876aa662cSKarthik Bhat } 4976aa662cSKarthik Bhat 50c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 51c94f8e29SChad Rosier switch (Kind) { 52c94f8e29SChad Rosier default: 53c94f8e29SChad Rosier break; 54c94f8e29SChad Rosier case RK_IntegerAdd: 55c94f8e29SChad Rosier case RK_IntegerMult: 56c94f8e29SChad Rosier case RK_IntegerOr: 57c94f8e29SChad Rosier case RK_IntegerAnd: 58c94f8e29SChad Rosier case RK_IntegerXor: 59c94f8e29SChad Rosier case RK_IntegerMinMax: 60c94f8e29SChad Rosier return true; 61c94f8e29SChad Rosier } 62c94f8e29SChad Rosier return false; 63c94f8e29SChad Rosier } 64c94f8e29SChad Rosier 65c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 66c94f8e29SChad Rosier return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 67c94f8e29SChad Rosier } 68c94f8e29SChad Rosier 69c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 70c94f8e29SChad Rosier switch (Kind) { 71c94f8e29SChad Rosier default: 72c94f8e29SChad Rosier break; 73c94f8e29SChad Rosier case RK_IntegerAdd: 74c94f8e29SChad Rosier case RK_IntegerMult: 75c94f8e29SChad Rosier case RK_FloatAdd: 76c94f8e29SChad Rosier case RK_FloatMult: 77c94f8e29SChad Rosier return true; 78c94f8e29SChad Rosier } 79c94f8e29SChad Rosier return false; 80c94f8e29SChad Rosier } 81c94f8e29SChad Rosier 82*a097bc69SChad Rosier /// Determines if Phi may have been type-promoted. If Phi has a single user 83*a097bc69SChad Rosier /// that ANDs the Phi with a type mask, return the user. RT is updated to 84*a097bc69SChad Rosier /// account for the narrower bit width represented by the mask, and the AND 85*a097bc69SChad Rosier /// instruction is added to CI. 86*a097bc69SChad Rosier static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 87c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 88c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 89c94f8e29SChad Rosier if (!Phi->hasOneUse()) 90c94f8e29SChad Rosier return Phi; 91c94f8e29SChad Rosier 92c94f8e29SChad Rosier const APInt *M = nullptr; 93c94f8e29SChad Rosier Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 94c94f8e29SChad Rosier 95c94f8e29SChad Rosier // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 96c94f8e29SChad Rosier // with a new integer type of the corresponding bit width. 9772ee6945SCraig Topper if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 98c94f8e29SChad Rosier int32_t Bits = (*M + 1).exactLogBase2(); 99c94f8e29SChad Rosier if (Bits > 0) { 100c94f8e29SChad Rosier RT = IntegerType::get(Phi->getContext(), Bits); 101c94f8e29SChad Rosier Visited.insert(Phi); 102c94f8e29SChad Rosier CI.insert(J); 103c94f8e29SChad Rosier return J; 104c94f8e29SChad Rosier } 105c94f8e29SChad Rosier } 106c94f8e29SChad Rosier return Phi; 107c94f8e29SChad Rosier } 108c94f8e29SChad Rosier 109*a097bc69SChad Rosier /// Compute the minimal bit width needed to represent a reduction whose exit 110*a097bc69SChad Rosier /// instruction is given by Exit. 111*a097bc69SChad Rosier static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 112*a097bc69SChad Rosier DemandedBits *DB, 113*a097bc69SChad Rosier AssumptionCache *AC, 114*a097bc69SChad Rosier DominatorTree *DT) { 115*a097bc69SChad Rosier bool IsSigned = false; 116*a097bc69SChad Rosier const DataLayout &DL = Exit->getModule()->getDataLayout(); 117*a097bc69SChad Rosier uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 118*a097bc69SChad Rosier 119*a097bc69SChad Rosier if (DB) { 120*a097bc69SChad Rosier // Use the demanded bits analysis to determine the bits that are live out 121*a097bc69SChad Rosier // of the exit instruction, rounding up to the nearest power of two. If the 122*a097bc69SChad Rosier // use of demanded bits results in a smaller bit width, we know the value 123*a097bc69SChad Rosier // must be positive (i.e., IsSigned = false), because if this were not the 124*a097bc69SChad Rosier // case, the sign bit would have been demanded. 125*a097bc69SChad Rosier auto Mask = DB->getDemandedBits(Exit); 126*a097bc69SChad Rosier MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 127*a097bc69SChad Rosier } 128*a097bc69SChad Rosier 129*a097bc69SChad Rosier if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 130*a097bc69SChad Rosier // If demanded bits wasn't able to limit the bit width, we can try to use 131*a097bc69SChad Rosier // value tracking instead. This can be the case, for example, if the value 132*a097bc69SChad Rosier // may be negative. 133*a097bc69SChad Rosier auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 134*a097bc69SChad Rosier auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 135*a097bc69SChad Rosier MaxBitWidth = NumTypeBits - NumSignBits; 136*a097bc69SChad Rosier KnownBits Bits = computeKnownBits(Exit, DL); 137*a097bc69SChad Rosier if (!Bits.isNonNegative()) { 138*a097bc69SChad Rosier // If the value is not known to be non-negative, we set IsSigned to true, 139*a097bc69SChad Rosier // meaning that we will use sext instructions instead of zext 140*a097bc69SChad Rosier // instructions to restore the original type. 141*a097bc69SChad Rosier IsSigned = true; 142*a097bc69SChad Rosier if (!Bits.isNegative()) 143*a097bc69SChad Rosier // If the value is not known to be negative, we don't known what the 144*a097bc69SChad Rosier // upper bit is, and therefore, we don't know what kind of extend we 145*a097bc69SChad Rosier // will need. In this case, just increase the bit width by one bit and 146*a097bc69SChad Rosier // use sext. 147*a097bc69SChad Rosier ++MaxBitWidth; 148*a097bc69SChad Rosier } 149*a097bc69SChad Rosier } 150*a097bc69SChad Rosier if (!isPowerOf2_64(MaxBitWidth)) 151*a097bc69SChad Rosier MaxBitWidth = NextPowerOf2(MaxBitWidth); 152*a097bc69SChad Rosier 153*a097bc69SChad Rosier return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 154*a097bc69SChad Rosier IsSigned); 155*a097bc69SChad Rosier } 156*a097bc69SChad Rosier 157*a097bc69SChad Rosier /// Collect cast instructions that can be ignored in the vectorizer's cost 158*a097bc69SChad Rosier /// model, given a reduction exit value and the minimal type in which the 159*a097bc69SChad Rosier /// reduction can be represented. 160*a097bc69SChad Rosier static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 161*a097bc69SChad Rosier Type *RecurrenceType, 162*a097bc69SChad Rosier SmallPtrSetImpl<Instruction *> &Casts) { 163c94f8e29SChad Rosier 164c94f8e29SChad Rosier SmallVector<Instruction *, 8> Worklist; 165*a097bc69SChad Rosier SmallPtrSet<Instruction *, 8> Visited; 166c94f8e29SChad Rosier Worklist.push_back(Exit); 167c94f8e29SChad Rosier 168c94f8e29SChad Rosier while (!Worklist.empty()) { 169*a097bc69SChad Rosier Instruction *Val = Worklist.pop_back_val(); 170*a097bc69SChad Rosier Visited.insert(Val); 171*a097bc69SChad Rosier if (auto *Cast = dyn_cast<CastInst>(Val)) 172*a097bc69SChad Rosier if (Cast->getSrcTy() == RecurrenceType) { 173*a097bc69SChad Rosier // If the source type of a cast instruction is equal to the recurrence 174*a097bc69SChad Rosier // type, it will be eliminated, and should be ignored in the vectorizer 17529dc0f70SMatthew Simpson // cost model. 176*a097bc69SChad Rosier Casts.insert(Cast); 177*a097bc69SChad Rosier continue; 178c94f8e29SChad Rosier } 179*a097bc69SChad Rosier 180*a097bc69SChad Rosier // Add all operands to the work list if they are loop-varying values that 181*a097bc69SChad Rosier // we haven't yet visited. 182*a097bc69SChad Rosier for (Value *O : cast<User>(Val)->operands()) 183*a097bc69SChad Rosier if (auto *I = dyn_cast<Instruction>(O)) 184*a097bc69SChad Rosier if (TheLoop->contains(I) && !Visited.count(I)) 185*a097bc69SChad Rosier Worklist.push_back(I); 186c94f8e29SChad Rosier } 187c94f8e29SChad Rosier } 188c94f8e29SChad Rosier 1890a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 19076aa662cSKarthik Bhat Loop *TheLoop, bool HasFunNoNaNAttr, 191*a097bc69SChad Rosier RecurrenceDescriptor &RedDes, 192*a097bc69SChad Rosier DemandedBits *DB, 193*a097bc69SChad Rosier AssumptionCache *AC, 194*a097bc69SChad Rosier DominatorTree *DT) { 19576aa662cSKarthik Bhat if (Phi->getNumIncomingValues() != 2) 19676aa662cSKarthik Bhat return false; 19776aa662cSKarthik Bhat 19876aa662cSKarthik Bhat // Reduction variables are only found in the loop header block. 19976aa662cSKarthik Bhat if (Phi->getParent() != TheLoop->getHeader()) 20076aa662cSKarthik Bhat return false; 20176aa662cSKarthik Bhat 20276aa662cSKarthik Bhat // Obtain the reduction start value from the value that comes from the loop 20376aa662cSKarthik Bhat // preheader. 20476aa662cSKarthik Bhat Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 20576aa662cSKarthik Bhat 20676aa662cSKarthik Bhat // ExitInstruction is the single value which is used outside the loop. 20776aa662cSKarthik Bhat // We only allow for a single reduction value to be used outside the loop. 20876aa662cSKarthik Bhat // This includes users of the reduction, variables (which form a cycle 20976aa662cSKarthik Bhat // which ends in the phi node). 21076aa662cSKarthik Bhat Instruction *ExitInstruction = nullptr; 21176aa662cSKarthik Bhat // Indicates that we found a reduction operation in our scan. 21276aa662cSKarthik Bhat bool FoundReduxOp = false; 21376aa662cSKarthik Bhat 21476aa662cSKarthik Bhat // We start with the PHI node and scan for all of the users of this 21576aa662cSKarthik Bhat // instruction. All users must be instructions that can be used as reduction 21676aa662cSKarthik Bhat // variables (such as ADD). We must have a single out-of-block user. The cycle 21776aa662cSKarthik Bhat // must include the original PHI. 21876aa662cSKarthik Bhat bool FoundStartPHI = false; 21976aa662cSKarthik Bhat 22076aa662cSKarthik Bhat // To recognize min/max patterns formed by a icmp select sequence, we store 22176aa662cSKarthik Bhat // the number of instruction we saw from the recognized min/max pattern, 22276aa662cSKarthik Bhat // to make sure we only see exactly the two instructions. 22376aa662cSKarthik Bhat unsigned NumCmpSelectPatternInst = 0; 22427b2c39eSTyler Nowicki InstDesc ReduxDesc(false, nullptr); 22576aa662cSKarthik Bhat 226c94f8e29SChad Rosier // Data used for determining if the recurrence has been type-promoted. 227c94f8e29SChad Rosier Type *RecurrenceType = Phi->getType(); 228c94f8e29SChad Rosier SmallPtrSet<Instruction *, 4> CastInsts; 229c94f8e29SChad Rosier Instruction *Start = Phi; 230c94f8e29SChad Rosier bool IsSigned = false; 231c94f8e29SChad Rosier 23276aa662cSKarthik Bhat SmallPtrSet<Instruction *, 8> VisitedInsts; 23376aa662cSKarthik Bhat SmallVector<Instruction *, 8> Worklist; 234c94f8e29SChad Rosier 235c94f8e29SChad Rosier // Return early if the recurrence kind does not match the type of Phi. If the 236c94f8e29SChad Rosier // recurrence kind is arithmetic, we attempt to look through AND operations 237c94f8e29SChad Rosier // resulting from the type promotion performed by InstCombine. Vector 238c94f8e29SChad Rosier // operations are not limited to the legal integer widths, so we may be able 239c94f8e29SChad Rosier // to evaluate the reduction in the narrower width. 240c94f8e29SChad Rosier if (RecurrenceType->isFloatingPointTy()) { 241c94f8e29SChad Rosier if (!isFloatingPointRecurrenceKind(Kind)) 242c94f8e29SChad Rosier return false; 243c94f8e29SChad Rosier } else { 244c94f8e29SChad Rosier if (!isIntegerRecurrenceKind(Kind)) 245c94f8e29SChad Rosier return false; 246c94f8e29SChad Rosier if (isArithmeticRecurrenceKind(Kind)) 247c94f8e29SChad Rosier Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 248c94f8e29SChad Rosier } 249c94f8e29SChad Rosier 250c94f8e29SChad Rosier Worklist.push_back(Start); 251c94f8e29SChad Rosier VisitedInsts.insert(Start); 25276aa662cSKarthik Bhat 25376aa662cSKarthik Bhat // A value in the reduction can be used: 25476aa662cSKarthik Bhat // - By the reduction: 25576aa662cSKarthik Bhat // - Reduction operation: 25676aa662cSKarthik Bhat // - One use of reduction value (safe). 25776aa662cSKarthik Bhat // - Multiple use of reduction value (not safe). 25876aa662cSKarthik Bhat // - PHI: 25976aa662cSKarthik Bhat // - All uses of the PHI must be the reduction (safe). 26076aa662cSKarthik Bhat // - Otherwise, not safe. 2617cefb409SMichael Kuperstein // - By instructions outside of the loop (safe). 2627cefb409SMichael Kuperstein // * One value may have several outside users, but all outside 2637cefb409SMichael Kuperstein // uses must be of the same value. 26476aa662cSKarthik Bhat // - By an instruction that is not part of the reduction (not safe). 26576aa662cSKarthik Bhat // This is either: 26676aa662cSKarthik Bhat // * An instruction type other than PHI or the reduction operation. 26776aa662cSKarthik Bhat // * A PHI in the header other than the initial PHI. 26876aa662cSKarthik Bhat while (!Worklist.empty()) { 26976aa662cSKarthik Bhat Instruction *Cur = Worklist.back(); 27076aa662cSKarthik Bhat Worklist.pop_back(); 27176aa662cSKarthik Bhat 27276aa662cSKarthik Bhat // No Users. 27376aa662cSKarthik Bhat // If the instruction has no users then this is a broken chain and can't be 27476aa662cSKarthik Bhat // a reduction variable. 27576aa662cSKarthik Bhat if (Cur->use_empty()) 27676aa662cSKarthik Bhat return false; 27776aa662cSKarthik Bhat 27876aa662cSKarthik Bhat bool IsAPhi = isa<PHINode>(Cur); 27976aa662cSKarthik Bhat 28076aa662cSKarthik Bhat // A header PHI use other than the original PHI. 28176aa662cSKarthik Bhat if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 28276aa662cSKarthik Bhat return false; 28376aa662cSKarthik Bhat 28476aa662cSKarthik Bhat // Reductions of instructions such as Div, and Sub is only possible if the 28576aa662cSKarthik Bhat // LHS is the reduction variable. 28676aa662cSKarthik Bhat if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 28776aa662cSKarthik Bhat !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 28876aa662cSKarthik Bhat !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 28976aa662cSKarthik Bhat return false; 29076aa662cSKarthik Bhat 291c94f8e29SChad Rosier // Any reduction instruction must be of one of the allowed kinds. We ignore 292c94f8e29SChad Rosier // the starting value (the Phi or an AND instruction if the Phi has been 293c94f8e29SChad Rosier // type-promoted). 294c94f8e29SChad Rosier if (Cur != Start) { 2950a91310cSTyler Nowicki ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 2960a91310cSTyler Nowicki if (!ReduxDesc.isRecurrence()) 29776aa662cSKarthik Bhat return false; 298c94f8e29SChad Rosier } 29976aa662cSKarthik Bhat 30076aa662cSKarthik Bhat // A reduction operation must only have one use of the reduction value. 30176aa662cSKarthik Bhat if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 30276aa662cSKarthik Bhat hasMultipleUsesOf(Cur, VisitedInsts)) 30376aa662cSKarthik Bhat return false; 30476aa662cSKarthik Bhat 30576aa662cSKarthik Bhat // All inputs to a PHI node must be a reduction value. 30676aa662cSKarthik Bhat if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 30776aa662cSKarthik Bhat return false; 30876aa662cSKarthik Bhat 30976aa662cSKarthik Bhat if (Kind == RK_IntegerMinMax && 31076aa662cSKarthik Bhat (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 31176aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 31276aa662cSKarthik Bhat if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 31376aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 31476aa662cSKarthik Bhat 31576aa662cSKarthik Bhat // Check whether we found a reduction operator. 316c94f8e29SChad Rosier FoundReduxOp |= !IsAPhi && Cur != Start; 31776aa662cSKarthik Bhat 31876aa662cSKarthik Bhat // Process users of current instruction. Push non-PHI nodes after PHI nodes 31976aa662cSKarthik Bhat // onto the stack. This way we are going to have seen all inputs to PHI 32076aa662cSKarthik Bhat // nodes once we get to them. 32176aa662cSKarthik Bhat SmallVector<Instruction *, 8> NonPHIs; 32276aa662cSKarthik Bhat SmallVector<Instruction *, 8> PHIs; 32376aa662cSKarthik Bhat for (User *U : Cur->users()) { 32476aa662cSKarthik Bhat Instruction *UI = cast<Instruction>(U); 32576aa662cSKarthik Bhat 32676aa662cSKarthik Bhat // Check if we found the exit user. 32776aa662cSKarthik Bhat BasicBlock *Parent = UI->getParent(); 32876aa662cSKarthik Bhat if (!TheLoop->contains(Parent)) { 3297cefb409SMichael Kuperstein // If we already know this instruction is used externally, move on to 3307cefb409SMichael Kuperstein // the next user. 3317cefb409SMichael Kuperstein if (ExitInstruction == Cur) 3327cefb409SMichael Kuperstein continue; 3337cefb409SMichael Kuperstein 3347cefb409SMichael Kuperstein // Exit if you find multiple values used outside or if the header phi 3357cefb409SMichael Kuperstein // node is being used. In this case the user uses the value of the 3367cefb409SMichael Kuperstein // previous iteration, in which case we would loose "VF-1" iterations of 3377cefb409SMichael Kuperstein // the reduction operation if we vectorize. 33876aa662cSKarthik Bhat if (ExitInstruction != nullptr || Cur == Phi) 33976aa662cSKarthik Bhat return false; 34076aa662cSKarthik Bhat 34176aa662cSKarthik Bhat // The instruction used by an outside user must be the last instruction 34276aa662cSKarthik Bhat // before we feed back to the reduction phi. Otherwise, we loose VF-1 34376aa662cSKarthik Bhat // operations on the value. 34442531260SDavid Majnemer if (!is_contained(Phi->operands(), Cur)) 34576aa662cSKarthik Bhat return false; 34676aa662cSKarthik Bhat 34776aa662cSKarthik Bhat ExitInstruction = Cur; 34876aa662cSKarthik Bhat continue; 34976aa662cSKarthik Bhat } 35076aa662cSKarthik Bhat 35176aa662cSKarthik Bhat // Process instructions only once (termination). Each reduction cycle 35276aa662cSKarthik Bhat // value must only be used once, except by phi nodes and min/max 35376aa662cSKarthik Bhat // reductions which are represented as a cmp followed by a select. 35427b2c39eSTyler Nowicki InstDesc IgnoredVal(false, nullptr); 35576aa662cSKarthik Bhat if (VisitedInsts.insert(UI).second) { 35676aa662cSKarthik Bhat if (isa<PHINode>(UI)) 35776aa662cSKarthik Bhat PHIs.push_back(UI); 35876aa662cSKarthik Bhat else 35976aa662cSKarthik Bhat NonPHIs.push_back(UI); 36076aa662cSKarthik Bhat } else if (!isa<PHINode>(UI) && 36176aa662cSKarthik Bhat ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 36276aa662cSKarthik Bhat !isa<SelectInst>(UI)) || 3630a91310cSTyler Nowicki !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 36476aa662cSKarthik Bhat return false; 36576aa662cSKarthik Bhat 36676aa662cSKarthik Bhat // Remember that we completed the cycle. 36776aa662cSKarthik Bhat if (UI == Phi) 36876aa662cSKarthik Bhat FoundStartPHI = true; 36976aa662cSKarthik Bhat } 37076aa662cSKarthik Bhat Worklist.append(PHIs.begin(), PHIs.end()); 37176aa662cSKarthik Bhat Worklist.append(NonPHIs.begin(), NonPHIs.end()); 37276aa662cSKarthik Bhat } 37376aa662cSKarthik Bhat 37476aa662cSKarthik Bhat // This means we have seen one but not the other instruction of the 37576aa662cSKarthik Bhat // pattern or more than just a select and cmp. 37676aa662cSKarthik Bhat if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 37776aa662cSKarthik Bhat NumCmpSelectPatternInst != 2) 37876aa662cSKarthik Bhat return false; 37976aa662cSKarthik Bhat 38076aa662cSKarthik Bhat if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 38176aa662cSKarthik Bhat return false; 38276aa662cSKarthik Bhat 383*a097bc69SChad Rosier if (Start != Phi) { 384*a097bc69SChad Rosier // If the starting value is not the same as the phi node, we speculatively 385*a097bc69SChad Rosier // looked through an 'and' instruction when evaluating a potential 386*a097bc69SChad Rosier // arithmetic reduction to determine if it may have been type-promoted. 387*a097bc69SChad Rosier // 388*a097bc69SChad Rosier // We now compute the minimal bit width that is required to represent the 389*a097bc69SChad Rosier // reduction. If this is the same width that was indicated by the 'and', we 390*a097bc69SChad Rosier // can represent the reduction in the smaller type. The 'and' instruction 391*a097bc69SChad Rosier // will be eliminated since it will essentially be a cast instruction that 392*a097bc69SChad Rosier // can be ignore in the cost model. If we compute a different type than we 393*a097bc69SChad Rosier // did when evaluating the 'and', the 'and' will not be eliminated, and we 394*a097bc69SChad Rosier // will end up with different kinds of operations in the recurrence 395*a097bc69SChad Rosier // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is 396*a097bc69SChad Rosier // the case. 397*a097bc69SChad Rosier // 398*a097bc69SChad Rosier // The vectorizer relies on InstCombine to perform the actual 399*a097bc69SChad Rosier // type-shrinking. It does this by inserting instructions to truncate the 400*a097bc69SChad Rosier // exit value of the reduction to the width indicated by RecurrenceType and 401*a097bc69SChad Rosier // then extend this value back to the original width. If IsSigned is false, 402*a097bc69SChad Rosier // a 'zext' instruction will be generated; otherwise, a 'sext' will be 403*a097bc69SChad Rosier // used. 404*a097bc69SChad Rosier // 405*a097bc69SChad Rosier // TODO: We should not rely on InstCombine to rewrite the reduction in the 406*a097bc69SChad Rosier // smaller type. We should just generate a correctly typed expression 407*a097bc69SChad Rosier // to begin with. 408*a097bc69SChad Rosier Type *ComputedType; 409*a097bc69SChad Rosier std::tie(ComputedType, IsSigned) = 410*a097bc69SChad Rosier computeRecurrenceType(ExitInstruction, DB, AC, DT); 411*a097bc69SChad Rosier if (ComputedType != RecurrenceType) 412c94f8e29SChad Rosier return false; 413c94f8e29SChad Rosier 414*a097bc69SChad Rosier // The recurrence expression will be represented in a narrower type. If 415*a097bc69SChad Rosier // there are any cast instructions that will be unnecessary, collect them 416*a097bc69SChad Rosier // in CastInsts. Note that the 'and' instruction was already included in 417*a097bc69SChad Rosier // this list. 418*a097bc69SChad Rosier // 419*a097bc69SChad Rosier // TODO: A better way to represent this may be to tag in some way all the 420*a097bc69SChad Rosier // instructions that are a part of the reduction. The vectorizer cost 421*a097bc69SChad Rosier // model could then apply the recurrence type to these instructions, 422*a097bc69SChad Rosier // without needing a white list of instructions to ignore. 423*a097bc69SChad Rosier collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 424*a097bc69SChad Rosier } 425*a097bc69SChad Rosier 42676aa662cSKarthik Bhat // We found a reduction var if we have reached the original phi node and we 42776aa662cSKarthik Bhat // only have a single instruction with out-of-loop users. 42876aa662cSKarthik Bhat 42976aa662cSKarthik Bhat // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 4300a91310cSTyler Nowicki // is saved as part of the RecurrenceDescriptor. 43176aa662cSKarthik Bhat 43276aa662cSKarthik Bhat // Save the description of this reduction variable. 433c94f8e29SChad Rosier RecurrenceDescriptor RD( 434c94f8e29SChad Rosier RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 435c94f8e29SChad Rosier ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 43676aa662cSKarthik Bhat RedDes = RD; 43776aa662cSKarthik Bhat 43876aa662cSKarthik Bhat return true; 43976aa662cSKarthik Bhat } 44076aa662cSKarthik Bhat 44176aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 44276aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y). 44327b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 44427b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 44576aa662cSKarthik Bhat 44676aa662cSKarthik Bhat assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 44776aa662cSKarthik Bhat "Expect a select instruction"); 44876aa662cSKarthik Bhat Instruction *Cmp = nullptr; 44976aa662cSKarthik Bhat SelectInst *Select = nullptr; 45076aa662cSKarthik Bhat 45176aa662cSKarthik Bhat // We must handle the select(cmp()) as a single instruction. Advance to the 45276aa662cSKarthik Bhat // select. 45376aa662cSKarthik Bhat if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 45476aa662cSKarthik Bhat if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 45527b2c39eSTyler Nowicki return InstDesc(false, I); 45627b2c39eSTyler Nowicki return InstDesc(Select, Prev.getMinMaxKind()); 45776aa662cSKarthik Bhat } 45876aa662cSKarthik Bhat 45976aa662cSKarthik Bhat // Only handle single use cases for now. 46076aa662cSKarthik Bhat if (!(Select = dyn_cast<SelectInst>(I))) 46127b2c39eSTyler Nowicki return InstDesc(false, I); 46276aa662cSKarthik Bhat if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 46376aa662cSKarthik Bhat !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 46427b2c39eSTyler Nowicki return InstDesc(false, I); 46576aa662cSKarthik Bhat if (!Cmp->hasOneUse()) 46627b2c39eSTyler Nowicki return InstDesc(false, I); 46776aa662cSKarthik Bhat 46876aa662cSKarthik Bhat Value *CmpLeft; 46976aa662cSKarthik Bhat Value *CmpRight; 47076aa662cSKarthik Bhat 47176aa662cSKarthik Bhat // Look for a min/max pattern. 47276aa662cSKarthik Bhat if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 47327b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMin); 47476aa662cSKarthik Bhat else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 47527b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMax); 47676aa662cSKarthik Bhat else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 47727b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMax); 47876aa662cSKarthik Bhat else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 47927b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMin); 48076aa662cSKarthik Bhat else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48127b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 48276aa662cSKarthik Bhat else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48327b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 48476aa662cSKarthik Bhat else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48527b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 48676aa662cSKarthik Bhat else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48727b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 48876aa662cSKarthik Bhat 48927b2c39eSTyler Nowicki return InstDesc(false, I); 49076aa662cSKarthik Bhat } 49176aa662cSKarthik Bhat 49227b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 4930a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 49427b2c39eSTyler Nowicki InstDesc &Prev, bool HasFunNoNaNAttr) { 49576aa662cSKarthik Bhat bool FP = I->getType()->isFloatingPointTy(); 496c1a86f58STyler Nowicki Instruction *UAI = Prev.getUnsafeAlgebraInst(); 497629c4115SSanjay Patel if (!UAI && FP && !I->isFast()) 498c1a86f58STyler Nowicki UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 499c1a86f58STyler Nowicki 50076aa662cSKarthik Bhat switch (I->getOpcode()) { 50176aa662cSKarthik Bhat default: 50227b2c39eSTyler Nowicki return InstDesc(false, I); 50376aa662cSKarthik Bhat case Instruction::PHI: 50410a1e8b1STim Northover return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 50576aa662cSKarthik Bhat case Instruction::Sub: 50676aa662cSKarthik Bhat case Instruction::Add: 50727b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAdd, I); 50876aa662cSKarthik Bhat case Instruction::Mul: 50927b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerMult, I); 51076aa662cSKarthik Bhat case Instruction::And: 51127b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAnd, I); 51276aa662cSKarthik Bhat case Instruction::Or: 51327b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerOr, I); 51476aa662cSKarthik Bhat case Instruction::Xor: 51527b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerXor, I); 51676aa662cSKarthik Bhat case Instruction::FMul: 517c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatMult, I, UAI); 51876aa662cSKarthik Bhat case Instruction::FSub: 51976aa662cSKarthik Bhat case Instruction::FAdd: 520c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatAdd, I, UAI); 52176aa662cSKarthik Bhat case Instruction::FCmp: 52276aa662cSKarthik Bhat case Instruction::ICmp: 52376aa662cSKarthik Bhat case Instruction::Select: 52476aa662cSKarthik Bhat if (Kind != RK_IntegerMinMax && 52576aa662cSKarthik Bhat (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 52627b2c39eSTyler Nowicki return InstDesc(false, I); 52776aa662cSKarthik Bhat return isMinMaxSelectCmpPattern(I, Prev); 52876aa662cSKarthik Bhat } 52976aa662cSKarthik Bhat } 53076aa662cSKarthik Bhat 5310a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf( 53276aa662cSKarthik Bhat Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 53376aa662cSKarthik Bhat unsigned NumUses = 0; 53476aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 53576aa662cSKarthik Bhat ++Use) { 53676aa662cSKarthik Bhat if (Insts.count(dyn_cast<Instruction>(*Use))) 53776aa662cSKarthik Bhat ++NumUses; 53876aa662cSKarthik Bhat if (NumUses > 1) 53976aa662cSKarthik Bhat return true; 54076aa662cSKarthik Bhat } 54176aa662cSKarthik Bhat 54276aa662cSKarthik Bhat return false; 54376aa662cSKarthik Bhat } 5440a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 545*a097bc69SChad Rosier RecurrenceDescriptor &RedDes, 546*a097bc69SChad Rosier DemandedBits *DB, AssumptionCache *AC, 547*a097bc69SChad Rosier DominatorTree *DT) { 54876aa662cSKarthik Bhat 54976aa662cSKarthik Bhat BasicBlock *Header = TheLoop->getHeader(); 55076aa662cSKarthik Bhat Function &F = *Header->getParent(); 5518dd66e57SNirav Dave bool HasFunNoNaNAttr = 55276aa662cSKarthik Bhat F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 55376aa662cSKarthik Bhat 554*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 555*a097bc69SChad Rosier AC, DT)) { 55676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 55776aa662cSKarthik Bhat return true; 55876aa662cSKarthik Bhat } 559*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 560*a097bc69SChad Rosier AC, DT)) { 56176aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 56276aa662cSKarthik Bhat return true; 56376aa662cSKarthik Bhat } 564*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, 565*a097bc69SChad Rosier AC, DT)) { 56676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 56776aa662cSKarthik Bhat return true; 56876aa662cSKarthik Bhat } 569*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 570*a097bc69SChad Rosier AC, DT)) { 57176aa662cSKarthik Bhat DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 57276aa662cSKarthik Bhat return true; 57376aa662cSKarthik Bhat } 574*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, 575*a097bc69SChad Rosier AC, DT)) { 57676aa662cSKarthik Bhat DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 57776aa662cSKarthik Bhat return true; 57876aa662cSKarthik Bhat } 579*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, 580*a097bc69SChad Rosier DB, AC, DT)) { 58176aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 58276aa662cSKarthik Bhat return true; 58376aa662cSKarthik Bhat } 584*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 585*a097bc69SChad Rosier AC, DT)) { 58676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 58776aa662cSKarthik Bhat return true; 58876aa662cSKarthik Bhat } 589*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 590*a097bc69SChad Rosier AC, DT)) { 59176aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 59276aa662cSKarthik Bhat return true; 59376aa662cSKarthik Bhat } 594*a097bc69SChad Rosier if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, 595*a097bc69SChad Rosier AC, DT)) { 59676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 59776aa662cSKarthik Bhat return true; 59876aa662cSKarthik Bhat } 59976aa662cSKarthik Bhat // Not a reduction of known type. 60076aa662cSKarthik Bhat return false; 60176aa662cSKarthik Bhat } 60276aa662cSKarthik Bhat 6032ff59d43SAyal Zaks bool RecurrenceDescriptor::isFirstOrderRecurrence( 6042ff59d43SAyal Zaks PHINode *Phi, Loop *TheLoop, 6052ff59d43SAyal Zaks DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 60629c997c1SMatthew Simpson 60729c997c1SMatthew Simpson // Ensure the phi node is in the loop header and has two incoming values. 60829c997c1SMatthew Simpson if (Phi->getParent() != TheLoop->getHeader() || 60929c997c1SMatthew Simpson Phi->getNumIncomingValues() != 2) 61029c997c1SMatthew Simpson return false; 61129c997c1SMatthew Simpson 61229c997c1SMatthew Simpson // Ensure the loop has a preheader and a single latch block. The loop 61329c997c1SMatthew Simpson // vectorizer will need the latch to set up the next iteration of the loop. 61429c997c1SMatthew Simpson auto *Preheader = TheLoop->getLoopPreheader(); 61529c997c1SMatthew Simpson auto *Latch = TheLoop->getLoopLatch(); 61629c997c1SMatthew Simpson if (!Preheader || !Latch) 61729c997c1SMatthew Simpson return false; 61829c997c1SMatthew Simpson 61929c997c1SMatthew Simpson // Ensure the phi node's incoming blocks are the loop preheader and latch. 62029c997c1SMatthew Simpson if (Phi->getBasicBlockIndex(Preheader) < 0 || 62129c997c1SMatthew Simpson Phi->getBasicBlockIndex(Latch) < 0) 62229c997c1SMatthew Simpson return false; 62329c997c1SMatthew Simpson 62429c997c1SMatthew Simpson // Get the previous value. The previous value comes from the latch edge while 62529c997c1SMatthew Simpson // the initial value comes form the preheader edge. 62629c997c1SMatthew Simpson auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 6272ff59d43SAyal Zaks if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 6282ff59d43SAyal Zaks SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 62929c997c1SMatthew Simpson return false; 63029c997c1SMatthew Simpson 63100dc1b74SAnna Thomas // Ensure every user of the phi node is dominated by the previous value. 63200dc1b74SAnna Thomas // The dominance requirement ensures the loop vectorizer will not need to 63300dc1b74SAnna Thomas // vectorize the initial value prior to the first iteration of the loop. 6342ff59d43SAyal Zaks // TODO: Consider extending this sinking to handle other kinds of instructions 6352ff59d43SAyal Zaks // and expressions, beyond sinking a single cast past Previous. 6362ff59d43SAyal Zaks if (Phi->hasOneUse()) { 6372ff59d43SAyal Zaks auto *I = Phi->user_back(); 6382ff59d43SAyal Zaks if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && 6392ff59d43SAyal Zaks DT->dominates(Previous, I->user_back())) { 64025e2800eSAyal Zaks if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. 6412ff59d43SAyal Zaks SinkAfter[I] = Previous; 6422ff59d43SAyal Zaks return true; 6432ff59d43SAyal Zaks } 6442ff59d43SAyal Zaks } 6452ff59d43SAyal Zaks 646dcdb325fSAnna Thomas for (User *U : Phi->users()) 647dcdb325fSAnna Thomas if (auto *I = dyn_cast<Instruction>(U)) { 64829c997c1SMatthew Simpson if (!DT->dominates(Previous, I)) 64929c997c1SMatthew Simpson return false; 65000dc1b74SAnna Thomas } 65129c997c1SMatthew Simpson 65229c997c1SMatthew Simpson return true; 65329c997c1SMatthew Simpson } 65429c997c1SMatthew Simpson 65576aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for 65676aa662cSKarthik Bhat /// the operation K. 6570a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 6580a91310cSTyler Nowicki Type *Tp) { 65976aa662cSKarthik Bhat switch (K) { 66076aa662cSKarthik Bhat case RK_IntegerXor: 66176aa662cSKarthik Bhat case RK_IntegerAdd: 66276aa662cSKarthik Bhat case RK_IntegerOr: 66376aa662cSKarthik Bhat // Adding, Xoring, Oring zero to a number does not change it. 66476aa662cSKarthik Bhat return ConstantInt::get(Tp, 0); 66576aa662cSKarthik Bhat case RK_IntegerMult: 66676aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 66776aa662cSKarthik Bhat return ConstantInt::get(Tp, 1); 66876aa662cSKarthik Bhat case RK_IntegerAnd: 66976aa662cSKarthik Bhat // AND-ing a number with an all-1 value does not change it. 67076aa662cSKarthik Bhat return ConstantInt::get(Tp, -1, true); 67176aa662cSKarthik Bhat case RK_FloatMult: 67276aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 67376aa662cSKarthik Bhat return ConstantFP::get(Tp, 1.0L); 67476aa662cSKarthik Bhat case RK_FloatAdd: 67576aa662cSKarthik Bhat // Adding zero to a number does not change it. 67676aa662cSKarthik Bhat return ConstantFP::get(Tp, 0.0L); 67776aa662cSKarthik Bhat default: 6780a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence kind"); 67976aa662cSKarthik Bhat } 68076aa662cSKarthik Bhat } 68176aa662cSKarthik Bhat 6820a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator. 6830a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 68476aa662cSKarthik Bhat switch (Kind) { 68576aa662cSKarthik Bhat case RK_IntegerAdd: 68676aa662cSKarthik Bhat return Instruction::Add; 68776aa662cSKarthik Bhat case RK_IntegerMult: 68876aa662cSKarthik Bhat return Instruction::Mul; 68976aa662cSKarthik Bhat case RK_IntegerOr: 69076aa662cSKarthik Bhat return Instruction::Or; 69176aa662cSKarthik Bhat case RK_IntegerAnd: 69276aa662cSKarthik Bhat return Instruction::And; 69376aa662cSKarthik Bhat case RK_IntegerXor: 69476aa662cSKarthik Bhat return Instruction::Xor; 69576aa662cSKarthik Bhat case RK_FloatMult: 69676aa662cSKarthik Bhat return Instruction::FMul; 69776aa662cSKarthik Bhat case RK_FloatAdd: 69876aa662cSKarthik Bhat return Instruction::FAdd; 69976aa662cSKarthik Bhat case RK_IntegerMinMax: 70076aa662cSKarthik Bhat return Instruction::ICmp; 70176aa662cSKarthik Bhat case RK_FloatMinMax: 70276aa662cSKarthik Bhat return Instruction::FCmp; 70376aa662cSKarthik Bhat default: 7040a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence operation"); 70576aa662cSKarthik Bhat } 70676aa662cSKarthik Bhat } 70776aa662cSKarthik Bhat 70827b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 70927b2c39eSTyler Nowicki MinMaxRecurrenceKind RK, 71076aa662cSKarthik Bhat Value *Left, Value *Right) { 71176aa662cSKarthik Bhat CmpInst::Predicate P = CmpInst::ICMP_NE; 71276aa662cSKarthik Bhat switch (RK) { 71376aa662cSKarthik Bhat default: 7140a91310cSTyler Nowicki llvm_unreachable("Unknown min/max recurrence kind"); 71527b2c39eSTyler Nowicki case MRK_UIntMin: 71676aa662cSKarthik Bhat P = CmpInst::ICMP_ULT; 71776aa662cSKarthik Bhat break; 71827b2c39eSTyler Nowicki case MRK_UIntMax: 71976aa662cSKarthik Bhat P = CmpInst::ICMP_UGT; 72076aa662cSKarthik Bhat break; 72127b2c39eSTyler Nowicki case MRK_SIntMin: 72276aa662cSKarthik Bhat P = CmpInst::ICMP_SLT; 72376aa662cSKarthik Bhat break; 72427b2c39eSTyler Nowicki case MRK_SIntMax: 72576aa662cSKarthik Bhat P = CmpInst::ICMP_SGT; 72676aa662cSKarthik Bhat break; 72727b2c39eSTyler Nowicki case MRK_FloatMin: 72876aa662cSKarthik Bhat P = CmpInst::FCMP_OLT; 72976aa662cSKarthik Bhat break; 73027b2c39eSTyler Nowicki case MRK_FloatMax: 73176aa662cSKarthik Bhat P = CmpInst::FCMP_OGT; 73276aa662cSKarthik Bhat break; 73376aa662cSKarthik Bhat } 73476aa662cSKarthik Bhat 735629c4115SSanjay Patel // We only match FP sequences that are 'fast', so we can unconditionally 73650a4c27fSJames Molloy // set it on any generated instructions. 73750a4c27fSJames Molloy IRBuilder<>::FastMathFlagGuard FMFG(Builder); 73850a4c27fSJames Molloy FastMathFlags FMF; 739629c4115SSanjay Patel FMF.setFast(); 740a252815bSSanjay Patel Builder.setFastMathFlags(FMF); 74150a4c27fSJames Molloy 74276aa662cSKarthik Bhat Value *Cmp; 74327b2c39eSTyler Nowicki if (RK == MRK_FloatMin || RK == MRK_FloatMax) 74476aa662cSKarthik Bhat Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 74576aa662cSKarthik Bhat else 74676aa662cSKarthik Bhat Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 74776aa662cSKarthik Bhat 74876aa662cSKarthik Bhat Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 74976aa662cSKarthik Bhat return Select; 75076aa662cSKarthik Bhat } 75124e6cc2dSKarthik Bhat 7521bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 7534750c785SDorit Nuzman const SCEV *Step, BinaryOperator *BOp, 7544750c785SDorit Nuzman SmallVectorImpl<Instruction *> *Casts) 755376a18bdSElena Demikhovsky : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 7561bbf15c5SJames Molloy assert(IK != IK_NoInduction && "Not an induction"); 757c434d091SElena Demikhovsky 758c434d091SElena Demikhovsky // Start value type should match the induction kind and the value 759c434d091SElena Demikhovsky // itself should not be null. 7601bbf15c5SJames Molloy assert(StartValue && "StartValue is null"); 7611bbf15c5SJames Molloy assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 7621bbf15c5SJames Molloy "StartValue is not a pointer for pointer induction"); 7631bbf15c5SJames Molloy assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 7641bbf15c5SJames Molloy "StartValue is not an integer for integer induction"); 765c434d091SElena Demikhovsky 766c434d091SElena Demikhovsky // Check the Step Value. It should be non-zero integer value. 767c434d091SElena Demikhovsky assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 768c434d091SElena Demikhovsky "Step value is zero"); 769c434d091SElena Demikhovsky 770c434d091SElena Demikhovsky assert((IK != IK_PtrInduction || getConstIntStepValue()) && 771c434d091SElena Demikhovsky "Step value should be constant for pointer induction"); 772376a18bdSElena Demikhovsky assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 773376a18bdSElena Demikhovsky "StepValue is not an integer"); 774376a18bdSElena Demikhovsky 775376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 776376a18bdSElena Demikhovsky "StepValue is not FP for FpInduction"); 777376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || (InductionBinOp && 778376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 779376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub))) && 780376a18bdSElena Demikhovsky "Binary opcode should be specified for FP induction"); 7814750c785SDorit Nuzman 7824750c785SDorit Nuzman if (Casts) { 7834750c785SDorit Nuzman for (auto &Inst : *Casts) { 7844750c785SDorit Nuzman RedundantCasts.push_back(Inst); 7854750c785SDorit Nuzman } 7864750c785SDorit Nuzman } 7871bbf15c5SJames Molloy } 7881bbf15c5SJames Molloy 7891bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const { 790c434d091SElena Demikhovsky ConstantInt *ConstStep = getConstIntStepValue(); 791c434d091SElena Demikhovsky if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 792c434d091SElena Demikhovsky return ConstStep->getSExtValue(); 7931bbf15c5SJames Molloy return 0; 7941bbf15c5SJames Molloy } 7951bbf15c5SJames Molloy 796c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const { 797c434d091SElena Demikhovsky if (isa<SCEVConstant>(Step)) 798c434d091SElena Demikhovsky return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 799c434d091SElena Demikhovsky return nullptr; 800c434d091SElena Demikhovsky } 801c434d091SElena Demikhovsky 802c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 803c434d091SElena Demikhovsky ScalarEvolution *SE, 804c434d091SElena Demikhovsky const DataLayout& DL) const { 805c434d091SElena Demikhovsky 806c434d091SElena Demikhovsky SCEVExpander Exp(*SE, DL, "induction"); 807376a18bdSElena Demikhovsky assert(Index->getType() == Step->getType() && 808376a18bdSElena Demikhovsky "Index type does not match StepValue type"); 8091bbf15c5SJames Molloy switch (IK) { 810c434d091SElena Demikhovsky case IK_IntInduction: { 8111bbf15c5SJames Molloy assert(Index->getType() == StartValue->getType() && 8121bbf15c5SJames Molloy "Index type does not match StartValue type"); 813c434d091SElena Demikhovsky 814c434d091SElena Demikhovsky // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 815c434d091SElena Demikhovsky // and calculate (Start + Index * Step) for all cases, without 816c434d091SElena Demikhovsky // special handling for "isOne" and "isMinusOne". 817c434d091SElena Demikhovsky // But in the real life the result code getting worse. We mix SCEV 818c434d091SElena Demikhovsky // expressions and ADD/SUB operations and receive redundant 819c434d091SElena Demikhovsky // intermediate values being calculated in different ways and 820c434d091SElena Demikhovsky // Instcombine is unable to reduce them all. 821c434d091SElena Demikhovsky 822c434d091SElena Demikhovsky if (getConstIntStepValue() && 823c434d091SElena Demikhovsky getConstIntStepValue()->isMinusOne()) 8241bbf15c5SJames Molloy return B.CreateSub(StartValue, Index); 825c434d091SElena Demikhovsky if (getConstIntStepValue() && 826c434d091SElena Demikhovsky getConstIntStepValue()->isOne()) 8271bbf15c5SJames Molloy return B.CreateAdd(StartValue, Index); 828c434d091SElena Demikhovsky const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 829c434d091SElena Demikhovsky SE->getMulExpr(Step, SE->getSCEV(Index))); 830c434d091SElena Demikhovsky return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 831c434d091SElena Demikhovsky } 832c434d091SElena Demikhovsky case IK_PtrInduction: { 833c434d091SElena Demikhovsky assert(isa<SCEVConstant>(Step) && 834c434d091SElena Demikhovsky "Expected constant step for pointer induction"); 835c434d091SElena Demikhovsky const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 836c434d091SElena Demikhovsky Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 8371bbf15c5SJames Molloy return B.CreateGEP(nullptr, StartValue, Index); 838c434d091SElena Demikhovsky } 839376a18bdSElena Demikhovsky case IK_FpInduction: { 840376a18bdSElena Demikhovsky assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 841376a18bdSElena Demikhovsky assert(InductionBinOp && 842376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 843376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub) && 844376a18bdSElena Demikhovsky "Original bin op should be defined for FP induction"); 845376a18bdSElena Demikhovsky 846376a18bdSElena Demikhovsky Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 847376a18bdSElena Demikhovsky 848376a18bdSElena Demikhovsky // Floating point operations had to be 'fast' to enable the induction. 849376a18bdSElena Demikhovsky FastMathFlags Flags; 850629c4115SSanjay Patel Flags.setFast(); 851376a18bdSElena Demikhovsky 852376a18bdSElena Demikhovsky Value *MulExp = B.CreateFMul(StepValue, Index); 853376a18bdSElena Demikhovsky if (isa<Instruction>(MulExp)) 854376a18bdSElena Demikhovsky // We have to check, the MulExp may be a constant. 855376a18bdSElena Demikhovsky cast<Instruction>(MulExp)->setFastMathFlags(Flags); 856376a18bdSElena Demikhovsky 857376a18bdSElena Demikhovsky Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 858376a18bdSElena Demikhovsky MulExp, "induction"); 859376a18bdSElena Demikhovsky if (isa<Instruction>(BOp)) 860376a18bdSElena Demikhovsky cast<Instruction>(BOp)->setFastMathFlags(Flags); 861376a18bdSElena Demikhovsky 862376a18bdSElena Demikhovsky return BOp; 863376a18bdSElena Demikhovsky } 8641bbf15c5SJames Molloy case IK_NoInduction: 8651bbf15c5SJames Molloy return nullptr; 8661bbf15c5SJames Molloy } 8671bbf15c5SJames Molloy llvm_unreachable("invalid enum"); 8681bbf15c5SJames Molloy } 8691bbf15c5SJames Molloy 870376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 871376a18bdSElena Demikhovsky ScalarEvolution *SE, 872376a18bdSElena Demikhovsky InductionDescriptor &D) { 873376a18bdSElena Demikhovsky 874376a18bdSElena Demikhovsky // Here we only handle FP induction variables. 875376a18bdSElena Demikhovsky assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 876376a18bdSElena Demikhovsky 877376a18bdSElena Demikhovsky if (TheLoop->getHeader() != Phi->getParent()) 878376a18bdSElena Demikhovsky return false; 879376a18bdSElena Demikhovsky 880376a18bdSElena Demikhovsky // The loop may have multiple entrances or multiple exits; we can analyze 881376a18bdSElena Demikhovsky // this phi if it has a unique entry value and a unique backedge value. 882376a18bdSElena Demikhovsky if (Phi->getNumIncomingValues() != 2) 883376a18bdSElena Demikhovsky return false; 884376a18bdSElena Demikhovsky Value *BEValue = nullptr, *StartValue = nullptr; 885376a18bdSElena Demikhovsky if (TheLoop->contains(Phi->getIncomingBlock(0))) { 886376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(0); 887376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(1); 888376a18bdSElena Demikhovsky } else { 889376a18bdSElena Demikhovsky assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 890376a18bdSElena Demikhovsky "Unexpected Phi node in the loop"); 891376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(1); 892376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(0); 893376a18bdSElena Demikhovsky } 894376a18bdSElena Demikhovsky 895376a18bdSElena Demikhovsky BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 896376a18bdSElena Demikhovsky if (!BOp) 897376a18bdSElena Demikhovsky return false; 898376a18bdSElena Demikhovsky 899376a18bdSElena Demikhovsky Value *Addend = nullptr; 900376a18bdSElena Demikhovsky if (BOp->getOpcode() == Instruction::FAdd) { 901376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 902376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 903376a18bdSElena Demikhovsky else if (BOp->getOperand(1) == Phi) 904376a18bdSElena Demikhovsky Addend = BOp->getOperand(0); 905376a18bdSElena Demikhovsky } else if (BOp->getOpcode() == Instruction::FSub) 906376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 907376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 908376a18bdSElena Demikhovsky 909376a18bdSElena Demikhovsky if (!Addend) 910376a18bdSElena Demikhovsky return false; 911376a18bdSElena Demikhovsky 912376a18bdSElena Demikhovsky // The addend should be loop invariant 913376a18bdSElena Demikhovsky if (auto *I = dyn_cast<Instruction>(Addend)) 914376a18bdSElena Demikhovsky if (TheLoop->contains(I)) 915376a18bdSElena Demikhovsky return false; 916376a18bdSElena Demikhovsky 917376a18bdSElena Demikhovsky // FP Step has unknown SCEV 918376a18bdSElena Demikhovsky const SCEV *Step = SE->getUnknown(Addend); 919376a18bdSElena Demikhovsky D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 920376a18bdSElena Demikhovsky return true; 921376a18bdSElena Demikhovsky } 922376a18bdSElena Demikhovsky 9234750c785SDorit Nuzman /// This function is called when we suspect that the update-chain of a phi node 9244750c785SDorit Nuzman /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 9254750c785SDorit Nuzman /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 9264750c785SDorit Nuzman /// predicate P under which the SCEV expression for the phi can be the 9274750c785SDorit Nuzman /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 9284750c785SDorit Nuzman /// cast instructions that are involved in the update-chain of this induction. 9294750c785SDorit Nuzman /// A caller that adds the required runtime predicate can be free to drop these 9304750c785SDorit Nuzman /// cast instructions, and compute the phi using \p AR (instead of some scev 9314750c785SDorit Nuzman /// expression with casts). 9324750c785SDorit Nuzman /// 9334750c785SDorit Nuzman /// For example, without a predicate the scev expression can take the following 9344750c785SDorit Nuzman /// form: 9354750c785SDorit Nuzman /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 9364750c785SDorit Nuzman /// 9374750c785SDorit Nuzman /// It corresponds to the following IR sequence: 9384750c785SDorit Nuzman /// %for.body: 9394750c785SDorit Nuzman /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 9404750c785SDorit Nuzman /// %casted_phi = "ExtTrunc i64 %x" 9414750c785SDorit Nuzman /// %add = add i64 %casted_phi, %step 9424750c785SDorit Nuzman /// 9434750c785SDorit Nuzman /// where %x is given in \p PN, 9444750c785SDorit Nuzman /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 9454750c785SDorit Nuzman /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 9464750c785SDorit Nuzman /// several forms, for example, such as: 9474750c785SDorit Nuzman /// ExtTrunc1: %casted_phi = and %x, 2^n-1 9484750c785SDorit Nuzman /// or: 9494750c785SDorit Nuzman /// ExtTrunc2: %t = shl %x, m 9504750c785SDorit Nuzman /// %casted_phi = ashr %t, m 9514750c785SDorit Nuzman /// 9524750c785SDorit Nuzman /// If we are able to find such sequence, we return the instructions 9534750c785SDorit Nuzman /// we found, namely %casted_phi and the instructions on its use-def chain up 9544750c785SDorit Nuzman /// to the phi (not including the phi). 955802e6255SBenjamin Kramer static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 956802e6255SBenjamin Kramer const SCEVUnknown *PhiScev, 957802e6255SBenjamin Kramer const SCEVAddRecExpr *AR, 958802e6255SBenjamin Kramer SmallVectorImpl<Instruction *> &CastInsts) { 9594750c785SDorit Nuzman 9604750c785SDorit Nuzman assert(CastInsts.empty() && "CastInsts is expected to be empty."); 9614750c785SDorit Nuzman auto *PN = cast<PHINode>(PhiScev->getValue()); 9624750c785SDorit Nuzman assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 9634750c785SDorit Nuzman const Loop *L = AR->getLoop(); 9644750c785SDorit Nuzman 9654750c785SDorit Nuzman // Find any cast instructions that participate in the def-use chain of 9664750c785SDorit Nuzman // PhiScev in the loop. 9674750c785SDorit Nuzman // FORNOW/TODO: We currently expect the def-use chain to include only 9684750c785SDorit Nuzman // two-operand instructions, where one of the operands is an invariant. 9694750c785SDorit Nuzman // createAddRecFromPHIWithCasts() currently does not support anything more 9704750c785SDorit Nuzman // involved than that, so we keep the search simple. This can be 9714750c785SDorit Nuzman // extended/generalized as needed. 9724750c785SDorit Nuzman 9734750c785SDorit Nuzman auto getDef = [&](const Value *Val) -> Value * { 9744750c785SDorit Nuzman const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 9754750c785SDorit Nuzman if (!BinOp) 9764750c785SDorit Nuzman return nullptr; 9774750c785SDorit Nuzman Value *Op0 = BinOp->getOperand(0); 9784750c785SDorit Nuzman Value *Op1 = BinOp->getOperand(1); 9794750c785SDorit Nuzman Value *Def = nullptr; 9804750c785SDorit Nuzman if (L->isLoopInvariant(Op0)) 9814750c785SDorit Nuzman Def = Op1; 9824750c785SDorit Nuzman else if (L->isLoopInvariant(Op1)) 9834750c785SDorit Nuzman Def = Op0; 9844750c785SDorit Nuzman return Def; 9854750c785SDorit Nuzman }; 9864750c785SDorit Nuzman 9874750c785SDorit Nuzman // Look for the instruction that defines the induction via the 9884750c785SDorit Nuzman // loop backedge. 9894750c785SDorit Nuzman BasicBlock *Latch = L->getLoopLatch(); 9904750c785SDorit Nuzman if (!Latch) 9914750c785SDorit Nuzman return false; 9924750c785SDorit Nuzman Value *Val = PN->getIncomingValueForBlock(Latch); 9934750c785SDorit Nuzman if (!Val) 9944750c785SDorit Nuzman return false; 9954750c785SDorit Nuzman 9964750c785SDorit Nuzman // Follow the def-use chain until the induction phi is reached. 9974750c785SDorit Nuzman // If on the way we encounter a Value that has the same SCEV Expr as the 9984750c785SDorit Nuzman // phi node, we can consider the instructions we visit from that point 9994750c785SDorit Nuzman // as part of the cast-sequence that can be ignored. 10004750c785SDorit Nuzman bool InCastSequence = false; 10014750c785SDorit Nuzman auto *Inst = dyn_cast<Instruction>(Val); 10024750c785SDorit Nuzman while (Val != PN) { 10034750c785SDorit Nuzman // If we encountered a phi node other than PN, or if we left the loop, 10044750c785SDorit Nuzman // we bail out. 10054750c785SDorit Nuzman if (!Inst || !L->contains(Inst)) { 10064750c785SDorit Nuzman return false; 10074750c785SDorit Nuzman } 10084750c785SDorit Nuzman auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 10094750c785SDorit Nuzman if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 10104750c785SDorit Nuzman InCastSequence = true; 10114750c785SDorit Nuzman if (InCastSequence) { 10124750c785SDorit Nuzman // Only the last instruction in the cast sequence is expected to have 10134750c785SDorit Nuzman // uses outside the induction def-use chain. 10144750c785SDorit Nuzman if (!CastInsts.empty()) 10154750c785SDorit Nuzman if (!Inst->hasOneUse()) 10164750c785SDorit Nuzman return false; 10174750c785SDorit Nuzman CastInsts.push_back(Inst); 10184750c785SDorit Nuzman } 10194750c785SDorit Nuzman Val = getDef(Val); 10204750c785SDorit Nuzman if (!Val) 10214750c785SDorit Nuzman return false; 10224750c785SDorit Nuzman Inst = dyn_cast<Instruction>(Val); 10234750c785SDorit Nuzman } 10244750c785SDorit Nuzman 10254750c785SDorit Nuzman return InCastSequence; 10264750c785SDorit Nuzman } 10274750c785SDorit Nuzman 1028376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1029c05bab8aSSilviu Baranga PredicatedScalarEvolution &PSE, 1030c05bab8aSSilviu Baranga InductionDescriptor &D, 1031c05bab8aSSilviu Baranga bool Assume) { 1032c05bab8aSSilviu Baranga Type *PhiTy = Phi->getType(); 1033376a18bdSElena Demikhovsky 1034376a18bdSElena Demikhovsky // Handle integer and pointer inductions variables. 1035376a18bdSElena Demikhovsky // Now we handle also FP induction but not trying to make a 1036376a18bdSElena Demikhovsky // recurrent expression from the PHI node in-place. 1037376a18bdSElena Demikhovsky 1038376a18bdSElena Demikhovsky if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 1039376a18bdSElena Demikhovsky !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1040c05bab8aSSilviu Baranga return false; 1041c05bab8aSSilviu Baranga 1042376a18bdSElena Demikhovsky if (PhiTy->isFloatingPointTy()) 1043376a18bdSElena Demikhovsky return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1044376a18bdSElena Demikhovsky 1045c05bab8aSSilviu Baranga const SCEV *PhiScev = PSE.getSCEV(Phi); 1046c05bab8aSSilviu Baranga const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1047c05bab8aSSilviu Baranga 1048c05bab8aSSilviu Baranga // We need this expression to be an AddRecExpr. 1049c05bab8aSSilviu Baranga if (Assume && !AR) 1050c05bab8aSSilviu Baranga AR = PSE.getAsAddRec(Phi); 1051c05bab8aSSilviu Baranga 1052c05bab8aSSilviu Baranga if (!AR) { 1053c05bab8aSSilviu Baranga DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1054c05bab8aSSilviu Baranga return false; 1055c05bab8aSSilviu Baranga } 1056c05bab8aSSilviu Baranga 10574750c785SDorit Nuzman // Record any Cast instructions that participate in the induction update 10584750c785SDorit Nuzman const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 10594750c785SDorit Nuzman // If we started from an UnknownSCEV, and managed to build an addRecurrence 10604750c785SDorit Nuzman // only after enabling Assume with PSCEV, this means we may have encountered 10614750c785SDorit Nuzman // cast instructions that required adding a runtime check in order to 10624750c785SDorit Nuzman // guarantee the correctness of the AddRecurence respresentation of the 10634750c785SDorit Nuzman // induction. 10644750c785SDorit Nuzman if (PhiScev != AR && SymbolicPhi) { 10654750c785SDorit Nuzman SmallVector<Instruction *, 2> Casts; 10664750c785SDorit Nuzman if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 10674750c785SDorit Nuzman return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 10684750c785SDorit Nuzman } 10694750c785SDorit Nuzman 1070376a18bdSElena Demikhovsky return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1071c05bab8aSSilviu Baranga } 1072c05bab8aSSilviu Baranga 10734750c785SDorit Nuzman bool InductionDescriptor::isInductionPHI( 10744750c785SDorit Nuzman PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 10754750c785SDorit Nuzman InductionDescriptor &D, const SCEV *Expr, 10764750c785SDorit Nuzman SmallVectorImpl<Instruction *> *CastsToIgnore) { 107724e6cc2dSKarthik Bhat Type *PhiTy = Phi->getType(); 107824e6cc2dSKarthik Bhat // We only handle integer and pointer inductions variables. 107924e6cc2dSKarthik Bhat if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 108024e6cc2dSKarthik Bhat return false; 108124e6cc2dSKarthik Bhat 108224e6cc2dSKarthik Bhat // Check that the PHI is consecutive. 1083c05bab8aSSilviu Baranga const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 108424e6cc2dSKarthik Bhat const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1085c05bab8aSSilviu Baranga 108624e6cc2dSKarthik Bhat if (!AR) { 108724e6cc2dSKarthik Bhat DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 108824e6cc2dSKarthik Bhat return false; 108924e6cc2dSKarthik Bhat } 109024e6cc2dSKarthik Bhat 1091ee31cbe3SMichael Kuperstein if (AR->getLoop() != TheLoop) { 1092ee31cbe3SMichael Kuperstein // FIXME: We should treat this as a uniform. Unfortunately, we 1093ee31cbe3SMichael Kuperstein // don't currently know how to handled uniform PHIs. 1094ee31cbe3SMichael Kuperstein DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1095ee31cbe3SMichael Kuperstein return false; 1096ee31cbe3SMichael Kuperstein } 1097ee31cbe3SMichael Kuperstein 10981bbf15c5SJames Molloy Value *StartValue = 10991bbf15c5SJames Molloy Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 110024e6cc2dSKarthik Bhat const SCEV *Step = AR->getStepRecurrence(*SE); 110124e6cc2dSKarthik Bhat // Calculate the pointer stride and check if it is consecutive. 1102c434d091SElena Demikhovsky // The stride may be a constant or a loop invariant integer value. 1103c434d091SElena Demikhovsky const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1104376a18bdSElena Demikhovsky if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 110524e6cc2dSKarthik Bhat return false; 110624e6cc2dSKarthik Bhat 110724e6cc2dSKarthik Bhat if (PhiTy->isIntegerTy()) { 11084750c785SDorit Nuzman D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr, 11094750c785SDorit Nuzman CastsToIgnore); 111024e6cc2dSKarthik Bhat return true; 111124e6cc2dSKarthik Bhat } 111224e6cc2dSKarthik Bhat 111324e6cc2dSKarthik Bhat assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1114c434d091SElena Demikhovsky // Pointer induction should be a constant. 1115c434d091SElena Demikhovsky if (!ConstStep) 1116c434d091SElena Demikhovsky return false; 1117c434d091SElena Demikhovsky 1118c434d091SElena Demikhovsky ConstantInt *CV = ConstStep->getValue(); 111924e6cc2dSKarthik Bhat Type *PointerElementType = PhiTy->getPointerElementType(); 112024e6cc2dSKarthik Bhat // The pointer stride cannot be determined if the pointer element type is not 112124e6cc2dSKarthik Bhat // sized. 112224e6cc2dSKarthik Bhat if (!PointerElementType->isSized()) 112324e6cc2dSKarthik Bhat return false; 112424e6cc2dSKarthik Bhat 112524e6cc2dSKarthik Bhat const DataLayout &DL = Phi->getModule()->getDataLayout(); 112624e6cc2dSKarthik Bhat int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1127b58f32f7SDavid Majnemer if (!Size) 1128b58f32f7SDavid Majnemer return false; 1129b58f32f7SDavid Majnemer 113024e6cc2dSKarthik Bhat int64_t CVSize = CV->getSExtValue(); 113124e6cc2dSKarthik Bhat if (CVSize % Size) 113224e6cc2dSKarthik Bhat return false; 1133c434d091SElena Demikhovsky auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 1134c434d091SElena Demikhovsky true /* signed */); 11351bbf15c5SJames Molloy D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 113624e6cc2dSKarthik Bhat return true; 113724e6cc2dSKarthik Bhat } 1138c5b7b555SAshutosh Nema 11394a000883SChandler Carruth bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 11404a000883SChandler Carruth bool PreserveLCSSA) { 11414a000883SChandler Carruth bool Changed = false; 11424a000883SChandler Carruth 11434a000883SChandler Carruth // We re-use a vector for the in-loop predecesosrs. 11444a000883SChandler Carruth SmallVector<BasicBlock *, 4> InLoopPredecessors; 11454a000883SChandler Carruth 11464a000883SChandler Carruth auto RewriteExit = [&](BasicBlock *BB) { 11474a000883SChandler Carruth assert(InLoopPredecessors.empty() && 11484a000883SChandler Carruth "Must start with an empty predecessors list!"); 11494a000883SChandler Carruth auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 11504a000883SChandler Carruth 11514a000883SChandler Carruth // See if there are any non-loop predecessors of this exit block and 11524a000883SChandler Carruth // keep track of the in-loop predecessors. 11534a000883SChandler Carruth bool IsDedicatedExit = true; 11544a000883SChandler Carruth for (auto *PredBB : predecessors(BB)) 11554a000883SChandler Carruth if (L->contains(PredBB)) { 11564a000883SChandler Carruth if (isa<IndirectBrInst>(PredBB->getTerminator())) 11574a000883SChandler Carruth // We cannot rewrite exiting edges from an indirectbr. 11584a000883SChandler Carruth return false; 11594a000883SChandler Carruth 11604a000883SChandler Carruth InLoopPredecessors.push_back(PredBB); 11614a000883SChandler Carruth } else { 11624a000883SChandler Carruth IsDedicatedExit = false; 11634a000883SChandler Carruth } 11644a000883SChandler Carruth 11654a000883SChandler Carruth assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 11664a000883SChandler Carruth 11674a000883SChandler Carruth // Nothing to do if this is already a dedicated exit. 11684a000883SChandler Carruth if (IsDedicatedExit) 11694a000883SChandler Carruth return false; 11704a000883SChandler Carruth 11714a000883SChandler Carruth auto *NewExitBB = SplitBlockPredecessors( 11724a000883SChandler Carruth BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA); 11734a000883SChandler Carruth 11744a000883SChandler Carruth if (!NewExitBB) 11754a000883SChandler Carruth DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 11764a000883SChandler Carruth << *L << "\n"); 11774a000883SChandler Carruth else 11784a000883SChandler Carruth DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 11794a000883SChandler Carruth << NewExitBB->getName() << "\n"); 11804a000883SChandler Carruth return true; 11814a000883SChandler Carruth }; 11824a000883SChandler Carruth 11834a000883SChandler Carruth // Walk the exit blocks directly rather than building up a data structure for 11844a000883SChandler Carruth // them, but only visit each one once. 11854a000883SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 11864a000883SChandler Carruth for (auto *BB : L->blocks()) 11874a000883SChandler Carruth for (auto *SuccBB : successors(BB)) { 11884a000883SChandler Carruth // We're looking for exit blocks so skip in-loop successors. 11894a000883SChandler Carruth if (L->contains(SuccBB)) 11904a000883SChandler Carruth continue; 11914a000883SChandler Carruth 11924a000883SChandler Carruth // Visit each exit block exactly once. 11934a000883SChandler Carruth if (!Visited.insert(SuccBB).second) 11944a000883SChandler Carruth continue; 11954a000883SChandler Carruth 11964a000883SChandler Carruth Changed |= RewriteExit(SuccBB); 11974a000883SChandler Carruth } 11984a000883SChandler Carruth 11994a000883SChandler Carruth return Changed; 12004a000883SChandler Carruth } 12014a000883SChandler Carruth 1202c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop. 1203c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 1204c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 1205c5b7b555SAshutosh Nema 1206c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 1207c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 1208c5b7b555SAshutosh Nema // be adapted into a pointer. 1209c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 1210c5b7b555SAshutosh Nema auto Users = Inst.users(); 12110a16c228SDavid Majnemer if (any_of(Users, [&](User *U) { 1212c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 1213c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 1214c5b7b555SAshutosh Nema })) 1215c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 1216c5b7b555SAshutosh Nema } 1217c5b7b555SAshutosh Nema 1218c5b7b555SAshutosh Nema return UsedOutside; 1219c5b7b555SAshutosh Nema } 122031088a9dSChandler Carruth 122131088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 122231088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 122331088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 122431088a9dSChandler Carruth // pass manager, they must also preserve these. 122531088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 122631088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 122731088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 122831088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 122931088a9dSChandler Carruth 123031088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 123131088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 123231088a9dSChandler Carruth extern char &LoopSimplifyID; 123331088a9dSChandler Carruth extern char &LCSSAID; 123431088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 123531088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 123631088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 123731088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 1238c3ccf5d7SIgor Laevsky // This is used in the LPPassManager to perform LCSSA verification on passes 1239c3ccf5d7SIgor Laevsky // which preserve lcssa form 1240c3ccf5d7SIgor Laevsky AU.addRequired<LCSSAVerificationPass>(); 1241c3ccf5d7SIgor Laevsky AU.addPreserved<LCSSAVerificationPass>(); 124231088a9dSChandler Carruth 124331088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 124431088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 124531088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 124631088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 124731088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 124831088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 124931088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 125031088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 125131088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 125231088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 125331088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 125431088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 125531088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 125631088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 125731088a9dSChandler Carruth } 125831088a9dSChandler Carruth 125931088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 126031088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 126131088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 126231088a9dSChandler Carruth /// with: 126331088a9dSChandler Carruth /// 126431088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 126531088a9dSChandler Carruth /// 126631088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 126731088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 126831088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 126931088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 127031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1271e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 127231088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 127331088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 127431088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 127531088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 127631088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 127731088a9dSChandler Carruth } 1278963341c8SAdam Nemet 1279fe3def7cSAdam Nemet /// \brief Find string metadata for loop 1280fe3def7cSAdam Nemet /// 1281fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1282fe3def7cSAdam Nemet /// operand or null otherwise. If the string metadata is not found return 1283fe3def7cSAdam Nemet /// Optional's not-a-value. 1284fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 1285fe3def7cSAdam Nemet StringRef Name) { 1286963341c8SAdam Nemet MDNode *LoopID = TheLoop->getLoopID(); 1287fe3def7cSAdam Nemet // Return none if LoopID is false. 1288963341c8SAdam Nemet if (!LoopID) 1289fe3def7cSAdam Nemet return None; 1290293be666SAdam Nemet 1291293be666SAdam Nemet // First operand should refer to the loop id itself. 1292293be666SAdam Nemet assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1293293be666SAdam Nemet assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1294293be666SAdam Nemet 1295963341c8SAdam Nemet // Iterate over LoopID operands and look for MDString Metadata 1296963341c8SAdam Nemet for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1297963341c8SAdam Nemet MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1298963341c8SAdam Nemet if (!MD) 1299963341c8SAdam Nemet continue; 1300963341c8SAdam Nemet MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1301963341c8SAdam Nemet if (!S) 1302963341c8SAdam Nemet continue; 1303963341c8SAdam Nemet // Return true if MDString holds expected MetaData. 1304963341c8SAdam Nemet if (Name.equals(S->getString())) 1305fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 1306fe3def7cSAdam Nemet case 1: 1307fe3def7cSAdam Nemet return nullptr; 1308fe3def7cSAdam Nemet case 2: 1309fe3def7cSAdam Nemet return &MD->getOperand(1); 1310fe3def7cSAdam Nemet default: 1311fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 1312963341c8SAdam Nemet } 1313fe3def7cSAdam Nemet } 1314fe3def7cSAdam Nemet return None; 1315963341c8SAdam Nemet } 1316122f984aSEvgeniy Stepanov 13177ed5856aSAlina Sbirlea /// Does a BFS from a given node to all of its children inside a given loop. 13187ed5856aSAlina Sbirlea /// The returned vector of nodes includes the starting point. 13197ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> 13207ed5856aSAlina Sbirlea llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 13217ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> Worklist; 13227ed5856aSAlina Sbirlea auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 13237ed5856aSAlina Sbirlea // Only include subregions in the top level loop. 13247ed5856aSAlina Sbirlea BasicBlock *BB = DTN->getBlock(); 13257ed5856aSAlina Sbirlea if (CurLoop->contains(BB)) 13267ed5856aSAlina Sbirlea Worklist.push_back(DTN); 13277ed5856aSAlina Sbirlea }; 13287ed5856aSAlina Sbirlea 13297ed5856aSAlina Sbirlea AddRegionToWorklist(N); 13307ed5856aSAlina Sbirlea 13317ed5856aSAlina Sbirlea for (size_t I = 0; I < Worklist.size(); I++) 13327ed5856aSAlina Sbirlea for (DomTreeNode *Child : Worklist[I]->getChildren()) 13337ed5856aSAlina Sbirlea AddRegionToWorklist(Child); 13347ed5856aSAlina Sbirlea 13357ed5856aSAlina Sbirlea return Worklist; 13367ed5856aSAlina Sbirlea } 13377ed5856aSAlina Sbirlea 1338df3e71e0SMarcello Maggioni void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 1339df3e71e0SMarcello Maggioni ScalarEvolution *SE = nullptr, 1340df3e71e0SMarcello Maggioni LoopInfo *LI = nullptr) { 1341899809d5SHans Wennborg assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 1342df3e71e0SMarcello Maggioni auto *Preheader = L->getLoopPreheader(); 1343df3e71e0SMarcello Maggioni assert(Preheader && "Preheader should exist!"); 1344df3e71e0SMarcello Maggioni 1345df3e71e0SMarcello Maggioni // Now that we know the removal is safe, remove the loop by changing the 1346df3e71e0SMarcello Maggioni // branch from the preheader to go to the single exit block. 1347df3e71e0SMarcello Maggioni // 1348df3e71e0SMarcello Maggioni // Because we're deleting a large chunk of code at once, the sequence in which 1349df3e71e0SMarcello Maggioni // we remove things is very important to avoid invalidation issues. 1350df3e71e0SMarcello Maggioni 1351df3e71e0SMarcello Maggioni // Tell ScalarEvolution that the loop is deleted. Do this before 1352df3e71e0SMarcello Maggioni // deleting the loop so that ScalarEvolution can look at the loop 1353df3e71e0SMarcello Maggioni // to determine what it needs to clean up. 1354df3e71e0SMarcello Maggioni if (SE) 1355df3e71e0SMarcello Maggioni SE->forgetLoop(L); 1356df3e71e0SMarcello Maggioni 1357df3e71e0SMarcello Maggioni auto *ExitBlock = L->getUniqueExitBlock(); 1358df3e71e0SMarcello Maggioni assert(ExitBlock && "Should have a unique exit block!"); 1359df3e71e0SMarcello Maggioni assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 1360df3e71e0SMarcello Maggioni 1361df3e71e0SMarcello Maggioni auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 1362df3e71e0SMarcello Maggioni assert(OldBr && "Preheader must end with a branch"); 1363df3e71e0SMarcello Maggioni assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 1364df3e71e0SMarcello Maggioni // Connect the preheader to the exit block. Keep the old edge to the header 1365df3e71e0SMarcello Maggioni // around to perform the dominator tree update in two separate steps 1366df3e71e0SMarcello Maggioni // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 1367df3e71e0SMarcello Maggioni // preheader -> header. 1368df3e71e0SMarcello Maggioni // 1369df3e71e0SMarcello Maggioni // 1370df3e71e0SMarcello Maggioni // 0. Preheader 1. Preheader 2. Preheader 1371df3e71e0SMarcello Maggioni // | | | | 1372df3e71e0SMarcello Maggioni // V | V | 1373df3e71e0SMarcello Maggioni // Header <--\ | Header <--\ | Header <--\ 1374df3e71e0SMarcello Maggioni // | | | | | | | | | | | 1375df3e71e0SMarcello Maggioni // | V | | | V | | | V | 1376df3e71e0SMarcello Maggioni // | Body --/ | | Body --/ | | Body --/ 1377df3e71e0SMarcello Maggioni // V V V V V 1378df3e71e0SMarcello Maggioni // Exit Exit Exit 1379df3e71e0SMarcello Maggioni // 1380df3e71e0SMarcello Maggioni // By doing this is two separate steps we can perform the dominator tree 1381df3e71e0SMarcello Maggioni // update without using the batch update API. 1382df3e71e0SMarcello Maggioni // 1383df3e71e0SMarcello Maggioni // Even when the loop is never executed, we cannot remove the edge from the 1384df3e71e0SMarcello Maggioni // source block to the exit block. Consider the case where the unexecuted loop 1385df3e71e0SMarcello Maggioni // branches back to an outer loop. If we deleted the loop and removed the edge 1386df3e71e0SMarcello Maggioni // coming to this inner loop, this will break the outer loop structure (by 1387df3e71e0SMarcello Maggioni // deleting the backedge of the outer loop). If the outer loop is indeed a 1388df3e71e0SMarcello Maggioni // non-loop, it will be deleted in a future iteration of loop deletion pass. 1389df3e71e0SMarcello Maggioni IRBuilder<> Builder(OldBr); 1390df3e71e0SMarcello Maggioni Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 1391df3e71e0SMarcello Maggioni // Remove the old branch. The conditional branch becomes a new terminator. 1392df3e71e0SMarcello Maggioni OldBr->eraseFromParent(); 1393df3e71e0SMarcello Maggioni 1394df3e71e0SMarcello Maggioni // Rewrite phis in the exit block to get their inputs from the Preheader 1395df3e71e0SMarcello Maggioni // instead of the exiting block. 1396c7fc81e6SBenjamin Kramer for (PHINode &P : ExitBlock->phis()) { 1397df3e71e0SMarcello Maggioni // Set the zero'th element of Phi to be from the preheader and remove all 1398df3e71e0SMarcello Maggioni // other incoming values. Given the loop has dedicated exits, all other 1399df3e71e0SMarcello Maggioni // incoming values must be from the exiting blocks. 1400df3e71e0SMarcello Maggioni int PredIndex = 0; 1401c7fc81e6SBenjamin Kramer P.setIncomingBlock(PredIndex, Preheader); 1402df3e71e0SMarcello Maggioni // Removes all incoming values from all other exiting blocks (including 1403df3e71e0SMarcello Maggioni // duplicate values from an exiting block). 1404df3e71e0SMarcello Maggioni // Nuke all entries except the zero'th entry which is the preheader entry. 1405df3e71e0SMarcello Maggioni // NOTE! We need to remove Incoming Values in the reverse order as done 1406df3e71e0SMarcello Maggioni // below, to keep the indices valid for deletion (removeIncomingValues 1407df3e71e0SMarcello Maggioni // updates getNumIncomingValues and shifts all values down into the operand 1408df3e71e0SMarcello Maggioni // being deleted). 1409c7fc81e6SBenjamin Kramer for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 1410c7fc81e6SBenjamin Kramer P.removeIncomingValue(e - i, false); 1411df3e71e0SMarcello Maggioni 1412c7fc81e6SBenjamin Kramer assert((P.getNumIncomingValues() == 1 && 1413c7fc81e6SBenjamin Kramer P.getIncomingBlock(PredIndex) == Preheader) && 1414df3e71e0SMarcello Maggioni "Should have exactly one value and that's from the preheader!"); 1415df3e71e0SMarcello Maggioni } 1416df3e71e0SMarcello Maggioni 1417df3e71e0SMarcello Maggioni // Disconnect the loop body by branching directly to its exit. 1418df3e71e0SMarcello Maggioni Builder.SetInsertPoint(Preheader->getTerminator()); 1419df3e71e0SMarcello Maggioni Builder.CreateBr(ExitBlock); 1420df3e71e0SMarcello Maggioni // Remove the old branch. 1421df3e71e0SMarcello Maggioni Preheader->getTerminator()->eraseFromParent(); 1422df3e71e0SMarcello Maggioni 1423df3e71e0SMarcello Maggioni if (DT) { 1424df3e71e0SMarcello Maggioni // Update the dominator tree by informing it about the new edge from the 1425df3e71e0SMarcello Maggioni // preheader to the exit. 1426df3e71e0SMarcello Maggioni DT->insertEdge(Preheader, ExitBlock); 1427df3e71e0SMarcello Maggioni // Inform the dominator tree about the removed edge. 1428df3e71e0SMarcello Maggioni DT->deleteEdge(Preheader, L->getHeader()); 1429df3e71e0SMarcello Maggioni } 1430df3e71e0SMarcello Maggioni 1431a757d65cSSerguei Katkov // Given LCSSA form is satisfied, we should not have users of instructions 1432a757d65cSSerguei Katkov // within the dead loop outside of the loop. However, LCSSA doesn't take 1433a757d65cSSerguei Katkov // unreachable uses into account. We handle them here. 1434a757d65cSSerguei Katkov // We could do it after drop all references (in this case all users in the 1435a757d65cSSerguei Katkov // loop will be already eliminated and we have less work to do but according 1436a757d65cSSerguei Katkov // to API doc of User::dropAllReferences only valid operation after dropping 1437a757d65cSSerguei Katkov // references, is deletion. So let's substitute all usages of 1438a757d65cSSerguei Katkov // instruction from the loop with undef value of corresponding type first. 1439a757d65cSSerguei Katkov for (auto *Block : L->blocks()) 1440a757d65cSSerguei Katkov for (Instruction &I : *Block) { 1441a757d65cSSerguei Katkov auto *Undef = UndefValue::get(I.getType()); 1442a757d65cSSerguei Katkov for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 1443a757d65cSSerguei Katkov Use &U = *UI; 1444a757d65cSSerguei Katkov ++UI; 1445a757d65cSSerguei Katkov if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 1446a757d65cSSerguei Katkov if (L->contains(Usr->getParent())) 1447a757d65cSSerguei Katkov continue; 1448a757d65cSSerguei Katkov // If we have a DT then we can check that uses outside a loop only in 1449a757d65cSSerguei Katkov // unreachable block. 1450a757d65cSSerguei Katkov if (DT) 1451a757d65cSSerguei Katkov assert(!DT->isReachableFromEntry(U) && 1452a757d65cSSerguei Katkov "Unexpected user in reachable block"); 1453a757d65cSSerguei Katkov U.set(Undef); 1454a757d65cSSerguei Katkov } 1455a757d65cSSerguei Katkov } 1456a757d65cSSerguei Katkov 1457df3e71e0SMarcello Maggioni // Remove the block from the reference counting scheme, so that we can 1458df3e71e0SMarcello Maggioni // delete it freely later. 1459df3e71e0SMarcello Maggioni for (auto *Block : L->blocks()) 1460df3e71e0SMarcello Maggioni Block->dropAllReferences(); 1461df3e71e0SMarcello Maggioni 1462df3e71e0SMarcello Maggioni if (LI) { 1463df3e71e0SMarcello Maggioni // Erase the instructions and the blocks without having to worry 1464df3e71e0SMarcello Maggioni // about ordering because we already dropped the references. 1465df3e71e0SMarcello Maggioni // NOTE: This iteration is safe because erasing the block does not remove 1466df3e71e0SMarcello Maggioni // its entry from the loop's block list. We do that in the next section. 1467df3e71e0SMarcello Maggioni for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 1468df3e71e0SMarcello Maggioni LpI != LpE; ++LpI) 1469df3e71e0SMarcello Maggioni (*LpI)->eraseFromParent(); 1470df3e71e0SMarcello Maggioni 1471df3e71e0SMarcello Maggioni // Finally, the blocks from loopinfo. This has to happen late because 1472df3e71e0SMarcello Maggioni // otherwise our loop iterators won't work. 1473df3e71e0SMarcello Maggioni 1474df3e71e0SMarcello Maggioni SmallPtrSet<BasicBlock *, 8> blocks; 1475df3e71e0SMarcello Maggioni blocks.insert(L->block_begin(), L->block_end()); 1476df3e71e0SMarcello Maggioni for (BasicBlock *BB : blocks) 1477df3e71e0SMarcello Maggioni LI->removeBlock(BB); 1478df3e71e0SMarcello Maggioni 1479df3e71e0SMarcello Maggioni // The last step is to update LoopInfo now that we've eliminated this loop. 1480df3e71e0SMarcello Maggioni LI->erase(L); 1481df3e71e0SMarcello Maggioni } 1482df3e71e0SMarcello Maggioni } 1483df3e71e0SMarcello Maggioni 1484122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least 1485122f984aSEvgeniy Stepanov /// once. 1486122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst, 1487122f984aSEvgeniy Stepanov const DominatorTree *DT, const Loop *CurLoop, 1488122f984aSEvgeniy Stepanov const LoopSafetyInfo *SafetyInfo) { 1489122f984aSEvgeniy Stepanov // We have to check to make sure that the instruction dominates all 149058ccc094SEvgeniy Stepanov // of the exit blocks. If it doesn't, then there is a path out of the loop 149158ccc094SEvgeniy Stepanov // which does not execute this instruction, so we can't hoist it. 149258ccc094SEvgeniy Stepanov 149358ccc094SEvgeniy Stepanov // If the instruction is in the header block for the loop (which is very 149458ccc094SEvgeniy Stepanov // common), it is always guaranteed to dominate the exit blocks. Since this 149558ccc094SEvgeniy Stepanov // is a common case, and can save some work, check it now. 149658ccc094SEvgeniy Stepanov if (Inst.getParent() == CurLoop->getHeader()) 149758ccc094SEvgeniy Stepanov // If there's a throw in the header block, we can't guarantee we'll reach 149858ccc094SEvgeniy Stepanov // Inst. 149958ccc094SEvgeniy Stepanov return !SafetyInfo->HeaderMayThrow; 150058ccc094SEvgeniy Stepanov 150158ccc094SEvgeniy Stepanov // Somewhere in this loop there is an instruction which may throw and make us 150258ccc094SEvgeniy Stepanov // exit the loop. 150358ccc094SEvgeniy Stepanov if (SafetyInfo->MayThrow) 1504122f984aSEvgeniy Stepanov return false; 1505122f984aSEvgeniy Stepanov 1506122f984aSEvgeniy Stepanov // Get the exit blocks for the current loop. 1507122f984aSEvgeniy Stepanov SmallVector<BasicBlock *, 8> ExitBlocks; 1508122f984aSEvgeniy Stepanov CurLoop->getExitBlocks(ExitBlocks); 1509122f984aSEvgeniy Stepanov 1510122f984aSEvgeniy Stepanov // Verify that the block dominates each of the exit blocks of the loop. 1511122f984aSEvgeniy Stepanov for (BasicBlock *ExitBlock : ExitBlocks) 1512122f984aSEvgeniy Stepanov if (!DT->dominates(Inst.getParent(), ExitBlock)) 1513122f984aSEvgeniy Stepanov return false; 1514122f984aSEvgeniy Stepanov 1515122f984aSEvgeniy Stepanov // As a degenerate case, if the loop is statically infinite then we haven't 1516122f984aSEvgeniy Stepanov // proven anything since there are no exit blocks. 151758ccc094SEvgeniy Stepanov if (ExitBlocks.empty()) 1518122f984aSEvgeniy Stepanov return false; 1519122f984aSEvgeniy Stepanov 1520f1da33e4SEli Friedman // FIXME: In general, we have to prove that the loop isn't an infinite loop. 1521f1da33e4SEli Friedman // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 1522f1da33e4SEli Friedman // just a special case of this.) 1523122f984aSEvgeniy Stepanov return true; 1524122f984aSEvgeniy Stepanov } 152541d72a86SDehao Chen 152641d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 152741d72a86SDehao Chen // Only support loops with a unique exiting block, and a latch. 152841d72a86SDehao Chen if (!L->getExitingBlock()) 152941d72a86SDehao Chen return None; 153041d72a86SDehao Chen 1531d24ddcd6SHiroshi Inoue // Get the branch weights for the loop's backedge. 153241d72a86SDehao Chen BranchInst *LatchBR = 153341d72a86SDehao Chen dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 153441d72a86SDehao Chen if (!LatchBR || LatchBR->getNumSuccessors() != 2) 153541d72a86SDehao Chen return None; 153641d72a86SDehao Chen 153741d72a86SDehao Chen assert((LatchBR->getSuccessor(0) == L->getHeader() || 153841d72a86SDehao Chen LatchBR->getSuccessor(1) == L->getHeader()) && 153941d72a86SDehao Chen "At least one edge out of the latch must go to the header"); 154041d72a86SDehao Chen 154141d72a86SDehao Chen // To estimate the number of times the loop body was executed, we want to 154241d72a86SDehao Chen // know the number of times the backedge was taken, vs. the number of times 154341d72a86SDehao Chen // we exited the loop. 154441d72a86SDehao Chen uint64_t TrueVal, FalseVal; 1545b151a641SMichael Kuperstein if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 154641d72a86SDehao Chen return None; 154741d72a86SDehao Chen 1548b151a641SMichael Kuperstein if (!TrueVal || !FalseVal) 1549b151a641SMichael Kuperstein return 0; 155041d72a86SDehao Chen 1551b151a641SMichael Kuperstein // Divide the count of the backedge by the count of the edge exiting the loop, 1552b151a641SMichael Kuperstein // rounding to nearest. 155341d72a86SDehao Chen if (LatchBR->getSuccessor(0) == L->getHeader()) 1554b151a641SMichael Kuperstein return (TrueVal + (FalseVal / 2)) / FalseVal; 155541d72a86SDehao Chen else 1556b151a641SMichael Kuperstein return (FalseVal + (TrueVal / 2)) / TrueVal; 155741d72a86SDehao Chen } 1558cf9daa33SAmara Emerson 1559cf9daa33SAmara Emerson /// \brief Adds a 'fast' flag to floating point operations. 1560cf9daa33SAmara Emerson static Value *addFastMathFlag(Value *V) { 1561cf9daa33SAmara Emerson if (isa<FPMathOperator>(V)) { 1562cf9daa33SAmara Emerson FastMathFlags Flags; 1563629c4115SSanjay Patel Flags.setFast(); 1564cf9daa33SAmara Emerson cast<Instruction>(V)->setFastMathFlags(Flags); 1565cf9daa33SAmara Emerson } 1566cf9daa33SAmara Emerson return V; 1567cf9daa33SAmara Emerson } 1568cf9daa33SAmara Emerson 1569cf9daa33SAmara Emerson // Helper to generate a log2 shuffle reduction. 1570836b0f48SAmara Emerson Value * 1571836b0f48SAmara Emerson llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 1572836b0f48SAmara Emerson RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 1573836b0f48SAmara Emerson ArrayRef<Value *> RedOps) { 1574cf9daa33SAmara Emerson unsigned VF = Src->getType()->getVectorNumElements(); 1575cf9daa33SAmara Emerson // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1576cf9daa33SAmara Emerson // and vector ops, reducing the set of values being computed by half each 1577cf9daa33SAmara Emerson // round. 1578cf9daa33SAmara Emerson assert(isPowerOf2_32(VF) && 1579cf9daa33SAmara Emerson "Reduction emission only supported for pow2 vectors!"); 1580cf9daa33SAmara Emerson Value *TmpVec = Src; 1581cf9daa33SAmara Emerson SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 1582cf9daa33SAmara Emerson for (unsigned i = VF; i != 1; i >>= 1) { 1583cf9daa33SAmara Emerson // Move the upper half of the vector to the lower half. 1584cf9daa33SAmara Emerson for (unsigned j = 0; j != i / 2; ++j) 1585cf9daa33SAmara Emerson ShuffleMask[j] = Builder.getInt32(i / 2 + j); 1586cf9daa33SAmara Emerson 1587cf9daa33SAmara Emerson // Fill the rest of the mask with undef. 1588cf9daa33SAmara Emerson std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 1589cf9daa33SAmara Emerson UndefValue::get(Builder.getInt32Ty())); 1590cf9daa33SAmara Emerson 1591cf9daa33SAmara Emerson Value *Shuf = Builder.CreateShuffleVector( 1592cf9daa33SAmara Emerson TmpVec, UndefValue::get(TmpVec->getType()), 1593cf9daa33SAmara Emerson ConstantVector::get(ShuffleMask), "rdx.shuf"); 1594cf9daa33SAmara Emerson 1595cf9daa33SAmara Emerson if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1596cf9daa33SAmara Emerson // Floating point operations had to be 'fast' to enable the reduction. 1597cf9daa33SAmara Emerson TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 1598cf9daa33SAmara Emerson TmpVec, Shuf, "bin.rdx")); 1599cf9daa33SAmara Emerson } else { 1600cf9daa33SAmara Emerson assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 1601cf9daa33SAmara Emerson "Invalid min/max"); 1602cf9daa33SAmara Emerson TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, 1603cf9daa33SAmara Emerson Shuf); 1604cf9daa33SAmara Emerson } 1605cf9daa33SAmara Emerson if (!RedOps.empty()) 1606cf9daa33SAmara Emerson propagateIRFlags(TmpVec, RedOps); 1607cf9daa33SAmara Emerson } 1608cf9daa33SAmara Emerson // The result is in the first element of the vector. 1609cf9daa33SAmara Emerson return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1610cf9daa33SAmara Emerson } 1611cf9daa33SAmara Emerson 1612cf9daa33SAmara Emerson /// Create a simple vector reduction specified by an opcode and some 1613cf9daa33SAmara Emerson /// flags (if generating min/max reductions). 1614cf9daa33SAmara Emerson Value *llvm::createSimpleTargetReduction( 1615cf9daa33SAmara Emerson IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 1616cf9daa33SAmara Emerson Value *Src, TargetTransformInfo::ReductionFlags Flags, 1617cf9daa33SAmara Emerson ArrayRef<Value *> RedOps) { 1618cf9daa33SAmara Emerson assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 1619cf9daa33SAmara Emerson 1620cf9daa33SAmara Emerson Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 1621cf9daa33SAmara Emerson std::function<Value*()> BuildFunc; 1622cf9daa33SAmara Emerson using RD = RecurrenceDescriptor; 1623cf9daa33SAmara Emerson RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 1624cf9daa33SAmara Emerson // TODO: Support creating ordered reductions. 16251ea7b6f7SSanjay Patel FastMathFlags FMFFast; 16261ea7b6f7SSanjay Patel FMFFast.setFast(); 1627cf9daa33SAmara Emerson 1628cf9daa33SAmara Emerson switch (Opcode) { 1629cf9daa33SAmara Emerson case Instruction::Add: 1630cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 1631cf9daa33SAmara Emerson break; 1632cf9daa33SAmara Emerson case Instruction::Mul: 1633cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 1634cf9daa33SAmara Emerson break; 1635cf9daa33SAmara Emerson case Instruction::And: 1636cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 1637cf9daa33SAmara Emerson break; 1638cf9daa33SAmara Emerson case Instruction::Or: 1639cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 1640cf9daa33SAmara Emerson break; 1641cf9daa33SAmara Emerson case Instruction::Xor: 1642cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 1643cf9daa33SAmara Emerson break; 1644cf9daa33SAmara Emerson case Instruction::FAdd: 1645cf9daa33SAmara Emerson BuildFunc = [&]() { 1646cf9daa33SAmara Emerson auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 16471ea7b6f7SSanjay Patel cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 1648cf9daa33SAmara Emerson return Rdx; 1649cf9daa33SAmara Emerson }; 1650cf9daa33SAmara Emerson break; 1651cf9daa33SAmara Emerson case Instruction::FMul: 1652cf9daa33SAmara Emerson BuildFunc = [&]() { 1653cf9daa33SAmara Emerson auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 16541ea7b6f7SSanjay Patel cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 1655cf9daa33SAmara Emerson return Rdx; 1656cf9daa33SAmara Emerson }; 1657cf9daa33SAmara Emerson break; 1658cf9daa33SAmara Emerson case Instruction::ICmp: 1659cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1660cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 1661cf9daa33SAmara Emerson BuildFunc = [&]() { 1662cf9daa33SAmara Emerson return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1663cf9daa33SAmara Emerson }; 1664cf9daa33SAmara Emerson } else { 1665cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1666cf9daa33SAmara Emerson BuildFunc = [&]() { 1667cf9daa33SAmara Emerson return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1668cf9daa33SAmara Emerson }; 1669cf9daa33SAmara Emerson } 1670cf9daa33SAmara Emerson break; 1671cf9daa33SAmara Emerson case Instruction::FCmp: 1672cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1673cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMax; 1674cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1675cf9daa33SAmara Emerson } else { 1676cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMin; 1677cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1678cf9daa33SAmara Emerson } 1679cf9daa33SAmara Emerson break; 1680cf9daa33SAmara Emerson default: 1681cf9daa33SAmara Emerson llvm_unreachable("Unhandled opcode"); 1682cf9daa33SAmara Emerson break; 1683cf9daa33SAmara Emerson } 1684cf9daa33SAmara Emerson if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1685cf9daa33SAmara Emerson return BuildFunc(); 1686cf9daa33SAmara Emerson return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1687cf9daa33SAmara Emerson } 1688cf9daa33SAmara Emerson 1689cf9daa33SAmara Emerson /// Create a vector reduction using a given recurrence descriptor. 16903e069f57SSanjay Patel Value *llvm::createTargetReduction(IRBuilder<> &B, 1691cf9daa33SAmara Emerson const TargetTransformInfo *TTI, 1692cf9daa33SAmara Emerson RecurrenceDescriptor &Desc, Value *Src, 1693cf9daa33SAmara Emerson bool NoNaN) { 1694cf9daa33SAmara Emerson // TODO: Support in-order reductions based on the recurrence descriptor. 16953e069f57SSanjay Patel using RD = RecurrenceDescriptor; 16963e069f57SSanjay Patel RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1697cf9daa33SAmara Emerson TargetTransformInfo::ReductionFlags Flags; 1698cf9daa33SAmara Emerson Flags.NoNaN = NoNaN; 1699cf9daa33SAmara Emerson switch (RecKind) { 17003e069f57SSanjay Patel case RD::RK_FloatAdd: 17013e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 17023e069f57SSanjay Patel case RD::RK_FloatMult: 17033e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 17043e069f57SSanjay Patel case RD::RK_IntegerAdd: 17053e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 17063e069f57SSanjay Patel case RD::RK_IntegerMult: 17073e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 17083e069f57SSanjay Patel case RD::RK_IntegerAnd: 17093e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 17103e069f57SSanjay Patel case RD::RK_IntegerOr: 17113e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 17123e069f57SSanjay Patel case RD::RK_IntegerXor: 17133e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 17143e069f57SSanjay Patel case RD::RK_IntegerMinMax: { 17153e069f57SSanjay Patel RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 17163e069f57SSanjay Patel Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 17173e069f57SSanjay Patel Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 17183e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 1719cf9daa33SAmara Emerson } 17203e069f57SSanjay Patel case RD::RK_FloatMinMax: { 17213e069f57SSanjay Patel Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 17223e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 1723cf9daa33SAmara Emerson } 1724cf9daa33SAmara Emerson default: 1725cf9daa33SAmara Emerson llvm_unreachable("Unhandled RecKind"); 1726cf9daa33SAmara Emerson } 1727cf9daa33SAmara Emerson } 1728cf9daa33SAmara Emerson 1729a61f4b89SDinar Temirbulatov void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1730a61f4b89SDinar Temirbulatov auto *VecOp = dyn_cast<Instruction>(I); 1731a61f4b89SDinar Temirbulatov if (!VecOp) 1732a61f4b89SDinar Temirbulatov return; 1733a61f4b89SDinar Temirbulatov auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1734a61f4b89SDinar Temirbulatov : dyn_cast<Instruction>(OpValue); 1735a61f4b89SDinar Temirbulatov if (!Intersection) 1736a61f4b89SDinar Temirbulatov return; 1737a61f4b89SDinar Temirbulatov const unsigned Opcode = Intersection->getOpcode(); 1738a61f4b89SDinar Temirbulatov VecOp->copyIRFlags(Intersection); 1739a61f4b89SDinar Temirbulatov for (auto *V : VL) { 1740a61f4b89SDinar Temirbulatov auto *Instr = dyn_cast<Instruction>(V); 1741a61f4b89SDinar Temirbulatov if (!Instr) 1742a61f4b89SDinar Temirbulatov continue; 1743a61f4b89SDinar Temirbulatov if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1744a61f4b89SDinar Temirbulatov VecOp->andIRFlags(V); 1745cf9daa33SAmara Emerson } 1746cf9daa33SAmara Emerson } 1747