176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 376aa662cSKarthik Bhat // The LLVM Compiler Infrastructure 476aa662cSKarthik Bhat // 576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source 676aa662cSKarthik Bhat // License. See LICENSE.TXT for details. 776aa662cSKarthik Bhat // 876aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 976aa662cSKarthik Bhat // 1076aa662cSKarthik Bhat // This file defines common loop utility functions. 1176aa662cSKarthik Bhat // 1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1376aa662cSKarthik Bhat 142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 1531088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 1631088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 1731088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 182f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 19c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h" 2045d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 212f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 22c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h" 2345d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 246bda14b3SChandler Carruth #include "llvm/Analysis/TargetTransformInfo.h" 2531088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 2676aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 2745d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 2876aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 2976aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 3031088a9dSChandler Carruth #include "llvm/Pass.h" 3176aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 324ab0f491SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 3376aa662cSKarthik Bhat 3476aa662cSKarthik Bhat using namespace llvm; 3576aa662cSKarthik Bhat using namespace llvm::PatternMatch; 3676aa662cSKarthik Bhat 3776aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 3876aa662cSKarthik Bhat 390a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 4076aa662cSKarthik Bhat SmallPtrSetImpl<Instruction *> &Set) { 4176aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4276aa662cSKarthik Bhat if (!Set.count(dyn_cast<Instruction>(*Use))) 4376aa662cSKarthik Bhat return false; 4476aa662cSKarthik Bhat return true; 4576aa662cSKarthik Bhat } 4676aa662cSKarthik Bhat 47c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 48c94f8e29SChad Rosier switch (Kind) { 49c94f8e29SChad Rosier default: 50c94f8e29SChad Rosier break; 51c94f8e29SChad Rosier case RK_IntegerAdd: 52c94f8e29SChad Rosier case RK_IntegerMult: 53c94f8e29SChad Rosier case RK_IntegerOr: 54c94f8e29SChad Rosier case RK_IntegerAnd: 55c94f8e29SChad Rosier case RK_IntegerXor: 56c94f8e29SChad Rosier case RK_IntegerMinMax: 57c94f8e29SChad Rosier return true; 58c94f8e29SChad Rosier } 59c94f8e29SChad Rosier return false; 60c94f8e29SChad Rosier } 61c94f8e29SChad Rosier 62c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 63c94f8e29SChad Rosier return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 64c94f8e29SChad Rosier } 65c94f8e29SChad Rosier 66c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 67c94f8e29SChad Rosier switch (Kind) { 68c94f8e29SChad Rosier default: 69c94f8e29SChad Rosier break; 70c94f8e29SChad Rosier case RK_IntegerAdd: 71c94f8e29SChad Rosier case RK_IntegerMult: 72c94f8e29SChad Rosier case RK_FloatAdd: 73c94f8e29SChad Rosier case RK_FloatMult: 74c94f8e29SChad Rosier return true; 75c94f8e29SChad Rosier } 76c94f8e29SChad Rosier return false; 77c94f8e29SChad Rosier } 78c94f8e29SChad Rosier 79c94f8e29SChad Rosier Instruction * 80c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 81c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 82c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 83c94f8e29SChad Rosier if (!Phi->hasOneUse()) 84c94f8e29SChad Rosier return Phi; 85c94f8e29SChad Rosier 86c94f8e29SChad Rosier const APInt *M = nullptr; 87c94f8e29SChad Rosier Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 88c94f8e29SChad Rosier 89c94f8e29SChad Rosier // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 90c94f8e29SChad Rosier // with a new integer type of the corresponding bit width. 91*72ee6945SCraig Topper if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 92c94f8e29SChad Rosier int32_t Bits = (*M + 1).exactLogBase2(); 93c94f8e29SChad Rosier if (Bits > 0) { 94c94f8e29SChad Rosier RT = IntegerType::get(Phi->getContext(), Bits); 95c94f8e29SChad Rosier Visited.insert(Phi); 96c94f8e29SChad Rosier CI.insert(J); 97c94f8e29SChad Rosier return J; 98c94f8e29SChad Rosier } 99c94f8e29SChad Rosier } 100c94f8e29SChad Rosier return Phi; 101c94f8e29SChad Rosier } 102c94f8e29SChad Rosier 103c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind( 104c94f8e29SChad Rosier Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 105c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 106c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 107c94f8e29SChad Rosier 108c94f8e29SChad Rosier SmallVector<Instruction *, 8> Worklist; 109c94f8e29SChad Rosier bool FoundOneOperand = false; 11029dc0f70SMatthew Simpson unsigned DstSize = RT->getPrimitiveSizeInBits(); 111c94f8e29SChad Rosier Worklist.push_back(Exit); 112c94f8e29SChad Rosier 113c94f8e29SChad Rosier // Traverse the instructions in the reduction expression, beginning with the 114c94f8e29SChad Rosier // exit value. 115c94f8e29SChad Rosier while (!Worklist.empty()) { 116c94f8e29SChad Rosier Instruction *I = Worklist.pop_back_val(); 117c94f8e29SChad Rosier for (Use &U : I->operands()) { 118c94f8e29SChad Rosier 119c94f8e29SChad Rosier // Terminate the traversal if the operand is not an instruction, or we 120c94f8e29SChad Rosier // reach the starting value. 121c94f8e29SChad Rosier Instruction *J = dyn_cast<Instruction>(U.get()); 122c94f8e29SChad Rosier if (!J || J == Start) 123c94f8e29SChad Rosier continue; 124c94f8e29SChad Rosier 125c94f8e29SChad Rosier // Otherwise, investigate the operation if it is also in the expression. 126c94f8e29SChad Rosier if (Visited.count(J)) { 127c94f8e29SChad Rosier Worklist.push_back(J); 128c94f8e29SChad Rosier continue; 129c94f8e29SChad Rosier } 130c94f8e29SChad Rosier 131c94f8e29SChad Rosier // If the operand is not in Visited, it is not a reduction operation, but 132c94f8e29SChad Rosier // it does feed into one. Make sure it is either a single-use sign- or 13329dc0f70SMatthew Simpson // zero-extend instruction. 134c94f8e29SChad Rosier CastInst *Cast = dyn_cast<CastInst>(J); 135c94f8e29SChad Rosier bool IsSExtInst = isa<SExtInst>(J); 13629dc0f70SMatthew Simpson if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 13729dc0f70SMatthew Simpson return false; 13829dc0f70SMatthew Simpson 13929dc0f70SMatthew Simpson // Ensure the source type of the extend is no larger than the reduction 14029dc0f70SMatthew Simpson // type. It is not necessary for the types to be identical. 14129dc0f70SMatthew Simpson unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 14229dc0f70SMatthew Simpson if (SrcSize > DstSize) 143c94f8e29SChad Rosier return false; 144c94f8e29SChad Rosier 145c94f8e29SChad Rosier // Furthermore, ensure that all such extends are of the same kind. 146c94f8e29SChad Rosier if (FoundOneOperand) { 147c94f8e29SChad Rosier if (IsSigned != IsSExtInst) 148c94f8e29SChad Rosier return false; 149c94f8e29SChad Rosier } else { 150c94f8e29SChad Rosier FoundOneOperand = true; 151c94f8e29SChad Rosier IsSigned = IsSExtInst; 152c94f8e29SChad Rosier } 153c94f8e29SChad Rosier 15429dc0f70SMatthew Simpson // Lastly, if the source type of the extend matches the reduction type, 15529dc0f70SMatthew Simpson // add the extend to CI so that we can avoid accounting for it in the 15629dc0f70SMatthew Simpson // cost model. 15729dc0f70SMatthew Simpson if (SrcSize == DstSize) 158c94f8e29SChad Rosier CI.insert(Cast); 159c94f8e29SChad Rosier } 160c94f8e29SChad Rosier } 161c94f8e29SChad Rosier return true; 162c94f8e29SChad Rosier } 163c94f8e29SChad Rosier 1640a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 16576aa662cSKarthik Bhat Loop *TheLoop, bool HasFunNoNaNAttr, 1660a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 16776aa662cSKarthik Bhat if (Phi->getNumIncomingValues() != 2) 16876aa662cSKarthik Bhat return false; 16976aa662cSKarthik Bhat 17076aa662cSKarthik Bhat // Reduction variables are only found in the loop header block. 17176aa662cSKarthik Bhat if (Phi->getParent() != TheLoop->getHeader()) 17276aa662cSKarthik Bhat return false; 17376aa662cSKarthik Bhat 17476aa662cSKarthik Bhat // Obtain the reduction start value from the value that comes from the loop 17576aa662cSKarthik Bhat // preheader. 17676aa662cSKarthik Bhat Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 17776aa662cSKarthik Bhat 17876aa662cSKarthik Bhat // ExitInstruction is the single value which is used outside the loop. 17976aa662cSKarthik Bhat // We only allow for a single reduction value to be used outside the loop. 18076aa662cSKarthik Bhat // This includes users of the reduction, variables (which form a cycle 18176aa662cSKarthik Bhat // which ends in the phi node). 18276aa662cSKarthik Bhat Instruction *ExitInstruction = nullptr; 18376aa662cSKarthik Bhat // Indicates that we found a reduction operation in our scan. 18476aa662cSKarthik Bhat bool FoundReduxOp = false; 18576aa662cSKarthik Bhat 18676aa662cSKarthik Bhat // We start with the PHI node and scan for all of the users of this 18776aa662cSKarthik Bhat // instruction. All users must be instructions that can be used as reduction 18876aa662cSKarthik Bhat // variables (such as ADD). We must have a single out-of-block user. The cycle 18976aa662cSKarthik Bhat // must include the original PHI. 19076aa662cSKarthik Bhat bool FoundStartPHI = false; 19176aa662cSKarthik Bhat 19276aa662cSKarthik Bhat // To recognize min/max patterns formed by a icmp select sequence, we store 19376aa662cSKarthik Bhat // the number of instruction we saw from the recognized min/max pattern, 19476aa662cSKarthik Bhat // to make sure we only see exactly the two instructions. 19576aa662cSKarthik Bhat unsigned NumCmpSelectPatternInst = 0; 19627b2c39eSTyler Nowicki InstDesc ReduxDesc(false, nullptr); 19776aa662cSKarthik Bhat 198c94f8e29SChad Rosier // Data used for determining if the recurrence has been type-promoted. 199c94f8e29SChad Rosier Type *RecurrenceType = Phi->getType(); 200c94f8e29SChad Rosier SmallPtrSet<Instruction *, 4> CastInsts; 201c94f8e29SChad Rosier Instruction *Start = Phi; 202c94f8e29SChad Rosier bool IsSigned = false; 203c94f8e29SChad Rosier 20476aa662cSKarthik Bhat SmallPtrSet<Instruction *, 8> VisitedInsts; 20576aa662cSKarthik Bhat SmallVector<Instruction *, 8> Worklist; 206c94f8e29SChad Rosier 207c94f8e29SChad Rosier // Return early if the recurrence kind does not match the type of Phi. If the 208c94f8e29SChad Rosier // recurrence kind is arithmetic, we attempt to look through AND operations 209c94f8e29SChad Rosier // resulting from the type promotion performed by InstCombine. Vector 210c94f8e29SChad Rosier // operations are not limited to the legal integer widths, so we may be able 211c94f8e29SChad Rosier // to evaluate the reduction in the narrower width. 212c94f8e29SChad Rosier if (RecurrenceType->isFloatingPointTy()) { 213c94f8e29SChad Rosier if (!isFloatingPointRecurrenceKind(Kind)) 214c94f8e29SChad Rosier return false; 215c94f8e29SChad Rosier } else { 216c94f8e29SChad Rosier if (!isIntegerRecurrenceKind(Kind)) 217c94f8e29SChad Rosier return false; 218c94f8e29SChad Rosier if (isArithmeticRecurrenceKind(Kind)) 219c94f8e29SChad Rosier Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 220c94f8e29SChad Rosier } 221c94f8e29SChad Rosier 222c94f8e29SChad Rosier Worklist.push_back(Start); 223c94f8e29SChad Rosier VisitedInsts.insert(Start); 22476aa662cSKarthik Bhat 22576aa662cSKarthik Bhat // A value in the reduction can be used: 22676aa662cSKarthik Bhat // - By the reduction: 22776aa662cSKarthik Bhat // - Reduction operation: 22876aa662cSKarthik Bhat // - One use of reduction value (safe). 22976aa662cSKarthik Bhat // - Multiple use of reduction value (not safe). 23076aa662cSKarthik Bhat // - PHI: 23176aa662cSKarthik Bhat // - All uses of the PHI must be the reduction (safe). 23276aa662cSKarthik Bhat // - Otherwise, not safe. 2337cefb409SMichael Kuperstein // - By instructions outside of the loop (safe). 2347cefb409SMichael Kuperstein // * One value may have several outside users, but all outside 2357cefb409SMichael Kuperstein // uses must be of the same value. 23676aa662cSKarthik Bhat // - By an instruction that is not part of the reduction (not safe). 23776aa662cSKarthik Bhat // This is either: 23876aa662cSKarthik Bhat // * An instruction type other than PHI or the reduction operation. 23976aa662cSKarthik Bhat // * A PHI in the header other than the initial PHI. 24076aa662cSKarthik Bhat while (!Worklist.empty()) { 24176aa662cSKarthik Bhat Instruction *Cur = Worklist.back(); 24276aa662cSKarthik Bhat Worklist.pop_back(); 24376aa662cSKarthik Bhat 24476aa662cSKarthik Bhat // No Users. 24576aa662cSKarthik Bhat // If the instruction has no users then this is a broken chain and can't be 24676aa662cSKarthik Bhat // a reduction variable. 24776aa662cSKarthik Bhat if (Cur->use_empty()) 24876aa662cSKarthik Bhat return false; 24976aa662cSKarthik Bhat 25076aa662cSKarthik Bhat bool IsAPhi = isa<PHINode>(Cur); 25176aa662cSKarthik Bhat 25276aa662cSKarthik Bhat // A header PHI use other than the original PHI. 25376aa662cSKarthik Bhat if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 25476aa662cSKarthik Bhat return false; 25576aa662cSKarthik Bhat 25676aa662cSKarthik Bhat // Reductions of instructions such as Div, and Sub is only possible if the 25776aa662cSKarthik Bhat // LHS is the reduction variable. 25876aa662cSKarthik Bhat if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 25976aa662cSKarthik Bhat !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 26076aa662cSKarthik Bhat !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 26176aa662cSKarthik Bhat return false; 26276aa662cSKarthik Bhat 263c94f8e29SChad Rosier // Any reduction instruction must be of one of the allowed kinds. We ignore 264c94f8e29SChad Rosier // the starting value (the Phi or an AND instruction if the Phi has been 265c94f8e29SChad Rosier // type-promoted). 266c94f8e29SChad Rosier if (Cur != Start) { 2670a91310cSTyler Nowicki ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 2680a91310cSTyler Nowicki if (!ReduxDesc.isRecurrence()) 26976aa662cSKarthik Bhat return false; 270c94f8e29SChad Rosier } 27176aa662cSKarthik Bhat 27276aa662cSKarthik Bhat // A reduction operation must only have one use of the reduction value. 27376aa662cSKarthik Bhat if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 27476aa662cSKarthik Bhat hasMultipleUsesOf(Cur, VisitedInsts)) 27576aa662cSKarthik Bhat return false; 27676aa662cSKarthik Bhat 27776aa662cSKarthik Bhat // All inputs to a PHI node must be a reduction value. 27876aa662cSKarthik Bhat if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 27976aa662cSKarthik Bhat return false; 28076aa662cSKarthik Bhat 28176aa662cSKarthik Bhat if (Kind == RK_IntegerMinMax && 28276aa662cSKarthik Bhat (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 28376aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28476aa662cSKarthik Bhat if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 28576aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28676aa662cSKarthik Bhat 28776aa662cSKarthik Bhat // Check whether we found a reduction operator. 288c94f8e29SChad Rosier FoundReduxOp |= !IsAPhi && Cur != Start; 28976aa662cSKarthik Bhat 29076aa662cSKarthik Bhat // Process users of current instruction. Push non-PHI nodes after PHI nodes 29176aa662cSKarthik Bhat // onto the stack. This way we are going to have seen all inputs to PHI 29276aa662cSKarthik Bhat // nodes once we get to them. 29376aa662cSKarthik Bhat SmallVector<Instruction *, 8> NonPHIs; 29476aa662cSKarthik Bhat SmallVector<Instruction *, 8> PHIs; 29576aa662cSKarthik Bhat for (User *U : Cur->users()) { 29676aa662cSKarthik Bhat Instruction *UI = cast<Instruction>(U); 29776aa662cSKarthik Bhat 29876aa662cSKarthik Bhat // Check if we found the exit user. 29976aa662cSKarthik Bhat BasicBlock *Parent = UI->getParent(); 30076aa662cSKarthik Bhat if (!TheLoop->contains(Parent)) { 3017cefb409SMichael Kuperstein // If we already know this instruction is used externally, move on to 3027cefb409SMichael Kuperstein // the next user. 3037cefb409SMichael Kuperstein if (ExitInstruction == Cur) 3047cefb409SMichael Kuperstein continue; 3057cefb409SMichael Kuperstein 3067cefb409SMichael Kuperstein // Exit if you find multiple values used outside or if the header phi 3077cefb409SMichael Kuperstein // node is being used. In this case the user uses the value of the 3087cefb409SMichael Kuperstein // previous iteration, in which case we would loose "VF-1" iterations of 3097cefb409SMichael Kuperstein // the reduction operation if we vectorize. 31076aa662cSKarthik Bhat if (ExitInstruction != nullptr || Cur == Phi) 31176aa662cSKarthik Bhat return false; 31276aa662cSKarthik Bhat 31376aa662cSKarthik Bhat // The instruction used by an outside user must be the last instruction 31476aa662cSKarthik Bhat // before we feed back to the reduction phi. Otherwise, we loose VF-1 31576aa662cSKarthik Bhat // operations on the value. 31642531260SDavid Majnemer if (!is_contained(Phi->operands(), Cur)) 31776aa662cSKarthik Bhat return false; 31876aa662cSKarthik Bhat 31976aa662cSKarthik Bhat ExitInstruction = Cur; 32076aa662cSKarthik Bhat continue; 32176aa662cSKarthik Bhat } 32276aa662cSKarthik Bhat 32376aa662cSKarthik Bhat // Process instructions only once (termination). Each reduction cycle 32476aa662cSKarthik Bhat // value must only be used once, except by phi nodes and min/max 32576aa662cSKarthik Bhat // reductions which are represented as a cmp followed by a select. 32627b2c39eSTyler Nowicki InstDesc IgnoredVal(false, nullptr); 32776aa662cSKarthik Bhat if (VisitedInsts.insert(UI).second) { 32876aa662cSKarthik Bhat if (isa<PHINode>(UI)) 32976aa662cSKarthik Bhat PHIs.push_back(UI); 33076aa662cSKarthik Bhat else 33176aa662cSKarthik Bhat NonPHIs.push_back(UI); 33276aa662cSKarthik Bhat } else if (!isa<PHINode>(UI) && 33376aa662cSKarthik Bhat ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 33476aa662cSKarthik Bhat !isa<SelectInst>(UI)) || 3350a91310cSTyler Nowicki !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 33676aa662cSKarthik Bhat return false; 33776aa662cSKarthik Bhat 33876aa662cSKarthik Bhat // Remember that we completed the cycle. 33976aa662cSKarthik Bhat if (UI == Phi) 34076aa662cSKarthik Bhat FoundStartPHI = true; 34176aa662cSKarthik Bhat } 34276aa662cSKarthik Bhat Worklist.append(PHIs.begin(), PHIs.end()); 34376aa662cSKarthik Bhat Worklist.append(NonPHIs.begin(), NonPHIs.end()); 34476aa662cSKarthik Bhat } 34576aa662cSKarthik Bhat 34676aa662cSKarthik Bhat // This means we have seen one but not the other instruction of the 34776aa662cSKarthik Bhat // pattern or more than just a select and cmp. 34876aa662cSKarthik Bhat if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 34976aa662cSKarthik Bhat NumCmpSelectPatternInst != 2) 35076aa662cSKarthik Bhat return false; 35176aa662cSKarthik Bhat 35276aa662cSKarthik Bhat if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 35376aa662cSKarthik Bhat return false; 35476aa662cSKarthik Bhat 355c94f8e29SChad Rosier // If we think Phi may have been type-promoted, we also need to ensure that 356c94f8e29SChad Rosier // all source operands of the reduction are either SExtInsts or ZEstInsts. If 357c94f8e29SChad Rosier // so, we will be able to evaluate the reduction in the narrower bit width. 358c94f8e29SChad Rosier if (Start != Phi) 359c94f8e29SChad Rosier if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 360c94f8e29SChad Rosier IsSigned, VisitedInsts, CastInsts)) 361c94f8e29SChad Rosier return false; 362c94f8e29SChad Rosier 36376aa662cSKarthik Bhat // We found a reduction var if we have reached the original phi node and we 36476aa662cSKarthik Bhat // only have a single instruction with out-of-loop users. 36576aa662cSKarthik Bhat 36676aa662cSKarthik Bhat // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 3670a91310cSTyler Nowicki // is saved as part of the RecurrenceDescriptor. 36876aa662cSKarthik Bhat 36976aa662cSKarthik Bhat // Save the description of this reduction variable. 370c94f8e29SChad Rosier RecurrenceDescriptor RD( 371c94f8e29SChad Rosier RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 372c94f8e29SChad Rosier ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 37376aa662cSKarthik Bhat RedDes = RD; 37476aa662cSKarthik Bhat 37576aa662cSKarthik Bhat return true; 37676aa662cSKarthik Bhat } 37776aa662cSKarthik Bhat 37876aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 37976aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y). 38027b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 38127b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 38276aa662cSKarthik Bhat 38376aa662cSKarthik Bhat assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 38476aa662cSKarthik Bhat "Expect a select instruction"); 38576aa662cSKarthik Bhat Instruction *Cmp = nullptr; 38676aa662cSKarthik Bhat SelectInst *Select = nullptr; 38776aa662cSKarthik Bhat 38876aa662cSKarthik Bhat // We must handle the select(cmp()) as a single instruction. Advance to the 38976aa662cSKarthik Bhat // select. 39076aa662cSKarthik Bhat if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 39176aa662cSKarthik Bhat if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 39227b2c39eSTyler Nowicki return InstDesc(false, I); 39327b2c39eSTyler Nowicki return InstDesc(Select, Prev.getMinMaxKind()); 39476aa662cSKarthik Bhat } 39576aa662cSKarthik Bhat 39676aa662cSKarthik Bhat // Only handle single use cases for now. 39776aa662cSKarthik Bhat if (!(Select = dyn_cast<SelectInst>(I))) 39827b2c39eSTyler Nowicki return InstDesc(false, I); 39976aa662cSKarthik Bhat if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 40076aa662cSKarthik Bhat !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 40127b2c39eSTyler Nowicki return InstDesc(false, I); 40276aa662cSKarthik Bhat if (!Cmp->hasOneUse()) 40327b2c39eSTyler Nowicki return InstDesc(false, I); 40476aa662cSKarthik Bhat 40576aa662cSKarthik Bhat Value *CmpLeft; 40676aa662cSKarthik Bhat Value *CmpRight; 40776aa662cSKarthik Bhat 40876aa662cSKarthik Bhat // Look for a min/max pattern. 40976aa662cSKarthik Bhat if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41027b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMin); 41176aa662cSKarthik Bhat else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41227b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMax); 41376aa662cSKarthik Bhat else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41427b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMax); 41576aa662cSKarthik Bhat else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41627b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMin); 41776aa662cSKarthik Bhat else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41827b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 41976aa662cSKarthik Bhat else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42027b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 42176aa662cSKarthik Bhat else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42227b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 42376aa662cSKarthik Bhat else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42427b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 42576aa662cSKarthik Bhat 42627b2c39eSTyler Nowicki return InstDesc(false, I); 42776aa662cSKarthik Bhat } 42876aa662cSKarthik Bhat 42927b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 4300a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 43127b2c39eSTyler Nowicki InstDesc &Prev, bool HasFunNoNaNAttr) { 43276aa662cSKarthik Bhat bool FP = I->getType()->isFloatingPointTy(); 433c1a86f58STyler Nowicki Instruction *UAI = Prev.getUnsafeAlgebraInst(); 434c1a86f58STyler Nowicki if (!UAI && FP && !I->hasUnsafeAlgebra()) 435c1a86f58STyler Nowicki UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 436c1a86f58STyler Nowicki 43776aa662cSKarthik Bhat switch (I->getOpcode()) { 43876aa662cSKarthik Bhat default: 43927b2c39eSTyler Nowicki return InstDesc(false, I); 44076aa662cSKarthik Bhat case Instruction::PHI: 44110a1e8b1STim Northover return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 44276aa662cSKarthik Bhat case Instruction::Sub: 44376aa662cSKarthik Bhat case Instruction::Add: 44427b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAdd, I); 44576aa662cSKarthik Bhat case Instruction::Mul: 44627b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerMult, I); 44776aa662cSKarthik Bhat case Instruction::And: 44827b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAnd, I); 44976aa662cSKarthik Bhat case Instruction::Or: 45027b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerOr, I); 45176aa662cSKarthik Bhat case Instruction::Xor: 45227b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerXor, I); 45376aa662cSKarthik Bhat case Instruction::FMul: 454c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatMult, I, UAI); 45576aa662cSKarthik Bhat case Instruction::FSub: 45676aa662cSKarthik Bhat case Instruction::FAdd: 457c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatAdd, I, UAI); 45876aa662cSKarthik Bhat case Instruction::FCmp: 45976aa662cSKarthik Bhat case Instruction::ICmp: 46076aa662cSKarthik Bhat case Instruction::Select: 46176aa662cSKarthik Bhat if (Kind != RK_IntegerMinMax && 46276aa662cSKarthik Bhat (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 46327b2c39eSTyler Nowicki return InstDesc(false, I); 46476aa662cSKarthik Bhat return isMinMaxSelectCmpPattern(I, Prev); 46576aa662cSKarthik Bhat } 46676aa662cSKarthik Bhat } 46776aa662cSKarthik Bhat 4680a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf( 46976aa662cSKarthik Bhat Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 47076aa662cSKarthik Bhat unsigned NumUses = 0; 47176aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 47276aa662cSKarthik Bhat ++Use) { 47376aa662cSKarthik Bhat if (Insts.count(dyn_cast<Instruction>(*Use))) 47476aa662cSKarthik Bhat ++NumUses; 47576aa662cSKarthik Bhat if (NumUses > 1) 47676aa662cSKarthik Bhat return true; 47776aa662cSKarthik Bhat } 47876aa662cSKarthik Bhat 47976aa662cSKarthik Bhat return false; 48076aa662cSKarthik Bhat } 4810a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 4820a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 48376aa662cSKarthik Bhat 48476aa662cSKarthik Bhat BasicBlock *Header = TheLoop->getHeader(); 48576aa662cSKarthik Bhat Function &F = *Header->getParent(); 4868dd66e57SNirav Dave bool HasFunNoNaNAttr = 48776aa662cSKarthik Bhat F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 48876aa662cSKarthik Bhat 48976aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 49076aa662cSKarthik Bhat DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 49176aa662cSKarthik Bhat return true; 49276aa662cSKarthik Bhat } 49376aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 49476aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 49576aa662cSKarthik Bhat return true; 49676aa662cSKarthik Bhat } 49776aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 49876aa662cSKarthik Bhat DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 49976aa662cSKarthik Bhat return true; 50076aa662cSKarthik Bhat } 50176aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 50276aa662cSKarthik Bhat DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 50376aa662cSKarthik Bhat return true; 50476aa662cSKarthik Bhat } 50576aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 50676aa662cSKarthik Bhat DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 50776aa662cSKarthik Bhat return true; 50876aa662cSKarthik Bhat } 50976aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 51076aa662cSKarthik Bhat RedDes)) { 51176aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 51276aa662cSKarthik Bhat return true; 51376aa662cSKarthik Bhat } 51476aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 51576aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 51676aa662cSKarthik Bhat return true; 51776aa662cSKarthik Bhat } 51876aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 51976aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 52076aa662cSKarthik Bhat return true; 52176aa662cSKarthik Bhat } 52276aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 52376aa662cSKarthik Bhat DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 52476aa662cSKarthik Bhat return true; 52576aa662cSKarthik Bhat } 52676aa662cSKarthik Bhat // Not a reduction of known type. 52776aa662cSKarthik Bhat return false; 52876aa662cSKarthik Bhat } 52976aa662cSKarthik Bhat 53029c997c1SMatthew Simpson bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, 53129c997c1SMatthew Simpson DominatorTree *DT) { 53229c997c1SMatthew Simpson 53329c997c1SMatthew Simpson // Ensure the phi node is in the loop header and has two incoming values. 53429c997c1SMatthew Simpson if (Phi->getParent() != TheLoop->getHeader() || 53529c997c1SMatthew Simpson Phi->getNumIncomingValues() != 2) 53629c997c1SMatthew Simpson return false; 53729c997c1SMatthew Simpson 53829c997c1SMatthew Simpson // Ensure the loop has a preheader and a single latch block. The loop 53929c997c1SMatthew Simpson // vectorizer will need the latch to set up the next iteration of the loop. 54029c997c1SMatthew Simpson auto *Preheader = TheLoop->getLoopPreheader(); 54129c997c1SMatthew Simpson auto *Latch = TheLoop->getLoopLatch(); 54229c997c1SMatthew Simpson if (!Preheader || !Latch) 54329c997c1SMatthew Simpson return false; 54429c997c1SMatthew Simpson 54529c997c1SMatthew Simpson // Ensure the phi node's incoming blocks are the loop preheader and latch. 54629c997c1SMatthew Simpson if (Phi->getBasicBlockIndex(Preheader) < 0 || 54729c997c1SMatthew Simpson Phi->getBasicBlockIndex(Latch) < 0) 54829c997c1SMatthew Simpson return false; 54929c997c1SMatthew Simpson 55029c997c1SMatthew Simpson // Get the previous value. The previous value comes from the latch edge while 55129c997c1SMatthew Simpson // the initial value comes form the preheader edge. 55229c997c1SMatthew Simpson auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 55353207a99SMatthew Simpson if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) 55429c997c1SMatthew Simpson return false; 55529c997c1SMatthew Simpson 55600dc1b74SAnna Thomas // Ensure every user of the phi node is dominated by the previous value. 55700dc1b74SAnna Thomas // The dominance requirement ensures the loop vectorizer will not need to 55800dc1b74SAnna Thomas // vectorize the initial value prior to the first iteration of the loop. 559dcdb325fSAnna Thomas for (User *U : Phi->users()) 560dcdb325fSAnna Thomas if (auto *I = dyn_cast<Instruction>(U)) { 56129c997c1SMatthew Simpson if (!DT->dominates(Previous, I)) 56229c997c1SMatthew Simpson return false; 56300dc1b74SAnna Thomas } 56429c997c1SMatthew Simpson 56529c997c1SMatthew Simpson return true; 56629c997c1SMatthew Simpson } 56729c997c1SMatthew Simpson 56876aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for 56976aa662cSKarthik Bhat /// the operation K. 5700a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 5710a91310cSTyler Nowicki Type *Tp) { 57276aa662cSKarthik Bhat switch (K) { 57376aa662cSKarthik Bhat case RK_IntegerXor: 57476aa662cSKarthik Bhat case RK_IntegerAdd: 57576aa662cSKarthik Bhat case RK_IntegerOr: 57676aa662cSKarthik Bhat // Adding, Xoring, Oring zero to a number does not change it. 57776aa662cSKarthik Bhat return ConstantInt::get(Tp, 0); 57876aa662cSKarthik Bhat case RK_IntegerMult: 57976aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 58076aa662cSKarthik Bhat return ConstantInt::get(Tp, 1); 58176aa662cSKarthik Bhat case RK_IntegerAnd: 58276aa662cSKarthik Bhat // AND-ing a number with an all-1 value does not change it. 58376aa662cSKarthik Bhat return ConstantInt::get(Tp, -1, true); 58476aa662cSKarthik Bhat case RK_FloatMult: 58576aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 58676aa662cSKarthik Bhat return ConstantFP::get(Tp, 1.0L); 58776aa662cSKarthik Bhat case RK_FloatAdd: 58876aa662cSKarthik Bhat // Adding zero to a number does not change it. 58976aa662cSKarthik Bhat return ConstantFP::get(Tp, 0.0L); 59076aa662cSKarthik Bhat default: 5910a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence kind"); 59276aa662cSKarthik Bhat } 59376aa662cSKarthik Bhat } 59476aa662cSKarthik Bhat 5950a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator. 5960a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 59776aa662cSKarthik Bhat switch (Kind) { 59876aa662cSKarthik Bhat case RK_IntegerAdd: 59976aa662cSKarthik Bhat return Instruction::Add; 60076aa662cSKarthik Bhat case RK_IntegerMult: 60176aa662cSKarthik Bhat return Instruction::Mul; 60276aa662cSKarthik Bhat case RK_IntegerOr: 60376aa662cSKarthik Bhat return Instruction::Or; 60476aa662cSKarthik Bhat case RK_IntegerAnd: 60576aa662cSKarthik Bhat return Instruction::And; 60676aa662cSKarthik Bhat case RK_IntegerXor: 60776aa662cSKarthik Bhat return Instruction::Xor; 60876aa662cSKarthik Bhat case RK_FloatMult: 60976aa662cSKarthik Bhat return Instruction::FMul; 61076aa662cSKarthik Bhat case RK_FloatAdd: 61176aa662cSKarthik Bhat return Instruction::FAdd; 61276aa662cSKarthik Bhat case RK_IntegerMinMax: 61376aa662cSKarthik Bhat return Instruction::ICmp; 61476aa662cSKarthik Bhat case RK_FloatMinMax: 61576aa662cSKarthik Bhat return Instruction::FCmp; 61676aa662cSKarthik Bhat default: 6170a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence operation"); 61876aa662cSKarthik Bhat } 61976aa662cSKarthik Bhat } 62076aa662cSKarthik Bhat 62127b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 62227b2c39eSTyler Nowicki MinMaxRecurrenceKind RK, 62376aa662cSKarthik Bhat Value *Left, Value *Right) { 62476aa662cSKarthik Bhat CmpInst::Predicate P = CmpInst::ICMP_NE; 62576aa662cSKarthik Bhat switch (RK) { 62676aa662cSKarthik Bhat default: 6270a91310cSTyler Nowicki llvm_unreachable("Unknown min/max recurrence kind"); 62827b2c39eSTyler Nowicki case MRK_UIntMin: 62976aa662cSKarthik Bhat P = CmpInst::ICMP_ULT; 63076aa662cSKarthik Bhat break; 63127b2c39eSTyler Nowicki case MRK_UIntMax: 63276aa662cSKarthik Bhat P = CmpInst::ICMP_UGT; 63376aa662cSKarthik Bhat break; 63427b2c39eSTyler Nowicki case MRK_SIntMin: 63576aa662cSKarthik Bhat P = CmpInst::ICMP_SLT; 63676aa662cSKarthik Bhat break; 63727b2c39eSTyler Nowicki case MRK_SIntMax: 63876aa662cSKarthik Bhat P = CmpInst::ICMP_SGT; 63976aa662cSKarthik Bhat break; 64027b2c39eSTyler Nowicki case MRK_FloatMin: 64176aa662cSKarthik Bhat P = CmpInst::FCMP_OLT; 64276aa662cSKarthik Bhat break; 64327b2c39eSTyler Nowicki case MRK_FloatMax: 64476aa662cSKarthik Bhat P = CmpInst::FCMP_OGT; 64576aa662cSKarthik Bhat break; 64676aa662cSKarthik Bhat } 64776aa662cSKarthik Bhat 64850a4c27fSJames Molloy // We only match FP sequences with unsafe algebra, so we can unconditionally 64950a4c27fSJames Molloy // set it on any generated instructions. 65050a4c27fSJames Molloy IRBuilder<>::FastMathFlagGuard FMFG(Builder); 65150a4c27fSJames Molloy FastMathFlags FMF; 65250a4c27fSJames Molloy FMF.setUnsafeAlgebra(); 653a252815bSSanjay Patel Builder.setFastMathFlags(FMF); 65450a4c27fSJames Molloy 65576aa662cSKarthik Bhat Value *Cmp; 65627b2c39eSTyler Nowicki if (RK == MRK_FloatMin || RK == MRK_FloatMax) 65776aa662cSKarthik Bhat Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 65876aa662cSKarthik Bhat else 65976aa662cSKarthik Bhat Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 66076aa662cSKarthik Bhat 66176aa662cSKarthik Bhat Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 66276aa662cSKarthik Bhat return Select; 66376aa662cSKarthik Bhat } 66424e6cc2dSKarthik Bhat 6651bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 666376a18bdSElena Demikhovsky const SCEV *Step, BinaryOperator *BOp) 667376a18bdSElena Demikhovsky : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 6681bbf15c5SJames Molloy assert(IK != IK_NoInduction && "Not an induction"); 669c434d091SElena Demikhovsky 670c434d091SElena Demikhovsky // Start value type should match the induction kind and the value 671c434d091SElena Demikhovsky // itself should not be null. 6721bbf15c5SJames Molloy assert(StartValue && "StartValue is null"); 6731bbf15c5SJames Molloy assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 6741bbf15c5SJames Molloy "StartValue is not a pointer for pointer induction"); 6751bbf15c5SJames Molloy assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 6761bbf15c5SJames Molloy "StartValue is not an integer for integer induction"); 677c434d091SElena Demikhovsky 678c434d091SElena Demikhovsky // Check the Step Value. It should be non-zero integer value. 679c434d091SElena Demikhovsky assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 680c434d091SElena Demikhovsky "Step value is zero"); 681c434d091SElena Demikhovsky 682c434d091SElena Demikhovsky assert((IK != IK_PtrInduction || getConstIntStepValue()) && 683c434d091SElena Demikhovsky "Step value should be constant for pointer induction"); 684376a18bdSElena Demikhovsky assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 685376a18bdSElena Demikhovsky "StepValue is not an integer"); 686376a18bdSElena Demikhovsky 687376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 688376a18bdSElena Demikhovsky "StepValue is not FP for FpInduction"); 689376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || (InductionBinOp && 690376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 691376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub))) && 692376a18bdSElena Demikhovsky "Binary opcode should be specified for FP induction"); 6931bbf15c5SJames Molloy } 6941bbf15c5SJames Molloy 6951bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const { 696c434d091SElena Demikhovsky ConstantInt *ConstStep = getConstIntStepValue(); 697c434d091SElena Demikhovsky if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 698c434d091SElena Demikhovsky return ConstStep->getSExtValue(); 6991bbf15c5SJames Molloy return 0; 7001bbf15c5SJames Molloy } 7011bbf15c5SJames Molloy 702c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const { 703c434d091SElena Demikhovsky if (isa<SCEVConstant>(Step)) 704c434d091SElena Demikhovsky return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 705c434d091SElena Demikhovsky return nullptr; 706c434d091SElena Demikhovsky } 707c434d091SElena Demikhovsky 708c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 709c434d091SElena Demikhovsky ScalarEvolution *SE, 710c434d091SElena Demikhovsky const DataLayout& DL) const { 711c434d091SElena Demikhovsky 712c434d091SElena Demikhovsky SCEVExpander Exp(*SE, DL, "induction"); 713376a18bdSElena Demikhovsky assert(Index->getType() == Step->getType() && 714376a18bdSElena Demikhovsky "Index type does not match StepValue type"); 7151bbf15c5SJames Molloy switch (IK) { 716c434d091SElena Demikhovsky case IK_IntInduction: { 7171bbf15c5SJames Molloy assert(Index->getType() == StartValue->getType() && 7181bbf15c5SJames Molloy "Index type does not match StartValue type"); 719c434d091SElena Demikhovsky 720c434d091SElena Demikhovsky // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 721c434d091SElena Demikhovsky // and calculate (Start + Index * Step) for all cases, without 722c434d091SElena Demikhovsky // special handling for "isOne" and "isMinusOne". 723c434d091SElena Demikhovsky // But in the real life the result code getting worse. We mix SCEV 724c434d091SElena Demikhovsky // expressions and ADD/SUB operations and receive redundant 725c434d091SElena Demikhovsky // intermediate values being calculated in different ways and 726c434d091SElena Demikhovsky // Instcombine is unable to reduce them all. 727c434d091SElena Demikhovsky 728c434d091SElena Demikhovsky if (getConstIntStepValue() && 729c434d091SElena Demikhovsky getConstIntStepValue()->isMinusOne()) 7301bbf15c5SJames Molloy return B.CreateSub(StartValue, Index); 731c434d091SElena Demikhovsky if (getConstIntStepValue() && 732c434d091SElena Demikhovsky getConstIntStepValue()->isOne()) 7331bbf15c5SJames Molloy return B.CreateAdd(StartValue, Index); 734c434d091SElena Demikhovsky const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 735c434d091SElena Demikhovsky SE->getMulExpr(Step, SE->getSCEV(Index))); 736c434d091SElena Demikhovsky return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 737c434d091SElena Demikhovsky } 738c434d091SElena Demikhovsky case IK_PtrInduction: { 739c434d091SElena Demikhovsky assert(isa<SCEVConstant>(Step) && 740c434d091SElena Demikhovsky "Expected constant step for pointer induction"); 741c434d091SElena Demikhovsky const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 742c434d091SElena Demikhovsky Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 7431bbf15c5SJames Molloy return B.CreateGEP(nullptr, StartValue, Index); 744c434d091SElena Demikhovsky } 745376a18bdSElena Demikhovsky case IK_FpInduction: { 746376a18bdSElena Demikhovsky assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 747376a18bdSElena Demikhovsky assert(InductionBinOp && 748376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 749376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub) && 750376a18bdSElena Demikhovsky "Original bin op should be defined for FP induction"); 751376a18bdSElena Demikhovsky 752376a18bdSElena Demikhovsky Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 753376a18bdSElena Demikhovsky 754376a18bdSElena Demikhovsky // Floating point operations had to be 'fast' to enable the induction. 755376a18bdSElena Demikhovsky FastMathFlags Flags; 756376a18bdSElena Demikhovsky Flags.setUnsafeAlgebra(); 757376a18bdSElena Demikhovsky 758376a18bdSElena Demikhovsky Value *MulExp = B.CreateFMul(StepValue, Index); 759376a18bdSElena Demikhovsky if (isa<Instruction>(MulExp)) 760376a18bdSElena Demikhovsky // We have to check, the MulExp may be a constant. 761376a18bdSElena Demikhovsky cast<Instruction>(MulExp)->setFastMathFlags(Flags); 762376a18bdSElena Demikhovsky 763376a18bdSElena Demikhovsky Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 764376a18bdSElena Demikhovsky MulExp, "induction"); 765376a18bdSElena Demikhovsky if (isa<Instruction>(BOp)) 766376a18bdSElena Demikhovsky cast<Instruction>(BOp)->setFastMathFlags(Flags); 767376a18bdSElena Demikhovsky 768376a18bdSElena Demikhovsky return BOp; 769376a18bdSElena Demikhovsky } 7701bbf15c5SJames Molloy case IK_NoInduction: 7711bbf15c5SJames Molloy return nullptr; 7721bbf15c5SJames Molloy } 7731bbf15c5SJames Molloy llvm_unreachable("invalid enum"); 7741bbf15c5SJames Molloy } 7751bbf15c5SJames Molloy 776376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 777376a18bdSElena Demikhovsky ScalarEvolution *SE, 778376a18bdSElena Demikhovsky InductionDescriptor &D) { 779376a18bdSElena Demikhovsky 780376a18bdSElena Demikhovsky // Here we only handle FP induction variables. 781376a18bdSElena Demikhovsky assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 782376a18bdSElena Demikhovsky 783376a18bdSElena Demikhovsky if (TheLoop->getHeader() != Phi->getParent()) 784376a18bdSElena Demikhovsky return false; 785376a18bdSElena Demikhovsky 786376a18bdSElena Demikhovsky // The loop may have multiple entrances or multiple exits; we can analyze 787376a18bdSElena Demikhovsky // this phi if it has a unique entry value and a unique backedge value. 788376a18bdSElena Demikhovsky if (Phi->getNumIncomingValues() != 2) 789376a18bdSElena Demikhovsky return false; 790376a18bdSElena Demikhovsky Value *BEValue = nullptr, *StartValue = nullptr; 791376a18bdSElena Demikhovsky if (TheLoop->contains(Phi->getIncomingBlock(0))) { 792376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(0); 793376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(1); 794376a18bdSElena Demikhovsky } else { 795376a18bdSElena Demikhovsky assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 796376a18bdSElena Demikhovsky "Unexpected Phi node in the loop"); 797376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(1); 798376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(0); 799376a18bdSElena Demikhovsky } 800376a18bdSElena Demikhovsky 801376a18bdSElena Demikhovsky BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 802376a18bdSElena Demikhovsky if (!BOp) 803376a18bdSElena Demikhovsky return false; 804376a18bdSElena Demikhovsky 805376a18bdSElena Demikhovsky Value *Addend = nullptr; 806376a18bdSElena Demikhovsky if (BOp->getOpcode() == Instruction::FAdd) { 807376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 808376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 809376a18bdSElena Demikhovsky else if (BOp->getOperand(1) == Phi) 810376a18bdSElena Demikhovsky Addend = BOp->getOperand(0); 811376a18bdSElena Demikhovsky } else if (BOp->getOpcode() == Instruction::FSub) 812376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 813376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 814376a18bdSElena Demikhovsky 815376a18bdSElena Demikhovsky if (!Addend) 816376a18bdSElena Demikhovsky return false; 817376a18bdSElena Demikhovsky 818376a18bdSElena Demikhovsky // The addend should be loop invariant 819376a18bdSElena Demikhovsky if (auto *I = dyn_cast<Instruction>(Addend)) 820376a18bdSElena Demikhovsky if (TheLoop->contains(I)) 821376a18bdSElena Demikhovsky return false; 822376a18bdSElena Demikhovsky 823376a18bdSElena Demikhovsky // FP Step has unknown SCEV 824376a18bdSElena Demikhovsky const SCEV *Step = SE->getUnknown(Addend); 825376a18bdSElena Demikhovsky D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 826376a18bdSElena Demikhovsky return true; 827376a18bdSElena Demikhovsky } 828376a18bdSElena Demikhovsky 829376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 830c05bab8aSSilviu Baranga PredicatedScalarEvolution &PSE, 831c05bab8aSSilviu Baranga InductionDescriptor &D, 832c05bab8aSSilviu Baranga bool Assume) { 833c05bab8aSSilviu Baranga Type *PhiTy = Phi->getType(); 834376a18bdSElena Demikhovsky 835376a18bdSElena Demikhovsky // Handle integer and pointer inductions variables. 836376a18bdSElena Demikhovsky // Now we handle also FP induction but not trying to make a 837376a18bdSElena Demikhovsky // recurrent expression from the PHI node in-place. 838376a18bdSElena Demikhovsky 839376a18bdSElena Demikhovsky if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 840376a18bdSElena Demikhovsky !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 841c05bab8aSSilviu Baranga return false; 842c05bab8aSSilviu Baranga 843376a18bdSElena Demikhovsky if (PhiTy->isFloatingPointTy()) 844376a18bdSElena Demikhovsky return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 845376a18bdSElena Demikhovsky 846c05bab8aSSilviu Baranga const SCEV *PhiScev = PSE.getSCEV(Phi); 847c05bab8aSSilviu Baranga const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 848c05bab8aSSilviu Baranga 849c05bab8aSSilviu Baranga // We need this expression to be an AddRecExpr. 850c05bab8aSSilviu Baranga if (Assume && !AR) 851c05bab8aSSilviu Baranga AR = PSE.getAsAddRec(Phi); 852c05bab8aSSilviu Baranga 853c05bab8aSSilviu Baranga if (!AR) { 854c05bab8aSSilviu Baranga DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 855c05bab8aSSilviu Baranga return false; 856c05bab8aSSilviu Baranga } 857c05bab8aSSilviu Baranga 858376a18bdSElena Demikhovsky return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 859c05bab8aSSilviu Baranga } 860c05bab8aSSilviu Baranga 861376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 862c05bab8aSSilviu Baranga ScalarEvolution *SE, 863c05bab8aSSilviu Baranga InductionDescriptor &D, 864c05bab8aSSilviu Baranga const SCEV *Expr) { 86524e6cc2dSKarthik Bhat Type *PhiTy = Phi->getType(); 86624e6cc2dSKarthik Bhat // We only handle integer and pointer inductions variables. 86724e6cc2dSKarthik Bhat if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 86824e6cc2dSKarthik Bhat return false; 86924e6cc2dSKarthik Bhat 87024e6cc2dSKarthik Bhat // Check that the PHI is consecutive. 871c05bab8aSSilviu Baranga const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 87224e6cc2dSKarthik Bhat const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 873c05bab8aSSilviu Baranga 87424e6cc2dSKarthik Bhat if (!AR) { 87524e6cc2dSKarthik Bhat DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 87624e6cc2dSKarthik Bhat return false; 87724e6cc2dSKarthik Bhat } 87824e6cc2dSKarthik Bhat 879ee31cbe3SMichael Kuperstein if (AR->getLoop() != TheLoop) { 880ee31cbe3SMichael Kuperstein // FIXME: We should treat this as a uniform. Unfortunately, we 881ee31cbe3SMichael Kuperstein // don't currently know how to handled uniform PHIs. 882ee31cbe3SMichael Kuperstein DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 883ee31cbe3SMichael Kuperstein return false; 884ee31cbe3SMichael Kuperstein } 885ee31cbe3SMichael Kuperstein 8861bbf15c5SJames Molloy Value *StartValue = 8871bbf15c5SJames Molloy Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 88824e6cc2dSKarthik Bhat const SCEV *Step = AR->getStepRecurrence(*SE); 88924e6cc2dSKarthik Bhat // Calculate the pointer stride and check if it is consecutive. 890c434d091SElena Demikhovsky // The stride may be a constant or a loop invariant integer value. 891c434d091SElena Demikhovsky const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 892376a18bdSElena Demikhovsky if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 89324e6cc2dSKarthik Bhat return false; 89424e6cc2dSKarthik Bhat 89524e6cc2dSKarthik Bhat if (PhiTy->isIntegerTy()) { 896c434d091SElena Demikhovsky D = InductionDescriptor(StartValue, IK_IntInduction, Step); 89724e6cc2dSKarthik Bhat return true; 89824e6cc2dSKarthik Bhat } 89924e6cc2dSKarthik Bhat 90024e6cc2dSKarthik Bhat assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 901c434d091SElena Demikhovsky // Pointer induction should be a constant. 902c434d091SElena Demikhovsky if (!ConstStep) 903c434d091SElena Demikhovsky return false; 904c434d091SElena Demikhovsky 905c434d091SElena Demikhovsky ConstantInt *CV = ConstStep->getValue(); 90624e6cc2dSKarthik Bhat Type *PointerElementType = PhiTy->getPointerElementType(); 90724e6cc2dSKarthik Bhat // The pointer stride cannot be determined if the pointer element type is not 90824e6cc2dSKarthik Bhat // sized. 90924e6cc2dSKarthik Bhat if (!PointerElementType->isSized()) 91024e6cc2dSKarthik Bhat return false; 91124e6cc2dSKarthik Bhat 91224e6cc2dSKarthik Bhat const DataLayout &DL = Phi->getModule()->getDataLayout(); 91324e6cc2dSKarthik Bhat int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 914b58f32f7SDavid Majnemer if (!Size) 915b58f32f7SDavid Majnemer return false; 916b58f32f7SDavid Majnemer 91724e6cc2dSKarthik Bhat int64_t CVSize = CV->getSExtValue(); 91824e6cc2dSKarthik Bhat if (CVSize % Size) 91924e6cc2dSKarthik Bhat return false; 920c434d091SElena Demikhovsky auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 921c434d091SElena Demikhovsky true /* signed */); 9221bbf15c5SJames Molloy D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 92324e6cc2dSKarthik Bhat return true; 92424e6cc2dSKarthik Bhat } 925c5b7b555SAshutosh Nema 9264ab0f491SChandler Carruth bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 9274ab0f491SChandler Carruth bool PreserveLCSSA) { 9284ab0f491SChandler Carruth bool Changed = false; 9294ab0f491SChandler Carruth 9304ab0f491SChandler Carruth // We re-use a vector for the in-loop predecesosrs. 9314ab0f491SChandler Carruth SmallVector<BasicBlock *, 4> InLoopPredecessors; 9324ab0f491SChandler Carruth 9334ab0f491SChandler Carruth auto RewriteExit = [&](BasicBlock *BB) { 9344ab0f491SChandler Carruth // See if there are any non-loop predecessors of this exit block and 9354ab0f491SChandler Carruth // keep track of the in-loop predecessors. 9364ab0f491SChandler Carruth bool IsDedicatedExit = true; 9374ab0f491SChandler Carruth for (auto *PredBB : predecessors(BB)) 9384ab0f491SChandler Carruth if (L->contains(PredBB)) { 9394ab0f491SChandler Carruth if (isa<IndirectBrInst>(PredBB->getTerminator())) 9404ab0f491SChandler Carruth // We cannot rewrite exiting edges from an indirectbr. 9414ab0f491SChandler Carruth return false; 9424ab0f491SChandler Carruth 9434ab0f491SChandler Carruth InLoopPredecessors.push_back(PredBB); 9444ab0f491SChandler Carruth } else { 9454ab0f491SChandler Carruth IsDedicatedExit = false; 9464ab0f491SChandler Carruth } 9474ab0f491SChandler Carruth 9484ab0f491SChandler Carruth // Nothing to do if this is already a dedicated exit. 9494ab0f491SChandler Carruth if (IsDedicatedExit) { 9504ab0f491SChandler Carruth InLoopPredecessors.clear(); 9514ab0f491SChandler Carruth return false; 9524ab0f491SChandler Carruth } 9534ab0f491SChandler Carruth 9544ab0f491SChandler Carruth assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 9554ab0f491SChandler Carruth auto *NewExitBB = SplitBlockPredecessors( 9564ab0f491SChandler Carruth BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA); 9574ab0f491SChandler Carruth 9584ab0f491SChandler Carruth if (!NewExitBB) 9594ab0f491SChandler Carruth DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 9604ab0f491SChandler Carruth << *L << "\n"); 9614ab0f491SChandler Carruth else 9624ab0f491SChandler Carruth DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 9634ab0f491SChandler Carruth << NewExitBB->getName() << "\n"); 9644ab0f491SChandler Carruth InLoopPredecessors.clear(); 9654ab0f491SChandler Carruth return true; 9664ab0f491SChandler Carruth }; 9674ab0f491SChandler Carruth 9684ab0f491SChandler Carruth // Walk the exit blocks directly rather than building up a data structure for 9694ab0f491SChandler Carruth // them, but only visit each one once. 9704ab0f491SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 9714ab0f491SChandler Carruth for (auto *BB : L->blocks()) 9724ab0f491SChandler Carruth for (auto *SuccBB : successors(BB)) { 9734ab0f491SChandler Carruth // We're looking for exit blocks so skip in-loop successors. 9744ab0f491SChandler Carruth if (L->contains(SuccBB)) 9754ab0f491SChandler Carruth continue; 9764ab0f491SChandler Carruth 9774ab0f491SChandler Carruth // Visit each exit block exactly once. 9784ab0f491SChandler Carruth if (!Visited.insert(SuccBB).second) 9794ab0f491SChandler Carruth continue; 9804ab0f491SChandler Carruth 9814ab0f491SChandler Carruth Changed |= RewriteExit(SuccBB); 9824ab0f491SChandler Carruth } 9834ab0f491SChandler Carruth 9844ab0f491SChandler Carruth return Changed; 9854ab0f491SChandler Carruth } 9864ab0f491SChandler Carruth 987c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop. 988c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 989c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 990c5b7b555SAshutosh Nema 991c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 992c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 993c5b7b555SAshutosh Nema // be adapted into a pointer. 994c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 995c5b7b555SAshutosh Nema auto Users = Inst.users(); 9960a16c228SDavid Majnemer if (any_of(Users, [&](User *U) { 997c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 998c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 999c5b7b555SAshutosh Nema })) 1000c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 1001c5b7b555SAshutosh Nema } 1002c5b7b555SAshutosh Nema 1003c5b7b555SAshutosh Nema return UsedOutside; 1004c5b7b555SAshutosh Nema } 100531088a9dSChandler Carruth 100631088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 100731088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 100831088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 100931088a9dSChandler Carruth // pass manager, they must also preserve these. 101031088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 101131088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 101231088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 101331088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 101431088a9dSChandler Carruth 101531088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 101631088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 101731088a9dSChandler Carruth extern char &LoopSimplifyID; 101831088a9dSChandler Carruth extern char &LCSSAID; 101931088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 102031088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 102131088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 102231088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 1023c3ccf5d7SIgor Laevsky // This is used in the LPPassManager to perform LCSSA verification on passes 1024c3ccf5d7SIgor Laevsky // which preserve lcssa form 1025c3ccf5d7SIgor Laevsky AU.addRequired<LCSSAVerificationPass>(); 1026c3ccf5d7SIgor Laevsky AU.addPreserved<LCSSAVerificationPass>(); 102731088a9dSChandler Carruth 102831088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 102931088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 103031088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 103131088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 103231088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 103331088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 103431088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 103531088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 103631088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 103731088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 103831088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 103931088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 104031088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 104131088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 104231088a9dSChandler Carruth } 104331088a9dSChandler Carruth 104431088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 104531088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 104631088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 104731088a9dSChandler Carruth /// with: 104831088a9dSChandler Carruth /// 104931088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 105031088a9dSChandler Carruth /// 105131088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 105231088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 105331088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 105431088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 105531088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1056e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 105731088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 105831088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 105931088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 106031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 106131088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 106231088a9dSChandler Carruth } 1063963341c8SAdam Nemet 1064fe3def7cSAdam Nemet /// \brief Find string metadata for loop 1065fe3def7cSAdam Nemet /// 1066fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1067fe3def7cSAdam Nemet /// operand or null otherwise. If the string metadata is not found return 1068fe3def7cSAdam Nemet /// Optional's not-a-value. 1069fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 1070fe3def7cSAdam Nemet StringRef Name) { 1071963341c8SAdam Nemet MDNode *LoopID = TheLoop->getLoopID(); 1072fe3def7cSAdam Nemet // Return none if LoopID is false. 1073963341c8SAdam Nemet if (!LoopID) 1074fe3def7cSAdam Nemet return None; 1075293be666SAdam Nemet 1076293be666SAdam Nemet // First operand should refer to the loop id itself. 1077293be666SAdam Nemet assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1078293be666SAdam Nemet assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1079293be666SAdam Nemet 1080963341c8SAdam Nemet // Iterate over LoopID operands and look for MDString Metadata 1081963341c8SAdam Nemet for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1082963341c8SAdam Nemet MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1083963341c8SAdam Nemet if (!MD) 1084963341c8SAdam Nemet continue; 1085963341c8SAdam Nemet MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1086963341c8SAdam Nemet if (!S) 1087963341c8SAdam Nemet continue; 1088963341c8SAdam Nemet // Return true if MDString holds expected MetaData. 1089963341c8SAdam Nemet if (Name.equals(S->getString())) 1090fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 1091fe3def7cSAdam Nemet case 1: 1092fe3def7cSAdam Nemet return nullptr; 1093fe3def7cSAdam Nemet case 2: 1094fe3def7cSAdam Nemet return &MD->getOperand(1); 1095fe3def7cSAdam Nemet default: 1096fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 1097963341c8SAdam Nemet } 1098fe3def7cSAdam Nemet } 1099fe3def7cSAdam Nemet return None; 1100963341c8SAdam Nemet } 1101122f984aSEvgeniy Stepanov 1102122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least 1103122f984aSEvgeniy Stepanov /// once. 1104122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst, 1105122f984aSEvgeniy Stepanov const DominatorTree *DT, const Loop *CurLoop, 1106122f984aSEvgeniy Stepanov const LoopSafetyInfo *SafetyInfo) { 1107122f984aSEvgeniy Stepanov // We have to check to make sure that the instruction dominates all 110858ccc094SEvgeniy Stepanov // of the exit blocks. If it doesn't, then there is a path out of the loop 110958ccc094SEvgeniy Stepanov // which does not execute this instruction, so we can't hoist it. 111058ccc094SEvgeniy Stepanov 111158ccc094SEvgeniy Stepanov // If the instruction is in the header block for the loop (which is very 111258ccc094SEvgeniy Stepanov // common), it is always guaranteed to dominate the exit blocks. Since this 111358ccc094SEvgeniy Stepanov // is a common case, and can save some work, check it now. 111458ccc094SEvgeniy Stepanov if (Inst.getParent() == CurLoop->getHeader()) 111558ccc094SEvgeniy Stepanov // If there's a throw in the header block, we can't guarantee we'll reach 111658ccc094SEvgeniy Stepanov // Inst. 111758ccc094SEvgeniy Stepanov return !SafetyInfo->HeaderMayThrow; 111858ccc094SEvgeniy Stepanov 111958ccc094SEvgeniy Stepanov // Somewhere in this loop there is an instruction which may throw and make us 112058ccc094SEvgeniy Stepanov // exit the loop. 112158ccc094SEvgeniy Stepanov if (SafetyInfo->MayThrow) 1122122f984aSEvgeniy Stepanov return false; 1123122f984aSEvgeniy Stepanov 1124122f984aSEvgeniy Stepanov // Get the exit blocks for the current loop. 1125122f984aSEvgeniy Stepanov SmallVector<BasicBlock *, 8> ExitBlocks; 1126122f984aSEvgeniy Stepanov CurLoop->getExitBlocks(ExitBlocks); 1127122f984aSEvgeniy Stepanov 1128122f984aSEvgeniy Stepanov // Verify that the block dominates each of the exit blocks of the loop. 1129122f984aSEvgeniy Stepanov for (BasicBlock *ExitBlock : ExitBlocks) 1130122f984aSEvgeniy Stepanov if (!DT->dominates(Inst.getParent(), ExitBlock)) 1131122f984aSEvgeniy Stepanov return false; 1132122f984aSEvgeniy Stepanov 1133122f984aSEvgeniy Stepanov // As a degenerate case, if the loop is statically infinite then we haven't 1134122f984aSEvgeniy Stepanov // proven anything since there are no exit blocks. 113558ccc094SEvgeniy Stepanov if (ExitBlocks.empty()) 1136122f984aSEvgeniy Stepanov return false; 1137122f984aSEvgeniy Stepanov 1138f1da33e4SEli Friedman // FIXME: In general, we have to prove that the loop isn't an infinite loop. 1139f1da33e4SEli Friedman // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 1140f1da33e4SEli Friedman // just a special case of this.) 1141122f984aSEvgeniy Stepanov return true; 1142122f984aSEvgeniy Stepanov } 114341d72a86SDehao Chen 114441d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 114541d72a86SDehao Chen // Only support loops with a unique exiting block, and a latch. 114641d72a86SDehao Chen if (!L->getExitingBlock()) 114741d72a86SDehao Chen return None; 114841d72a86SDehao Chen 114941d72a86SDehao Chen // Get the branch weights for the the loop's backedge. 115041d72a86SDehao Chen BranchInst *LatchBR = 115141d72a86SDehao Chen dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 115241d72a86SDehao Chen if (!LatchBR || LatchBR->getNumSuccessors() != 2) 115341d72a86SDehao Chen return None; 115441d72a86SDehao Chen 115541d72a86SDehao Chen assert((LatchBR->getSuccessor(0) == L->getHeader() || 115641d72a86SDehao Chen LatchBR->getSuccessor(1) == L->getHeader()) && 115741d72a86SDehao Chen "At least one edge out of the latch must go to the header"); 115841d72a86SDehao Chen 115941d72a86SDehao Chen // To estimate the number of times the loop body was executed, we want to 116041d72a86SDehao Chen // know the number of times the backedge was taken, vs. the number of times 116141d72a86SDehao Chen // we exited the loop. 116241d72a86SDehao Chen uint64_t TrueVal, FalseVal; 1163b151a641SMichael Kuperstein if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 116441d72a86SDehao Chen return None; 116541d72a86SDehao Chen 1166b151a641SMichael Kuperstein if (!TrueVal || !FalseVal) 1167b151a641SMichael Kuperstein return 0; 116841d72a86SDehao Chen 1169b151a641SMichael Kuperstein // Divide the count of the backedge by the count of the edge exiting the loop, 1170b151a641SMichael Kuperstein // rounding to nearest. 117141d72a86SDehao Chen if (LatchBR->getSuccessor(0) == L->getHeader()) 1172b151a641SMichael Kuperstein return (TrueVal + (FalseVal / 2)) / FalseVal; 117341d72a86SDehao Chen else 1174b151a641SMichael Kuperstein return (FalseVal + (TrueVal / 2)) / TrueVal; 117541d72a86SDehao Chen } 1176cf9daa33SAmara Emerson 1177cf9daa33SAmara Emerson /// \brief Adds a 'fast' flag to floating point operations. 1178cf9daa33SAmara Emerson static Value *addFastMathFlag(Value *V) { 1179cf9daa33SAmara Emerson if (isa<FPMathOperator>(V)) { 1180cf9daa33SAmara Emerson FastMathFlags Flags; 1181cf9daa33SAmara Emerson Flags.setUnsafeAlgebra(); 1182cf9daa33SAmara Emerson cast<Instruction>(V)->setFastMathFlags(Flags); 1183cf9daa33SAmara Emerson } 1184cf9daa33SAmara Emerson return V; 1185cf9daa33SAmara Emerson } 1186cf9daa33SAmara Emerson 1187cf9daa33SAmara Emerson // Helper to generate a log2 shuffle reduction. 1188836b0f48SAmara Emerson Value * 1189836b0f48SAmara Emerson llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 1190836b0f48SAmara Emerson RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 1191836b0f48SAmara Emerson ArrayRef<Value *> RedOps) { 1192cf9daa33SAmara Emerson unsigned VF = Src->getType()->getVectorNumElements(); 1193cf9daa33SAmara Emerson // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1194cf9daa33SAmara Emerson // and vector ops, reducing the set of values being computed by half each 1195cf9daa33SAmara Emerson // round. 1196cf9daa33SAmara Emerson assert(isPowerOf2_32(VF) && 1197cf9daa33SAmara Emerson "Reduction emission only supported for pow2 vectors!"); 1198cf9daa33SAmara Emerson Value *TmpVec = Src; 1199cf9daa33SAmara Emerson SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 1200cf9daa33SAmara Emerson for (unsigned i = VF; i != 1; i >>= 1) { 1201cf9daa33SAmara Emerson // Move the upper half of the vector to the lower half. 1202cf9daa33SAmara Emerson for (unsigned j = 0; j != i / 2; ++j) 1203cf9daa33SAmara Emerson ShuffleMask[j] = Builder.getInt32(i / 2 + j); 1204cf9daa33SAmara Emerson 1205cf9daa33SAmara Emerson // Fill the rest of the mask with undef. 1206cf9daa33SAmara Emerson std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 1207cf9daa33SAmara Emerson UndefValue::get(Builder.getInt32Ty())); 1208cf9daa33SAmara Emerson 1209cf9daa33SAmara Emerson Value *Shuf = Builder.CreateShuffleVector( 1210cf9daa33SAmara Emerson TmpVec, UndefValue::get(TmpVec->getType()), 1211cf9daa33SAmara Emerson ConstantVector::get(ShuffleMask), "rdx.shuf"); 1212cf9daa33SAmara Emerson 1213cf9daa33SAmara Emerson if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1214cf9daa33SAmara Emerson // Floating point operations had to be 'fast' to enable the reduction. 1215cf9daa33SAmara Emerson TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 1216cf9daa33SAmara Emerson TmpVec, Shuf, "bin.rdx")); 1217cf9daa33SAmara Emerson } else { 1218cf9daa33SAmara Emerson assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 1219cf9daa33SAmara Emerson "Invalid min/max"); 1220cf9daa33SAmara Emerson TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, 1221cf9daa33SAmara Emerson Shuf); 1222cf9daa33SAmara Emerson } 1223cf9daa33SAmara Emerson if (!RedOps.empty()) 1224cf9daa33SAmara Emerson propagateIRFlags(TmpVec, RedOps); 1225cf9daa33SAmara Emerson } 1226cf9daa33SAmara Emerson // The result is in the first element of the vector. 1227cf9daa33SAmara Emerson return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1228cf9daa33SAmara Emerson } 1229cf9daa33SAmara Emerson 1230cf9daa33SAmara Emerson /// Create a simple vector reduction specified by an opcode and some 1231cf9daa33SAmara Emerson /// flags (if generating min/max reductions). 1232cf9daa33SAmara Emerson Value *llvm::createSimpleTargetReduction( 1233cf9daa33SAmara Emerson IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 1234cf9daa33SAmara Emerson Value *Src, TargetTransformInfo::ReductionFlags Flags, 1235cf9daa33SAmara Emerson ArrayRef<Value *> RedOps) { 1236cf9daa33SAmara Emerson assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 1237cf9daa33SAmara Emerson 1238cf9daa33SAmara Emerson Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 1239cf9daa33SAmara Emerson std::function<Value*()> BuildFunc; 1240cf9daa33SAmara Emerson using RD = RecurrenceDescriptor; 1241cf9daa33SAmara Emerson RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 1242cf9daa33SAmara Emerson // TODO: Support creating ordered reductions. 1243cf9daa33SAmara Emerson FastMathFlags FMFUnsafe; 1244cf9daa33SAmara Emerson FMFUnsafe.setUnsafeAlgebra(); 1245cf9daa33SAmara Emerson 1246cf9daa33SAmara Emerson switch (Opcode) { 1247cf9daa33SAmara Emerson case Instruction::Add: 1248cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 1249cf9daa33SAmara Emerson break; 1250cf9daa33SAmara Emerson case Instruction::Mul: 1251cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 1252cf9daa33SAmara Emerson break; 1253cf9daa33SAmara Emerson case Instruction::And: 1254cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 1255cf9daa33SAmara Emerson break; 1256cf9daa33SAmara Emerson case Instruction::Or: 1257cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 1258cf9daa33SAmara Emerson break; 1259cf9daa33SAmara Emerson case Instruction::Xor: 1260cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 1261cf9daa33SAmara Emerson break; 1262cf9daa33SAmara Emerson case Instruction::FAdd: 1263cf9daa33SAmara Emerson BuildFunc = [&]() { 1264cf9daa33SAmara Emerson auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 1265cf9daa33SAmara Emerson cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe); 1266cf9daa33SAmara Emerson return Rdx; 1267cf9daa33SAmara Emerson }; 1268cf9daa33SAmara Emerson break; 1269cf9daa33SAmara Emerson case Instruction::FMul: 1270cf9daa33SAmara Emerson BuildFunc = [&]() { 1271cf9daa33SAmara Emerson auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 1272cf9daa33SAmara Emerson cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe); 1273cf9daa33SAmara Emerson return Rdx; 1274cf9daa33SAmara Emerson }; 1275cf9daa33SAmara Emerson break; 1276cf9daa33SAmara Emerson case Instruction::ICmp: 1277cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1278cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 1279cf9daa33SAmara Emerson BuildFunc = [&]() { 1280cf9daa33SAmara Emerson return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1281cf9daa33SAmara Emerson }; 1282cf9daa33SAmara Emerson } else { 1283cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1284cf9daa33SAmara Emerson BuildFunc = [&]() { 1285cf9daa33SAmara Emerson return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1286cf9daa33SAmara Emerson }; 1287cf9daa33SAmara Emerson } 1288cf9daa33SAmara Emerson break; 1289cf9daa33SAmara Emerson case Instruction::FCmp: 1290cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1291cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMax; 1292cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1293cf9daa33SAmara Emerson } else { 1294cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMin; 1295cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1296cf9daa33SAmara Emerson } 1297cf9daa33SAmara Emerson break; 1298cf9daa33SAmara Emerson default: 1299cf9daa33SAmara Emerson llvm_unreachable("Unhandled opcode"); 1300cf9daa33SAmara Emerson break; 1301cf9daa33SAmara Emerson } 1302cf9daa33SAmara Emerson if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1303cf9daa33SAmara Emerson return BuildFunc(); 1304cf9daa33SAmara Emerson return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1305cf9daa33SAmara Emerson } 1306cf9daa33SAmara Emerson 1307cf9daa33SAmara Emerson /// Create a vector reduction using a given recurrence descriptor. 1308cf9daa33SAmara Emerson Value *llvm::createTargetReduction(IRBuilder<> &Builder, 1309cf9daa33SAmara Emerson const TargetTransformInfo *TTI, 1310cf9daa33SAmara Emerson RecurrenceDescriptor &Desc, Value *Src, 1311cf9daa33SAmara Emerson bool NoNaN) { 1312cf9daa33SAmara Emerson // TODO: Support in-order reductions based on the recurrence descriptor. 1313cf9daa33SAmara Emerson RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1314cf9daa33SAmara Emerson TargetTransformInfo::ReductionFlags Flags; 1315cf9daa33SAmara Emerson Flags.NoNaN = NoNaN; 1316cf9daa33SAmara Emerson auto getSimpleRdx = [&](unsigned Opc) { 1317cf9daa33SAmara Emerson return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags); 1318cf9daa33SAmara Emerson }; 1319cf9daa33SAmara Emerson switch (RecKind) { 1320cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_FloatAdd: 1321cf9daa33SAmara Emerson return getSimpleRdx(Instruction::FAdd); 1322cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_FloatMult: 1323cf9daa33SAmara Emerson return getSimpleRdx(Instruction::FMul); 1324cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerAdd: 1325cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Add); 1326cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerMult: 1327cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Mul); 1328cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerAnd: 1329cf9daa33SAmara Emerson return getSimpleRdx(Instruction::And); 1330cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerOr: 1331cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Or); 1332cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerXor: 1333cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Xor); 1334cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerMinMax: { 1335cf9daa33SAmara Emerson switch (Desc.getMinMaxRecurrenceKind()) { 1336cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_SIntMax: 1337cf9daa33SAmara Emerson Flags.IsSigned = true; 1338cf9daa33SAmara Emerson Flags.IsMaxOp = true; 1339cf9daa33SAmara Emerson break; 1340cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_UIntMax: 1341cf9daa33SAmara Emerson Flags.IsMaxOp = true; 1342cf9daa33SAmara Emerson break; 1343cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_SIntMin: 1344cf9daa33SAmara Emerson Flags.IsSigned = true; 1345cf9daa33SAmara Emerson break; 1346cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_UIntMin: 1347cf9daa33SAmara Emerson break; 1348cf9daa33SAmara Emerson default: 1349cf9daa33SAmara Emerson llvm_unreachable("Unhandled MRK"); 1350cf9daa33SAmara Emerson } 1351cf9daa33SAmara Emerson return getSimpleRdx(Instruction::ICmp); 1352cf9daa33SAmara Emerson } 1353cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_FloatMinMax: { 1354cf9daa33SAmara Emerson Flags.IsMaxOp = 1355cf9daa33SAmara Emerson Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax; 1356cf9daa33SAmara Emerson return getSimpleRdx(Instruction::FCmp); 1357cf9daa33SAmara Emerson } 1358cf9daa33SAmara Emerson default: 1359cf9daa33SAmara Emerson llvm_unreachable("Unhandled RecKind"); 1360cf9daa33SAmara Emerson } 1361cf9daa33SAmara Emerson } 1362cf9daa33SAmara Emerson 1363cf9daa33SAmara Emerson void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 1364cf9daa33SAmara Emerson if (auto *VecOp = dyn_cast<Instruction>(I)) { 1365cf9daa33SAmara Emerson if (auto *I0 = dyn_cast<Instruction>(VL[0])) { 1366cf9daa33SAmara Emerson // VecOVp is initialized to the 0th scalar, so start counting from index 1367cf9daa33SAmara Emerson // '1'. 1368cf9daa33SAmara Emerson VecOp->copyIRFlags(I0); 1369cf9daa33SAmara Emerson for (int i = 1, e = VL.size(); i < e; ++i) { 1370cf9daa33SAmara Emerson if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 1371cf9daa33SAmara Emerson VecOp->andIRFlags(Scalar); 1372cf9daa33SAmara Emerson } 1373cf9daa33SAmara Emerson } 1374cf9daa33SAmara Emerson } 1375cf9daa33SAmara Emerson } 1376