176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 376aa662cSKarthik Bhat // The LLVM Compiler Infrastructure 476aa662cSKarthik Bhat // 576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source 676aa662cSKarthik Bhat // License. See LICENSE.TXT for details. 776aa662cSKarthik Bhat // 876aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 976aa662cSKarthik Bhat // 1076aa662cSKarthik Bhat // This file defines common loop utility functions. 1176aa662cSKarthik Bhat // 1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1376aa662cSKarthik Bhat 14*2f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 1531088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 1631088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 1731088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 18*2f2bd8caSAdam Nemet #include "llvm/Analysis/GlobalsModRef.h" 19*2f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 2045d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 21*2f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 22c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h" 2345d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 2431088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 2576aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 2645d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 2776aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 2876aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 2931088a9dSChandler Carruth #include "llvm/Pass.h" 3076aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 3176aa662cSKarthik Bhat 3276aa662cSKarthik Bhat using namespace llvm; 3376aa662cSKarthik Bhat using namespace llvm::PatternMatch; 3476aa662cSKarthik Bhat 3576aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 3676aa662cSKarthik Bhat 370a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 3876aa662cSKarthik Bhat SmallPtrSetImpl<Instruction *> &Set) { 3976aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4076aa662cSKarthik Bhat if (!Set.count(dyn_cast<Instruction>(*Use))) 4176aa662cSKarthik Bhat return false; 4276aa662cSKarthik Bhat return true; 4376aa662cSKarthik Bhat } 4476aa662cSKarthik Bhat 45c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 46c94f8e29SChad Rosier switch (Kind) { 47c94f8e29SChad Rosier default: 48c94f8e29SChad Rosier break; 49c94f8e29SChad Rosier case RK_IntegerAdd: 50c94f8e29SChad Rosier case RK_IntegerMult: 51c94f8e29SChad Rosier case RK_IntegerOr: 52c94f8e29SChad Rosier case RK_IntegerAnd: 53c94f8e29SChad Rosier case RK_IntegerXor: 54c94f8e29SChad Rosier case RK_IntegerMinMax: 55c94f8e29SChad Rosier return true; 56c94f8e29SChad Rosier } 57c94f8e29SChad Rosier return false; 58c94f8e29SChad Rosier } 59c94f8e29SChad Rosier 60c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 61c94f8e29SChad Rosier return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 62c94f8e29SChad Rosier } 63c94f8e29SChad Rosier 64c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 65c94f8e29SChad Rosier switch (Kind) { 66c94f8e29SChad Rosier default: 67c94f8e29SChad Rosier break; 68c94f8e29SChad Rosier case RK_IntegerAdd: 69c94f8e29SChad Rosier case RK_IntegerMult: 70c94f8e29SChad Rosier case RK_FloatAdd: 71c94f8e29SChad Rosier case RK_FloatMult: 72c94f8e29SChad Rosier return true; 73c94f8e29SChad Rosier } 74c94f8e29SChad Rosier return false; 75c94f8e29SChad Rosier } 76c94f8e29SChad Rosier 77c94f8e29SChad Rosier Instruction * 78c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 79c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 80c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 81c94f8e29SChad Rosier if (!Phi->hasOneUse()) 82c94f8e29SChad Rosier return Phi; 83c94f8e29SChad Rosier 84c94f8e29SChad Rosier const APInt *M = nullptr; 85c94f8e29SChad Rosier Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 86c94f8e29SChad Rosier 87c94f8e29SChad Rosier // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 88c94f8e29SChad Rosier // with a new integer type of the corresponding bit width. 89c94f8e29SChad Rosier if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), 90c94f8e29SChad Rosier m_And(m_APInt(M), m_Instruction(I))))) { 91c94f8e29SChad Rosier int32_t Bits = (*M + 1).exactLogBase2(); 92c94f8e29SChad Rosier if (Bits > 0) { 93c94f8e29SChad Rosier RT = IntegerType::get(Phi->getContext(), Bits); 94c94f8e29SChad Rosier Visited.insert(Phi); 95c94f8e29SChad Rosier CI.insert(J); 96c94f8e29SChad Rosier return J; 97c94f8e29SChad Rosier } 98c94f8e29SChad Rosier } 99c94f8e29SChad Rosier return Phi; 100c94f8e29SChad Rosier } 101c94f8e29SChad Rosier 102c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind( 103c94f8e29SChad Rosier Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 104c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 105c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 106c94f8e29SChad Rosier 107c94f8e29SChad Rosier SmallVector<Instruction *, 8> Worklist; 108c94f8e29SChad Rosier bool FoundOneOperand = false; 10929dc0f70SMatthew Simpson unsigned DstSize = RT->getPrimitiveSizeInBits(); 110c94f8e29SChad Rosier Worklist.push_back(Exit); 111c94f8e29SChad Rosier 112c94f8e29SChad Rosier // Traverse the instructions in the reduction expression, beginning with the 113c94f8e29SChad Rosier // exit value. 114c94f8e29SChad Rosier while (!Worklist.empty()) { 115c94f8e29SChad Rosier Instruction *I = Worklist.pop_back_val(); 116c94f8e29SChad Rosier for (Use &U : I->operands()) { 117c94f8e29SChad Rosier 118c94f8e29SChad Rosier // Terminate the traversal if the operand is not an instruction, or we 119c94f8e29SChad Rosier // reach the starting value. 120c94f8e29SChad Rosier Instruction *J = dyn_cast<Instruction>(U.get()); 121c94f8e29SChad Rosier if (!J || J == Start) 122c94f8e29SChad Rosier continue; 123c94f8e29SChad Rosier 124c94f8e29SChad Rosier // Otherwise, investigate the operation if it is also in the expression. 125c94f8e29SChad Rosier if (Visited.count(J)) { 126c94f8e29SChad Rosier Worklist.push_back(J); 127c94f8e29SChad Rosier continue; 128c94f8e29SChad Rosier } 129c94f8e29SChad Rosier 130c94f8e29SChad Rosier // If the operand is not in Visited, it is not a reduction operation, but 131c94f8e29SChad Rosier // it does feed into one. Make sure it is either a single-use sign- or 13229dc0f70SMatthew Simpson // zero-extend instruction. 133c94f8e29SChad Rosier CastInst *Cast = dyn_cast<CastInst>(J); 134c94f8e29SChad Rosier bool IsSExtInst = isa<SExtInst>(J); 13529dc0f70SMatthew Simpson if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 13629dc0f70SMatthew Simpson return false; 13729dc0f70SMatthew Simpson 13829dc0f70SMatthew Simpson // Ensure the source type of the extend is no larger than the reduction 13929dc0f70SMatthew Simpson // type. It is not necessary for the types to be identical. 14029dc0f70SMatthew Simpson unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 14129dc0f70SMatthew Simpson if (SrcSize > DstSize) 142c94f8e29SChad Rosier return false; 143c94f8e29SChad Rosier 144c94f8e29SChad Rosier // Furthermore, ensure that all such extends are of the same kind. 145c94f8e29SChad Rosier if (FoundOneOperand) { 146c94f8e29SChad Rosier if (IsSigned != IsSExtInst) 147c94f8e29SChad Rosier return false; 148c94f8e29SChad Rosier } else { 149c94f8e29SChad Rosier FoundOneOperand = true; 150c94f8e29SChad Rosier IsSigned = IsSExtInst; 151c94f8e29SChad Rosier } 152c94f8e29SChad Rosier 15329dc0f70SMatthew Simpson // Lastly, if the source type of the extend matches the reduction type, 15429dc0f70SMatthew Simpson // add the extend to CI so that we can avoid accounting for it in the 15529dc0f70SMatthew Simpson // cost model. 15629dc0f70SMatthew Simpson if (SrcSize == DstSize) 157c94f8e29SChad Rosier CI.insert(Cast); 158c94f8e29SChad Rosier } 159c94f8e29SChad Rosier } 160c94f8e29SChad Rosier return true; 161c94f8e29SChad Rosier } 162c94f8e29SChad Rosier 1630a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 16476aa662cSKarthik Bhat Loop *TheLoop, bool HasFunNoNaNAttr, 1650a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 16676aa662cSKarthik Bhat if (Phi->getNumIncomingValues() != 2) 16776aa662cSKarthik Bhat return false; 16876aa662cSKarthik Bhat 16976aa662cSKarthik Bhat // Reduction variables are only found in the loop header block. 17076aa662cSKarthik Bhat if (Phi->getParent() != TheLoop->getHeader()) 17176aa662cSKarthik Bhat return false; 17276aa662cSKarthik Bhat 17376aa662cSKarthik Bhat // Obtain the reduction start value from the value that comes from the loop 17476aa662cSKarthik Bhat // preheader. 17576aa662cSKarthik Bhat Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 17676aa662cSKarthik Bhat 17776aa662cSKarthik Bhat // ExitInstruction is the single value which is used outside the loop. 17876aa662cSKarthik Bhat // We only allow for a single reduction value to be used outside the loop. 17976aa662cSKarthik Bhat // This includes users of the reduction, variables (which form a cycle 18076aa662cSKarthik Bhat // which ends in the phi node). 18176aa662cSKarthik Bhat Instruction *ExitInstruction = nullptr; 18276aa662cSKarthik Bhat // Indicates that we found a reduction operation in our scan. 18376aa662cSKarthik Bhat bool FoundReduxOp = false; 18476aa662cSKarthik Bhat 18576aa662cSKarthik Bhat // We start with the PHI node and scan for all of the users of this 18676aa662cSKarthik Bhat // instruction. All users must be instructions that can be used as reduction 18776aa662cSKarthik Bhat // variables (such as ADD). We must have a single out-of-block user. The cycle 18876aa662cSKarthik Bhat // must include the original PHI. 18976aa662cSKarthik Bhat bool FoundStartPHI = false; 19076aa662cSKarthik Bhat 19176aa662cSKarthik Bhat // To recognize min/max patterns formed by a icmp select sequence, we store 19276aa662cSKarthik Bhat // the number of instruction we saw from the recognized min/max pattern, 19376aa662cSKarthik Bhat // to make sure we only see exactly the two instructions. 19476aa662cSKarthik Bhat unsigned NumCmpSelectPatternInst = 0; 19527b2c39eSTyler Nowicki InstDesc ReduxDesc(false, nullptr); 19676aa662cSKarthik Bhat 197c94f8e29SChad Rosier // Data used for determining if the recurrence has been type-promoted. 198c94f8e29SChad Rosier Type *RecurrenceType = Phi->getType(); 199c94f8e29SChad Rosier SmallPtrSet<Instruction *, 4> CastInsts; 200c94f8e29SChad Rosier Instruction *Start = Phi; 201c94f8e29SChad Rosier bool IsSigned = false; 202c94f8e29SChad Rosier 20376aa662cSKarthik Bhat SmallPtrSet<Instruction *, 8> VisitedInsts; 20476aa662cSKarthik Bhat SmallVector<Instruction *, 8> Worklist; 205c94f8e29SChad Rosier 206c94f8e29SChad Rosier // Return early if the recurrence kind does not match the type of Phi. If the 207c94f8e29SChad Rosier // recurrence kind is arithmetic, we attempt to look through AND operations 208c94f8e29SChad Rosier // resulting from the type promotion performed by InstCombine. Vector 209c94f8e29SChad Rosier // operations are not limited to the legal integer widths, so we may be able 210c94f8e29SChad Rosier // to evaluate the reduction in the narrower width. 211c94f8e29SChad Rosier if (RecurrenceType->isFloatingPointTy()) { 212c94f8e29SChad Rosier if (!isFloatingPointRecurrenceKind(Kind)) 213c94f8e29SChad Rosier return false; 214c94f8e29SChad Rosier } else { 215c94f8e29SChad Rosier if (!isIntegerRecurrenceKind(Kind)) 216c94f8e29SChad Rosier return false; 217c94f8e29SChad Rosier if (isArithmeticRecurrenceKind(Kind)) 218c94f8e29SChad Rosier Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 219c94f8e29SChad Rosier } 220c94f8e29SChad Rosier 221c94f8e29SChad Rosier Worklist.push_back(Start); 222c94f8e29SChad Rosier VisitedInsts.insert(Start); 22376aa662cSKarthik Bhat 22476aa662cSKarthik Bhat // A value in the reduction can be used: 22576aa662cSKarthik Bhat // - By the reduction: 22676aa662cSKarthik Bhat // - Reduction operation: 22776aa662cSKarthik Bhat // - One use of reduction value (safe). 22876aa662cSKarthik Bhat // - Multiple use of reduction value (not safe). 22976aa662cSKarthik Bhat // - PHI: 23076aa662cSKarthik Bhat // - All uses of the PHI must be the reduction (safe). 23176aa662cSKarthik Bhat // - Otherwise, not safe. 23276aa662cSKarthik Bhat // - By one instruction outside of the loop (safe). 23376aa662cSKarthik Bhat // - By further instructions outside of the loop (not safe). 23476aa662cSKarthik Bhat // - By an instruction that is not part of the reduction (not safe). 23576aa662cSKarthik Bhat // This is either: 23676aa662cSKarthik Bhat // * An instruction type other than PHI or the reduction operation. 23776aa662cSKarthik Bhat // * A PHI in the header other than the initial PHI. 23876aa662cSKarthik Bhat while (!Worklist.empty()) { 23976aa662cSKarthik Bhat Instruction *Cur = Worklist.back(); 24076aa662cSKarthik Bhat Worklist.pop_back(); 24176aa662cSKarthik Bhat 24276aa662cSKarthik Bhat // No Users. 24376aa662cSKarthik Bhat // If the instruction has no users then this is a broken chain and can't be 24476aa662cSKarthik Bhat // a reduction variable. 24576aa662cSKarthik Bhat if (Cur->use_empty()) 24676aa662cSKarthik Bhat return false; 24776aa662cSKarthik Bhat 24876aa662cSKarthik Bhat bool IsAPhi = isa<PHINode>(Cur); 24976aa662cSKarthik Bhat 25076aa662cSKarthik Bhat // A header PHI use other than the original PHI. 25176aa662cSKarthik Bhat if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 25276aa662cSKarthik Bhat return false; 25376aa662cSKarthik Bhat 25476aa662cSKarthik Bhat // Reductions of instructions such as Div, and Sub is only possible if the 25576aa662cSKarthik Bhat // LHS is the reduction variable. 25676aa662cSKarthik Bhat if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 25776aa662cSKarthik Bhat !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 25876aa662cSKarthik Bhat !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 25976aa662cSKarthik Bhat return false; 26076aa662cSKarthik Bhat 261c94f8e29SChad Rosier // Any reduction instruction must be of one of the allowed kinds. We ignore 262c94f8e29SChad Rosier // the starting value (the Phi or an AND instruction if the Phi has been 263c94f8e29SChad Rosier // type-promoted). 264c94f8e29SChad Rosier if (Cur != Start) { 2650a91310cSTyler Nowicki ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 2660a91310cSTyler Nowicki if (!ReduxDesc.isRecurrence()) 26776aa662cSKarthik Bhat return false; 268c94f8e29SChad Rosier } 26976aa662cSKarthik Bhat 27076aa662cSKarthik Bhat // A reduction operation must only have one use of the reduction value. 27176aa662cSKarthik Bhat if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 27276aa662cSKarthik Bhat hasMultipleUsesOf(Cur, VisitedInsts)) 27376aa662cSKarthik Bhat return false; 27476aa662cSKarthik Bhat 27576aa662cSKarthik Bhat // All inputs to a PHI node must be a reduction value. 27676aa662cSKarthik Bhat if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 27776aa662cSKarthik Bhat return false; 27876aa662cSKarthik Bhat 27976aa662cSKarthik Bhat if (Kind == RK_IntegerMinMax && 28076aa662cSKarthik Bhat (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 28176aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28276aa662cSKarthik Bhat if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 28376aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 28476aa662cSKarthik Bhat 28576aa662cSKarthik Bhat // Check whether we found a reduction operator. 286c94f8e29SChad Rosier FoundReduxOp |= !IsAPhi && Cur != Start; 28776aa662cSKarthik Bhat 28876aa662cSKarthik Bhat // Process users of current instruction. Push non-PHI nodes after PHI nodes 28976aa662cSKarthik Bhat // onto the stack. This way we are going to have seen all inputs to PHI 29076aa662cSKarthik Bhat // nodes once we get to them. 29176aa662cSKarthik Bhat SmallVector<Instruction *, 8> NonPHIs; 29276aa662cSKarthik Bhat SmallVector<Instruction *, 8> PHIs; 29376aa662cSKarthik Bhat for (User *U : Cur->users()) { 29476aa662cSKarthik Bhat Instruction *UI = cast<Instruction>(U); 29576aa662cSKarthik Bhat 29676aa662cSKarthik Bhat // Check if we found the exit user. 29776aa662cSKarthik Bhat BasicBlock *Parent = UI->getParent(); 29876aa662cSKarthik Bhat if (!TheLoop->contains(Parent)) { 29976aa662cSKarthik Bhat // Exit if you find multiple outside users or if the header phi node is 30076aa662cSKarthik Bhat // being used. In this case the user uses the value of the previous 30176aa662cSKarthik Bhat // iteration, in which case we would loose "VF-1" iterations of the 30276aa662cSKarthik Bhat // reduction operation if we vectorize. 30376aa662cSKarthik Bhat if (ExitInstruction != nullptr || Cur == Phi) 30476aa662cSKarthik Bhat return false; 30576aa662cSKarthik Bhat 30676aa662cSKarthik Bhat // The instruction used by an outside user must be the last instruction 30776aa662cSKarthik Bhat // before we feed back to the reduction phi. Otherwise, we loose VF-1 30876aa662cSKarthik Bhat // operations on the value. 30976aa662cSKarthik Bhat if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 31076aa662cSKarthik Bhat return false; 31176aa662cSKarthik Bhat 31276aa662cSKarthik Bhat ExitInstruction = Cur; 31376aa662cSKarthik Bhat continue; 31476aa662cSKarthik Bhat } 31576aa662cSKarthik Bhat 31676aa662cSKarthik Bhat // Process instructions only once (termination). Each reduction cycle 31776aa662cSKarthik Bhat // value must only be used once, except by phi nodes and min/max 31876aa662cSKarthik Bhat // reductions which are represented as a cmp followed by a select. 31927b2c39eSTyler Nowicki InstDesc IgnoredVal(false, nullptr); 32076aa662cSKarthik Bhat if (VisitedInsts.insert(UI).second) { 32176aa662cSKarthik Bhat if (isa<PHINode>(UI)) 32276aa662cSKarthik Bhat PHIs.push_back(UI); 32376aa662cSKarthik Bhat else 32476aa662cSKarthik Bhat NonPHIs.push_back(UI); 32576aa662cSKarthik Bhat } else if (!isa<PHINode>(UI) && 32676aa662cSKarthik Bhat ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 32776aa662cSKarthik Bhat !isa<SelectInst>(UI)) || 3280a91310cSTyler Nowicki !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 32976aa662cSKarthik Bhat return false; 33076aa662cSKarthik Bhat 33176aa662cSKarthik Bhat // Remember that we completed the cycle. 33276aa662cSKarthik Bhat if (UI == Phi) 33376aa662cSKarthik Bhat FoundStartPHI = true; 33476aa662cSKarthik Bhat } 33576aa662cSKarthik Bhat Worklist.append(PHIs.begin(), PHIs.end()); 33676aa662cSKarthik Bhat Worklist.append(NonPHIs.begin(), NonPHIs.end()); 33776aa662cSKarthik Bhat } 33876aa662cSKarthik Bhat 33976aa662cSKarthik Bhat // This means we have seen one but not the other instruction of the 34076aa662cSKarthik Bhat // pattern or more than just a select and cmp. 34176aa662cSKarthik Bhat if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 34276aa662cSKarthik Bhat NumCmpSelectPatternInst != 2) 34376aa662cSKarthik Bhat return false; 34476aa662cSKarthik Bhat 34576aa662cSKarthik Bhat if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 34676aa662cSKarthik Bhat return false; 34776aa662cSKarthik Bhat 348c94f8e29SChad Rosier // If we think Phi may have been type-promoted, we also need to ensure that 349c94f8e29SChad Rosier // all source operands of the reduction are either SExtInsts or ZEstInsts. If 350c94f8e29SChad Rosier // so, we will be able to evaluate the reduction in the narrower bit width. 351c94f8e29SChad Rosier if (Start != Phi) 352c94f8e29SChad Rosier if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 353c94f8e29SChad Rosier IsSigned, VisitedInsts, CastInsts)) 354c94f8e29SChad Rosier return false; 355c94f8e29SChad Rosier 35676aa662cSKarthik Bhat // We found a reduction var if we have reached the original phi node and we 35776aa662cSKarthik Bhat // only have a single instruction with out-of-loop users. 35876aa662cSKarthik Bhat 35976aa662cSKarthik Bhat // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 3600a91310cSTyler Nowicki // is saved as part of the RecurrenceDescriptor. 36176aa662cSKarthik Bhat 36276aa662cSKarthik Bhat // Save the description of this reduction variable. 363c94f8e29SChad Rosier RecurrenceDescriptor RD( 364c94f8e29SChad Rosier RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 365c94f8e29SChad Rosier ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 36676aa662cSKarthik Bhat RedDes = RD; 36776aa662cSKarthik Bhat 36876aa662cSKarthik Bhat return true; 36976aa662cSKarthik Bhat } 37076aa662cSKarthik Bhat 37176aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 37276aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y). 37327b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 37427b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 37576aa662cSKarthik Bhat 37676aa662cSKarthik Bhat assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 37776aa662cSKarthik Bhat "Expect a select instruction"); 37876aa662cSKarthik Bhat Instruction *Cmp = nullptr; 37976aa662cSKarthik Bhat SelectInst *Select = nullptr; 38076aa662cSKarthik Bhat 38176aa662cSKarthik Bhat // We must handle the select(cmp()) as a single instruction. Advance to the 38276aa662cSKarthik Bhat // select. 38376aa662cSKarthik Bhat if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 38476aa662cSKarthik Bhat if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 38527b2c39eSTyler Nowicki return InstDesc(false, I); 38627b2c39eSTyler Nowicki return InstDesc(Select, Prev.getMinMaxKind()); 38776aa662cSKarthik Bhat } 38876aa662cSKarthik Bhat 38976aa662cSKarthik Bhat // Only handle single use cases for now. 39076aa662cSKarthik Bhat if (!(Select = dyn_cast<SelectInst>(I))) 39127b2c39eSTyler Nowicki return InstDesc(false, I); 39276aa662cSKarthik Bhat if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 39376aa662cSKarthik Bhat !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 39427b2c39eSTyler Nowicki return InstDesc(false, I); 39576aa662cSKarthik Bhat if (!Cmp->hasOneUse()) 39627b2c39eSTyler Nowicki return InstDesc(false, I); 39776aa662cSKarthik Bhat 39876aa662cSKarthik Bhat Value *CmpLeft; 39976aa662cSKarthik Bhat Value *CmpRight; 40076aa662cSKarthik Bhat 40176aa662cSKarthik Bhat // Look for a min/max pattern. 40276aa662cSKarthik Bhat if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 40327b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMin); 40476aa662cSKarthik Bhat else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 40527b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMax); 40676aa662cSKarthik Bhat else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 40727b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMax); 40876aa662cSKarthik Bhat else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 40927b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMin); 41076aa662cSKarthik Bhat else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41127b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 41276aa662cSKarthik Bhat else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41327b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 41476aa662cSKarthik Bhat else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41527b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 41676aa662cSKarthik Bhat else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 41727b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 41876aa662cSKarthik Bhat 41927b2c39eSTyler Nowicki return InstDesc(false, I); 42076aa662cSKarthik Bhat } 42176aa662cSKarthik Bhat 42227b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 4230a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 42427b2c39eSTyler Nowicki InstDesc &Prev, bool HasFunNoNaNAttr) { 42576aa662cSKarthik Bhat bool FP = I->getType()->isFloatingPointTy(); 426c1a86f58STyler Nowicki Instruction *UAI = Prev.getUnsafeAlgebraInst(); 427c1a86f58STyler Nowicki if (!UAI && FP && !I->hasUnsafeAlgebra()) 428c1a86f58STyler Nowicki UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 429c1a86f58STyler Nowicki 43076aa662cSKarthik Bhat switch (I->getOpcode()) { 43176aa662cSKarthik Bhat default: 43227b2c39eSTyler Nowicki return InstDesc(false, I); 43376aa662cSKarthik Bhat case Instruction::PHI: 43410a1e8b1STim Northover return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 43576aa662cSKarthik Bhat case Instruction::Sub: 43676aa662cSKarthik Bhat case Instruction::Add: 43727b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAdd, I); 43876aa662cSKarthik Bhat case Instruction::Mul: 43927b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerMult, I); 44076aa662cSKarthik Bhat case Instruction::And: 44127b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAnd, I); 44276aa662cSKarthik Bhat case Instruction::Or: 44327b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerOr, I); 44476aa662cSKarthik Bhat case Instruction::Xor: 44527b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerXor, I); 44676aa662cSKarthik Bhat case Instruction::FMul: 447c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatMult, I, UAI); 44876aa662cSKarthik Bhat case Instruction::FSub: 44976aa662cSKarthik Bhat case Instruction::FAdd: 450c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatAdd, I, UAI); 45176aa662cSKarthik Bhat case Instruction::FCmp: 45276aa662cSKarthik Bhat case Instruction::ICmp: 45376aa662cSKarthik Bhat case Instruction::Select: 45476aa662cSKarthik Bhat if (Kind != RK_IntegerMinMax && 45576aa662cSKarthik Bhat (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 45627b2c39eSTyler Nowicki return InstDesc(false, I); 45776aa662cSKarthik Bhat return isMinMaxSelectCmpPattern(I, Prev); 45876aa662cSKarthik Bhat } 45976aa662cSKarthik Bhat } 46076aa662cSKarthik Bhat 4610a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf( 46276aa662cSKarthik Bhat Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 46376aa662cSKarthik Bhat unsigned NumUses = 0; 46476aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 46576aa662cSKarthik Bhat ++Use) { 46676aa662cSKarthik Bhat if (Insts.count(dyn_cast<Instruction>(*Use))) 46776aa662cSKarthik Bhat ++NumUses; 46876aa662cSKarthik Bhat if (NumUses > 1) 46976aa662cSKarthik Bhat return true; 47076aa662cSKarthik Bhat } 47176aa662cSKarthik Bhat 47276aa662cSKarthik Bhat return false; 47376aa662cSKarthik Bhat } 4740a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 4750a91310cSTyler Nowicki RecurrenceDescriptor &RedDes) { 47676aa662cSKarthik Bhat 47776aa662cSKarthik Bhat BasicBlock *Header = TheLoop->getHeader(); 47876aa662cSKarthik Bhat Function &F = *Header->getParent(); 4798dd66e57SNirav Dave bool HasFunNoNaNAttr = 48076aa662cSKarthik Bhat F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 48176aa662cSKarthik Bhat 48276aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 48376aa662cSKarthik Bhat DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 48476aa662cSKarthik Bhat return true; 48576aa662cSKarthik Bhat } 48676aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 48776aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 48876aa662cSKarthik Bhat return true; 48976aa662cSKarthik Bhat } 49076aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 49176aa662cSKarthik Bhat DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 49276aa662cSKarthik Bhat return true; 49376aa662cSKarthik Bhat } 49476aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 49576aa662cSKarthik Bhat DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 49676aa662cSKarthik Bhat return true; 49776aa662cSKarthik Bhat } 49876aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 49976aa662cSKarthik Bhat DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 50076aa662cSKarthik Bhat return true; 50176aa662cSKarthik Bhat } 50276aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 50376aa662cSKarthik Bhat RedDes)) { 50476aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 50576aa662cSKarthik Bhat return true; 50676aa662cSKarthik Bhat } 50776aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 50876aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 50976aa662cSKarthik Bhat return true; 51076aa662cSKarthik Bhat } 51176aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 51276aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 51376aa662cSKarthik Bhat return true; 51476aa662cSKarthik Bhat } 51576aa662cSKarthik Bhat if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 51676aa662cSKarthik Bhat DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 51776aa662cSKarthik Bhat return true; 51876aa662cSKarthik Bhat } 51976aa662cSKarthik Bhat // Not a reduction of known type. 52076aa662cSKarthik Bhat return false; 52176aa662cSKarthik Bhat } 52276aa662cSKarthik Bhat 52329c997c1SMatthew Simpson bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, 52429c997c1SMatthew Simpson DominatorTree *DT) { 52529c997c1SMatthew Simpson 52629c997c1SMatthew Simpson // Ensure the phi node is in the loop header and has two incoming values. 52729c997c1SMatthew Simpson if (Phi->getParent() != TheLoop->getHeader() || 52829c997c1SMatthew Simpson Phi->getNumIncomingValues() != 2) 52929c997c1SMatthew Simpson return false; 53029c997c1SMatthew Simpson 53129c997c1SMatthew Simpson // Ensure the loop has a preheader and a single latch block. The loop 53229c997c1SMatthew Simpson // vectorizer will need the latch to set up the next iteration of the loop. 53329c997c1SMatthew Simpson auto *Preheader = TheLoop->getLoopPreheader(); 53429c997c1SMatthew Simpson auto *Latch = TheLoop->getLoopLatch(); 53529c997c1SMatthew Simpson if (!Preheader || !Latch) 53629c997c1SMatthew Simpson return false; 53729c997c1SMatthew Simpson 53829c997c1SMatthew Simpson // Ensure the phi node's incoming blocks are the loop preheader and latch. 53929c997c1SMatthew Simpson if (Phi->getBasicBlockIndex(Preheader) < 0 || 54029c997c1SMatthew Simpson Phi->getBasicBlockIndex(Latch) < 0) 54129c997c1SMatthew Simpson return false; 54229c997c1SMatthew Simpson 54329c997c1SMatthew Simpson // Get the previous value. The previous value comes from the latch edge while 54429c997c1SMatthew Simpson // the initial value comes form the preheader edge. 54529c997c1SMatthew Simpson auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 54653207a99SMatthew Simpson if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) 54729c997c1SMatthew Simpson return false; 54829c997c1SMatthew Simpson 54929c997c1SMatthew Simpson // Ensure every user of the phi node is dominated by the previous value. The 55029c997c1SMatthew Simpson // dominance requirement ensures the loop vectorizer will not need to 55129c997c1SMatthew Simpson // vectorize the initial value prior to the first iteration of the loop. 55229c997c1SMatthew Simpson for (User *U : Phi->users()) 55329c997c1SMatthew Simpson if (auto *I = dyn_cast<Instruction>(U)) 55429c997c1SMatthew Simpson if (!DT->dominates(Previous, I)) 55529c997c1SMatthew Simpson return false; 55629c997c1SMatthew Simpson 55729c997c1SMatthew Simpson return true; 55829c997c1SMatthew Simpson } 55929c997c1SMatthew Simpson 56076aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for 56176aa662cSKarthik Bhat /// the operation K. 5620a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 5630a91310cSTyler Nowicki Type *Tp) { 56476aa662cSKarthik Bhat switch (K) { 56576aa662cSKarthik Bhat case RK_IntegerXor: 56676aa662cSKarthik Bhat case RK_IntegerAdd: 56776aa662cSKarthik Bhat case RK_IntegerOr: 56876aa662cSKarthik Bhat // Adding, Xoring, Oring zero to a number does not change it. 56976aa662cSKarthik Bhat return ConstantInt::get(Tp, 0); 57076aa662cSKarthik Bhat case RK_IntegerMult: 57176aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 57276aa662cSKarthik Bhat return ConstantInt::get(Tp, 1); 57376aa662cSKarthik Bhat case RK_IntegerAnd: 57476aa662cSKarthik Bhat // AND-ing a number with an all-1 value does not change it. 57576aa662cSKarthik Bhat return ConstantInt::get(Tp, -1, true); 57676aa662cSKarthik Bhat case RK_FloatMult: 57776aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 57876aa662cSKarthik Bhat return ConstantFP::get(Tp, 1.0L); 57976aa662cSKarthik Bhat case RK_FloatAdd: 58076aa662cSKarthik Bhat // Adding zero to a number does not change it. 58176aa662cSKarthik Bhat return ConstantFP::get(Tp, 0.0L); 58276aa662cSKarthik Bhat default: 5830a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence kind"); 58476aa662cSKarthik Bhat } 58576aa662cSKarthik Bhat } 58676aa662cSKarthik Bhat 5870a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator. 5880a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 58976aa662cSKarthik Bhat switch (Kind) { 59076aa662cSKarthik Bhat case RK_IntegerAdd: 59176aa662cSKarthik Bhat return Instruction::Add; 59276aa662cSKarthik Bhat case RK_IntegerMult: 59376aa662cSKarthik Bhat return Instruction::Mul; 59476aa662cSKarthik Bhat case RK_IntegerOr: 59576aa662cSKarthik Bhat return Instruction::Or; 59676aa662cSKarthik Bhat case RK_IntegerAnd: 59776aa662cSKarthik Bhat return Instruction::And; 59876aa662cSKarthik Bhat case RK_IntegerXor: 59976aa662cSKarthik Bhat return Instruction::Xor; 60076aa662cSKarthik Bhat case RK_FloatMult: 60176aa662cSKarthik Bhat return Instruction::FMul; 60276aa662cSKarthik Bhat case RK_FloatAdd: 60376aa662cSKarthik Bhat return Instruction::FAdd; 60476aa662cSKarthik Bhat case RK_IntegerMinMax: 60576aa662cSKarthik Bhat return Instruction::ICmp; 60676aa662cSKarthik Bhat case RK_FloatMinMax: 60776aa662cSKarthik Bhat return Instruction::FCmp; 60876aa662cSKarthik Bhat default: 6090a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence operation"); 61076aa662cSKarthik Bhat } 61176aa662cSKarthik Bhat } 61276aa662cSKarthik Bhat 61327b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 61427b2c39eSTyler Nowicki MinMaxRecurrenceKind RK, 61576aa662cSKarthik Bhat Value *Left, Value *Right) { 61676aa662cSKarthik Bhat CmpInst::Predicate P = CmpInst::ICMP_NE; 61776aa662cSKarthik Bhat switch (RK) { 61876aa662cSKarthik Bhat default: 6190a91310cSTyler Nowicki llvm_unreachable("Unknown min/max recurrence kind"); 62027b2c39eSTyler Nowicki case MRK_UIntMin: 62176aa662cSKarthik Bhat P = CmpInst::ICMP_ULT; 62276aa662cSKarthik Bhat break; 62327b2c39eSTyler Nowicki case MRK_UIntMax: 62476aa662cSKarthik Bhat P = CmpInst::ICMP_UGT; 62576aa662cSKarthik Bhat break; 62627b2c39eSTyler Nowicki case MRK_SIntMin: 62776aa662cSKarthik Bhat P = CmpInst::ICMP_SLT; 62876aa662cSKarthik Bhat break; 62927b2c39eSTyler Nowicki case MRK_SIntMax: 63076aa662cSKarthik Bhat P = CmpInst::ICMP_SGT; 63176aa662cSKarthik Bhat break; 63227b2c39eSTyler Nowicki case MRK_FloatMin: 63376aa662cSKarthik Bhat P = CmpInst::FCMP_OLT; 63476aa662cSKarthik Bhat break; 63527b2c39eSTyler Nowicki case MRK_FloatMax: 63676aa662cSKarthik Bhat P = CmpInst::FCMP_OGT; 63776aa662cSKarthik Bhat break; 63876aa662cSKarthik Bhat } 63976aa662cSKarthik Bhat 64050a4c27fSJames Molloy // We only match FP sequences with unsafe algebra, so we can unconditionally 64150a4c27fSJames Molloy // set it on any generated instructions. 64250a4c27fSJames Molloy IRBuilder<>::FastMathFlagGuard FMFG(Builder); 64350a4c27fSJames Molloy FastMathFlags FMF; 64450a4c27fSJames Molloy FMF.setUnsafeAlgebra(); 645a252815bSSanjay Patel Builder.setFastMathFlags(FMF); 64650a4c27fSJames Molloy 64776aa662cSKarthik Bhat Value *Cmp; 64827b2c39eSTyler Nowicki if (RK == MRK_FloatMin || RK == MRK_FloatMax) 64976aa662cSKarthik Bhat Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 65076aa662cSKarthik Bhat else 65176aa662cSKarthik Bhat Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 65276aa662cSKarthik Bhat 65376aa662cSKarthik Bhat Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 65476aa662cSKarthik Bhat return Select; 65576aa662cSKarthik Bhat } 65624e6cc2dSKarthik Bhat 6571bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 658376a18bdSElena Demikhovsky const SCEV *Step, BinaryOperator *BOp) 659376a18bdSElena Demikhovsky : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 6601bbf15c5SJames Molloy assert(IK != IK_NoInduction && "Not an induction"); 661c434d091SElena Demikhovsky 662c434d091SElena Demikhovsky // Start value type should match the induction kind and the value 663c434d091SElena Demikhovsky // itself should not be null. 6641bbf15c5SJames Molloy assert(StartValue && "StartValue is null"); 6651bbf15c5SJames Molloy assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 6661bbf15c5SJames Molloy "StartValue is not a pointer for pointer induction"); 6671bbf15c5SJames Molloy assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 6681bbf15c5SJames Molloy "StartValue is not an integer for integer induction"); 669c434d091SElena Demikhovsky 670c434d091SElena Demikhovsky // Check the Step Value. It should be non-zero integer value. 671c434d091SElena Demikhovsky assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 672c434d091SElena Demikhovsky "Step value is zero"); 673c434d091SElena Demikhovsky 674c434d091SElena Demikhovsky assert((IK != IK_PtrInduction || getConstIntStepValue()) && 675c434d091SElena Demikhovsky "Step value should be constant for pointer induction"); 676376a18bdSElena Demikhovsky assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 677376a18bdSElena Demikhovsky "StepValue is not an integer"); 678376a18bdSElena Demikhovsky 679376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 680376a18bdSElena Demikhovsky "StepValue is not FP for FpInduction"); 681376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || (InductionBinOp && 682376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 683376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub))) && 684376a18bdSElena Demikhovsky "Binary opcode should be specified for FP induction"); 6851bbf15c5SJames Molloy } 6861bbf15c5SJames Molloy 6871bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const { 688c434d091SElena Demikhovsky ConstantInt *ConstStep = getConstIntStepValue(); 689c434d091SElena Demikhovsky if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 690c434d091SElena Demikhovsky return ConstStep->getSExtValue(); 6911bbf15c5SJames Molloy return 0; 6921bbf15c5SJames Molloy } 6931bbf15c5SJames Molloy 694c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const { 695c434d091SElena Demikhovsky if (isa<SCEVConstant>(Step)) 696c434d091SElena Demikhovsky return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 697c434d091SElena Demikhovsky return nullptr; 698c434d091SElena Demikhovsky } 699c434d091SElena Demikhovsky 700c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 701c434d091SElena Demikhovsky ScalarEvolution *SE, 702c434d091SElena Demikhovsky const DataLayout& DL) const { 703c434d091SElena Demikhovsky 704c434d091SElena Demikhovsky SCEVExpander Exp(*SE, DL, "induction"); 705376a18bdSElena Demikhovsky assert(Index->getType() == Step->getType() && 706376a18bdSElena Demikhovsky "Index type does not match StepValue type"); 7071bbf15c5SJames Molloy switch (IK) { 708c434d091SElena Demikhovsky case IK_IntInduction: { 7091bbf15c5SJames Molloy assert(Index->getType() == StartValue->getType() && 7101bbf15c5SJames Molloy "Index type does not match StartValue type"); 711c434d091SElena Demikhovsky 712c434d091SElena Demikhovsky // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 713c434d091SElena Demikhovsky // and calculate (Start + Index * Step) for all cases, without 714c434d091SElena Demikhovsky // special handling for "isOne" and "isMinusOne". 715c434d091SElena Demikhovsky // But in the real life the result code getting worse. We mix SCEV 716c434d091SElena Demikhovsky // expressions and ADD/SUB operations and receive redundant 717c434d091SElena Demikhovsky // intermediate values being calculated in different ways and 718c434d091SElena Demikhovsky // Instcombine is unable to reduce them all. 719c434d091SElena Demikhovsky 720c434d091SElena Demikhovsky if (getConstIntStepValue() && 721c434d091SElena Demikhovsky getConstIntStepValue()->isMinusOne()) 7221bbf15c5SJames Molloy return B.CreateSub(StartValue, Index); 723c434d091SElena Demikhovsky if (getConstIntStepValue() && 724c434d091SElena Demikhovsky getConstIntStepValue()->isOne()) 7251bbf15c5SJames Molloy return B.CreateAdd(StartValue, Index); 726c434d091SElena Demikhovsky const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 727c434d091SElena Demikhovsky SE->getMulExpr(Step, SE->getSCEV(Index))); 728c434d091SElena Demikhovsky return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 729c434d091SElena Demikhovsky } 730c434d091SElena Demikhovsky case IK_PtrInduction: { 731c434d091SElena Demikhovsky assert(isa<SCEVConstant>(Step) && 732c434d091SElena Demikhovsky "Expected constant step for pointer induction"); 733c434d091SElena Demikhovsky const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 734c434d091SElena Demikhovsky Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 7351bbf15c5SJames Molloy return B.CreateGEP(nullptr, StartValue, Index); 736c434d091SElena Demikhovsky } 737376a18bdSElena Demikhovsky case IK_FpInduction: { 738376a18bdSElena Demikhovsky assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 739376a18bdSElena Demikhovsky assert(InductionBinOp && 740376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 741376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub) && 742376a18bdSElena Demikhovsky "Original bin op should be defined for FP induction"); 743376a18bdSElena Demikhovsky 744376a18bdSElena Demikhovsky Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 745376a18bdSElena Demikhovsky 746376a18bdSElena Demikhovsky // Floating point operations had to be 'fast' to enable the induction. 747376a18bdSElena Demikhovsky FastMathFlags Flags; 748376a18bdSElena Demikhovsky Flags.setUnsafeAlgebra(); 749376a18bdSElena Demikhovsky 750376a18bdSElena Demikhovsky Value *MulExp = B.CreateFMul(StepValue, Index); 751376a18bdSElena Demikhovsky if (isa<Instruction>(MulExp)) 752376a18bdSElena Demikhovsky // We have to check, the MulExp may be a constant. 753376a18bdSElena Demikhovsky cast<Instruction>(MulExp)->setFastMathFlags(Flags); 754376a18bdSElena Demikhovsky 755376a18bdSElena Demikhovsky Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 756376a18bdSElena Demikhovsky MulExp, "induction"); 757376a18bdSElena Demikhovsky if (isa<Instruction>(BOp)) 758376a18bdSElena Demikhovsky cast<Instruction>(BOp)->setFastMathFlags(Flags); 759376a18bdSElena Demikhovsky 760376a18bdSElena Demikhovsky return BOp; 761376a18bdSElena Demikhovsky } 7621bbf15c5SJames Molloy case IK_NoInduction: 7631bbf15c5SJames Molloy return nullptr; 7641bbf15c5SJames Molloy } 7651bbf15c5SJames Molloy llvm_unreachable("invalid enum"); 7661bbf15c5SJames Molloy } 7671bbf15c5SJames Molloy 768376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 769376a18bdSElena Demikhovsky ScalarEvolution *SE, 770376a18bdSElena Demikhovsky InductionDescriptor &D) { 771376a18bdSElena Demikhovsky 772376a18bdSElena Demikhovsky // Here we only handle FP induction variables. 773376a18bdSElena Demikhovsky assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 774376a18bdSElena Demikhovsky 775376a18bdSElena Demikhovsky if (TheLoop->getHeader() != Phi->getParent()) 776376a18bdSElena Demikhovsky return false; 777376a18bdSElena Demikhovsky 778376a18bdSElena Demikhovsky // The loop may have multiple entrances or multiple exits; we can analyze 779376a18bdSElena Demikhovsky // this phi if it has a unique entry value and a unique backedge value. 780376a18bdSElena Demikhovsky if (Phi->getNumIncomingValues() != 2) 781376a18bdSElena Demikhovsky return false; 782376a18bdSElena Demikhovsky Value *BEValue = nullptr, *StartValue = nullptr; 783376a18bdSElena Demikhovsky if (TheLoop->contains(Phi->getIncomingBlock(0))) { 784376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(0); 785376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(1); 786376a18bdSElena Demikhovsky } else { 787376a18bdSElena Demikhovsky assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 788376a18bdSElena Demikhovsky "Unexpected Phi node in the loop"); 789376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(1); 790376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(0); 791376a18bdSElena Demikhovsky } 792376a18bdSElena Demikhovsky 793376a18bdSElena Demikhovsky BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 794376a18bdSElena Demikhovsky if (!BOp) 795376a18bdSElena Demikhovsky return false; 796376a18bdSElena Demikhovsky 797376a18bdSElena Demikhovsky Value *Addend = nullptr; 798376a18bdSElena Demikhovsky if (BOp->getOpcode() == Instruction::FAdd) { 799376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 800376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 801376a18bdSElena Demikhovsky else if (BOp->getOperand(1) == Phi) 802376a18bdSElena Demikhovsky Addend = BOp->getOperand(0); 803376a18bdSElena Demikhovsky } else if (BOp->getOpcode() == Instruction::FSub) 804376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 805376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 806376a18bdSElena Demikhovsky 807376a18bdSElena Demikhovsky if (!Addend) 808376a18bdSElena Demikhovsky return false; 809376a18bdSElena Demikhovsky 810376a18bdSElena Demikhovsky // The addend should be loop invariant 811376a18bdSElena Demikhovsky if (auto *I = dyn_cast<Instruction>(Addend)) 812376a18bdSElena Demikhovsky if (TheLoop->contains(I)) 813376a18bdSElena Demikhovsky return false; 814376a18bdSElena Demikhovsky 815376a18bdSElena Demikhovsky // FP Step has unknown SCEV 816376a18bdSElena Demikhovsky const SCEV *Step = SE->getUnknown(Addend); 817376a18bdSElena Demikhovsky D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 818376a18bdSElena Demikhovsky return true; 819376a18bdSElena Demikhovsky } 820376a18bdSElena Demikhovsky 821376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 822c05bab8aSSilviu Baranga PredicatedScalarEvolution &PSE, 823c05bab8aSSilviu Baranga InductionDescriptor &D, 824c05bab8aSSilviu Baranga bool Assume) { 825c05bab8aSSilviu Baranga Type *PhiTy = Phi->getType(); 826376a18bdSElena Demikhovsky 827376a18bdSElena Demikhovsky // Handle integer and pointer inductions variables. 828376a18bdSElena Demikhovsky // Now we handle also FP induction but not trying to make a 829376a18bdSElena Demikhovsky // recurrent expression from the PHI node in-place. 830376a18bdSElena Demikhovsky 831376a18bdSElena Demikhovsky if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 832376a18bdSElena Demikhovsky !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 833c05bab8aSSilviu Baranga return false; 834c05bab8aSSilviu Baranga 835376a18bdSElena Demikhovsky if (PhiTy->isFloatingPointTy()) 836376a18bdSElena Demikhovsky return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 837376a18bdSElena Demikhovsky 838c05bab8aSSilviu Baranga const SCEV *PhiScev = PSE.getSCEV(Phi); 839c05bab8aSSilviu Baranga const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 840c05bab8aSSilviu Baranga 841c05bab8aSSilviu Baranga // We need this expression to be an AddRecExpr. 842c05bab8aSSilviu Baranga if (Assume && !AR) 843c05bab8aSSilviu Baranga AR = PSE.getAsAddRec(Phi); 844c05bab8aSSilviu Baranga 845c05bab8aSSilviu Baranga if (!AR) { 846c05bab8aSSilviu Baranga DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 847c05bab8aSSilviu Baranga return false; 848c05bab8aSSilviu Baranga } 849c05bab8aSSilviu Baranga 850376a18bdSElena Demikhovsky return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 851c05bab8aSSilviu Baranga } 852c05bab8aSSilviu Baranga 853376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 854c05bab8aSSilviu Baranga ScalarEvolution *SE, 855c05bab8aSSilviu Baranga InductionDescriptor &D, 856c05bab8aSSilviu Baranga const SCEV *Expr) { 85724e6cc2dSKarthik Bhat Type *PhiTy = Phi->getType(); 85824e6cc2dSKarthik Bhat // We only handle integer and pointer inductions variables. 85924e6cc2dSKarthik Bhat if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 86024e6cc2dSKarthik Bhat return false; 86124e6cc2dSKarthik Bhat 86224e6cc2dSKarthik Bhat // Check that the PHI is consecutive. 863c05bab8aSSilviu Baranga const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 86424e6cc2dSKarthik Bhat const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 865c05bab8aSSilviu Baranga 86624e6cc2dSKarthik Bhat if (!AR) { 86724e6cc2dSKarthik Bhat DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 86824e6cc2dSKarthik Bhat return false; 86924e6cc2dSKarthik Bhat } 87024e6cc2dSKarthik Bhat 871376a18bdSElena Demikhovsky assert(TheLoop->getHeader() == Phi->getParent() && 8721bbf15c5SJames Molloy "PHI is an AddRec for a different loop?!"); 8731bbf15c5SJames Molloy Value *StartValue = 8741bbf15c5SJames Molloy Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 87524e6cc2dSKarthik Bhat const SCEV *Step = AR->getStepRecurrence(*SE); 87624e6cc2dSKarthik Bhat // Calculate the pointer stride and check if it is consecutive. 877c434d091SElena Demikhovsky // The stride may be a constant or a loop invariant integer value. 878c434d091SElena Demikhovsky const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 879376a18bdSElena Demikhovsky if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 88024e6cc2dSKarthik Bhat return false; 88124e6cc2dSKarthik Bhat 88224e6cc2dSKarthik Bhat if (PhiTy->isIntegerTy()) { 883c434d091SElena Demikhovsky D = InductionDescriptor(StartValue, IK_IntInduction, Step); 88424e6cc2dSKarthik Bhat return true; 88524e6cc2dSKarthik Bhat } 88624e6cc2dSKarthik Bhat 88724e6cc2dSKarthik Bhat assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 888c434d091SElena Demikhovsky // Pointer induction should be a constant. 889c434d091SElena Demikhovsky if (!ConstStep) 890c434d091SElena Demikhovsky return false; 891c434d091SElena Demikhovsky 892c434d091SElena Demikhovsky ConstantInt *CV = ConstStep->getValue(); 89324e6cc2dSKarthik Bhat Type *PointerElementType = PhiTy->getPointerElementType(); 89424e6cc2dSKarthik Bhat // The pointer stride cannot be determined if the pointer element type is not 89524e6cc2dSKarthik Bhat // sized. 89624e6cc2dSKarthik Bhat if (!PointerElementType->isSized()) 89724e6cc2dSKarthik Bhat return false; 89824e6cc2dSKarthik Bhat 89924e6cc2dSKarthik Bhat const DataLayout &DL = Phi->getModule()->getDataLayout(); 90024e6cc2dSKarthik Bhat int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 901b58f32f7SDavid Majnemer if (!Size) 902b58f32f7SDavid Majnemer return false; 903b58f32f7SDavid Majnemer 90424e6cc2dSKarthik Bhat int64_t CVSize = CV->getSExtValue(); 90524e6cc2dSKarthik Bhat if (CVSize % Size) 90624e6cc2dSKarthik Bhat return false; 907c434d091SElena Demikhovsky auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 908c434d091SElena Demikhovsky true /* signed */); 9091bbf15c5SJames Molloy D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 91024e6cc2dSKarthik Bhat return true; 91124e6cc2dSKarthik Bhat } 912c5b7b555SAshutosh Nema 913c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop. 914c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 915c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 916c5b7b555SAshutosh Nema 917c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 918c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 919c5b7b555SAshutosh Nema // be adapted into a pointer. 920c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 921c5b7b555SAshutosh Nema auto Users = Inst.users(); 922c5b7b555SAshutosh Nema if (std::any_of(Users.begin(), Users.end(), [&](User *U) { 923c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 924c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 925c5b7b555SAshutosh Nema })) 926c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 927c5b7b555SAshutosh Nema } 928c5b7b555SAshutosh Nema 929c5b7b555SAshutosh Nema return UsedOutside; 930c5b7b555SAshutosh Nema } 93131088a9dSChandler Carruth 93231088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 93331088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 93431088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 93531088a9dSChandler Carruth // pass manager, they must also preserve these. 93631088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 93731088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 93831088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 93931088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 94031088a9dSChandler Carruth 94131088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 94231088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 94331088a9dSChandler Carruth extern char &LoopSimplifyID; 94431088a9dSChandler Carruth extern char &LCSSAID; 94531088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 94631088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 94731088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 94831088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 94931088a9dSChandler Carruth 95031088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 95131088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 95231088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 95331088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 95431088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 95531088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 95631088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 95731088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 95831088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 95931088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 96031088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 96131088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 96231088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 96331088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 96431088a9dSChandler Carruth } 96531088a9dSChandler Carruth 96631088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 96731088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 96831088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 96931088a9dSChandler Carruth /// with: 97031088a9dSChandler Carruth /// 97131088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 97231088a9dSChandler Carruth /// 97331088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 97431088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 97531088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 97631088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 97731088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 978e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 97931088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 98031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 98131088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 98231088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 98331088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 98431088a9dSChandler Carruth } 985963341c8SAdam Nemet 986fe3def7cSAdam Nemet /// \brief Find string metadata for loop 987fe3def7cSAdam Nemet /// 988fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 989fe3def7cSAdam Nemet /// operand or null otherwise. If the string metadata is not found return 990fe3def7cSAdam Nemet /// Optional's not-a-value. 991fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 992fe3def7cSAdam Nemet StringRef Name) { 993963341c8SAdam Nemet MDNode *LoopID = TheLoop->getLoopID(); 994fe3def7cSAdam Nemet // Return none if LoopID is false. 995963341c8SAdam Nemet if (!LoopID) 996fe3def7cSAdam Nemet return None; 997293be666SAdam Nemet 998293be666SAdam Nemet // First operand should refer to the loop id itself. 999293be666SAdam Nemet assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1000293be666SAdam Nemet assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1001293be666SAdam Nemet 1002963341c8SAdam Nemet // Iterate over LoopID operands and look for MDString Metadata 1003963341c8SAdam Nemet for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1004963341c8SAdam Nemet MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1005963341c8SAdam Nemet if (!MD) 1006963341c8SAdam Nemet continue; 1007963341c8SAdam Nemet MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1008963341c8SAdam Nemet if (!S) 1009963341c8SAdam Nemet continue; 1010963341c8SAdam Nemet // Return true if MDString holds expected MetaData. 1011963341c8SAdam Nemet if (Name.equals(S->getString())) 1012fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 1013fe3def7cSAdam Nemet case 1: 1014fe3def7cSAdam Nemet return nullptr; 1015fe3def7cSAdam Nemet case 2: 1016fe3def7cSAdam Nemet return &MD->getOperand(1); 1017fe3def7cSAdam Nemet default: 1018fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 1019963341c8SAdam Nemet } 1020fe3def7cSAdam Nemet } 1021fe3def7cSAdam Nemet return None; 1022963341c8SAdam Nemet } 1023122f984aSEvgeniy Stepanov 1024122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least 1025122f984aSEvgeniy Stepanov /// once. 1026122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst, 1027122f984aSEvgeniy Stepanov const DominatorTree *DT, const Loop *CurLoop, 1028122f984aSEvgeniy Stepanov const LoopSafetyInfo *SafetyInfo) { 1029122f984aSEvgeniy Stepanov // We have to check to make sure that the instruction dominates all 1030122f984aSEvgeniy Stepanov // of the exit blocks. If it doesn't, then there is a path out of the loop 1031122f984aSEvgeniy Stepanov // which does not execute this instruction, so we can't hoist it. 1032122f984aSEvgeniy Stepanov 1033122f984aSEvgeniy Stepanov // If the instruction is in the header block for the loop (which is very 1034122f984aSEvgeniy Stepanov // common), it is always guaranteed to dominate the exit blocks. Since this 1035122f984aSEvgeniy Stepanov // is a common case, and can save some work, check it now. 1036122f984aSEvgeniy Stepanov if (Inst.getParent() == CurLoop->getHeader()) 1037122f984aSEvgeniy Stepanov // If there's a throw in the header block, we can't guarantee we'll reach 1038122f984aSEvgeniy Stepanov // Inst. 1039122f984aSEvgeniy Stepanov return !SafetyInfo->HeaderMayThrow; 1040122f984aSEvgeniy Stepanov 1041122f984aSEvgeniy Stepanov // Somewhere in this loop there is an instruction which may throw and make us 1042122f984aSEvgeniy Stepanov // exit the loop. 1043122f984aSEvgeniy Stepanov if (SafetyInfo->MayThrow) 1044122f984aSEvgeniy Stepanov return false; 1045122f984aSEvgeniy Stepanov 1046122f984aSEvgeniy Stepanov // Get the exit blocks for the current loop. 1047122f984aSEvgeniy Stepanov SmallVector<BasicBlock *, 8> ExitBlocks; 1048122f984aSEvgeniy Stepanov CurLoop->getExitBlocks(ExitBlocks); 1049122f984aSEvgeniy Stepanov 1050122f984aSEvgeniy Stepanov // Verify that the block dominates each of the exit blocks of the loop. 1051122f984aSEvgeniy Stepanov for (BasicBlock *ExitBlock : ExitBlocks) 1052122f984aSEvgeniy Stepanov if (!DT->dominates(Inst.getParent(), ExitBlock)) 1053122f984aSEvgeniy Stepanov return false; 1054122f984aSEvgeniy Stepanov 1055122f984aSEvgeniy Stepanov // As a degenerate case, if the loop is statically infinite then we haven't 1056122f984aSEvgeniy Stepanov // proven anything since there are no exit blocks. 1057122f984aSEvgeniy Stepanov if (ExitBlocks.empty()) 1058122f984aSEvgeniy Stepanov return false; 1059122f984aSEvgeniy Stepanov 1060f1da33e4SEli Friedman // FIXME: In general, we have to prove that the loop isn't an infinite loop. 1061f1da33e4SEli Friedman // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 1062f1da33e4SEli Friedman // just a special case of this.) 1063122f984aSEvgeniy Stepanov return true; 1064122f984aSEvgeniy Stepanov } 1065