176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
276aa662cSKarthik Bhat //
376aa662cSKarthik Bhat //                     The LLVM Compiler Infrastructure
476aa662cSKarthik Bhat //
576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source
676aa662cSKarthik Bhat // License. See LICENSE.TXT for details.
776aa662cSKarthik Bhat //
876aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
976aa662cSKarthik Bhat //
1076aa662cSKarthik Bhat // This file defines common loop utility functions.
1176aa662cSKarthik Bhat //
1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
1376aa662cSKarthik Bhat 
14*2f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h"
1531088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h"
1631088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h"
1731088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h"
18*2f2bd8caSAdam Nemet #include "llvm/Analysis/GlobalsModRef.h"
19*2f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
2045d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h"
21*2f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
22c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h"
2345d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h"
2431088a9dSChandler Carruth #include "llvm/IR/Dominators.h"
2576aa662cSKarthik Bhat #include "llvm/IR/Instructions.h"
2645d4cb9aSWeiming Zhao #include "llvm/IR/Module.h"
2776aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h"
2876aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h"
2931088a9dSChandler Carruth #include "llvm/Pass.h"
3076aa662cSKarthik Bhat #include "llvm/Support/Debug.h"
3176aa662cSKarthik Bhat 
3276aa662cSKarthik Bhat using namespace llvm;
3376aa662cSKarthik Bhat using namespace llvm::PatternMatch;
3476aa662cSKarthik Bhat 
3576aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils"
3676aa662cSKarthik Bhat 
370a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
3876aa662cSKarthik Bhat                                         SmallPtrSetImpl<Instruction *> &Set) {
3976aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4076aa662cSKarthik Bhat     if (!Set.count(dyn_cast<Instruction>(*Use)))
4176aa662cSKarthik Bhat       return false;
4276aa662cSKarthik Bhat   return true;
4376aa662cSKarthik Bhat }
4476aa662cSKarthik Bhat 
45c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
46c94f8e29SChad Rosier   switch (Kind) {
47c94f8e29SChad Rosier   default:
48c94f8e29SChad Rosier     break;
49c94f8e29SChad Rosier   case RK_IntegerAdd:
50c94f8e29SChad Rosier   case RK_IntegerMult:
51c94f8e29SChad Rosier   case RK_IntegerOr:
52c94f8e29SChad Rosier   case RK_IntegerAnd:
53c94f8e29SChad Rosier   case RK_IntegerXor:
54c94f8e29SChad Rosier   case RK_IntegerMinMax:
55c94f8e29SChad Rosier     return true;
56c94f8e29SChad Rosier   }
57c94f8e29SChad Rosier   return false;
58c94f8e29SChad Rosier }
59c94f8e29SChad Rosier 
60c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
61c94f8e29SChad Rosier   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
62c94f8e29SChad Rosier }
63c94f8e29SChad Rosier 
64c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
65c94f8e29SChad Rosier   switch (Kind) {
66c94f8e29SChad Rosier   default:
67c94f8e29SChad Rosier     break;
68c94f8e29SChad Rosier   case RK_IntegerAdd:
69c94f8e29SChad Rosier   case RK_IntegerMult:
70c94f8e29SChad Rosier   case RK_FloatAdd:
71c94f8e29SChad Rosier   case RK_FloatMult:
72c94f8e29SChad Rosier     return true;
73c94f8e29SChad Rosier   }
74c94f8e29SChad Rosier   return false;
75c94f8e29SChad Rosier }
76c94f8e29SChad Rosier 
77c94f8e29SChad Rosier Instruction *
78c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
79c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &Visited,
80c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &CI) {
81c94f8e29SChad Rosier   if (!Phi->hasOneUse())
82c94f8e29SChad Rosier     return Phi;
83c94f8e29SChad Rosier 
84c94f8e29SChad Rosier   const APInt *M = nullptr;
85c94f8e29SChad Rosier   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
86c94f8e29SChad Rosier 
87c94f8e29SChad Rosier   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
88c94f8e29SChad Rosier   // with a new integer type of the corresponding bit width.
89c94f8e29SChad Rosier   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
90c94f8e29SChad Rosier                            m_And(m_APInt(M), m_Instruction(I))))) {
91c94f8e29SChad Rosier     int32_t Bits = (*M + 1).exactLogBase2();
92c94f8e29SChad Rosier     if (Bits > 0) {
93c94f8e29SChad Rosier       RT = IntegerType::get(Phi->getContext(), Bits);
94c94f8e29SChad Rosier       Visited.insert(Phi);
95c94f8e29SChad Rosier       CI.insert(J);
96c94f8e29SChad Rosier       return J;
97c94f8e29SChad Rosier     }
98c94f8e29SChad Rosier   }
99c94f8e29SChad Rosier   return Phi;
100c94f8e29SChad Rosier }
101c94f8e29SChad Rosier 
102c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind(
103c94f8e29SChad Rosier     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
104c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &Visited,
105c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &CI) {
106c94f8e29SChad Rosier 
107c94f8e29SChad Rosier   SmallVector<Instruction *, 8> Worklist;
108c94f8e29SChad Rosier   bool FoundOneOperand = false;
10929dc0f70SMatthew Simpson   unsigned DstSize = RT->getPrimitiveSizeInBits();
110c94f8e29SChad Rosier   Worklist.push_back(Exit);
111c94f8e29SChad Rosier 
112c94f8e29SChad Rosier   // Traverse the instructions in the reduction expression, beginning with the
113c94f8e29SChad Rosier   // exit value.
114c94f8e29SChad Rosier   while (!Worklist.empty()) {
115c94f8e29SChad Rosier     Instruction *I = Worklist.pop_back_val();
116c94f8e29SChad Rosier     for (Use &U : I->operands()) {
117c94f8e29SChad Rosier 
118c94f8e29SChad Rosier       // Terminate the traversal if the operand is not an instruction, or we
119c94f8e29SChad Rosier       // reach the starting value.
120c94f8e29SChad Rosier       Instruction *J = dyn_cast<Instruction>(U.get());
121c94f8e29SChad Rosier       if (!J || J == Start)
122c94f8e29SChad Rosier         continue;
123c94f8e29SChad Rosier 
124c94f8e29SChad Rosier       // Otherwise, investigate the operation if it is also in the expression.
125c94f8e29SChad Rosier       if (Visited.count(J)) {
126c94f8e29SChad Rosier         Worklist.push_back(J);
127c94f8e29SChad Rosier         continue;
128c94f8e29SChad Rosier       }
129c94f8e29SChad Rosier 
130c94f8e29SChad Rosier       // If the operand is not in Visited, it is not a reduction operation, but
131c94f8e29SChad Rosier       // it does feed into one. Make sure it is either a single-use sign- or
13229dc0f70SMatthew Simpson       // zero-extend instruction.
133c94f8e29SChad Rosier       CastInst *Cast = dyn_cast<CastInst>(J);
134c94f8e29SChad Rosier       bool IsSExtInst = isa<SExtInst>(J);
13529dc0f70SMatthew Simpson       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
13629dc0f70SMatthew Simpson         return false;
13729dc0f70SMatthew Simpson 
13829dc0f70SMatthew Simpson       // Ensure the source type of the extend is no larger than the reduction
13929dc0f70SMatthew Simpson       // type. It is not necessary for the types to be identical.
14029dc0f70SMatthew Simpson       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
14129dc0f70SMatthew Simpson       if (SrcSize > DstSize)
142c94f8e29SChad Rosier         return false;
143c94f8e29SChad Rosier 
144c94f8e29SChad Rosier       // Furthermore, ensure that all such extends are of the same kind.
145c94f8e29SChad Rosier       if (FoundOneOperand) {
146c94f8e29SChad Rosier         if (IsSigned != IsSExtInst)
147c94f8e29SChad Rosier           return false;
148c94f8e29SChad Rosier       } else {
149c94f8e29SChad Rosier         FoundOneOperand = true;
150c94f8e29SChad Rosier         IsSigned = IsSExtInst;
151c94f8e29SChad Rosier       }
152c94f8e29SChad Rosier 
15329dc0f70SMatthew Simpson       // Lastly, if the source type of the extend matches the reduction type,
15429dc0f70SMatthew Simpson       // add the extend to CI so that we can avoid accounting for it in the
15529dc0f70SMatthew Simpson       // cost model.
15629dc0f70SMatthew Simpson       if (SrcSize == DstSize)
157c94f8e29SChad Rosier         CI.insert(Cast);
158c94f8e29SChad Rosier     }
159c94f8e29SChad Rosier   }
160c94f8e29SChad Rosier   return true;
161c94f8e29SChad Rosier }
162c94f8e29SChad Rosier 
1630a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
16476aa662cSKarthik Bhat                                            Loop *TheLoop, bool HasFunNoNaNAttr,
1650a91310cSTyler Nowicki                                            RecurrenceDescriptor &RedDes) {
16676aa662cSKarthik Bhat   if (Phi->getNumIncomingValues() != 2)
16776aa662cSKarthik Bhat     return false;
16876aa662cSKarthik Bhat 
16976aa662cSKarthik Bhat   // Reduction variables are only found in the loop header block.
17076aa662cSKarthik Bhat   if (Phi->getParent() != TheLoop->getHeader())
17176aa662cSKarthik Bhat     return false;
17276aa662cSKarthik Bhat 
17376aa662cSKarthik Bhat   // Obtain the reduction start value from the value that comes from the loop
17476aa662cSKarthik Bhat   // preheader.
17576aa662cSKarthik Bhat   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
17676aa662cSKarthik Bhat 
17776aa662cSKarthik Bhat   // ExitInstruction is the single value which is used outside the loop.
17876aa662cSKarthik Bhat   // We only allow for a single reduction value to be used outside the loop.
17976aa662cSKarthik Bhat   // This includes users of the reduction, variables (which form a cycle
18076aa662cSKarthik Bhat   // which ends in the phi node).
18176aa662cSKarthik Bhat   Instruction *ExitInstruction = nullptr;
18276aa662cSKarthik Bhat   // Indicates that we found a reduction operation in our scan.
18376aa662cSKarthik Bhat   bool FoundReduxOp = false;
18476aa662cSKarthik Bhat 
18576aa662cSKarthik Bhat   // We start with the PHI node and scan for all of the users of this
18676aa662cSKarthik Bhat   // instruction. All users must be instructions that can be used as reduction
18776aa662cSKarthik Bhat   // variables (such as ADD). We must have a single out-of-block user. The cycle
18876aa662cSKarthik Bhat   // must include the original PHI.
18976aa662cSKarthik Bhat   bool FoundStartPHI = false;
19076aa662cSKarthik Bhat 
19176aa662cSKarthik Bhat   // To recognize min/max patterns formed by a icmp select sequence, we store
19276aa662cSKarthik Bhat   // the number of instruction we saw from the recognized min/max pattern,
19376aa662cSKarthik Bhat   //  to make sure we only see exactly the two instructions.
19476aa662cSKarthik Bhat   unsigned NumCmpSelectPatternInst = 0;
19527b2c39eSTyler Nowicki   InstDesc ReduxDesc(false, nullptr);
19676aa662cSKarthik Bhat 
197c94f8e29SChad Rosier   // Data used for determining if the recurrence has been type-promoted.
198c94f8e29SChad Rosier   Type *RecurrenceType = Phi->getType();
199c94f8e29SChad Rosier   SmallPtrSet<Instruction *, 4> CastInsts;
200c94f8e29SChad Rosier   Instruction *Start = Phi;
201c94f8e29SChad Rosier   bool IsSigned = false;
202c94f8e29SChad Rosier 
20376aa662cSKarthik Bhat   SmallPtrSet<Instruction *, 8> VisitedInsts;
20476aa662cSKarthik Bhat   SmallVector<Instruction *, 8> Worklist;
205c94f8e29SChad Rosier 
206c94f8e29SChad Rosier   // Return early if the recurrence kind does not match the type of Phi. If the
207c94f8e29SChad Rosier   // recurrence kind is arithmetic, we attempt to look through AND operations
208c94f8e29SChad Rosier   // resulting from the type promotion performed by InstCombine.  Vector
209c94f8e29SChad Rosier   // operations are not limited to the legal integer widths, so we may be able
210c94f8e29SChad Rosier   // to evaluate the reduction in the narrower width.
211c94f8e29SChad Rosier   if (RecurrenceType->isFloatingPointTy()) {
212c94f8e29SChad Rosier     if (!isFloatingPointRecurrenceKind(Kind))
213c94f8e29SChad Rosier       return false;
214c94f8e29SChad Rosier   } else {
215c94f8e29SChad Rosier     if (!isIntegerRecurrenceKind(Kind))
216c94f8e29SChad Rosier       return false;
217c94f8e29SChad Rosier     if (isArithmeticRecurrenceKind(Kind))
218c94f8e29SChad Rosier       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
219c94f8e29SChad Rosier   }
220c94f8e29SChad Rosier 
221c94f8e29SChad Rosier   Worklist.push_back(Start);
222c94f8e29SChad Rosier   VisitedInsts.insert(Start);
22376aa662cSKarthik Bhat 
22476aa662cSKarthik Bhat   // A value in the reduction can be used:
22576aa662cSKarthik Bhat   //  - By the reduction:
22676aa662cSKarthik Bhat   //      - Reduction operation:
22776aa662cSKarthik Bhat   //        - One use of reduction value (safe).
22876aa662cSKarthik Bhat   //        - Multiple use of reduction value (not safe).
22976aa662cSKarthik Bhat   //      - PHI:
23076aa662cSKarthik Bhat   //        - All uses of the PHI must be the reduction (safe).
23176aa662cSKarthik Bhat   //        - Otherwise, not safe.
23276aa662cSKarthik Bhat   //  - By one instruction outside of the loop (safe).
23376aa662cSKarthik Bhat   //  - By further instructions outside of the loop (not safe).
23476aa662cSKarthik Bhat   //  - By an instruction that is not part of the reduction (not safe).
23576aa662cSKarthik Bhat   //    This is either:
23676aa662cSKarthik Bhat   //      * An instruction type other than PHI or the reduction operation.
23776aa662cSKarthik Bhat   //      * A PHI in the header other than the initial PHI.
23876aa662cSKarthik Bhat   while (!Worklist.empty()) {
23976aa662cSKarthik Bhat     Instruction *Cur = Worklist.back();
24076aa662cSKarthik Bhat     Worklist.pop_back();
24176aa662cSKarthik Bhat 
24276aa662cSKarthik Bhat     // No Users.
24376aa662cSKarthik Bhat     // If the instruction has no users then this is a broken chain and can't be
24476aa662cSKarthik Bhat     // a reduction variable.
24576aa662cSKarthik Bhat     if (Cur->use_empty())
24676aa662cSKarthik Bhat       return false;
24776aa662cSKarthik Bhat 
24876aa662cSKarthik Bhat     bool IsAPhi = isa<PHINode>(Cur);
24976aa662cSKarthik Bhat 
25076aa662cSKarthik Bhat     // A header PHI use other than the original PHI.
25176aa662cSKarthik Bhat     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
25276aa662cSKarthik Bhat       return false;
25376aa662cSKarthik Bhat 
25476aa662cSKarthik Bhat     // Reductions of instructions such as Div, and Sub is only possible if the
25576aa662cSKarthik Bhat     // LHS is the reduction variable.
25676aa662cSKarthik Bhat     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
25776aa662cSKarthik Bhat         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
25876aa662cSKarthik Bhat         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
25976aa662cSKarthik Bhat       return false;
26076aa662cSKarthik Bhat 
261c94f8e29SChad Rosier     // Any reduction instruction must be of one of the allowed kinds. We ignore
262c94f8e29SChad Rosier     // the starting value (the Phi or an AND instruction if the Phi has been
263c94f8e29SChad Rosier     // type-promoted).
264c94f8e29SChad Rosier     if (Cur != Start) {
2650a91310cSTyler Nowicki       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
2660a91310cSTyler Nowicki       if (!ReduxDesc.isRecurrence())
26776aa662cSKarthik Bhat         return false;
268c94f8e29SChad Rosier     }
26976aa662cSKarthik Bhat 
27076aa662cSKarthik Bhat     // A reduction operation must only have one use of the reduction value.
27176aa662cSKarthik Bhat     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
27276aa662cSKarthik Bhat         hasMultipleUsesOf(Cur, VisitedInsts))
27376aa662cSKarthik Bhat       return false;
27476aa662cSKarthik Bhat 
27576aa662cSKarthik Bhat     // All inputs to a PHI node must be a reduction value.
27676aa662cSKarthik Bhat     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
27776aa662cSKarthik Bhat       return false;
27876aa662cSKarthik Bhat 
27976aa662cSKarthik Bhat     if (Kind == RK_IntegerMinMax &&
28076aa662cSKarthik Bhat         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
28176aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28276aa662cSKarthik Bhat     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
28376aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28476aa662cSKarthik Bhat 
28576aa662cSKarthik Bhat     // Check  whether we found a reduction operator.
286c94f8e29SChad Rosier     FoundReduxOp |= !IsAPhi && Cur != Start;
28776aa662cSKarthik Bhat 
28876aa662cSKarthik Bhat     // Process users of current instruction. Push non-PHI nodes after PHI nodes
28976aa662cSKarthik Bhat     // onto the stack. This way we are going to have seen all inputs to PHI
29076aa662cSKarthik Bhat     // nodes once we get to them.
29176aa662cSKarthik Bhat     SmallVector<Instruction *, 8> NonPHIs;
29276aa662cSKarthik Bhat     SmallVector<Instruction *, 8> PHIs;
29376aa662cSKarthik Bhat     for (User *U : Cur->users()) {
29476aa662cSKarthik Bhat       Instruction *UI = cast<Instruction>(U);
29576aa662cSKarthik Bhat 
29676aa662cSKarthik Bhat       // Check if we found the exit user.
29776aa662cSKarthik Bhat       BasicBlock *Parent = UI->getParent();
29876aa662cSKarthik Bhat       if (!TheLoop->contains(Parent)) {
29976aa662cSKarthik Bhat         // Exit if you find multiple outside users or if the header phi node is
30076aa662cSKarthik Bhat         // being used. In this case the user uses the value of the previous
30176aa662cSKarthik Bhat         // iteration, in which case we would loose "VF-1" iterations of the
30276aa662cSKarthik Bhat         // reduction operation if we vectorize.
30376aa662cSKarthik Bhat         if (ExitInstruction != nullptr || Cur == Phi)
30476aa662cSKarthik Bhat           return false;
30576aa662cSKarthik Bhat 
30676aa662cSKarthik Bhat         // The instruction used by an outside user must be the last instruction
30776aa662cSKarthik Bhat         // before we feed back to the reduction phi. Otherwise, we loose VF-1
30876aa662cSKarthik Bhat         // operations on the value.
30976aa662cSKarthik Bhat         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
31076aa662cSKarthik Bhat           return false;
31176aa662cSKarthik Bhat 
31276aa662cSKarthik Bhat         ExitInstruction = Cur;
31376aa662cSKarthik Bhat         continue;
31476aa662cSKarthik Bhat       }
31576aa662cSKarthik Bhat 
31676aa662cSKarthik Bhat       // Process instructions only once (termination). Each reduction cycle
31776aa662cSKarthik Bhat       // value must only be used once, except by phi nodes and min/max
31876aa662cSKarthik Bhat       // reductions which are represented as a cmp followed by a select.
31927b2c39eSTyler Nowicki       InstDesc IgnoredVal(false, nullptr);
32076aa662cSKarthik Bhat       if (VisitedInsts.insert(UI).second) {
32176aa662cSKarthik Bhat         if (isa<PHINode>(UI))
32276aa662cSKarthik Bhat           PHIs.push_back(UI);
32376aa662cSKarthik Bhat         else
32476aa662cSKarthik Bhat           NonPHIs.push_back(UI);
32576aa662cSKarthik Bhat       } else if (!isa<PHINode>(UI) &&
32676aa662cSKarthik Bhat                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
32776aa662cSKarthik Bhat                    !isa<SelectInst>(UI)) ||
3280a91310cSTyler Nowicki                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
32976aa662cSKarthik Bhat         return false;
33076aa662cSKarthik Bhat 
33176aa662cSKarthik Bhat       // Remember that we completed the cycle.
33276aa662cSKarthik Bhat       if (UI == Phi)
33376aa662cSKarthik Bhat         FoundStartPHI = true;
33476aa662cSKarthik Bhat     }
33576aa662cSKarthik Bhat     Worklist.append(PHIs.begin(), PHIs.end());
33676aa662cSKarthik Bhat     Worklist.append(NonPHIs.begin(), NonPHIs.end());
33776aa662cSKarthik Bhat   }
33876aa662cSKarthik Bhat 
33976aa662cSKarthik Bhat   // This means we have seen one but not the other instruction of the
34076aa662cSKarthik Bhat   // pattern or more than just a select and cmp.
34176aa662cSKarthik Bhat   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
34276aa662cSKarthik Bhat       NumCmpSelectPatternInst != 2)
34376aa662cSKarthik Bhat     return false;
34476aa662cSKarthik Bhat 
34576aa662cSKarthik Bhat   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
34676aa662cSKarthik Bhat     return false;
34776aa662cSKarthik Bhat 
348c94f8e29SChad Rosier   // If we think Phi may have been type-promoted, we also need to ensure that
349c94f8e29SChad Rosier   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
350c94f8e29SChad Rosier   // so, we will be able to evaluate the reduction in the narrower bit width.
351c94f8e29SChad Rosier   if (Start != Phi)
352c94f8e29SChad Rosier     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
353c94f8e29SChad Rosier                                 IsSigned, VisitedInsts, CastInsts))
354c94f8e29SChad Rosier       return false;
355c94f8e29SChad Rosier 
35676aa662cSKarthik Bhat   // We found a reduction var if we have reached the original phi node and we
35776aa662cSKarthik Bhat   // only have a single instruction with out-of-loop users.
35876aa662cSKarthik Bhat 
35976aa662cSKarthik Bhat   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
3600a91310cSTyler Nowicki   // is saved as part of the RecurrenceDescriptor.
36176aa662cSKarthik Bhat 
36276aa662cSKarthik Bhat   // Save the description of this reduction variable.
363c94f8e29SChad Rosier   RecurrenceDescriptor RD(
364c94f8e29SChad Rosier       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
365c94f8e29SChad Rosier       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
36676aa662cSKarthik Bhat   RedDes = RD;
36776aa662cSKarthik Bhat 
36876aa662cSKarthik Bhat   return true;
36976aa662cSKarthik Bhat }
37076aa662cSKarthik Bhat 
37176aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
37276aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y).
37327b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
37427b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
37576aa662cSKarthik Bhat 
37676aa662cSKarthik Bhat   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
37776aa662cSKarthik Bhat          "Expect a select instruction");
37876aa662cSKarthik Bhat   Instruction *Cmp = nullptr;
37976aa662cSKarthik Bhat   SelectInst *Select = nullptr;
38076aa662cSKarthik Bhat 
38176aa662cSKarthik Bhat   // We must handle the select(cmp()) as a single instruction. Advance to the
38276aa662cSKarthik Bhat   // select.
38376aa662cSKarthik Bhat   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
38476aa662cSKarthik Bhat     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
38527b2c39eSTyler Nowicki       return InstDesc(false, I);
38627b2c39eSTyler Nowicki     return InstDesc(Select, Prev.getMinMaxKind());
38776aa662cSKarthik Bhat   }
38876aa662cSKarthik Bhat 
38976aa662cSKarthik Bhat   // Only handle single use cases for now.
39076aa662cSKarthik Bhat   if (!(Select = dyn_cast<SelectInst>(I)))
39127b2c39eSTyler Nowicki     return InstDesc(false, I);
39276aa662cSKarthik Bhat   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
39376aa662cSKarthik Bhat       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
39427b2c39eSTyler Nowicki     return InstDesc(false, I);
39576aa662cSKarthik Bhat   if (!Cmp->hasOneUse())
39627b2c39eSTyler Nowicki     return InstDesc(false, I);
39776aa662cSKarthik Bhat 
39876aa662cSKarthik Bhat   Value *CmpLeft;
39976aa662cSKarthik Bhat   Value *CmpRight;
40076aa662cSKarthik Bhat 
40176aa662cSKarthik Bhat   // Look for a min/max pattern.
40276aa662cSKarthik Bhat   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40327b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMin);
40476aa662cSKarthik Bhat   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40527b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMax);
40676aa662cSKarthik Bhat   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40727b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMax);
40876aa662cSKarthik Bhat   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40927b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMin);
41076aa662cSKarthik Bhat   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41127b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
41276aa662cSKarthik Bhat   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41327b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
41476aa662cSKarthik Bhat   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41527b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
41676aa662cSKarthik Bhat   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41727b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
41876aa662cSKarthik Bhat 
41927b2c39eSTyler Nowicki   return InstDesc(false, I);
42076aa662cSKarthik Bhat }
42176aa662cSKarthik Bhat 
42227b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
4230a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
42427b2c39eSTyler Nowicki                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
42576aa662cSKarthik Bhat   bool FP = I->getType()->isFloatingPointTy();
426c1a86f58STyler Nowicki   Instruction *UAI = Prev.getUnsafeAlgebraInst();
427c1a86f58STyler Nowicki   if (!UAI && FP && !I->hasUnsafeAlgebra())
428c1a86f58STyler Nowicki     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
429c1a86f58STyler Nowicki 
43076aa662cSKarthik Bhat   switch (I->getOpcode()) {
43176aa662cSKarthik Bhat   default:
43227b2c39eSTyler Nowicki     return InstDesc(false, I);
43376aa662cSKarthik Bhat   case Instruction::PHI:
43410a1e8b1STim Northover     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
43576aa662cSKarthik Bhat   case Instruction::Sub:
43676aa662cSKarthik Bhat   case Instruction::Add:
43727b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAdd, I);
43876aa662cSKarthik Bhat   case Instruction::Mul:
43927b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerMult, I);
44076aa662cSKarthik Bhat   case Instruction::And:
44127b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAnd, I);
44276aa662cSKarthik Bhat   case Instruction::Or:
44327b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerOr, I);
44476aa662cSKarthik Bhat   case Instruction::Xor:
44527b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerXor, I);
44676aa662cSKarthik Bhat   case Instruction::FMul:
447c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatMult, I, UAI);
44876aa662cSKarthik Bhat   case Instruction::FSub:
44976aa662cSKarthik Bhat   case Instruction::FAdd:
450c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatAdd, I, UAI);
45176aa662cSKarthik Bhat   case Instruction::FCmp:
45276aa662cSKarthik Bhat   case Instruction::ICmp:
45376aa662cSKarthik Bhat   case Instruction::Select:
45476aa662cSKarthik Bhat     if (Kind != RK_IntegerMinMax &&
45576aa662cSKarthik Bhat         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
45627b2c39eSTyler Nowicki       return InstDesc(false, I);
45776aa662cSKarthik Bhat     return isMinMaxSelectCmpPattern(I, Prev);
45876aa662cSKarthik Bhat   }
45976aa662cSKarthik Bhat }
46076aa662cSKarthik Bhat 
4610a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf(
46276aa662cSKarthik Bhat     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
46376aa662cSKarthik Bhat   unsigned NumUses = 0;
46476aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
46576aa662cSKarthik Bhat        ++Use) {
46676aa662cSKarthik Bhat     if (Insts.count(dyn_cast<Instruction>(*Use)))
46776aa662cSKarthik Bhat       ++NumUses;
46876aa662cSKarthik Bhat     if (NumUses > 1)
46976aa662cSKarthik Bhat       return true;
47076aa662cSKarthik Bhat   }
47176aa662cSKarthik Bhat 
47276aa662cSKarthik Bhat   return false;
47376aa662cSKarthik Bhat }
4740a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
4750a91310cSTyler Nowicki                                           RecurrenceDescriptor &RedDes) {
47676aa662cSKarthik Bhat 
47776aa662cSKarthik Bhat   BasicBlock *Header = TheLoop->getHeader();
47876aa662cSKarthik Bhat   Function &F = *Header->getParent();
4798dd66e57SNirav Dave   bool HasFunNoNaNAttr =
48076aa662cSKarthik Bhat       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
48176aa662cSKarthik Bhat 
48276aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
48376aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
48476aa662cSKarthik Bhat     return true;
48576aa662cSKarthik Bhat   }
48676aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
48776aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
48876aa662cSKarthik Bhat     return true;
48976aa662cSKarthik Bhat   }
49076aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
49176aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
49276aa662cSKarthik Bhat     return true;
49376aa662cSKarthik Bhat   }
49476aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
49576aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
49676aa662cSKarthik Bhat     return true;
49776aa662cSKarthik Bhat   }
49876aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
49976aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
50076aa662cSKarthik Bhat     return true;
50176aa662cSKarthik Bhat   }
50276aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
50376aa662cSKarthik Bhat                       RedDes)) {
50476aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
50576aa662cSKarthik Bhat     return true;
50676aa662cSKarthik Bhat   }
50776aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
50876aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
50976aa662cSKarthik Bhat     return true;
51076aa662cSKarthik Bhat   }
51176aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
51276aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
51376aa662cSKarthik Bhat     return true;
51476aa662cSKarthik Bhat   }
51576aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
51676aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
51776aa662cSKarthik Bhat     return true;
51876aa662cSKarthik Bhat   }
51976aa662cSKarthik Bhat   // Not a reduction of known type.
52076aa662cSKarthik Bhat   return false;
52176aa662cSKarthik Bhat }
52276aa662cSKarthik Bhat 
52329c997c1SMatthew Simpson bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
52429c997c1SMatthew Simpson                                                   DominatorTree *DT) {
52529c997c1SMatthew Simpson 
52629c997c1SMatthew Simpson   // Ensure the phi node is in the loop header and has two incoming values.
52729c997c1SMatthew Simpson   if (Phi->getParent() != TheLoop->getHeader() ||
52829c997c1SMatthew Simpson       Phi->getNumIncomingValues() != 2)
52929c997c1SMatthew Simpson     return false;
53029c997c1SMatthew Simpson 
53129c997c1SMatthew Simpson   // Ensure the loop has a preheader and a single latch block. The loop
53229c997c1SMatthew Simpson   // vectorizer will need the latch to set up the next iteration of the loop.
53329c997c1SMatthew Simpson   auto *Preheader = TheLoop->getLoopPreheader();
53429c997c1SMatthew Simpson   auto *Latch = TheLoop->getLoopLatch();
53529c997c1SMatthew Simpson   if (!Preheader || !Latch)
53629c997c1SMatthew Simpson     return false;
53729c997c1SMatthew Simpson 
53829c997c1SMatthew Simpson   // Ensure the phi node's incoming blocks are the loop preheader and latch.
53929c997c1SMatthew Simpson   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
54029c997c1SMatthew Simpson       Phi->getBasicBlockIndex(Latch) < 0)
54129c997c1SMatthew Simpson     return false;
54229c997c1SMatthew Simpson 
54329c997c1SMatthew Simpson   // Get the previous value. The previous value comes from the latch edge while
54429c997c1SMatthew Simpson   // the initial value comes form the preheader edge.
54529c997c1SMatthew Simpson   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
54653207a99SMatthew Simpson   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
54729c997c1SMatthew Simpson     return false;
54829c997c1SMatthew Simpson 
54929c997c1SMatthew Simpson   // Ensure every user of the phi node is dominated by the previous value. The
55029c997c1SMatthew Simpson   // dominance requirement ensures the loop vectorizer will not need to
55129c997c1SMatthew Simpson   // vectorize the initial value prior to the first iteration of the loop.
55229c997c1SMatthew Simpson   for (User *U : Phi->users())
55329c997c1SMatthew Simpson     if (auto *I = dyn_cast<Instruction>(U))
55429c997c1SMatthew Simpson       if (!DT->dominates(Previous, I))
55529c997c1SMatthew Simpson         return false;
55629c997c1SMatthew Simpson 
55729c997c1SMatthew Simpson   return true;
55829c997c1SMatthew Simpson }
55929c997c1SMatthew Simpson 
56076aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for
56176aa662cSKarthik Bhat /// the operation K.
5620a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
5630a91310cSTyler Nowicki                                                       Type *Tp) {
56476aa662cSKarthik Bhat   switch (K) {
56576aa662cSKarthik Bhat   case RK_IntegerXor:
56676aa662cSKarthik Bhat   case RK_IntegerAdd:
56776aa662cSKarthik Bhat   case RK_IntegerOr:
56876aa662cSKarthik Bhat     // Adding, Xoring, Oring zero to a number does not change it.
56976aa662cSKarthik Bhat     return ConstantInt::get(Tp, 0);
57076aa662cSKarthik Bhat   case RK_IntegerMult:
57176aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
57276aa662cSKarthik Bhat     return ConstantInt::get(Tp, 1);
57376aa662cSKarthik Bhat   case RK_IntegerAnd:
57476aa662cSKarthik Bhat     // AND-ing a number with an all-1 value does not change it.
57576aa662cSKarthik Bhat     return ConstantInt::get(Tp, -1, true);
57676aa662cSKarthik Bhat   case RK_FloatMult:
57776aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
57876aa662cSKarthik Bhat     return ConstantFP::get(Tp, 1.0L);
57976aa662cSKarthik Bhat   case RK_FloatAdd:
58076aa662cSKarthik Bhat     // Adding zero to a number does not change it.
58176aa662cSKarthik Bhat     return ConstantFP::get(Tp, 0.0L);
58276aa662cSKarthik Bhat   default:
5830a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence kind");
58476aa662cSKarthik Bhat   }
58576aa662cSKarthik Bhat }
58676aa662cSKarthik Bhat 
5870a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator.
5880a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
58976aa662cSKarthik Bhat   switch (Kind) {
59076aa662cSKarthik Bhat   case RK_IntegerAdd:
59176aa662cSKarthik Bhat     return Instruction::Add;
59276aa662cSKarthik Bhat   case RK_IntegerMult:
59376aa662cSKarthik Bhat     return Instruction::Mul;
59476aa662cSKarthik Bhat   case RK_IntegerOr:
59576aa662cSKarthik Bhat     return Instruction::Or;
59676aa662cSKarthik Bhat   case RK_IntegerAnd:
59776aa662cSKarthik Bhat     return Instruction::And;
59876aa662cSKarthik Bhat   case RK_IntegerXor:
59976aa662cSKarthik Bhat     return Instruction::Xor;
60076aa662cSKarthik Bhat   case RK_FloatMult:
60176aa662cSKarthik Bhat     return Instruction::FMul;
60276aa662cSKarthik Bhat   case RK_FloatAdd:
60376aa662cSKarthik Bhat     return Instruction::FAdd;
60476aa662cSKarthik Bhat   case RK_IntegerMinMax:
60576aa662cSKarthik Bhat     return Instruction::ICmp;
60676aa662cSKarthik Bhat   case RK_FloatMinMax:
60776aa662cSKarthik Bhat     return Instruction::FCmp;
60876aa662cSKarthik Bhat   default:
6090a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence operation");
61076aa662cSKarthik Bhat   }
61176aa662cSKarthik Bhat }
61276aa662cSKarthik Bhat 
61327b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
61427b2c39eSTyler Nowicki                                             MinMaxRecurrenceKind RK,
61576aa662cSKarthik Bhat                                             Value *Left, Value *Right) {
61676aa662cSKarthik Bhat   CmpInst::Predicate P = CmpInst::ICMP_NE;
61776aa662cSKarthik Bhat   switch (RK) {
61876aa662cSKarthik Bhat   default:
6190a91310cSTyler Nowicki     llvm_unreachable("Unknown min/max recurrence kind");
62027b2c39eSTyler Nowicki   case MRK_UIntMin:
62176aa662cSKarthik Bhat     P = CmpInst::ICMP_ULT;
62276aa662cSKarthik Bhat     break;
62327b2c39eSTyler Nowicki   case MRK_UIntMax:
62476aa662cSKarthik Bhat     P = CmpInst::ICMP_UGT;
62576aa662cSKarthik Bhat     break;
62627b2c39eSTyler Nowicki   case MRK_SIntMin:
62776aa662cSKarthik Bhat     P = CmpInst::ICMP_SLT;
62876aa662cSKarthik Bhat     break;
62927b2c39eSTyler Nowicki   case MRK_SIntMax:
63076aa662cSKarthik Bhat     P = CmpInst::ICMP_SGT;
63176aa662cSKarthik Bhat     break;
63227b2c39eSTyler Nowicki   case MRK_FloatMin:
63376aa662cSKarthik Bhat     P = CmpInst::FCMP_OLT;
63476aa662cSKarthik Bhat     break;
63527b2c39eSTyler Nowicki   case MRK_FloatMax:
63676aa662cSKarthik Bhat     P = CmpInst::FCMP_OGT;
63776aa662cSKarthik Bhat     break;
63876aa662cSKarthik Bhat   }
63976aa662cSKarthik Bhat 
64050a4c27fSJames Molloy   // We only match FP sequences with unsafe algebra, so we can unconditionally
64150a4c27fSJames Molloy   // set it on any generated instructions.
64250a4c27fSJames Molloy   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
64350a4c27fSJames Molloy   FastMathFlags FMF;
64450a4c27fSJames Molloy   FMF.setUnsafeAlgebra();
645a252815bSSanjay Patel   Builder.setFastMathFlags(FMF);
64650a4c27fSJames Molloy 
64776aa662cSKarthik Bhat   Value *Cmp;
64827b2c39eSTyler Nowicki   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
64976aa662cSKarthik Bhat     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
65076aa662cSKarthik Bhat   else
65176aa662cSKarthik Bhat     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
65276aa662cSKarthik Bhat 
65376aa662cSKarthik Bhat   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
65476aa662cSKarthik Bhat   return Select;
65576aa662cSKarthik Bhat }
65624e6cc2dSKarthik Bhat 
6571bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
658376a18bdSElena Demikhovsky                                          const SCEV *Step, BinaryOperator *BOp)
659376a18bdSElena Demikhovsky   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
6601bbf15c5SJames Molloy   assert(IK != IK_NoInduction && "Not an induction");
661c434d091SElena Demikhovsky 
662c434d091SElena Demikhovsky   // Start value type should match the induction kind and the value
663c434d091SElena Demikhovsky   // itself should not be null.
6641bbf15c5SJames Molloy   assert(StartValue && "StartValue is null");
6651bbf15c5SJames Molloy   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
6661bbf15c5SJames Molloy          "StartValue is not a pointer for pointer induction");
6671bbf15c5SJames Molloy   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
6681bbf15c5SJames Molloy          "StartValue is not an integer for integer induction");
669c434d091SElena Demikhovsky 
670c434d091SElena Demikhovsky   // Check the Step Value. It should be non-zero integer value.
671c434d091SElena Demikhovsky   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
672c434d091SElena Demikhovsky          "Step value is zero");
673c434d091SElena Demikhovsky 
674c434d091SElena Demikhovsky   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
675c434d091SElena Demikhovsky          "Step value should be constant for pointer induction");
676376a18bdSElena Demikhovsky   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
677376a18bdSElena Demikhovsky          "StepValue is not an integer");
678376a18bdSElena Demikhovsky 
679376a18bdSElena Demikhovsky   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
680376a18bdSElena Demikhovsky          "StepValue is not FP for FpInduction");
681376a18bdSElena Demikhovsky   assert((IK != IK_FpInduction || (InductionBinOp &&
682376a18bdSElena Demikhovsky           (InductionBinOp->getOpcode() == Instruction::FAdd ||
683376a18bdSElena Demikhovsky            InductionBinOp->getOpcode() == Instruction::FSub))) &&
684376a18bdSElena Demikhovsky          "Binary opcode should be specified for FP induction");
6851bbf15c5SJames Molloy }
6861bbf15c5SJames Molloy 
6871bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const {
688c434d091SElena Demikhovsky   ConstantInt *ConstStep = getConstIntStepValue();
689c434d091SElena Demikhovsky   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
690c434d091SElena Demikhovsky     return ConstStep->getSExtValue();
6911bbf15c5SJames Molloy   return 0;
6921bbf15c5SJames Molloy }
6931bbf15c5SJames Molloy 
694c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const {
695c434d091SElena Demikhovsky   if (isa<SCEVConstant>(Step))
696c434d091SElena Demikhovsky     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
697c434d091SElena Demikhovsky   return nullptr;
698c434d091SElena Demikhovsky }
699c434d091SElena Demikhovsky 
700c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
701c434d091SElena Demikhovsky                                       ScalarEvolution *SE,
702c434d091SElena Demikhovsky                                       const DataLayout& DL) const {
703c434d091SElena Demikhovsky 
704c434d091SElena Demikhovsky   SCEVExpander Exp(*SE, DL, "induction");
705376a18bdSElena Demikhovsky   assert(Index->getType() == Step->getType() &&
706376a18bdSElena Demikhovsky          "Index type does not match StepValue type");
7071bbf15c5SJames Molloy   switch (IK) {
708c434d091SElena Demikhovsky   case IK_IntInduction: {
7091bbf15c5SJames Molloy     assert(Index->getType() == StartValue->getType() &&
7101bbf15c5SJames Molloy            "Index type does not match StartValue type");
711c434d091SElena Demikhovsky 
712c434d091SElena Demikhovsky     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
713c434d091SElena Demikhovsky     // and calculate (Start + Index * Step) for all cases, without
714c434d091SElena Demikhovsky     // special handling for "isOne" and "isMinusOne".
715c434d091SElena Demikhovsky     // But in the real life the result code getting worse. We mix SCEV
716c434d091SElena Demikhovsky     // expressions and ADD/SUB operations and receive redundant
717c434d091SElena Demikhovsky     // intermediate values being calculated in different ways and
718c434d091SElena Demikhovsky     // Instcombine is unable to reduce them all.
719c434d091SElena Demikhovsky 
720c434d091SElena Demikhovsky     if (getConstIntStepValue() &&
721c434d091SElena Demikhovsky         getConstIntStepValue()->isMinusOne())
7221bbf15c5SJames Molloy       return B.CreateSub(StartValue, Index);
723c434d091SElena Demikhovsky     if (getConstIntStepValue() &&
724c434d091SElena Demikhovsky         getConstIntStepValue()->isOne())
7251bbf15c5SJames Molloy       return B.CreateAdd(StartValue, Index);
726c434d091SElena Demikhovsky     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
727c434d091SElena Demikhovsky                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
728c434d091SElena Demikhovsky     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
729c434d091SElena Demikhovsky   }
730c434d091SElena Demikhovsky   case IK_PtrInduction: {
731c434d091SElena Demikhovsky     assert(isa<SCEVConstant>(Step) &&
732c434d091SElena Demikhovsky            "Expected constant step for pointer induction");
733c434d091SElena Demikhovsky     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
734c434d091SElena Demikhovsky     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
7351bbf15c5SJames Molloy     return B.CreateGEP(nullptr, StartValue, Index);
736c434d091SElena Demikhovsky   }
737376a18bdSElena Demikhovsky   case IK_FpInduction: {
738376a18bdSElena Demikhovsky     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
739376a18bdSElena Demikhovsky     assert(InductionBinOp &&
740376a18bdSElena Demikhovsky            (InductionBinOp->getOpcode() == Instruction::FAdd ||
741376a18bdSElena Demikhovsky             InductionBinOp->getOpcode() == Instruction::FSub) &&
742376a18bdSElena Demikhovsky            "Original bin op should be defined for FP induction");
743376a18bdSElena Demikhovsky 
744376a18bdSElena Demikhovsky     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
745376a18bdSElena Demikhovsky 
746376a18bdSElena Demikhovsky     // Floating point operations had to be 'fast' to enable the induction.
747376a18bdSElena Demikhovsky     FastMathFlags Flags;
748376a18bdSElena Demikhovsky     Flags.setUnsafeAlgebra();
749376a18bdSElena Demikhovsky 
750376a18bdSElena Demikhovsky     Value *MulExp = B.CreateFMul(StepValue, Index);
751376a18bdSElena Demikhovsky     if (isa<Instruction>(MulExp))
752376a18bdSElena Demikhovsky       // We have to check, the MulExp may be a constant.
753376a18bdSElena Demikhovsky       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
754376a18bdSElena Demikhovsky 
755376a18bdSElena Demikhovsky     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
756376a18bdSElena Demikhovsky                                MulExp, "induction");
757376a18bdSElena Demikhovsky     if (isa<Instruction>(BOp))
758376a18bdSElena Demikhovsky       cast<Instruction>(BOp)->setFastMathFlags(Flags);
759376a18bdSElena Demikhovsky 
760376a18bdSElena Demikhovsky     return BOp;
761376a18bdSElena Demikhovsky   }
7621bbf15c5SJames Molloy   case IK_NoInduction:
7631bbf15c5SJames Molloy     return nullptr;
7641bbf15c5SJames Molloy   }
7651bbf15c5SJames Molloy   llvm_unreachable("invalid enum");
7661bbf15c5SJames Molloy }
7671bbf15c5SJames Molloy 
768376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
769376a18bdSElena Demikhovsky                                            ScalarEvolution *SE,
770376a18bdSElena Demikhovsky                                            InductionDescriptor &D) {
771376a18bdSElena Demikhovsky 
772376a18bdSElena Demikhovsky   // Here we only handle FP induction variables.
773376a18bdSElena Demikhovsky   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
774376a18bdSElena Demikhovsky 
775376a18bdSElena Demikhovsky   if (TheLoop->getHeader() != Phi->getParent())
776376a18bdSElena Demikhovsky     return false;
777376a18bdSElena Demikhovsky 
778376a18bdSElena Demikhovsky   // The loop may have multiple entrances or multiple exits; we can analyze
779376a18bdSElena Demikhovsky   // this phi if it has a unique entry value and a unique backedge value.
780376a18bdSElena Demikhovsky   if (Phi->getNumIncomingValues() != 2)
781376a18bdSElena Demikhovsky     return false;
782376a18bdSElena Demikhovsky   Value *BEValue = nullptr, *StartValue = nullptr;
783376a18bdSElena Demikhovsky   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
784376a18bdSElena Demikhovsky     BEValue = Phi->getIncomingValue(0);
785376a18bdSElena Demikhovsky     StartValue = Phi->getIncomingValue(1);
786376a18bdSElena Demikhovsky   } else {
787376a18bdSElena Demikhovsky     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
788376a18bdSElena Demikhovsky            "Unexpected Phi node in the loop");
789376a18bdSElena Demikhovsky     BEValue = Phi->getIncomingValue(1);
790376a18bdSElena Demikhovsky     StartValue = Phi->getIncomingValue(0);
791376a18bdSElena Demikhovsky   }
792376a18bdSElena Demikhovsky 
793376a18bdSElena Demikhovsky   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
794376a18bdSElena Demikhovsky   if (!BOp)
795376a18bdSElena Demikhovsky     return false;
796376a18bdSElena Demikhovsky 
797376a18bdSElena Demikhovsky   Value *Addend = nullptr;
798376a18bdSElena Demikhovsky   if (BOp->getOpcode() == Instruction::FAdd) {
799376a18bdSElena Demikhovsky     if (BOp->getOperand(0) == Phi)
800376a18bdSElena Demikhovsky       Addend = BOp->getOperand(1);
801376a18bdSElena Demikhovsky     else if (BOp->getOperand(1) == Phi)
802376a18bdSElena Demikhovsky       Addend = BOp->getOperand(0);
803376a18bdSElena Demikhovsky   } else if (BOp->getOpcode() == Instruction::FSub)
804376a18bdSElena Demikhovsky     if (BOp->getOperand(0) == Phi)
805376a18bdSElena Demikhovsky       Addend = BOp->getOperand(1);
806376a18bdSElena Demikhovsky 
807376a18bdSElena Demikhovsky   if (!Addend)
808376a18bdSElena Demikhovsky     return false;
809376a18bdSElena Demikhovsky 
810376a18bdSElena Demikhovsky   // The addend should be loop invariant
811376a18bdSElena Demikhovsky   if (auto *I = dyn_cast<Instruction>(Addend))
812376a18bdSElena Demikhovsky     if (TheLoop->contains(I))
813376a18bdSElena Demikhovsky       return false;
814376a18bdSElena Demikhovsky 
815376a18bdSElena Demikhovsky   // FP Step has unknown SCEV
816376a18bdSElena Demikhovsky   const SCEV *Step = SE->getUnknown(Addend);
817376a18bdSElena Demikhovsky   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
818376a18bdSElena Demikhovsky   return true;
819376a18bdSElena Demikhovsky }
820376a18bdSElena Demikhovsky 
821376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
822c05bab8aSSilviu Baranga                                          PredicatedScalarEvolution &PSE,
823c05bab8aSSilviu Baranga                                          InductionDescriptor &D,
824c05bab8aSSilviu Baranga                                          bool Assume) {
825c05bab8aSSilviu Baranga   Type *PhiTy = Phi->getType();
826376a18bdSElena Demikhovsky 
827376a18bdSElena Demikhovsky   // Handle integer and pointer inductions variables.
828376a18bdSElena Demikhovsky   // Now we handle also FP induction but not trying to make a
829376a18bdSElena Demikhovsky   // recurrent expression from the PHI node in-place.
830376a18bdSElena Demikhovsky 
831376a18bdSElena Demikhovsky   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
832376a18bdSElena Demikhovsky       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
833c05bab8aSSilviu Baranga     return false;
834c05bab8aSSilviu Baranga 
835376a18bdSElena Demikhovsky   if (PhiTy->isFloatingPointTy())
836376a18bdSElena Demikhovsky     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
837376a18bdSElena Demikhovsky 
838c05bab8aSSilviu Baranga   const SCEV *PhiScev = PSE.getSCEV(Phi);
839c05bab8aSSilviu Baranga   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
840c05bab8aSSilviu Baranga 
841c05bab8aSSilviu Baranga   // We need this expression to be an AddRecExpr.
842c05bab8aSSilviu Baranga   if (Assume && !AR)
843c05bab8aSSilviu Baranga     AR = PSE.getAsAddRec(Phi);
844c05bab8aSSilviu Baranga 
845c05bab8aSSilviu Baranga   if (!AR) {
846c05bab8aSSilviu Baranga     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
847c05bab8aSSilviu Baranga     return false;
848c05bab8aSSilviu Baranga   }
849c05bab8aSSilviu Baranga 
850376a18bdSElena Demikhovsky   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
851c05bab8aSSilviu Baranga }
852c05bab8aSSilviu Baranga 
853376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
854c05bab8aSSilviu Baranga                                          ScalarEvolution *SE,
855c05bab8aSSilviu Baranga                                          InductionDescriptor &D,
856c05bab8aSSilviu Baranga                                          const SCEV *Expr) {
85724e6cc2dSKarthik Bhat   Type *PhiTy = Phi->getType();
85824e6cc2dSKarthik Bhat   // We only handle integer and pointer inductions variables.
85924e6cc2dSKarthik Bhat   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
86024e6cc2dSKarthik Bhat     return false;
86124e6cc2dSKarthik Bhat 
86224e6cc2dSKarthik Bhat   // Check that the PHI is consecutive.
863c05bab8aSSilviu Baranga   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
86424e6cc2dSKarthik Bhat   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
865c05bab8aSSilviu Baranga 
86624e6cc2dSKarthik Bhat   if (!AR) {
86724e6cc2dSKarthik Bhat     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
86824e6cc2dSKarthik Bhat     return false;
86924e6cc2dSKarthik Bhat   }
87024e6cc2dSKarthik Bhat 
871376a18bdSElena Demikhovsky   assert(TheLoop->getHeader() == Phi->getParent() &&
8721bbf15c5SJames Molloy          "PHI is an AddRec for a different loop?!");
8731bbf15c5SJames Molloy   Value *StartValue =
8741bbf15c5SJames Molloy     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
87524e6cc2dSKarthik Bhat   const SCEV *Step = AR->getStepRecurrence(*SE);
87624e6cc2dSKarthik Bhat   // Calculate the pointer stride and check if it is consecutive.
877c434d091SElena Demikhovsky   // The stride may be a constant or a loop invariant integer value.
878c434d091SElena Demikhovsky   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
879376a18bdSElena Demikhovsky   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
88024e6cc2dSKarthik Bhat     return false;
88124e6cc2dSKarthik Bhat 
88224e6cc2dSKarthik Bhat   if (PhiTy->isIntegerTy()) {
883c434d091SElena Demikhovsky     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
88424e6cc2dSKarthik Bhat     return true;
88524e6cc2dSKarthik Bhat   }
88624e6cc2dSKarthik Bhat 
88724e6cc2dSKarthik Bhat   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
888c434d091SElena Demikhovsky   // Pointer induction should be a constant.
889c434d091SElena Demikhovsky   if (!ConstStep)
890c434d091SElena Demikhovsky     return false;
891c434d091SElena Demikhovsky 
892c434d091SElena Demikhovsky   ConstantInt *CV = ConstStep->getValue();
89324e6cc2dSKarthik Bhat   Type *PointerElementType = PhiTy->getPointerElementType();
89424e6cc2dSKarthik Bhat   // The pointer stride cannot be determined if the pointer element type is not
89524e6cc2dSKarthik Bhat   // sized.
89624e6cc2dSKarthik Bhat   if (!PointerElementType->isSized())
89724e6cc2dSKarthik Bhat     return false;
89824e6cc2dSKarthik Bhat 
89924e6cc2dSKarthik Bhat   const DataLayout &DL = Phi->getModule()->getDataLayout();
90024e6cc2dSKarthik Bhat   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
901b58f32f7SDavid Majnemer   if (!Size)
902b58f32f7SDavid Majnemer     return false;
903b58f32f7SDavid Majnemer 
90424e6cc2dSKarthik Bhat   int64_t CVSize = CV->getSExtValue();
90524e6cc2dSKarthik Bhat   if (CVSize % Size)
90624e6cc2dSKarthik Bhat     return false;
907c434d091SElena Demikhovsky   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
908c434d091SElena Demikhovsky                                     true /* signed */);
9091bbf15c5SJames Molloy   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
91024e6cc2dSKarthik Bhat   return true;
91124e6cc2dSKarthik Bhat }
912c5b7b555SAshutosh Nema 
913c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop.
914c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
915c5b7b555SAshutosh Nema   SmallVector<Instruction *, 8> UsedOutside;
916c5b7b555SAshutosh Nema 
917c5b7b555SAshutosh Nema   for (auto *Block : L->getBlocks())
918c5b7b555SAshutosh Nema     // FIXME: I believe that this could use copy_if if the Inst reference could
919c5b7b555SAshutosh Nema     // be adapted into a pointer.
920c5b7b555SAshutosh Nema     for (auto &Inst : *Block) {
921c5b7b555SAshutosh Nema       auto Users = Inst.users();
922c5b7b555SAshutosh Nema       if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
923c5b7b555SAshutosh Nema             auto *Use = cast<Instruction>(U);
924c5b7b555SAshutosh Nema             return !L->contains(Use->getParent());
925c5b7b555SAshutosh Nema           }))
926c5b7b555SAshutosh Nema         UsedOutside.push_back(&Inst);
927c5b7b555SAshutosh Nema     }
928c5b7b555SAshutosh Nema 
929c5b7b555SAshutosh Nema   return UsedOutside;
930c5b7b555SAshutosh Nema }
93131088a9dSChandler Carruth 
93231088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
93331088a9dSChandler Carruth   // By definition, all loop passes need the LoopInfo analysis and the
93431088a9dSChandler Carruth   // Dominator tree it depends on. Because they all participate in the loop
93531088a9dSChandler Carruth   // pass manager, they must also preserve these.
93631088a9dSChandler Carruth   AU.addRequired<DominatorTreeWrapperPass>();
93731088a9dSChandler Carruth   AU.addPreserved<DominatorTreeWrapperPass>();
93831088a9dSChandler Carruth   AU.addRequired<LoopInfoWrapperPass>();
93931088a9dSChandler Carruth   AU.addPreserved<LoopInfoWrapperPass>();
94031088a9dSChandler Carruth 
94131088a9dSChandler Carruth   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
94231088a9dSChandler Carruth   // here because users shouldn't directly get them from this header.
94331088a9dSChandler Carruth   extern char &LoopSimplifyID;
94431088a9dSChandler Carruth   extern char &LCSSAID;
94531088a9dSChandler Carruth   AU.addRequiredID(LoopSimplifyID);
94631088a9dSChandler Carruth   AU.addPreservedID(LoopSimplifyID);
94731088a9dSChandler Carruth   AU.addRequiredID(LCSSAID);
94831088a9dSChandler Carruth   AU.addPreservedID(LCSSAID);
94931088a9dSChandler Carruth 
95031088a9dSChandler Carruth   // Loop passes are designed to run inside of a loop pass manager which means
95131088a9dSChandler Carruth   // that any function analyses they require must be required by the first loop
95231088a9dSChandler Carruth   // pass in the manager (so that it is computed before the loop pass manager
95331088a9dSChandler Carruth   // runs) and preserved by all loop pasess in the manager. To make this
95431088a9dSChandler Carruth   // reasonably robust, the set needed for most loop passes is maintained here.
95531088a9dSChandler Carruth   // If your loop pass requires an analysis not listed here, you will need to
95631088a9dSChandler Carruth   // carefully audit the loop pass manager nesting structure that results.
95731088a9dSChandler Carruth   AU.addRequired<AAResultsWrapperPass>();
95831088a9dSChandler Carruth   AU.addPreserved<AAResultsWrapperPass>();
95931088a9dSChandler Carruth   AU.addPreserved<BasicAAWrapperPass>();
96031088a9dSChandler Carruth   AU.addPreserved<GlobalsAAWrapperPass>();
96131088a9dSChandler Carruth   AU.addPreserved<SCEVAAWrapperPass>();
96231088a9dSChandler Carruth   AU.addRequired<ScalarEvolutionWrapperPass>();
96331088a9dSChandler Carruth   AU.addPreserved<ScalarEvolutionWrapperPass>();
96431088a9dSChandler Carruth }
96531088a9dSChandler Carruth 
96631088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used
96731088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c
96831088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
96931088a9dSChandler Carruth /// with:
97031088a9dSChandler Carruth ///
97131088a9dSChandler Carruth ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
97231088a9dSChandler Carruth ///
97331088a9dSChandler Carruth /// As-if "LoopPass" were a pass.
97431088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) {
97531088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
97631088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
97731088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
978e12c487bSEaswaran Raman   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
97931088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
98031088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
98131088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
98231088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
98331088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
98431088a9dSChandler Carruth }
985963341c8SAdam Nemet 
986fe3def7cSAdam Nemet /// \brief Find string metadata for loop
987fe3def7cSAdam Nemet ///
988fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
989fe3def7cSAdam Nemet /// operand or null otherwise.  If the string metadata is not found return
990fe3def7cSAdam Nemet /// Optional's not-a-value.
991fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
992fe3def7cSAdam Nemet                                                             StringRef Name) {
993963341c8SAdam Nemet   MDNode *LoopID = TheLoop->getLoopID();
994fe3def7cSAdam Nemet   // Return none if LoopID is false.
995963341c8SAdam Nemet   if (!LoopID)
996fe3def7cSAdam Nemet     return None;
997293be666SAdam Nemet 
998293be666SAdam Nemet   // First operand should refer to the loop id itself.
999293be666SAdam Nemet   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1000293be666SAdam Nemet   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1001293be666SAdam Nemet 
1002963341c8SAdam Nemet   // Iterate over LoopID operands and look for MDString Metadata
1003963341c8SAdam Nemet   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1004963341c8SAdam Nemet     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1005963341c8SAdam Nemet     if (!MD)
1006963341c8SAdam Nemet       continue;
1007963341c8SAdam Nemet     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1008963341c8SAdam Nemet     if (!S)
1009963341c8SAdam Nemet       continue;
1010963341c8SAdam Nemet     // Return true if MDString holds expected MetaData.
1011963341c8SAdam Nemet     if (Name.equals(S->getString()))
1012fe3def7cSAdam Nemet       switch (MD->getNumOperands()) {
1013fe3def7cSAdam Nemet       case 1:
1014fe3def7cSAdam Nemet         return nullptr;
1015fe3def7cSAdam Nemet       case 2:
1016fe3def7cSAdam Nemet         return &MD->getOperand(1);
1017fe3def7cSAdam Nemet       default:
1018fe3def7cSAdam Nemet         llvm_unreachable("loop metadata has 0 or 1 operand");
1019963341c8SAdam Nemet       }
1020fe3def7cSAdam Nemet   }
1021fe3def7cSAdam Nemet   return None;
1022963341c8SAdam Nemet }
1023122f984aSEvgeniy Stepanov 
1024122f984aSEvgeniy Stepanov /// Returns true if the instruction in a loop is guaranteed to execute at least
1025122f984aSEvgeniy Stepanov /// once.
1026122f984aSEvgeniy Stepanov bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1027122f984aSEvgeniy Stepanov                                  const DominatorTree *DT, const Loop *CurLoop,
1028122f984aSEvgeniy Stepanov                                  const LoopSafetyInfo *SafetyInfo) {
1029122f984aSEvgeniy Stepanov   // We have to check to make sure that the instruction dominates all
1030122f984aSEvgeniy Stepanov   // of the exit blocks.  If it doesn't, then there is a path out of the loop
1031122f984aSEvgeniy Stepanov   // which does not execute this instruction, so we can't hoist it.
1032122f984aSEvgeniy Stepanov 
1033122f984aSEvgeniy Stepanov   // If the instruction is in the header block for the loop (which is very
1034122f984aSEvgeniy Stepanov   // common), it is always guaranteed to dominate the exit blocks.  Since this
1035122f984aSEvgeniy Stepanov   // is a common case, and can save some work, check it now.
1036122f984aSEvgeniy Stepanov   if (Inst.getParent() == CurLoop->getHeader())
1037122f984aSEvgeniy Stepanov     // If there's a throw in the header block, we can't guarantee we'll reach
1038122f984aSEvgeniy Stepanov     // Inst.
1039122f984aSEvgeniy Stepanov     return !SafetyInfo->HeaderMayThrow;
1040122f984aSEvgeniy Stepanov 
1041122f984aSEvgeniy Stepanov   // Somewhere in this loop there is an instruction which may throw and make us
1042122f984aSEvgeniy Stepanov   // exit the loop.
1043122f984aSEvgeniy Stepanov   if (SafetyInfo->MayThrow)
1044122f984aSEvgeniy Stepanov     return false;
1045122f984aSEvgeniy Stepanov 
1046122f984aSEvgeniy Stepanov   // Get the exit blocks for the current loop.
1047122f984aSEvgeniy Stepanov   SmallVector<BasicBlock *, 8> ExitBlocks;
1048122f984aSEvgeniy Stepanov   CurLoop->getExitBlocks(ExitBlocks);
1049122f984aSEvgeniy Stepanov 
1050122f984aSEvgeniy Stepanov   // Verify that the block dominates each of the exit blocks of the loop.
1051122f984aSEvgeniy Stepanov   for (BasicBlock *ExitBlock : ExitBlocks)
1052122f984aSEvgeniy Stepanov     if (!DT->dominates(Inst.getParent(), ExitBlock))
1053122f984aSEvgeniy Stepanov       return false;
1054122f984aSEvgeniy Stepanov 
1055122f984aSEvgeniy Stepanov   // As a degenerate case, if the loop is statically infinite then we haven't
1056122f984aSEvgeniy Stepanov   // proven anything since there are no exit blocks.
1057122f984aSEvgeniy Stepanov   if (ExitBlocks.empty())
1058122f984aSEvgeniy Stepanov     return false;
1059122f984aSEvgeniy Stepanov 
1060f1da33e4SEli Friedman   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1061f1da33e4SEli Friedman   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
1062f1da33e4SEli Friedman   // just a special case of this.)
1063122f984aSEvgeniy Stepanov   return true;
1064122f984aSEvgeniy Stepanov }
1065