176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 376aa662cSKarthik Bhat // The LLVM Compiler Infrastructure 476aa662cSKarthik Bhat // 576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source 676aa662cSKarthik Bhat // License. See LICENSE.TXT for details. 776aa662cSKarthik Bhat // 876aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 976aa662cSKarthik Bhat // 1076aa662cSKarthik Bhat // This file defines common loop utility functions. 1176aa662cSKarthik Bhat // 1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1376aa662cSKarthik Bhat 142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 154a000883SChandler Carruth #include "llvm/ADT/ScopeExit.h" 1631088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 1731088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 1831088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 192f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 20c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h" 2145d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 222f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 23c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h" 2445d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 256bda14b3SChandler Carruth #include "llvm/Analysis/TargetTransformInfo.h" 2631088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 2776aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 2845d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 2976aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 3076aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 3131088a9dSChandler Carruth #include "llvm/Pass.h" 3276aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 334a000883SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 3476aa662cSKarthik Bhat 3576aa662cSKarthik Bhat using namespace llvm; 3676aa662cSKarthik Bhat using namespace llvm::PatternMatch; 3776aa662cSKarthik Bhat 3876aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 3976aa662cSKarthik Bhat 400a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 4176aa662cSKarthik Bhat SmallPtrSetImpl<Instruction *> &Set) { 4276aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4376aa662cSKarthik Bhat if (!Set.count(dyn_cast<Instruction>(*Use))) 4476aa662cSKarthik Bhat return false; 4576aa662cSKarthik Bhat return true; 4676aa662cSKarthik Bhat } 4776aa662cSKarthik Bhat 48c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 49c94f8e29SChad Rosier switch (Kind) { 50c94f8e29SChad Rosier default: 51c94f8e29SChad Rosier break; 52c94f8e29SChad Rosier case RK_IntegerAdd: 53c94f8e29SChad Rosier case RK_IntegerMult: 54c94f8e29SChad Rosier case RK_IntegerOr: 55c94f8e29SChad Rosier case RK_IntegerAnd: 56c94f8e29SChad Rosier case RK_IntegerXor: 57c94f8e29SChad Rosier case RK_IntegerMinMax: 58c94f8e29SChad Rosier return true; 59c94f8e29SChad Rosier } 60c94f8e29SChad Rosier return false; 61c94f8e29SChad Rosier } 62c94f8e29SChad Rosier 63c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 64c94f8e29SChad Rosier return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 65c94f8e29SChad Rosier } 66c94f8e29SChad Rosier 67c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 68c94f8e29SChad Rosier switch (Kind) { 69c94f8e29SChad Rosier default: 70c94f8e29SChad Rosier break; 71c94f8e29SChad Rosier case RK_IntegerAdd: 72c94f8e29SChad Rosier case RK_IntegerMult: 73c94f8e29SChad Rosier case RK_FloatAdd: 74c94f8e29SChad Rosier case RK_FloatMult: 75c94f8e29SChad Rosier return true; 76c94f8e29SChad Rosier } 77c94f8e29SChad Rosier return false; 78c94f8e29SChad Rosier } 79c94f8e29SChad Rosier 80c94f8e29SChad Rosier Instruction * 81c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 82c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 83c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 84c94f8e29SChad Rosier if (!Phi->hasOneUse()) 85c94f8e29SChad Rosier return Phi; 86c94f8e29SChad Rosier 87c94f8e29SChad Rosier const APInt *M = nullptr; 88c94f8e29SChad Rosier Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 89c94f8e29SChad Rosier 90c94f8e29SChad Rosier // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 91c94f8e29SChad Rosier // with a new integer type of the corresponding bit width. 9272ee6945SCraig Topper if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 93c94f8e29SChad Rosier int32_t Bits = (*M + 1).exactLogBase2(); 94c94f8e29SChad Rosier if (Bits > 0) { 95c94f8e29SChad Rosier RT = IntegerType::get(Phi->getContext(), Bits); 96c94f8e29SChad Rosier Visited.insert(Phi); 97c94f8e29SChad Rosier CI.insert(J); 98c94f8e29SChad Rosier return J; 99c94f8e29SChad Rosier } 100c94f8e29SChad Rosier } 101c94f8e29SChad Rosier return Phi; 102c94f8e29SChad Rosier } 103c94f8e29SChad Rosier 104c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind( 105c94f8e29SChad Rosier Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 106c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 107c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 108c94f8e29SChad Rosier 109c94f8e29SChad Rosier SmallVector<Instruction *, 8> Worklist; 110c94f8e29SChad Rosier bool FoundOneOperand = false; 11129dc0f70SMatthew Simpson unsigned DstSize = RT->getPrimitiveSizeInBits(); 112c94f8e29SChad Rosier Worklist.push_back(Exit); 113c94f8e29SChad Rosier 114c94f8e29SChad Rosier // Traverse the instructions in the reduction expression, beginning with the 115c94f8e29SChad Rosier // exit value. 116c94f8e29SChad Rosier while (!Worklist.empty()) { 117c94f8e29SChad Rosier Instruction *I = Worklist.pop_back_val(); 118c94f8e29SChad Rosier for (Use &U : I->operands()) { 119c94f8e29SChad Rosier 120c94f8e29SChad Rosier // Terminate the traversal if the operand is not an instruction, or we 121c94f8e29SChad Rosier // reach the starting value. 122c94f8e29SChad Rosier Instruction *J = dyn_cast<Instruction>(U.get()); 123c94f8e29SChad Rosier if (!J || J == Start) 124c94f8e29SChad Rosier continue; 125c94f8e29SChad Rosier 126c94f8e29SChad Rosier // Otherwise, investigate the operation if it is also in the expression. 127c94f8e29SChad Rosier if (Visited.count(J)) { 128c94f8e29SChad Rosier Worklist.push_back(J); 129c94f8e29SChad Rosier continue; 130c94f8e29SChad Rosier } 131c94f8e29SChad Rosier 132c94f8e29SChad Rosier // If the operand is not in Visited, it is not a reduction operation, but 133c94f8e29SChad Rosier // it does feed into one. Make sure it is either a single-use sign- or 13429dc0f70SMatthew Simpson // zero-extend instruction. 135c94f8e29SChad Rosier CastInst *Cast = dyn_cast<CastInst>(J); 136c94f8e29SChad Rosier bool IsSExtInst = isa<SExtInst>(J); 13729dc0f70SMatthew Simpson if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 13829dc0f70SMatthew Simpson return false; 13929dc0f70SMatthew Simpson 14029dc0f70SMatthew Simpson // Ensure the source type of the extend is no larger than the reduction 14129dc0f70SMatthew Simpson // type. It is not necessary for the types to be identical. 14229dc0f70SMatthew Simpson unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 14329dc0f70SMatthew Simpson if (SrcSize > DstSize) 144c94f8e29SChad Rosier return false; 145c94f8e29SChad Rosier 146c94f8e29SChad Rosier // Furthermore, ensure that all such extends are of the same kind. 147c94f8e29SChad Rosier if (FoundOneOperand) { 148c94f8e29SChad Rosier if (IsSigned != IsSExtInst) 149c94f8e29SChad Rosier return false; 150c94f8e29SChad Rosier } else { 151c94f8e29SChad Rosier FoundOneOperand = true; 152c94f8e29SChad Rosier IsSigned = IsSExtInst; 153c94f8e29SChad Rosier } 154c94f8e29SChad Rosier 15529dc0f70SMatthew Simpson // Lastly, if the source type of the extend matches the reduction type, 15629dc0f70SMatthew Simpson // add the extend to CI so that we can avoid accounting for it in the 15729dc0f70SMatthew Simpson // cost model. 15829dc0f70SMatthew Simpson if (SrcSize == DstSize) 159c94f8e29SChad Rosier CI.insert(Cast); 160c94f8e29SChad Rosier } 161c94f8e29SChad Rosier } 162c94f8e29SChad Rosier return true; 163c94f8e29SChad Rosier } 164c94f8e29SChad Rosier 1650a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 16676aa662cSKarthik Bhat Loop *TheLoop, bool HasFunNoNaNAttr, 1670a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 16876aa662cSKarthik Bhat if (Phi->getNumIncomingValues() != 2) 16976aa662cSKarthik Bhat return false; 17076aa662cSKarthik Bhat 17176aa662cSKarthik Bhat // Reduction variables are only found in the loop header block. 17276aa662cSKarthik Bhat if (Phi->getParent() != TheLoop->getHeader()) 17376aa662cSKarthik Bhat return false; 17476aa662cSKarthik Bhat 17576aa662cSKarthik Bhat // Obtain the reduction start value from the value that comes from the loop 17676aa662cSKarthik Bhat // preheader. 17776aa662cSKarthik Bhat Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 17876aa662cSKarthik Bhat 17976aa662cSKarthik Bhat // ExitInstruction is the single value which is used outside the loop. 18076aa662cSKarthik Bhat // We only allow for a single reduction value to be used outside the loop. 18176aa662cSKarthik Bhat // This includes users of the reduction, variables (which form a cycle 18276aa662cSKarthik Bhat // which ends in the phi node). 18376aa662cSKarthik Bhat Instruction *ExitInstruction = nullptr; 18476aa662cSKarthik Bhat // Indicates that we found a reduction operation in our scan. 18576aa662cSKarthik Bhat bool FoundReduxOp = false; 18676aa662cSKarthik Bhat 18776aa662cSKarthik Bhat // We start with the PHI node and scan for all of the users of this 18876aa662cSKarthik Bhat // instruction. All users must be instructions that can be used as reduction 18976aa662cSKarthik Bhat // variables (such as ADD). We must have a single out-of-block user. The cycle 19076aa662cSKarthik Bhat // must include the original PHI. 19176aa662cSKarthik Bhat bool FoundStartPHI = false; 19276aa662cSKarthik Bhat 19376aa662cSKarthik Bhat // To recognize min/max patterns formed by a icmp select sequence, we store 19476aa662cSKarthik Bhat // the number of instruction we saw from the recognized min/max pattern, 19576aa662cSKarthik Bhat // to make sure we only see exactly the two instructions. 19676aa662cSKarthik Bhat unsigned NumCmpSelectPatternInst = 0; 19727b2c39eSTyler Nowicki InstDesc ReduxDesc(false, nullptr); 19876aa662cSKarthik Bhat 199c94f8e29SChad Rosier // Data used for determining if the recurrence has been type-promoted. 200c94f8e29SChad Rosier Type *RecurrenceType = Phi->getType(); 201c94f8e29SChad Rosier SmallPtrSet<Instruction *, 4> CastInsts; 202c94f8e29SChad Rosier Instruction *Start = Phi; 203c94f8e29SChad Rosier bool IsSigned = false; 204c94f8e29SChad Rosier 20576aa662cSKarthik Bhat SmallPtrSet<Instruction *, 8> VisitedInsts; 20676aa662cSKarthik Bhat SmallVector<Instruction *, 8> Worklist; 207c94f8e29SChad Rosier 208c94f8e29SChad Rosier // Return early if the recurrence kind does not match the type of Phi. If the 209c94f8e29SChad Rosier // recurrence kind is arithmetic, we attempt to look through AND operations 210c94f8e29SChad Rosier // resulting from the type promotion performed by InstCombine. Vector 211c94f8e29SChad Rosier // operations are not limited to the legal integer widths, so we may be able 212c94f8e29SChad Rosier // to evaluate the reduction in the narrower width. 213c94f8e29SChad Rosier if (RecurrenceType->isFloatingPointTy()) { 214c94f8e29SChad Rosier if (!isFloatingPointRecurrenceKind(Kind)) 215c94f8e29SChad Rosier return false; 216c94f8e29SChad Rosier } else { 217c94f8e29SChad Rosier if (!isIntegerRecurrenceKind(Kind)) 218c94f8e29SChad Rosier return false; 219c94f8e29SChad Rosier if (isArithmeticRecurrenceKind(Kind)) 220c94f8e29SChad Rosier Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 221c94f8e29SChad Rosier } 222c94f8e29SChad Rosier 223c94f8e29SChad Rosier Worklist.push_back(Start); 224c94f8e29SChad Rosier VisitedInsts.insert(Start); 22576aa662cSKarthik Bhat 22676aa662cSKarthik Bhat // A value in the reduction can be used: 22776aa662cSKarthik Bhat // - By the reduction: 22876aa662cSKarthik Bhat // - Reduction operation: 22976aa662cSKarthik Bhat // - One use of reduction value (safe). 23076aa662cSKarthik Bhat // - Multiple use of reduction value (not safe). 23176aa662cSKarthik Bhat // - PHI: 23276aa662cSKarthik Bhat // - All uses of the PHI must be the reduction (safe). 23376aa662cSKarthik Bhat // - Otherwise, not safe. 2347cefb409SMichael Kuperstein // - By instructions outside of the loop (safe). 2357cefb409SMichael Kuperstein // * One value may have several outside users, but all outside 2367cefb409SMichael Kuperstein // uses must be of the same value. 23776aa662cSKarthik Bhat // - By an instruction that is not part of the reduction (not safe). 23876aa662cSKarthik Bhat // This is either: 23976aa662cSKarthik Bhat // * An instruction type other than PHI or the reduction operation. 24076aa662cSKarthik Bhat // * A PHI in the header other than the initial PHI. 24176aa662cSKarthik Bhat while (!Worklist.empty()) { 24276aa662cSKarthik Bhat Instruction *Cur = Worklist.back(); 24376aa662cSKarthik Bhat Worklist.pop_back(); 24476aa662cSKarthik Bhat 24576aa662cSKarthik Bhat // No Users. 24676aa662cSKarthik Bhat // If the instruction has no users then this is a broken chain and can't be 24776aa662cSKarthik Bhat // a reduction variable. 24876aa662cSKarthik Bhat if (Cur->use_empty()) 24976aa662cSKarthik Bhat return false; 25076aa662cSKarthik Bhat 25176aa662cSKarthik Bhat bool IsAPhi = isa<PHINode>(Cur); 25276aa662cSKarthik Bhat 25376aa662cSKarthik Bhat // A header PHI use other than the original PHI. 25476aa662cSKarthik Bhat if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 25576aa662cSKarthik Bhat return false; 25676aa662cSKarthik Bhat 25776aa662cSKarthik Bhat // Reductions of instructions such as Div, and Sub is only possible if the 25876aa662cSKarthik Bhat // LHS is the reduction variable. 25976aa662cSKarthik Bhat if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 26076aa662cSKarthik Bhat !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 26176aa662cSKarthik Bhat !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 26276aa662cSKarthik Bhat return false; 26376aa662cSKarthik Bhat 264c94f8e29SChad Rosier // Any reduction instruction must be of one of the allowed kinds. We ignore 265c94f8e29SChad Rosier // the starting value (the Phi or an AND instruction if the Phi has been 266c94f8e29SChad Rosier // type-promoted). 267c94f8e29SChad Rosier if (Cur != Start) { 2680a91310cSTyler Nowicki ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 2690a91310cSTyler Nowicki if (!ReduxDesc.isRecurrence()) 27076aa662cSKarthik Bhat return false; 271c94f8e29SChad Rosier } 27276aa662cSKarthik Bhat 27376aa662cSKarthik Bhat // A reduction operation must only have one use of the reduction value. 27476aa662cSKarthik Bhat if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 27576aa662cSKarthik Bhat hasMultipleUsesOf(Cur, VisitedInsts)) 27676aa662cSKarthik Bhat return false; 27776aa662cSKarthik Bhat 27876aa662cSKarthik Bhat // All inputs to a PHI node must be a reduction value. 27976aa662cSKarthik Bhat if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 28076aa662cSKarthik Bhat return false; 28176aa662cSKarthik Bhat 28276aa662cSKarthik Bhat if (Kind == RK_IntegerMinMax && 28376aa662cSKarthik Bhat (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 28476aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28576aa662cSKarthik Bhat if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 28676aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28776aa662cSKarthik Bhat 28876aa662cSKarthik Bhat // Check whether we found a reduction operator. 289c94f8e29SChad Rosier FoundReduxOp |= !IsAPhi && Cur != Start; 29076aa662cSKarthik Bhat 29176aa662cSKarthik Bhat // Process users of current instruction. Push non-PHI nodes after PHI nodes 29276aa662cSKarthik Bhat // onto the stack. This way we are going to have seen all inputs to PHI 29376aa662cSKarthik Bhat // nodes once we get to them. 29476aa662cSKarthik Bhat SmallVector<Instruction *, 8> NonPHIs; 29576aa662cSKarthik Bhat SmallVector<Instruction *, 8> PHIs; 29676aa662cSKarthik Bhat for (User *U : Cur->users()) { 29776aa662cSKarthik Bhat Instruction *UI = cast<Instruction>(U); 29876aa662cSKarthik Bhat 29976aa662cSKarthik Bhat // Check if we found the exit user. 30076aa662cSKarthik Bhat BasicBlock *Parent = UI->getParent(); 30176aa662cSKarthik Bhat if (!TheLoop->contains(Parent)) { 3027cefb409SMichael Kuperstein // If we already know this instruction is used externally, move on to 3037cefb409SMichael Kuperstein // the next user. 3047cefb409SMichael Kuperstein if (ExitInstruction == Cur) 3057cefb409SMichael Kuperstein continue; 3067cefb409SMichael Kuperstein 3077cefb409SMichael Kuperstein // Exit if you find multiple values used outside or if the header phi 3087cefb409SMichael Kuperstein // node is being used. In this case the user uses the value of the 3097cefb409SMichael Kuperstein // previous iteration, in which case we would loose "VF-1" iterations of 3107cefb409SMichael Kuperstein // the reduction operation if we vectorize. 31176aa662cSKarthik Bhat if (ExitInstruction != nullptr || Cur == Phi) 31276aa662cSKarthik Bhat return false; 31376aa662cSKarthik Bhat 31476aa662cSKarthik Bhat // The instruction used by an outside user must be the last instruction 31576aa662cSKarthik Bhat // before we feed back to the reduction phi. Otherwise, we loose VF-1 31676aa662cSKarthik Bhat // operations on the value. 31742531260SDavid Majnemer if (!is_contained(Phi->operands(), Cur)) 31876aa662cSKarthik Bhat return false; 31976aa662cSKarthik Bhat 32076aa662cSKarthik Bhat ExitInstruction = Cur; 32176aa662cSKarthik Bhat continue; 32276aa662cSKarthik Bhat } 32376aa662cSKarthik Bhat 32476aa662cSKarthik Bhat // Process instructions only once (termination). Each reduction cycle 32576aa662cSKarthik Bhat // value must only be used once, except by phi nodes and min/max 32676aa662cSKarthik Bhat // reductions which are represented as a cmp followed by a select. 32727b2c39eSTyler Nowicki InstDesc IgnoredVal(false, nullptr); 32876aa662cSKarthik Bhat if (VisitedInsts.insert(UI).second) { 32976aa662cSKarthik Bhat if (isa<PHINode>(UI)) 33076aa662cSKarthik Bhat PHIs.push_back(UI); 33176aa662cSKarthik Bhat else 33276aa662cSKarthik Bhat NonPHIs.push_back(UI); 33376aa662cSKarthik Bhat } else if (!isa<PHINode>(UI) && 33476aa662cSKarthik Bhat ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 33576aa662cSKarthik Bhat !isa<SelectInst>(UI)) || 3360a91310cSTyler Nowicki !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 33776aa662cSKarthik Bhat return false; 33876aa662cSKarthik Bhat 33976aa662cSKarthik Bhat // Remember that we completed the cycle. 34076aa662cSKarthik Bhat if (UI == Phi) 34176aa662cSKarthik Bhat FoundStartPHI = true; 34276aa662cSKarthik Bhat } 34376aa662cSKarthik Bhat Worklist.append(PHIs.begin(), PHIs.end()); 34476aa662cSKarthik Bhat Worklist.append(NonPHIs.begin(), NonPHIs.end()); 34576aa662cSKarthik Bhat } 34676aa662cSKarthik Bhat 34776aa662cSKarthik Bhat // This means we have seen one but not the other instruction of the 34876aa662cSKarthik Bhat // pattern or more than just a select and cmp. 34976aa662cSKarthik Bhat if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 35076aa662cSKarthik Bhat NumCmpSelectPatternInst != 2) 35176aa662cSKarthik Bhat return false; 35276aa662cSKarthik Bhat 35376aa662cSKarthik Bhat if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 35476aa662cSKarthik Bhat return false; 35576aa662cSKarthik Bhat 356c94f8e29SChad Rosier // If we think Phi may have been type-promoted, we also need to ensure that 357c94f8e29SChad Rosier // all source operands of the reduction are either SExtInsts or ZEstInsts. If 358c94f8e29SChad Rosier // so, we will be able to evaluate the reduction in the narrower bit width. 359c94f8e29SChad Rosier if (Start != Phi) 360c94f8e29SChad Rosier if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 361c94f8e29SChad Rosier IsSigned, VisitedInsts, CastInsts)) 362c94f8e29SChad Rosier return false; 363c94f8e29SChad Rosier 36476aa662cSKarthik Bhat // We found a reduction var if we have reached the original phi node and we 36576aa662cSKarthik Bhat // only have a single instruction with out-of-loop users. 36676aa662cSKarthik Bhat 36776aa662cSKarthik Bhat // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 3680a91310cSTyler Nowicki // is saved as part of the RecurrenceDescriptor. 36976aa662cSKarthik Bhat 37076aa662cSKarthik Bhat // Save the description of this reduction variable. 371c94f8e29SChad Rosier RecurrenceDescriptor RD( 372c94f8e29SChad Rosier RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 373c94f8e29SChad Rosier ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 37476aa662cSKarthik Bhat RedDes = RD; 37576aa662cSKarthik Bhat 37676aa662cSKarthik Bhat return true; 37776aa662cSKarthik Bhat } 37876aa662cSKarthik Bhat 37976aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 38076aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y). 38127b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 38227b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 38376aa662cSKarthik Bhat 38476aa662cSKarthik Bhat assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 38576aa662cSKarthik Bhat "Expect a select instruction"); 38676aa662cSKarthik Bhat Instruction *Cmp = nullptr; 38776aa662cSKarthik Bhat SelectInst *Select = nullptr; 38876aa662cSKarthik Bhat 38976aa662cSKarthik Bhat // We must handle the select(cmp()) as a single instruction. Advance to the 39076aa662cSKarthik Bhat // select. 39176aa662cSKarthik Bhat if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 39276aa662cSKarthik Bhat if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 39327b2c39eSTyler Nowicki return InstDesc(false, I); 39427b2c39eSTyler Nowicki return InstDesc(Select, Prev.getMinMaxKind()); 39576aa662cSKarthik Bhat } 39676aa662cSKarthik Bhat 39776aa662cSKarthik Bhat // Only handle single use cases for now. 39876aa662cSKarthik Bhat if (!(Select = dyn_cast<SelectInst>(I))) 39927b2c39eSTyler Nowicki return InstDesc(false, I); 40076aa662cSKarthik Bhat if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 40176aa662cSKarthik Bhat !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 40227b2c39eSTyler Nowicki return InstDesc(false, I); 40376aa662cSKarthik Bhat if (!Cmp->hasOneUse()) 40427b2c39eSTyler Nowicki return InstDesc(false, I); 40576aa662cSKarthik Bhat 40676aa662cSKarthik Bhat Value *CmpLeft; 40776aa662cSKarthik Bhat Value *CmpRight; 40876aa662cSKarthik Bhat 40976aa662cSKarthik Bhat // Look for a min/max pattern. 41076aa662cSKarthik Bhat if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41127b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMin); 41276aa662cSKarthik Bhat else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41327b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMax); 41476aa662cSKarthik Bhat else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41527b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMax); 41676aa662cSKarthik Bhat else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41727b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMin); 41876aa662cSKarthik Bhat else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41927b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 42076aa662cSKarthik Bhat else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42127b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 42276aa662cSKarthik Bhat else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42327b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 42476aa662cSKarthik Bhat else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 42527b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 42676aa662cSKarthik Bhat 42727b2c39eSTyler Nowicki return InstDesc(false, I); 42876aa662cSKarthik Bhat } 42976aa662cSKarthik Bhat 43027b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 4310a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 43227b2c39eSTyler Nowicki InstDesc &Prev, bool HasFunNoNaNAttr) { 43376aa662cSKarthik Bhat bool FP = I->getType()->isFloatingPointTy(); 434c1a86f58STyler Nowicki Instruction *UAI = Prev.getUnsafeAlgebraInst(); 435c1a86f58STyler Nowicki if (!UAI && FP && !I->hasUnsafeAlgebra()) 436c1a86f58STyler Nowicki UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 437c1a86f58STyler Nowicki 43876aa662cSKarthik Bhat switch (I->getOpcode()) { 43976aa662cSKarthik Bhat default: 44027b2c39eSTyler Nowicki return InstDesc(false, I); 44176aa662cSKarthik Bhat case Instruction::PHI: 44210a1e8b1STim Northover return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 44376aa662cSKarthik Bhat case Instruction::Sub: 44476aa662cSKarthik Bhat case Instruction::Add: 44527b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAdd, I); 44676aa662cSKarthik Bhat case Instruction::Mul: 44727b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerMult, I); 44876aa662cSKarthik Bhat case Instruction::And: 44927b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAnd, I); 45076aa662cSKarthik Bhat case Instruction::Or: 45127b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerOr, I); 45276aa662cSKarthik Bhat case Instruction::Xor: 45327b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerXor, I); 45476aa662cSKarthik Bhat case Instruction::FMul: 455c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatMult, I, UAI); 45676aa662cSKarthik Bhat case Instruction::FSub: 45776aa662cSKarthik Bhat case Instruction::FAdd: 458c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatAdd, I, UAI); 45976aa662cSKarthik Bhat case Instruction::FCmp: 46076aa662cSKarthik Bhat case Instruction::ICmp: 46176aa662cSKarthik Bhat case Instruction::Select: 46276aa662cSKarthik Bhat if (Kind != RK_IntegerMinMax && 46376aa662cSKarthik Bhat (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 46427b2c39eSTyler Nowicki return InstDesc(false, I); 46576aa662cSKarthik Bhat return isMinMaxSelectCmpPattern(I, Prev); 46676aa662cSKarthik Bhat } 46776aa662cSKarthik Bhat } 46876aa662cSKarthik Bhat 4690a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf( 47076aa662cSKarthik Bhat Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 47176aa662cSKarthik Bhat unsigned NumUses = 0; 47276aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 47376aa662cSKarthik Bhat ++Use) { 47476aa662cSKarthik Bhat if (Insts.count(dyn_cast<Instruction>(*Use))) 47576aa662cSKarthik Bhat ++NumUses; 47676aa662cSKarthik Bhat if (NumUses > 1) 47776aa662cSKarthik Bhat return true; 47876aa662cSKarthik Bhat } 47976aa662cSKarthik Bhat 48076aa662cSKarthik Bhat return false; 48176aa662cSKarthik Bhat } 4820a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 4830a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 48476aa662cSKarthik Bhat 48576aa662cSKarthik Bhat BasicBlock *Header = TheLoop->getHeader(); 48676aa662cSKarthik Bhat Function &F = *Header->getParent(); 4878dd66e57SNirav Dave bool HasFunNoNaNAttr = 48876aa662cSKarthik Bhat F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 48976aa662cSKarthik Bhat 49076aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 49176aa662cSKarthik Bhat DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 49276aa662cSKarthik Bhat return true; 49376aa662cSKarthik Bhat } 49476aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 49576aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 49676aa662cSKarthik Bhat return true; 49776aa662cSKarthik Bhat } 49876aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 49976aa662cSKarthik Bhat DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 50076aa662cSKarthik Bhat return true; 50176aa662cSKarthik Bhat } 50276aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 50376aa662cSKarthik Bhat DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 50476aa662cSKarthik Bhat return true; 50576aa662cSKarthik Bhat } 50676aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 50776aa662cSKarthik Bhat DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 50876aa662cSKarthik Bhat return true; 50976aa662cSKarthik Bhat } 51076aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 51176aa662cSKarthik Bhat RedDes)) { 51276aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 51376aa662cSKarthik Bhat return true; 51476aa662cSKarthik Bhat } 51576aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 51676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 51776aa662cSKarthik Bhat return true; 51876aa662cSKarthik Bhat } 51976aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 52076aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 52176aa662cSKarthik Bhat return true; 52276aa662cSKarthik Bhat } 52376aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 52476aa662cSKarthik Bhat DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 52576aa662cSKarthik Bhat return true; 52676aa662cSKarthik Bhat } 52776aa662cSKarthik Bhat // Not a reduction of known type. 52876aa662cSKarthik Bhat return false; 52976aa662cSKarthik Bhat } 53076aa662cSKarthik Bhat 531*2ff59d43SAyal Zaks bool RecurrenceDescriptor::isFirstOrderRecurrence( 532*2ff59d43SAyal Zaks PHINode *Phi, Loop *TheLoop, 533*2ff59d43SAyal Zaks DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 53429c997c1SMatthew Simpson 53529c997c1SMatthew Simpson // Ensure the phi node is in the loop header and has two incoming values. 53629c997c1SMatthew Simpson if (Phi->getParent() != TheLoop->getHeader() || 53729c997c1SMatthew Simpson Phi->getNumIncomingValues() != 2) 53829c997c1SMatthew Simpson return false; 53929c997c1SMatthew Simpson 54029c997c1SMatthew Simpson // Ensure the loop has a preheader and a single latch block. The loop 54129c997c1SMatthew Simpson // vectorizer will need the latch to set up the next iteration of the loop. 54229c997c1SMatthew Simpson auto *Preheader = TheLoop->getLoopPreheader(); 54329c997c1SMatthew Simpson auto *Latch = TheLoop->getLoopLatch(); 54429c997c1SMatthew Simpson if (!Preheader || !Latch) 54529c997c1SMatthew Simpson return false; 54629c997c1SMatthew Simpson 54729c997c1SMatthew Simpson // Ensure the phi node's incoming blocks are the loop preheader and latch. 54829c997c1SMatthew Simpson if (Phi->getBasicBlockIndex(Preheader) < 0 || 54929c997c1SMatthew Simpson Phi->getBasicBlockIndex(Latch) < 0) 55029c997c1SMatthew Simpson return false; 55129c997c1SMatthew Simpson 55229c997c1SMatthew Simpson // Get the previous value. The previous value comes from the latch edge while 55329c997c1SMatthew Simpson // the initial value comes form the preheader edge. 55429c997c1SMatthew Simpson auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 555*2ff59d43SAyal Zaks if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 556*2ff59d43SAyal Zaks SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 55729c997c1SMatthew Simpson return false; 55829c997c1SMatthew Simpson 55900dc1b74SAnna Thomas // Ensure every user of the phi node is dominated by the previous value. 56000dc1b74SAnna Thomas // The dominance requirement ensures the loop vectorizer will not need to 56100dc1b74SAnna Thomas // vectorize the initial value prior to the first iteration of the loop. 562*2ff59d43SAyal Zaks // TODO: Consider extending this sinking to handle other kinds of instructions 563*2ff59d43SAyal Zaks // and expressions, beyond sinking a single cast past Previous. 564*2ff59d43SAyal Zaks if (Phi->hasOneUse()) { 565*2ff59d43SAyal Zaks auto *I = Phi->user_back(); 566*2ff59d43SAyal Zaks if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && 567*2ff59d43SAyal Zaks DT->dominates(Previous, I->user_back())) { 568*2ff59d43SAyal Zaks SinkAfter[I] = Previous; 569*2ff59d43SAyal Zaks return true; 570*2ff59d43SAyal Zaks } 571*2ff59d43SAyal Zaks } 572*2ff59d43SAyal Zaks 573dcdb325fSAnna Thomas for (User *U : Phi->users()) 574dcdb325fSAnna Thomas if (auto *I = dyn_cast<Instruction>(U)) { 57529c997c1SMatthew Simpson if (!DT->dominates(Previous, I)) 57629c997c1SMatthew Simpson return false; 57700dc1b74SAnna Thomas } 57829c997c1SMatthew Simpson 57929c997c1SMatthew Simpson return true; 58029c997c1SMatthew Simpson } 58129c997c1SMatthew Simpson 58276aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for 58376aa662cSKarthik Bhat /// the operation K. 5840a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 5850a91310cSTyler Nowicki Type *Tp) { 58676aa662cSKarthik Bhat switch (K) { 58776aa662cSKarthik Bhat case RK_IntegerXor: 58876aa662cSKarthik Bhat case RK_IntegerAdd: 58976aa662cSKarthik Bhat case RK_IntegerOr: 59076aa662cSKarthik Bhat // Adding, Xoring, Oring zero to a number does not change it. 59176aa662cSKarthik Bhat return ConstantInt::get(Tp, 0); 59276aa662cSKarthik Bhat case RK_IntegerMult: 59376aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 59476aa662cSKarthik Bhat return ConstantInt::get(Tp, 1); 59576aa662cSKarthik Bhat case RK_IntegerAnd: 59676aa662cSKarthik Bhat // AND-ing a number with an all-1 value does not change it. 59776aa662cSKarthik Bhat return ConstantInt::get(Tp, -1, true); 59876aa662cSKarthik Bhat case RK_FloatMult: 59976aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 60076aa662cSKarthik Bhat return ConstantFP::get(Tp, 1.0L); 60176aa662cSKarthik Bhat case RK_FloatAdd: 60276aa662cSKarthik Bhat // Adding zero to a number does not change it. 60376aa662cSKarthik Bhat return ConstantFP::get(Tp, 0.0L); 60476aa662cSKarthik Bhat default: 6050a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence kind"); 60676aa662cSKarthik Bhat } 60776aa662cSKarthik Bhat } 60876aa662cSKarthik Bhat 6090a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator. 6100a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 61176aa662cSKarthik Bhat switch (Kind) { 61276aa662cSKarthik Bhat case RK_IntegerAdd: 61376aa662cSKarthik Bhat return Instruction::Add; 61476aa662cSKarthik Bhat case RK_IntegerMult: 61576aa662cSKarthik Bhat return Instruction::Mul; 61676aa662cSKarthik Bhat case RK_IntegerOr: 61776aa662cSKarthik Bhat return Instruction::Or; 61876aa662cSKarthik Bhat case RK_IntegerAnd: 61976aa662cSKarthik Bhat return Instruction::And; 62076aa662cSKarthik Bhat case RK_IntegerXor: 62176aa662cSKarthik Bhat return Instruction::Xor; 62276aa662cSKarthik Bhat case RK_FloatMult: 62376aa662cSKarthik Bhat return Instruction::FMul; 62476aa662cSKarthik Bhat case RK_FloatAdd: 62576aa662cSKarthik Bhat return Instruction::FAdd; 62676aa662cSKarthik Bhat case RK_IntegerMinMax: 62776aa662cSKarthik Bhat return Instruction::ICmp; 62876aa662cSKarthik Bhat case RK_FloatMinMax: 62976aa662cSKarthik Bhat return Instruction::FCmp; 63076aa662cSKarthik Bhat default: 6310a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence operation"); 63276aa662cSKarthik Bhat } 63376aa662cSKarthik Bhat } 63476aa662cSKarthik Bhat 63527b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 63627b2c39eSTyler Nowicki MinMaxRecurrenceKind RK, 63776aa662cSKarthik Bhat Value *Left, Value *Right) { 63876aa662cSKarthik Bhat CmpInst::Predicate P = CmpInst::ICMP_NE; 63976aa662cSKarthik Bhat switch (RK) { 64076aa662cSKarthik Bhat default: 6410a91310cSTyler Nowicki llvm_unreachable("Unknown min/max recurrence kind"); 64227b2c39eSTyler Nowicki case MRK_UIntMin: 64376aa662cSKarthik Bhat P = CmpInst::ICMP_ULT; 64476aa662cSKarthik Bhat break; 64527b2c39eSTyler Nowicki case MRK_UIntMax: 64676aa662cSKarthik Bhat P = CmpInst::ICMP_UGT; 64776aa662cSKarthik Bhat break; 64827b2c39eSTyler Nowicki case MRK_SIntMin: 64976aa662cSKarthik Bhat P = CmpInst::ICMP_SLT; 65076aa662cSKarthik Bhat break; 65127b2c39eSTyler Nowicki case MRK_SIntMax: 65276aa662cSKarthik Bhat P = CmpInst::ICMP_SGT; 65376aa662cSKarthik Bhat break; 65427b2c39eSTyler Nowicki case MRK_FloatMin: 65576aa662cSKarthik Bhat P = CmpInst::FCMP_OLT; 65676aa662cSKarthik Bhat break; 65727b2c39eSTyler Nowicki case MRK_FloatMax: 65876aa662cSKarthik Bhat P = CmpInst::FCMP_OGT; 65976aa662cSKarthik Bhat break; 66076aa662cSKarthik Bhat } 66176aa662cSKarthik Bhat 66250a4c27fSJames Molloy // We only match FP sequences with unsafe algebra, so we can unconditionally 66350a4c27fSJames Molloy // set it on any generated instructions. 66450a4c27fSJames Molloy IRBuilder<>::FastMathFlagGuard FMFG(Builder); 66550a4c27fSJames Molloy FastMathFlags FMF; 66650a4c27fSJames Molloy FMF.setUnsafeAlgebra(); 667a252815bSSanjay Patel Builder.setFastMathFlags(FMF); 66850a4c27fSJames Molloy 66976aa662cSKarthik Bhat Value *Cmp; 67027b2c39eSTyler Nowicki if (RK == MRK_FloatMin || RK == MRK_FloatMax) 67176aa662cSKarthik Bhat Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 67276aa662cSKarthik Bhat else 67376aa662cSKarthik Bhat Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 67476aa662cSKarthik Bhat 67576aa662cSKarthik Bhat Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 67676aa662cSKarthik Bhat return Select; 67776aa662cSKarthik Bhat } 67824e6cc2dSKarthik Bhat 6791bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 680376a18bdSElena Demikhovsky const SCEV *Step, BinaryOperator *BOp) 681376a18bdSElena Demikhovsky : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 6821bbf15c5SJames Molloy assert(IK != IK_NoInduction && "Not an induction"); 683c434d091SElena Demikhovsky 684c434d091SElena Demikhovsky // Start value type should match the induction kind and the value 685c434d091SElena Demikhovsky // itself should not be null. 6861bbf15c5SJames Molloy assert(StartValue && "StartValue is null"); 6871bbf15c5SJames Molloy assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 6881bbf15c5SJames Molloy "StartValue is not a pointer for pointer induction"); 6891bbf15c5SJames Molloy assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 6901bbf15c5SJames Molloy "StartValue is not an integer for integer induction"); 691c434d091SElena Demikhovsky 692c434d091SElena Demikhovsky // Check the Step Value. It should be non-zero integer value. 693c434d091SElena Demikhovsky assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 694c434d091SElena Demikhovsky "Step value is zero"); 695c434d091SElena Demikhovsky 696c434d091SElena Demikhovsky assert((IK != IK_PtrInduction || getConstIntStepValue()) && 697c434d091SElena Demikhovsky "Step value should be constant for pointer induction"); 698376a18bdSElena Demikhovsky assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 699376a18bdSElena Demikhovsky "StepValue is not an integer"); 700376a18bdSElena Demikhovsky 701376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 702376a18bdSElena Demikhovsky "StepValue is not FP for FpInduction"); 703376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || (InductionBinOp && 704376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 705376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub))) && 706376a18bdSElena Demikhovsky "Binary opcode should be specified for FP induction"); 7071bbf15c5SJames Molloy } 7081bbf15c5SJames Molloy 7091bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const { 710c434d091SElena Demikhovsky ConstantInt *ConstStep = getConstIntStepValue(); 711c434d091SElena Demikhovsky if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 712c434d091SElena Demikhovsky return ConstStep->getSExtValue(); 7131bbf15c5SJames Molloy return 0; 7141bbf15c5SJames Molloy } 7151bbf15c5SJames Molloy 716c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const { 717c434d091SElena Demikhovsky if (isa<SCEVConstant>(Step)) 718c434d091SElena Demikhovsky return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 719c434d091SElena Demikhovsky return nullptr; 720c434d091SElena Demikhovsky } 721c434d091SElena Demikhovsky 722c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 723c434d091SElena Demikhovsky ScalarEvolution *SE, 724c434d091SElena Demikhovsky const DataLayout& DL) const { 725c434d091SElena Demikhovsky 726c434d091SElena Demikhovsky SCEVExpander Exp(*SE, DL, "induction"); 727376a18bdSElena Demikhovsky assert(Index->getType() == Step->getType() && 728376a18bdSElena Demikhovsky "Index type does not match StepValue type"); 7291bbf15c5SJames Molloy switch (IK) { 730c434d091SElena Demikhovsky case IK_IntInduction: { 7311bbf15c5SJames Molloy assert(Index->getType() == StartValue->getType() && 7321bbf15c5SJames Molloy "Index type does not match StartValue type"); 733c434d091SElena Demikhovsky 734c434d091SElena Demikhovsky // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 735c434d091SElena Demikhovsky // and calculate (Start + Index * Step) for all cases, without 736c434d091SElena Demikhovsky // special handling for "isOne" and "isMinusOne". 737c434d091SElena Demikhovsky // But in the real life the result code getting worse. We mix SCEV 738c434d091SElena Demikhovsky // expressions and ADD/SUB operations and receive redundant 739c434d091SElena Demikhovsky // intermediate values being calculated in different ways and 740c434d091SElena Demikhovsky // Instcombine is unable to reduce them all. 741c434d091SElena Demikhovsky 742c434d091SElena Demikhovsky if (getConstIntStepValue() && 743c434d091SElena Demikhovsky getConstIntStepValue()->isMinusOne()) 7441bbf15c5SJames Molloy return B.CreateSub(StartValue, Index); 745c434d091SElena Demikhovsky if (getConstIntStepValue() && 746c434d091SElena Demikhovsky getConstIntStepValue()->isOne()) 7471bbf15c5SJames Molloy return B.CreateAdd(StartValue, Index); 748c434d091SElena Demikhovsky const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 749c434d091SElena Demikhovsky SE->getMulExpr(Step, SE->getSCEV(Index))); 750c434d091SElena Demikhovsky return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 751c434d091SElena Demikhovsky } 752c434d091SElena Demikhovsky case IK_PtrInduction: { 753c434d091SElena Demikhovsky assert(isa<SCEVConstant>(Step) && 754c434d091SElena Demikhovsky "Expected constant step for pointer induction"); 755c434d091SElena Demikhovsky const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 756c434d091SElena Demikhovsky Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 7571bbf15c5SJames Molloy return B.CreateGEP(nullptr, StartValue, Index); 758c434d091SElena Demikhovsky } 759376a18bdSElena Demikhovsky case IK_FpInduction: { 760376a18bdSElena Demikhovsky assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 761376a18bdSElena Demikhovsky assert(InductionBinOp && 762376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 763376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub) && 764376a18bdSElena Demikhovsky "Original bin op should be defined for FP induction"); 765376a18bdSElena Demikhovsky 766376a18bdSElena Demikhovsky Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 767376a18bdSElena Demikhovsky 768376a18bdSElena Demikhovsky // Floating point operations had to be 'fast' to enable the induction. 769376a18bdSElena Demikhovsky FastMathFlags Flags; 770376a18bdSElena Demikhovsky Flags.setUnsafeAlgebra(); 771376a18bdSElena Demikhovsky 772376a18bdSElena Demikhovsky Value *MulExp = B.CreateFMul(StepValue, Index); 773376a18bdSElena Demikhovsky if (isa<Instruction>(MulExp)) 774376a18bdSElena Demikhovsky // We have to check, the MulExp may be a constant. 775376a18bdSElena Demikhovsky cast<Instruction>(MulExp)->setFastMathFlags(Flags); 776376a18bdSElena Demikhovsky 777376a18bdSElena Demikhovsky Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 778376a18bdSElena Demikhovsky MulExp, "induction"); 779376a18bdSElena Demikhovsky if (isa<Instruction>(BOp)) 780376a18bdSElena Demikhovsky cast<Instruction>(BOp)->setFastMathFlags(Flags); 781376a18bdSElena Demikhovsky 782376a18bdSElena Demikhovsky return BOp; 783376a18bdSElena Demikhovsky } 7841bbf15c5SJames Molloy case IK_NoInduction: 7851bbf15c5SJames Molloy return nullptr; 7861bbf15c5SJames Molloy } 7871bbf15c5SJames Molloy llvm_unreachable("invalid enum"); 7881bbf15c5SJames Molloy } 7891bbf15c5SJames Molloy 790376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 791376a18bdSElena Demikhovsky ScalarEvolution *SE, 792376a18bdSElena Demikhovsky InductionDescriptor &D) { 793376a18bdSElena Demikhovsky 794376a18bdSElena Demikhovsky // Here we only handle FP induction variables. 795376a18bdSElena Demikhovsky assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 796376a18bdSElena Demikhovsky 797376a18bdSElena Demikhovsky if (TheLoop->getHeader() != Phi->getParent()) 798376a18bdSElena Demikhovsky return false; 799376a18bdSElena Demikhovsky 800376a18bdSElena Demikhovsky // The loop may have multiple entrances or multiple exits; we can analyze 801376a18bdSElena Demikhovsky // this phi if it has a unique entry value and a unique backedge value. 802376a18bdSElena Demikhovsky if (Phi->getNumIncomingValues() != 2) 803376a18bdSElena Demikhovsky return false; 804376a18bdSElena Demikhovsky Value *BEValue = nullptr, *StartValue = nullptr; 805376a18bdSElena Demikhovsky if (TheLoop->contains(Phi->getIncomingBlock(0))) { 806376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(0); 807376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(1); 808376a18bdSElena Demikhovsky } else { 809376a18bdSElena Demikhovsky assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 810376a18bdSElena Demikhovsky "Unexpected Phi node in the loop"); 811376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(1); 812376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(0); 813376a18bdSElena Demikhovsky } 814376a18bdSElena Demikhovsky 815376a18bdSElena Demikhovsky BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 816376a18bdSElena Demikhovsky if (!BOp) 817376a18bdSElena Demikhovsky return false; 818376a18bdSElena Demikhovsky 819376a18bdSElena Demikhovsky Value *Addend = nullptr; 820376a18bdSElena Demikhovsky if (BOp->getOpcode() == Instruction::FAdd) { 821376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 822376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 823376a18bdSElena Demikhovsky else if (BOp->getOperand(1) == Phi) 824376a18bdSElena Demikhovsky Addend = BOp->getOperand(0); 825376a18bdSElena Demikhovsky } else if (BOp->getOpcode() == Instruction::FSub) 826376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 827376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 828376a18bdSElena Demikhovsky 829376a18bdSElena Demikhovsky if (!Addend) 830376a18bdSElena Demikhovsky return false; 831376a18bdSElena Demikhovsky 832376a18bdSElena Demikhovsky // The addend should be loop invariant 833376a18bdSElena Demikhovsky if (auto *I = dyn_cast<Instruction>(Addend)) 834376a18bdSElena Demikhovsky if (TheLoop->contains(I)) 835376a18bdSElena Demikhovsky return false; 836376a18bdSElena Demikhovsky 837376a18bdSElena Demikhovsky // FP Step has unknown SCEV 838376a18bdSElena Demikhovsky const SCEV *Step = SE->getUnknown(Addend); 839376a18bdSElena Demikhovsky D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 840376a18bdSElena Demikhovsky return true; 841376a18bdSElena Demikhovsky } 842376a18bdSElena Demikhovsky 843376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 844c05bab8aSSilviu Baranga PredicatedScalarEvolution &PSE, 845c05bab8aSSilviu Baranga InductionDescriptor &D, 846c05bab8aSSilviu Baranga bool Assume) { 847c05bab8aSSilviu Baranga Type *PhiTy = Phi->getType(); 848376a18bdSElena Demikhovsky 849376a18bdSElena Demikhovsky // Handle integer and pointer inductions variables. 850376a18bdSElena Demikhovsky // Now we handle also FP induction but not trying to make a 851376a18bdSElena Demikhovsky // recurrent expression from the PHI node in-place. 852376a18bdSElena Demikhovsky 853376a18bdSElena Demikhovsky if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 854376a18bdSElena Demikhovsky !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 855c05bab8aSSilviu Baranga return false; 856c05bab8aSSilviu Baranga 857376a18bdSElena Demikhovsky if (PhiTy->isFloatingPointTy()) 858376a18bdSElena Demikhovsky return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 859376a18bdSElena Demikhovsky 860c05bab8aSSilviu Baranga const SCEV *PhiScev = PSE.getSCEV(Phi); 861c05bab8aSSilviu Baranga const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 862c05bab8aSSilviu Baranga 863c05bab8aSSilviu Baranga // We need this expression to be an AddRecExpr. 864c05bab8aSSilviu Baranga if (Assume && !AR) 865c05bab8aSSilviu Baranga AR = PSE.getAsAddRec(Phi); 866c05bab8aSSilviu Baranga 867c05bab8aSSilviu Baranga if (!AR) { 868c05bab8aSSilviu Baranga DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 869c05bab8aSSilviu Baranga return false; 870c05bab8aSSilviu Baranga } 871c05bab8aSSilviu Baranga 872376a18bdSElena Demikhovsky return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 873c05bab8aSSilviu Baranga } 874c05bab8aSSilviu Baranga 875376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 876c05bab8aSSilviu Baranga ScalarEvolution *SE, 877c05bab8aSSilviu Baranga InductionDescriptor &D, 878c05bab8aSSilviu Baranga const SCEV *Expr) { 87924e6cc2dSKarthik Bhat Type *PhiTy = Phi->getType(); 88024e6cc2dSKarthik Bhat // We only handle integer and pointer inductions variables. 88124e6cc2dSKarthik Bhat if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 88224e6cc2dSKarthik Bhat return false; 88324e6cc2dSKarthik Bhat 88424e6cc2dSKarthik Bhat // Check that the PHI is consecutive. 885c05bab8aSSilviu Baranga const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 88624e6cc2dSKarthik Bhat const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 887c05bab8aSSilviu Baranga 88824e6cc2dSKarthik Bhat if (!AR) { 88924e6cc2dSKarthik Bhat DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 89024e6cc2dSKarthik Bhat return false; 89124e6cc2dSKarthik Bhat } 89224e6cc2dSKarthik Bhat 893ee31cbe3SMichael Kuperstein if (AR->getLoop() != TheLoop) { 894ee31cbe3SMichael Kuperstein // FIXME: We should treat this as a uniform. Unfortunately, we 895ee31cbe3SMichael Kuperstein // don't currently know how to handled uniform PHIs. 896ee31cbe3SMichael Kuperstein DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 897ee31cbe3SMichael Kuperstein return false; 898ee31cbe3SMichael Kuperstein } 899ee31cbe3SMichael Kuperstein 9001bbf15c5SJames Molloy Value *StartValue = 9011bbf15c5SJames Molloy Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 90224e6cc2dSKarthik Bhat const SCEV *Step = AR->getStepRecurrence(*SE); 90324e6cc2dSKarthik Bhat // Calculate the pointer stride and check if it is consecutive. 904c434d091SElena Demikhovsky // The stride may be a constant or a loop invariant integer value. 905c434d091SElena Demikhovsky const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 906376a18bdSElena Demikhovsky if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 90724e6cc2dSKarthik Bhat return false; 90824e6cc2dSKarthik Bhat 90924e6cc2dSKarthik Bhat if (PhiTy->isIntegerTy()) { 910c434d091SElena Demikhovsky D = InductionDescriptor(StartValue, IK_IntInduction, Step); 91124e6cc2dSKarthik Bhat return true; 91224e6cc2dSKarthik Bhat } 91324e6cc2dSKarthik Bhat 91424e6cc2dSKarthik Bhat assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 915c434d091SElena Demikhovsky // Pointer induction should be a constant. 916c434d091SElena Demikhovsky if (!ConstStep) 917c434d091SElena Demikhovsky return false; 918c434d091SElena Demikhovsky 919c434d091SElena Demikhovsky ConstantInt *CV = ConstStep->getValue(); 92024e6cc2dSKarthik Bhat Type *PointerElementType = PhiTy->getPointerElementType(); 92124e6cc2dSKarthik Bhat // The pointer stride cannot be determined if the pointer element type is not 92224e6cc2dSKarthik Bhat // sized. 92324e6cc2dSKarthik Bhat if (!PointerElementType->isSized()) 92424e6cc2dSKarthik Bhat return false; 92524e6cc2dSKarthik Bhat 92624e6cc2dSKarthik Bhat const DataLayout &DL = Phi->getModule()->getDataLayout(); 92724e6cc2dSKarthik Bhat int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 928b58f32f7SDavid Majnemer if (!Size) 929b58f32f7SDavid Majnemer return false; 930b58f32f7SDavid Majnemer 93124e6cc2dSKarthik Bhat int64_t CVSize = CV->getSExtValue(); 93224e6cc2dSKarthik Bhat if (CVSize % Size) 93324e6cc2dSKarthik Bhat return false; 934c434d091SElena Demikhovsky auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 935c434d091SElena Demikhovsky true /* signed */); 9361bbf15c5SJames Molloy D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 93724e6cc2dSKarthik Bhat return true; 93824e6cc2dSKarthik Bhat } 939c5b7b555SAshutosh Nema 9404a000883SChandler Carruth bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 9414a000883SChandler Carruth bool PreserveLCSSA) { 9424a000883SChandler Carruth bool Changed = false; 9434a000883SChandler Carruth 9444a000883SChandler Carruth // We re-use a vector for the in-loop predecesosrs. 9454a000883SChandler Carruth SmallVector<BasicBlock *, 4> InLoopPredecessors; 9464a000883SChandler Carruth 9474a000883SChandler Carruth auto RewriteExit = [&](BasicBlock *BB) { 9484a000883SChandler Carruth assert(InLoopPredecessors.empty() && 9494a000883SChandler Carruth "Must start with an empty predecessors list!"); 9504a000883SChandler Carruth auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 9514a000883SChandler Carruth 9524a000883SChandler Carruth // See if there are any non-loop predecessors of this exit block and 9534a000883SChandler Carruth // keep track of the in-loop predecessors. 9544a000883SChandler Carruth bool IsDedicatedExit = true; 9554a000883SChandler Carruth for (auto *PredBB : predecessors(BB)) 9564a000883SChandler Carruth if (L->contains(PredBB)) { 9574a000883SChandler Carruth if (isa<IndirectBrInst>(PredBB->getTerminator())) 9584a000883SChandler Carruth // We cannot rewrite exiting edges from an indirectbr. 9594a000883SChandler Carruth return false; 9604a000883SChandler Carruth 9614a000883SChandler Carruth InLoopPredecessors.push_back(PredBB); 9624a000883SChandler Carruth } else { 9634a000883SChandler Carruth IsDedicatedExit = false; 9644a000883SChandler Carruth } 9654a000883SChandler Carruth 9664a000883SChandler Carruth assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 9674a000883SChandler Carruth 9684a000883SChandler Carruth // Nothing to do if this is already a dedicated exit. 9694a000883SChandler Carruth if (IsDedicatedExit) 9704a000883SChandler Carruth return false; 9714a000883SChandler Carruth 9724a000883SChandler Carruth auto *NewExitBB = SplitBlockPredecessors( 9734a000883SChandler Carruth BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA); 9744a000883SChandler Carruth 9754a000883SChandler Carruth if (!NewExitBB) 9764a000883SChandler Carruth DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 9774a000883SChandler Carruth << *L << "\n"); 9784a000883SChandler Carruth else 9794a000883SChandler Carruth DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 9804a000883SChandler Carruth << NewExitBB->getName() << "\n"); 9814a000883SChandler Carruth return true; 9824a000883SChandler Carruth }; 9834a000883SChandler Carruth 9844a000883SChandler Carruth // Walk the exit blocks directly rather than building up a data structure for 9854a000883SChandler Carruth // them, but only visit each one once. 9864a000883SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 9874a000883SChandler Carruth for (auto *BB : L->blocks()) 9884a000883SChandler Carruth for (auto *SuccBB : successors(BB)) { 9894a000883SChandler Carruth // We're looking for exit blocks so skip in-loop successors. 9904a000883SChandler Carruth if (L->contains(SuccBB)) 9914a000883SChandler Carruth continue; 9924a000883SChandler Carruth 9934a000883SChandler Carruth // Visit each exit block exactly once. 9944a000883SChandler Carruth if (!Visited.insert(SuccBB).second) 9954a000883SChandler Carruth continue; 9964a000883SChandler Carruth 9974a000883SChandler Carruth Changed |= RewriteExit(SuccBB); 9984a000883SChandler Carruth } 9994a000883SChandler Carruth 10004a000883SChandler Carruth return Changed; 10014a000883SChandler Carruth } 10024a000883SChandler Carruth 1003c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop. 1004c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 1005c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 1006c5b7b555SAshutosh Nema 1007c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 1008c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 1009c5b7b555SAshutosh Nema // be adapted into a pointer. 1010c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 1011c5b7b555SAshutosh Nema auto Users = Inst.users(); 10120a16c228SDavid Majnemer if (any_of(Users, [&](User *U) { 1013c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 1014c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 1015c5b7b555SAshutosh Nema })) 1016c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 1017c5b7b555SAshutosh Nema } 1018c5b7b555SAshutosh Nema 1019c5b7b555SAshutosh Nema return UsedOutside; 1020c5b7b555SAshutosh Nema } 102131088a9dSChandler Carruth 102231088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 102331088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 102431088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 102531088a9dSChandler Carruth // pass manager, they must also preserve these. 102631088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 102731088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 102831088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 102931088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 103031088a9dSChandler Carruth 103131088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 103231088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 103331088a9dSChandler Carruth extern char &LoopSimplifyID; 103431088a9dSChandler Carruth extern char &LCSSAID; 103531088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 103631088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 103731088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 103831088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 1039c3ccf5d7SIgor Laevsky // This is used in the LPPassManager to perform LCSSA verification on passes 1040c3ccf5d7SIgor Laevsky // which preserve lcssa form 1041c3ccf5d7SIgor Laevsky AU.addRequired<LCSSAVerificationPass>(); 1042c3ccf5d7SIgor Laevsky AU.addPreserved<LCSSAVerificationPass>(); 104331088a9dSChandler Carruth 104431088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 104531088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 104631088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 104731088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 104831088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 104931088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 105031088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 105131088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 105231088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 105331088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 105431088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 105531088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 105631088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 105731088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 105831088a9dSChandler Carruth } 105931088a9dSChandler Carruth 106031088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 106131088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 106231088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 106331088a9dSChandler Carruth /// with: 106431088a9dSChandler Carruth /// 106531088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 106631088a9dSChandler Carruth /// 106731088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 106831088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 106931088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 107031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 107131088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1072e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 107331088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 107431088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 107531088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 107631088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 107731088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 107831088a9dSChandler Carruth } 1079963341c8SAdam Nemet 1080fe3def7cSAdam Nemet /// \brief Find string metadata for loop 1081fe3def7cSAdam Nemet /// 1082fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1083fe3def7cSAdam Nemet /// operand or null otherwise. If the string metadata is not found return 1084fe3def7cSAdam Nemet /// Optional's not-a-value. 1085fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 1086fe3def7cSAdam Nemet StringRef Name) { 1087963341c8SAdam Nemet MDNode *LoopID = TheLoop->getLoopID(); 1088fe3def7cSAdam Nemet // Return none if LoopID is false. 1089963341c8SAdam Nemet if (!LoopID) 1090fe3def7cSAdam Nemet return None; 1091293be666SAdam Nemet 1092293be666SAdam Nemet // First operand should refer to the loop id itself. 1093293be666SAdam Nemet assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1094293be666SAdam Nemet assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1095293be666SAdam Nemet 1096963341c8SAdam Nemet // Iterate over LoopID operands and look for MDString Metadata 1097963341c8SAdam Nemet for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1098963341c8SAdam Nemet MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1099963341c8SAdam Nemet if (!MD) 1100963341c8SAdam Nemet continue; 1101963341c8SAdam Nemet MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1102963341c8SAdam Nemet if (!S) 1103963341c8SAdam Nemet continue; 1104963341c8SAdam Nemet // Return true if MDString holds expected MetaData. 1105963341c8SAdam Nemet if (Name.equals(S->getString())) 1106fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 1107fe3def7cSAdam Nemet case 1: 1108fe3def7cSAdam Nemet return nullptr; 1109fe3def7cSAdam Nemet case 2: 1110fe3def7cSAdam Nemet return &MD->getOperand(1); 1111fe3def7cSAdam Nemet default: 1112fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 1113963341c8SAdam Nemet } 1114fe3def7cSAdam Nemet } 1115fe3def7cSAdam Nemet return None; 1116963341c8SAdam Nemet } 1117122f984aSEvgeniy Stepanov 1118122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least 1119122f984aSEvgeniy Stepanov /// once. 1120122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst, 1121122f984aSEvgeniy Stepanov const DominatorTree *DT, const Loop *CurLoop, 1122122f984aSEvgeniy Stepanov const LoopSafetyInfo *SafetyInfo) { 1123122f984aSEvgeniy Stepanov // We have to check to make sure that the instruction dominates all 112458ccc094SEvgeniy Stepanov // of the exit blocks. If it doesn't, then there is a path out of the loop 112558ccc094SEvgeniy Stepanov // which does not execute this instruction, so we can't hoist it. 112658ccc094SEvgeniy Stepanov 112758ccc094SEvgeniy Stepanov // If the instruction is in the header block for the loop (which is very 112858ccc094SEvgeniy Stepanov // common), it is always guaranteed to dominate the exit blocks. Since this 112958ccc094SEvgeniy Stepanov // is a common case, and can save some work, check it now. 113058ccc094SEvgeniy Stepanov if (Inst.getParent() == CurLoop->getHeader()) 113158ccc094SEvgeniy Stepanov // If there's a throw in the header block, we can't guarantee we'll reach 113258ccc094SEvgeniy Stepanov // Inst. 113358ccc094SEvgeniy Stepanov return !SafetyInfo->HeaderMayThrow; 113458ccc094SEvgeniy Stepanov 113558ccc094SEvgeniy Stepanov // Somewhere in this loop there is an instruction which may throw and make us 113658ccc094SEvgeniy Stepanov // exit the loop. 113758ccc094SEvgeniy Stepanov if (SafetyInfo->MayThrow) 1138122f984aSEvgeniy Stepanov return false; 1139122f984aSEvgeniy Stepanov 1140122f984aSEvgeniy Stepanov // Get the exit blocks for the current loop. 1141122f984aSEvgeniy Stepanov SmallVector<BasicBlock *, 8> ExitBlocks; 1142122f984aSEvgeniy Stepanov CurLoop->getExitBlocks(ExitBlocks); 1143122f984aSEvgeniy Stepanov 1144122f984aSEvgeniy Stepanov // Verify that the block dominates each of the exit blocks of the loop. 1145122f984aSEvgeniy Stepanov for (BasicBlock *ExitBlock : ExitBlocks) 1146122f984aSEvgeniy Stepanov if (!DT->dominates(Inst.getParent(), ExitBlock)) 1147122f984aSEvgeniy Stepanov return false; 1148122f984aSEvgeniy Stepanov 1149122f984aSEvgeniy Stepanov // As a degenerate case, if the loop is statically infinite then we haven't 1150122f984aSEvgeniy Stepanov // proven anything since there are no exit blocks. 115158ccc094SEvgeniy Stepanov if (ExitBlocks.empty()) 1152122f984aSEvgeniy Stepanov return false; 1153122f984aSEvgeniy Stepanov 1154f1da33e4SEli Friedman // FIXME: In general, we have to prove that the loop isn't an infinite loop. 1155f1da33e4SEli Friedman // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 1156f1da33e4SEli Friedman // just a special case of this.) 1157122f984aSEvgeniy Stepanov return true; 1158122f984aSEvgeniy Stepanov } 115941d72a86SDehao Chen 116041d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 116141d72a86SDehao Chen // Only support loops with a unique exiting block, and a latch. 116241d72a86SDehao Chen if (!L->getExitingBlock()) 116341d72a86SDehao Chen return None; 116441d72a86SDehao Chen 116541d72a86SDehao Chen // Get the branch weights for the the loop's backedge. 116641d72a86SDehao Chen BranchInst *LatchBR = 116741d72a86SDehao Chen dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 116841d72a86SDehao Chen if (!LatchBR || LatchBR->getNumSuccessors() != 2) 116941d72a86SDehao Chen return None; 117041d72a86SDehao Chen 117141d72a86SDehao Chen assert((LatchBR->getSuccessor(0) == L->getHeader() || 117241d72a86SDehao Chen LatchBR->getSuccessor(1) == L->getHeader()) && 117341d72a86SDehao Chen "At least one edge out of the latch must go to the header"); 117441d72a86SDehao Chen 117541d72a86SDehao Chen // To estimate the number of times the loop body was executed, we want to 117641d72a86SDehao Chen // know the number of times the backedge was taken, vs. the number of times 117741d72a86SDehao Chen // we exited the loop. 117841d72a86SDehao Chen uint64_t TrueVal, FalseVal; 1179b151a641SMichael Kuperstein if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 118041d72a86SDehao Chen return None; 118141d72a86SDehao Chen 1182b151a641SMichael Kuperstein if (!TrueVal || !FalseVal) 1183b151a641SMichael Kuperstein return 0; 118441d72a86SDehao Chen 1185b151a641SMichael Kuperstein // Divide the count of the backedge by the count of the edge exiting the loop, 1186b151a641SMichael Kuperstein // rounding to nearest. 118741d72a86SDehao Chen if (LatchBR->getSuccessor(0) == L->getHeader()) 1188b151a641SMichael Kuperstein return (TrueVal + (FalseVal / 2)) / FalseVal; 118941d72a86SDehao Chen else 1190b151a641SMichael Kuperstein return (FalseVal + (TrueVal / 2)) / TrueVal; 119141d72a86SDehao Chen } 1192cf9daa33SAmara Emerson 1193cf9daa33SAmara Emerson /// \brief Adds a 'fast' flag to floating point operations. 1194cf9daa33SAmara Emerson static Value *addFastMathFlag(Value *V) { 1195cf9daa33SAmara Emerson if (isa<FPMathOperator>(V)) { 1196cf9daa33SAmara Emerson FastMathFlags Flags; 1197cf9daa33SAmara Emerson Flags.setUnsafeAlgebra(); 1198cf9daa33SAmara Emerson cast<Instruction>(V)->setFastMathFlags(Flags); 1199cf9daa33SAmara Emerson } 1200cf9daa33SAmara Emerson return V; 1201cf9daa33SAmara Emerson } 1202cf9daa33SAmara Emerson 1203cf9daa33SAmara Emerson // Helper to generate a log2 shuffle reduction. 1204836b0f48SAmara Emerson Value * 1205836b0f48SAmara Emerson llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 1206836b0f48SAmara Emerson RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 1207836b0f48SAmara Emerson ArrayRef<Value *> RedOps) { 1208cf9daa33SAmara Emerson unsigned VF = Src->getType()->getVectorNumElements(); 1209cf9daa33SAmara Emerson // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1210cf9daa33SAmara Emerson // and vector ops, reducing the set of values being computed by half each 1211cf9daa33SAmara Emerson // round. 1212cf9daa33SAmara Emerson assert(isPowerOf2_32(VF) && 1213cf9daa33SAmara Emerson "Reduction emission only supported for pow2 vectors!"); 1214cf9daa33SAmara Emerson Value *TmpVec = Src; 1215cf9daa33SAmara Emerson SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 1216cf9daa33SAmara Emerson for (unsigned i = VF; i != 1; i >>= 1) { 1217cf9daa33SAmara Emerson // Move the upper half of the vector to the lower half. 1218cf9daa33SAmara Emerson for (unsigned j = 0; j != i / 2; ++j) 1219cf9daa33SAmara Emerson ShuffleMask[j] = Builder.getInt32(i / 2 + j); 1220cf9daa33SAmara Emerson 1221cf9daa33SAmara Emerson // Fill the rest of the mask with undef. 1222cf9daa33SAmara Emerson std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 1223cf9daa33SAmara Emerson UndefValue::get(Builder.getInt32Ty())); 1224cf9daa33SAmara Emerson 1225cf9daa33SAmara Emerson Value *Shuf = Builder.CreateShuffleVector( 1226cf9daa33SAmara Emerson TmpVec, UndefValue::get(TmpVec->getType()), 1227cf9daa33SAmara Emerson ConstantVector::get(ShuffleMask), "rdx.shuf"); 1228cf9daa33SAmara Emerson 1229cf9daa33SAmara Emerson if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1230cf9daa33SAmara Emerson // Floating point operations had to be 'fast' to enable the reduction. 1231cf9daa33SAmara Emerson TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 1232cf9daa33SAmara Emerson TmpVec, Shuf, "bin.rdx")); 1233cf9daa33SAmara Emerson } else { 1234cf9daa33SAmara Emerson assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 1235cf9daa33SAmara Emerson "Invalid min/max"); 1236cf9daa33SAmara Emerson TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, 1237cf9daa33SAmara Emerson Shuf); 1238cf9daa33SAmara Emerson } 1239cf9daa33SAmara Emerson if (!RedOps.empty()) 1240cf9daa33SAmara Emerson propagateIRFlags(TmpVec, RedOps); 1241cf9daa33SAmara Emerson } 1242cf9daa33SAmara Emerson // The result is in the first element of the vector. 1243cf9daa33SAmara Emerson return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1244cf9daa33SAmara Emerson } 1245cf9daa33SAmara Emerson 1246cf9daa33SAmara Emerson /// Create a simple vector reduction specified by an opcode and some 1247cf9daa33SAmara Emerson /// flags (if generating min/max reductions). 1248cf9daa33SAmara Emerson Value *llvm::createSimpleTargetReduction( 1249cf9daa33SAmara Emerson IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 1250cf9daa33SAmara Emerson Value *Src, TargetTransformInfo::ReductionFlags Flags, 1251cf9daa33SAmara Emerson ArrayRef<Value *> RedOps) { 1252cf9daa33SAmara Emerson assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 1253cf9daa33SAmara Emerson 1254cf9daa33SAmara Emerson Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 1255cf9daa33SAmara Emerson std::function<Value*()> BuildFunc; 1256cf9daa33SAmara Emerson using RD = RecurrenceDescriptor; 1257cf9daa33SAmara Emerson RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 1258cf9daa33SAmara Emerson // TODO: Support creating ordered reductions. 1259cf9daa33SAmara Emerson FastMathFlags FMFUnsafe; 1260cf9daa33SAmara Emerson FMFUnsafe.setUnsafeAlgebra(); 1261cf9daa33SAmara Emerson 1262cf9daa33SAmara Emerson switch (Opcode) { 1263cf9daa33SAmara Emerson case Instruction::Add: 1264cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 1265cf9daa33SAmara Emerson break; 1266cf9daa33SAmara Emerson case Instruction::Mul: 1267cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 1268cf9daa33SAmara Emerson break; 1269cf9daa33SAmara Emerson case Instruction::And: 1270cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 1271cf9daa33SAmara Emerson break; 1272cf9daa33SAmara Emerson case Instruction::Or: 1273cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 1274cf9daa33SAmara Emerson break; 1275cf9daa33SAmara Emerson case Instruction::Xor: 1276cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 1277cf9daa33SAmara Emerson break; 1278cf9daa33SAmara Emerson case Instruction::FAdd: 1279cf9daa33SAmara Emerson BuildFunc = [&]() { 1280cf9daa33SAmara Emerson auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 1281cf9daa33SAmara Emerson cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe); 1282cf9daa33SAmara Emerson return Rdx; 1283cf9daa33SAmara Emerson }; 1284cf9daa33SAmara Emerson break; 1285cf9daa33SAmara Emerson case Instruction::FMul: 1286cf9daa33SAmara Emerson BuildFunc = [&]() { 1287cf9daa33SAmara Emerson auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 1288cf9daa33SAmara Emerson cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe); 1289cf9daa33SAmara Emerson return Rdx; 1290cf9daa33SAmara Emerson }; 1291cf9daa33SAmara Emerson break; 1292cf9daa33SAmara Emerson case Instruction::ICmp: 1293cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1294cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 1295cf9daa33SAmara Emerson BuildFunc = [&]() { 1296cf9daa33SAmara Emerson return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1297cf9daa33SAmara Emerson }; 1298cf9daa33SAmara Emerson } else { 1299cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1300cf9daa33SAmara Emerson BuildFunc = [&]() { 1301cf9daa33SAmara Emerson return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1302cf9daa33SAmara Emerson }; 1303cf9daa33SAmara Emerson } 1304cf9daa33SAmara Emerson break; 1305cf9daa33SAmara Emerson case Instruction::FCmp: 1306cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1307cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMax; 1308cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1309cf9daa33SAmara Emerson } else { 1310cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMin; 1311cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1312cf9daa33SAmara Emerson } 1313cf9daa33SAmara Emerson break; 1314cf9daa33SAmara Emerson default: 1315cf9daa33SAmara Emerson llvm_unreachable("Unhandled opcode"); 1316cf9daa33SAmara Emerson break; 1317cf9daa33SAmara Emerson } 1318cf9daa33SAmara Emerson if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1319cf9daa33SAmara Emerson return BuildFunc(); 1320cf9daa33SAmara Emerson return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1321cf9daa33SAmara Emerson } 1322cf9daa33SAmara Emerson 1323cf9daa33SAmara Emerson /// Create a vector reduction using a given recurrence descriptor. 1324cf9daa33SAmara Emerson Value *llvm::createTargetReduction(IRBuilder<> &Builder, 1325cf9daa33SAmara Emerson const TargetTransformInfo *TTI, 1326cf9daa33SAmara Emerson RecurrenceDescriptor &Desc, Value *Src, 1327cf9daa33SAmara Emerson bool NoNaN) { 1328cf9daa33SAmara Emerson // TODO: Support in-order reductions based on the recurrence descriptor. 1329cf9daa33SAmara Emerson RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1330cf9daa33SAmara Emerson TargetTransformInfo::ReductionFlags Flags; 1331cf9daa33SAmara Emerson Flags.NoNaN = NoNaN; 1332cf9daa33SAmara Emerson auto getSimpleRdx = [&](unsigned Opc) { 1333cf9daa33SAmara Emerson return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags); 1334cf9daa33SAmara Emerson }; 1335cf9daa33SAmara Emerson switch (RecKind) { 1336cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_FloatAdd: 1337cf9daa33SAmara Emerson return getSimpleRdx(Instruction::FAdd); 1338cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_FloatMult: 1339cf9daa33SAmara Emerson return getSimpleRdx(Instruction::FMul); 1340cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerAdd: 1341cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Add); 1342cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerMult: 1343cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Mul); 1344cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerAnd: 1345cf9daa33SAmara Emerson return getSimpleRdx(Instruction::And); 1346cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerOr: 1347cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Or); 1348cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerXor: 1349cf9daa33SAmara Emerson return getSimpleRdx(Instruction::Xor); 1350cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_IntegerMinMax: { 1351cf9daa33SAmara Emerson switch (Desc.getMinMaxRecurrenceKind()) { 1352cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_SIntMax: 1353cf9daa33SAmara Emerson Flags.IsSigned = true; 1354cf9daa33SAmara Emerson Flags.IsMaxOp = true; 1355cf9daa33SAmara Emerson break; 1356cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_UIntMax: 1357cf9daa33SAmara Emerson Flags.IsMaxOp = true; 1358cf9daa33SAmara Emerson break; 1359cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_SIntMin: 1360cf9daa33SAmara Emerson Flags.IsSigned = true; 1361cf9daa33SAmara Emerson break; 1362cf9daa33SAmara Emerson case RecurrenceDescriptor::MRK_UIntMin: 1363cf9daa33SAmara Emerson break; 1364cf9daa33SAmara Emerson default: 1365cf9daa33SAmara Emerson llvm_unreachable("Unhandled MRK"); 1366cf9daa33SAmara Emerson } 1367cf9daa33SAmara Emerson return getSimpleRdx(Instruction::ICmp); 1368cf9daa33SAmara Emerson } 1369cf9daa33SAmara Emerson case RecurrenceDescriptor::RK_FloatMinMax: { 1370cf9daa33SAmara Emerson Flags.IsMaxOp = 1371cf9daa33SAmara Emerson Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax; 1372cf9daa33SAmara Emerson return getSimpleRdx(Instruction::FCmp); 1373cf9daa33SAmara Emerson } 1374cf9daa33SAmara Emerson default: 1375cf9daa33SAmara Emerson llvm_unreachable("Unhandled RecKind"); 1376cf9daa33SAmara Emerson } 1377cf9daa33SAmara Emerson } 1378cf9daa33SAmara Emerson 1379cf9daa33SAmara Emerson void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 1380cf9daa33SAmara Emerson if (auto *VecOp = dyn_cast<Instruction>(I)) { 1381cf9daa33SAmara Emerson if (auto *I0 = dyn_cast<Instruction>(VL[0])) { 1382cf9daa33SAmara Emerson // VecOVp is initialized to the 0th scalar, so start counting from index 1383cf9daa33SAmara Emerson // '1'. 1384cf9daa33SAmara Emerson VecOp->copyIRFlags(I0); 1385cf9daa33SAmara Emerson for (int i = 1, e = VL.size(); i < e; ++i) { 1386cf9daa33SAmara Emerson if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 1387cf9daa33SAmara Emerson VecOp->andIRFlags(Scalar); 1388cf9daa33SAmara Emerson } 1389cf9daa33SAmara Emerson } 1390cf9daa33SAmara Emerson } 1391cf9daa33SAmara Emerson } 1392