176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
276aa662cSKarthik Bhat //
376aa662cSKarthik Bhat //                     The LLVM Compiler Infrastructure
476aa662cSKarthik Bhat //
576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source
676aa662cSKarthik Bhat // License. See LICENSE.TXT for details.
776aa662cSKarthik Bhat //
876aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
976aa662cSKarthik Bhat //
1076aa662cSKarthik Bhat // This file defines common loop utility functions.
1176aa662cSKarthik Bhat //
1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===//
1376aa662cSKarthik Bhat 
1431088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h"
1531088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h"
1676aa662cSKarthik Bhat #include "llvm/Analysis/LoopInfo.h"
1731088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h"
1845d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h"
1945d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h"
2031088a9dSChandler Carruth #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
2131088a9dSChandler Carruth #include "llvm/IR/Dominators.h"
2276aa662cSKarthik Bhat #include "llvm/IR/Instructions.h"
2345d4cb9aSWeiming Zhao #include "llvm/IR/Module.h"
2476aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h"
2576aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h"
2631088a9dSChandler Carruth #include "llvm/Pass.h"
2776aa662cSKarthik Bhat #include "llvm/Support/Debug.h"
2876aa662cSKarthik Bhat #include "llvm/Transforms/Utils/LoopUtils.h"
2976aa662cSKarthik Bhat 
3076aa662cSKarthik Bhat using namespace llvm;
3176aa662cSKarthik Bhat using namespace llvm::PatternMatch;
3276aa662cSKarthik Bhat 
3376aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils"
3476aa662cSKarthik Bhat 
350a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
3676aa662cSKarthik Bhat                                         SmallPtrSetImpl<Instruction *> &Set) {
3776aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
3876aa662cSKarthik Bhat     if (!Set.count(dyn_cast<Instruction>(*Use)))
3976aa662cSKarthik Bhat       return false;
4076aa662cSKarthik Bhat   return true;
4176aa662cSKarthik Bhat }
4276aa662cSKarthik Bhat 
43c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
44c94f8e29SChad Rosier   switch (Kind) {
45c94f8e29SChad Rosier   default:
46c94f8e29SChad Rosier     break;
47c94f8e29SChad Rosier   case RK_IntegerAdd:
48c94f8e29SChad Rosier   case RK_IntegerMult:
49c94f8e29SChad Rosier   case RK_IntegerOr:
50c94f8e29SChad Rosier   case RK_IntegerAnd:
51c94f8e29SChad Rosier   case RK_IntegerXor:
52c94f8e29SChad Rosier   case RK_IntegerMinMax:
53c94f8e29SChad Rosier     return true;
54c94f8e29SChad Rosier   }
55c94f8e29SChad Rosier   return false;
56c94f8e29SChad Rosier }
57c94f8e29SChad Rosier 
58c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
59c94f8e29SChad Rosier   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
60c94f8e29SChad Rosier }
61c94f8e29SChad Rosier 
62c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
63c94f8e29SChad Rosier   switch (Kind) {
64c94f8e29SChad Rosier   default:
65c94f8e29SChad Rosier     break;
66c94f8e29SChad Rosier   case RK_IntegerAdd:
67c94f8e29SChad Rosier   case RK_IntegerMult:
68c94f8e29SChad Rosier   case RK_FloatAdd:
69c94f8e29SChad Rosier   case RK_FloatMult:
70c94f8e29SChad Rosier     return true;
71c94f8e29SChad Rosier   }
72c94f8e29SChad Rosier   return false;
73c94f8e29SChad Rosier }
74c94f8e29SChad Rosier 
75c94f8e29SChad Rosier Instruction *
76c94f8e29SChad Rosier RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
77c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &Visited,
78c94f8e29SChad Rosier                                      SmallPtrSetImpl<Instruction *> &CI) {
79c94f8e29SChad Rosier   if (!Phi->hasOneUse())
80c94f8e29SChad Rosier     return Phi;
81c94f8e29SChad Rosier 
82c94f8e29SChad Rosier   const APInt *M = nullptr;
83c94f8e29SChad Rosier   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
84c94f8e29SChad Rosier 
85c94f8e29SChad Rosier   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
86c94f8e29SChad Rosier   // with a new integer type of the corresponding bit width.
87c94f8e29SChad Rosier   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
88c94f8e29SChad Rosier                            m_And(m_APInt(M), m_Instruction(I))))) {
89c94f8e29SChad Rosier     int32_t Bits = (*M + 1).exactLogBase2();
90c94f8e29SChad Rosier     if (Bits > 0) {
91c94f8e29SChad Rosier       RT = IntegerType::get(Phi->getContext(), Bits);
92c94f8e29SChad Rosier       Visited.insert(Phi);
93c94f8e29SChad Rosier       CI.insert(J);
94c94f8e29SChad Rosier       return J;
95c94f8e29SChad Rosier     }
96c94f8e29SChad Rosier   }
97c94f8e29SChad Rosier   return Phi;
98c94f8e29SChad Rosier }
99c94f8e29SChad Rosier 
100c94f8e29SChad Rosier bool RecurrenceDescriptor::getSourceExtensionKind(
101c94f8e29SChad Rosier     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
102c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &Visited,
103c94f8e29SChad Rosier     SmallPtrSetImpl<Instruction *> &CI) {
104c94f8e29SChad Rosier 
105c94f8e29SChad Rosier   SmallVector<Instruction *, 8> Worklist;
106c94f8e29SChad Rosier   bool FoundOneOperand = false;
10729dc0f70SMatthew Simpson   unsigned DstSize = RT->getPrimitiveSizeInBits();
108c94f8e29SChad Rosier   Worklist.push_back(Exit);
109c94f8e29SChad Rosier 
110c94f8e29SChad Rosier   // Traverse the instructions in the reduction expression, beginning with the
111c94f8e29SChad Rosier   // exit value.
112c94f8e29SChad Rosier   while (!Worklist.empty()) {
113c94f8e29SChad Rosier     Instruction *I = Worklist.pop_back_val();
114c94f8e29SChad Rosier     for (Use &U : I->operands()) {
115c94f8e29SChad Rosier 
116c94f8e29SChad Rosier       // Terminate the traversal if the operand is not an instruction, or we
117c94f8e29SChad Rosier       // reach the starting value.
118c94f8e29SChad Rosier       Instruction *J = dyn_cast<Instruction>(U.get());
119c94f8e29SChad Rosier       if (!J || J == Start)
120c94f8e29SChad Rosier         continue;
121c94f8e29SChad Rosier 
122c94f8e29SChad Rosier       // Otherwise, investigate the operation if it is also in the expression.
123c94f8e29SChad Rosier       if (Visited.count(J)) {
124c94f8e29SChad Rosier         Worklist.push_back(J);
125c94f8e29SChad Rosier         continue;
126c94f8e29SChad Rosier       }
127c94f8e29SChad Rosier 
128c94f8e29SChad Rosier       // If the operand is not in Visited, it is not a reduction operation, but
129c94f8e29SChad Rosier       // it does feed into one. Make sure it is either a single-use sign- or
13029dc0f70SMatthew Simpson       // zero-extend instruction.
131c94f8e29SChad Rosier       CastInst *Cast = dyn_cast<CastInst>(J);
132c94f8e29SChad Rosier       bool IsSExtInst = isa<SExtInst>(J);
13329dc0f70SMatthew Simpson       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
13429dc0f70SMatthew Simpson         return false;
13529dc0f70SMatthew Simpson 
13629dc0f70SMatthew Simpson       // Ensure the source type of the extend is no larger than the reduction
13729dc0f70SMatthew Simpson       // type. It is not necessary for the types to be identical.
13829dc0f70SMatthew Simpson       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
13929dc0f70SMatthew Simpson       if (SrcSize > DstSize)
140c94f8e29SChad Rosier         return false;
141c94f8e29SChad Rosier 
142c94f8e29SChad Rosier       // Furthermore, ensure that all such extends are of the same kind.
143c94f8e29SChad Rosier       if (FoundOneOperand) {
144c94f8e29SChad Rosier         if (IsSigned != IsSExtInst)
145c94f8e29SChad Rosier           return false;
146c94f8e29SChad Rosier       } else {
147c94f8e29SChad Rosier         FoundOneOperand = true;
148c94f8e29SChad Rosier         IsSigned = IsSExtInst;
149c94f8e29SChad Rosier       }
150c94f8e29SChad Rosier 
15129dc0f70SMatthew Simpson       // Lastly, if the source type of the extend matches the reduction type,
15229dc0f70SMatthew Simpson       // add the extend to CI so that we can avoid accounting for it in the
15329dc0f70SMatthew Simpson       // cost model.
15429dc0f70SMatthew Simpson       if (SrcSize == DstSize)
155c94f8e29SChad Rosier         CI.insert(Cast);
156c94f8e29SChad Rosier     }
157c94f8e29SChad Rosier   }
158c94f8e29SChad Rosier   return true;
159c94f8e29SChad Rosier }
160c94f8e29SChad Rosier 
1610a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
16276aa662cSKarthik Bhat                                            Loop *TheLoop, bool HasFunNoNaNAttr,
1630a91310cSTyler Nowicki                                            RecurrenceDescriptor &RedDes) {
16476aa662cSKarthik Bhat   if (Phi->getNumIncomingValues() != 2)
16576aa662cSKarthik Bhat     return false;
16676aa662cSKarthik Bhat 
16776aa662cSKarthik Bhat   // Reduction variables are only found in the loop header block.
16876aa662cSKarthik Bhat   if (Phi->getParent() != TheLoop->getHeader())
16976aa662cSKarthik Bhat     return false;
17076aa662cSKarthik Bhat 
17176aa662cSKarthik Bhat   // Obtain the reduction start value from the value that comes from the loop
17276aa662cSKarthik Bhat   // preheader.
17376aa662cSKarthik Bhat   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
17476aa662cSKarthik Bhat 
17576aa662cSKarthik Bhat   // ExitInstruction is the single value which is used outside the loop.
17676aa662cSKarthik Bhat   // We only allow for a single reduction value to be used outside the loop.
17776aa662cSKarthik Bhat   // This includes users of the reduction, variables (which form a cycle
17876aa662cSKarthik Bhat   // which ends in the phi node).
17976aa662cSKarthik Bhat   Instruction *ExitInstruction = nullptr;
18076aa662cSKarthik Bhat   // Indicates that we found a reduction operation in our scan.
18176aa662cSKarthik Bhat   bool FoundReduxOp = false;
18276aa662cSKarthik Bhat 
18376aa662cSKarthik Bhat   // We start with the PHI node and scan for all of the users of this
18476aa662cSKarthik Bhat   // instruction. All users must be instructions that can be used as reduction
18576aa662cSKarthik Bhat   // variables (such as ADD). We must have a single out-of-block user. The cycle
18676aa662cSKarthik Bhat   // must include the original PHI.
18776aa662cSKarthik Bhat   bool FoundStartPHI = false;
18876aa662cSKarthik Bhat 
18976aa662cSKarthik Bhat   // To recognize min/max patterns formed by a icmp select sequence, we store
19076aa662cSKarthik Bhat   // the number of instruction we saw from the recognized min/max pattern,
19176aa662cSKarthik Bhat   //  to make sure we only see exactly the two instructions.
19276aa662cSKarthik Bhat   unsigned NumCmpSelectPatternInst = 0;
19327b2c39eSTyler Nowicki   InstDesc ReduxDesc(false, nullptr);
19476aa662cSKarthik Bhat 
195c94f8e29SChad Rosier   // Data used for determining if the recurrence has been type-promoted.
196c94f8e29SChad Rosier   Type *RecurrenceType = Phi->getType();
197c94f8e29SChad Rosier   SmallPtrSet<Instruction *, 4> CastInsts;
198c94f8e29SChad Rosier   Instruction *Start = Phi;
199c94f8e29SChad Rosier   bool IsSigned = false;
200c94f8e29SChad Rosier 
20176aa662cSKarthik Bhat   SmallPtrSet<Instruction *, 8> VisitedInsts;
20276aa662cSKarthik Bhat   SmallVector<Instruction *, 8> Worklist;
203c94f8e29SChad Rosier 
204c94f8e29SChad Rosier   // Return early if the recurrence kind does not match the type of Phi. If the
205c94f8e29SChad Rosier   // recurrence kind is arithmetic, we attempt to look through AND operations
206c94f8e29SChad Rosier   // resulting from the type promotion performed by InstCombine.  Vector
207c94f8e29SChad Rosier   // operations are not limited to the legal integer widths, so we may be able
208c94f8e29SChad Rosier   // to evaluate the reduction in the narrower width.
209c94f8e29SChad Rosier   if (RecurrenceType->isFloatingPointTy()) {
210c94f8e29SChad Rosier     if (!isFloatingPointRecurrenceKind(Kind))
211c94f8e29SChad Rosier       return false;
212c94f8e29SChad Rosier   } else {
213c94f8e29SChad Rosier     if (!isIntegerRecurrenceKind(Kind))
214c94f8e29SChad Rosier       return false;
215c94f8e29SChad Rosier     if (isArithmeticRecurrenceKind(Kind))
216c94f8e29SChad Rosier       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
217c94f8e29SChad Rosier   }
218c94f8e29SChad Rosier 
219c94f8e29SChad Rosier   Worklist.push_back(Start);
220c94f8e29SChad Rosier   VisitedInsts.insert(Start);
22176aa662cSKarthik Bhat 
22276aa662cSKarthik Bhat   // A value in the reduction can be used:
22376aa662cSKarthik Bhat   //  - By the reduction:
22476aa662cSKarthik Bhat   //      - Reduction operation:
22576aa662cSKarthik Bhat   //        - One use of reduction value (safe).
22676aa662cSKarthik Bhat   //        - Multiple use of reduction value (not safe).
22776aa662cSKarthik Bhat   //      - PHI:
22876aa662cSKarthik Bhat   //        - All uses of the PHI must be the reduction (safe).
22976aa662cSKarthik Bhat   //        - Otherwise, not safe.
23076aa662cSKarthik Bhat   //  - By one instruction outside of the loop (safe).
23176aa662cSKarthik Bhat   //  - By further instructions outside of the loop (not safe).
23276aa662cSKarthik Bhat   //  - By an instruction that is not part of the reduction (not safe).
23376aa662cSKarthik Bhat   //    This is either:
23476aa662cSKarthik Bhat   //      * An instruction type other than PHI or the reduction operation.
23576aa662cSKarthik Bhat   //      * A PHI in the header other than the initial PHI.
23676aa662cSKarthik Bhat   while (!Worklist.empty()) {
23776aa662cSKarthik Bhat     Instruction *Cur = Worklist.back();
23876aa662cSKarthik Bhat     Worklist.pop_back();
23976aa662cSKarthik Bhat 
24076aa662cSKarthik Bhat     // No Users.
24176aa662cSKarthik Bhat     // If the instruction has no users then this is a broken chain and can't be
24276aa662cSKarthik Bhat     // a reduction variable.
24376aa662cSKarthik Bhat     if (Cur->use_empty())
24476aa662cSKarthik Bhat       return false;
24576aa662cSKarthik Bhat 
24676aa662cSKarthik Bhat     bool IsAPhi = isa<PHINode>(Cur);
24776aa662cSKarthik Bhat 
24876aa662cSKarthik Bhat     // A header PHI use other than the original PHI.
24976aa662cSKarthik Bhat     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
25076aa662cSKarthik Bhat       return false;
25176aa662cSKarthik Bhat 
25276aa662cSKarthik Bhat     // Reductions of instructions such as Div, and Sub is only possible if the
25376aa662cSKarthik Bhat     // LHS is the reduction variable.
25476aa662cSKarthik Bhat     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
25576aa662cSKarthik Bhat         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
25676aa662cSKarthik Bhat         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
25776aa662cSKarthik Bhat       return false;
25876aa662cSKarthik Bhat 
259c94f8e29SChad Rosier     // Any reduction instruction must be of one of the allowed kinds. We ignore
260c94f8e29SChad Rosier     // the starting value (the Phi or an AND instruction if the Phi has been
261c94f8e29SChad Rosier     // type-promoted).
262c94f8e29SChad Rosier     if (Cur != Start) {
2630a91310cSTyler Nowicki       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
2640a91310cSTyler Nowicki       if (!ReduxDesc.isRecurrence())
26576aa662cSKarthik Bhat         return false;
266c94f8e29SChad Rosier     }
26776aa662cSKarthik Bhat 
26876aa662cSKarthik Bhat     // A reduction operation must only have one use of the reduction value.
26976aa662cSKarthik Bhat     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
27076aa662cSKarthik Bhat         hasMultipleUsesOf(Cur, VisitedInsts))
27176aa662cSKarthik Bhat       return false;
27276aa662cSKarthik Bhat 
27376aa662cSKarthik Bhat     // All inputs to a PHI node must be a reduction value.
27476aa662cSKarthik Bhat     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
27576aa662cSKarthik Bhat       return false;
27676aa662cSKarthik Bhat 
27776aa662cSKarthik Bhat     if (Kind == RK_IntegerMinMax &&
27876aa662cSKarthik Bhat         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
27976aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28076aa662cSKarthik Bhat     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
28176aa662cSKarthik Bhat       ++NumCmpSelectPatternInst;
28276aa662cSKarthik Bhat 
28376aa662cSKarthik Bhat     // Check  whether we found a reduction operator.
284c94f8e29SChad Rosier     FoundReduxOp |= !IsAPhi && Cur != Start;
28576aa662cSKarthik Bhat 
28676aa662cSKarthik Bhat     // Process users of current instruction. Push non-PHI nodes after PHI nodes
28776aa662cSKarthik Bhat     // onto the stack. This way we are going to have seen all inputs to PHI
28876aa662cSKarthik Bhat     // nodes once we get to them.
28976aa662cSKarthik Bhat     SmallVector<Instruction *, 8> NonPHIs;
29076aa662cSKarthik Bhat     SmallVector<Instruction *, 8> PHIs;
29176aa662cSKarthik Bhat     for (User *U : Cur->users()) {
29276aa662cSKarthik Bhat       Instruction *UI = cast<Instruction>(U);
29376aa662cSKarthik Bhat 
29476aa662cSKarthik Bhat       // Check if we found the exit user.
29576aa662cSKarthik Bhat       BasicBlock *Parent = UI->getParent();
29676aa662cSKarthik Bhat       if (!TheLoop->contains(Parent)) {
29776aa662cSKarthik Bhat         // Exit if you find multiple outside users or if the header phi node is
29876aa662cSKarthik Bhat         // being used. In this case the user uses the value of the previous
29976aa662cSKarthik Bhat         // iteration, in which case we would loose "VF-1" iterations of the
30076aa662cSKarthik Bhat         // reduction operation if we vectorize.
30176aa662cSKarthik Bhat         if (ExitInstruction != nullptr || Cur == Phi)
30276aa662cSKarthik Bhat           return false;
30376aa662cSKarthik Bhat 
30476aa662cSKarthik Bhat         // The instruction used by an outside user must be the last instruction
30576aa662cSKarthik Bhat         // before we feed back to the reduction phi. Otherwise, we loose VF-1
30676aa662cSKarthik Bhat         // operations on the value.
30776aa662cSKarthik Bhat         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
30876aa662cSKarthik Bhat           return false;
30976aa662cSKarthik Bhat 
31076aa662cSKarthik Bhat         ExitInstruction = Cur;
31176aa662cSKarthik Bhat         continue;
31276aa662cSKarthik Bhat       }
31376aa662cSKarthik Bhat 
31476aa662cSKarthik Bhat       // Process instructions only once (termination). Each reduction cycle
31576aa662cSKarthik Bhat       // value must only be used once, except by phi nodes and min/max
31676aa662cSKarthik Bhat       // reductions which are represented as a cmp followed by a select.
31727b2c39eSTyler Nowicki       InstDesc IgnoredVal(false, nullptr);
31876aa662cSKarthik Bhat       if (VisitedInsts.insert(UI).second) {
31976aa662cSKarthik Bhat         if (isa<PHINode>(UI))
32076aa662cSKarthik Bhat           PHIs.push_back(UI);
32176aa662cSKarthik Bhat         else
32276aa662cSKarthik Bhat           NonPHIs.push_back(UI);
32376aa662cSKarthik Bhat       } else if (!isa<PHINode>(UI) &&
32476aa662cSKarthik Bhat                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
32576aa662cSKarthik Bhat                    !isa<SelectInst>(UI)) ||
3260a91310cSTyler Nowicki                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
32776aa662cSKarthik Bhat         return false;
32876aa662cSKarthik Bhat 
32976aa662cSKarthik Bhat       // Remember that we completed the cycle.
33076aa662cSKarthik Bhat       if (UI == Phi)
33176aa662cSKarthik Bhat         FoundStartPHI = true;
33276aa662cSKarthik Bhat     }
33376aa662cSKarthik Bhat     Worklist.append(PHIs.begin(), PHIs.end());
33476aa662cSKarthik Bhat     Worklist.append(NonPHIs.begin(), NonPHIs.end());
33576aa662cSKarthik Bhat   }
33676aa662cSKarthik Bhat 
33776aa662cSKarthik Bhat   // This means we have seen one but not the other instruction of the
33876aa662cSKarthik Bhat   // pattern or more than just a select and cmp.
33976aa662cSKarthik Bhat   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
34076aa662cSKarthik Bhat       NumCmpSelectPatternInst != 2)
34176aa662cSKarthik Bhat     return false;
34276aa662cSKarthik Bhat 
34376aa662cSKarthik Bhat   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
34476aa662cSKarthik Bhat     return false;
34576aa662cSKarthik Bhat 
346c94f8e29SChad Rosier   // If we think Phi may have been type-promoted, we also need to ensure that
347c94f8e29SChad Rosier   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
348c94f8e29SChad Rosier   // so, we will be able to evaluate the reduction in the narrower bit width.
349c94f8e29SChad Rosier   if (Start != Phi)
350c94f8e29SChad Rosier     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
351c94f8e29SChad Rosier                                 IsSigned, VisitedInsts, CastInsts))
352c94f8e29SChad Rosier       return false;
353c94f8e29SChad Rosier 
35476aa662cSKarthik Bhat   // We found a reduction var if we have reached the original phi node and we
35576aa662cSKarthik Bhat   // only have a single instruction with out-of-loop users.
35676aa662cSKarthik Bhat 
35776aa662cSKarthik Bhat   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
3580a91310cSTyler Nowicki   // is saved as part of the RecurrenceDescriptor.
35976aa662cSKarthik Bhat 
36076aa662cSKarthik Bhat   // Save the description of this reduction variable.
361c94f8e29SChad Rosier   RecurrenceDescriptor RD(
362c94f8e29SChad Rosier       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
363c94f8e29SChad Rosier       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
36476aa662cSKarthik Bhat   RedDes = RD;
36576aa662cSKarthik Bhat 
36676aa662cSKarthik Bhat   return true;
36776aa662cSKarthik Bhat }
36876aa662cSKarthik Bhat 
36976aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
37076aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y).
37127b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
37227b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
37376aa662cSKarthik Bhat 
37476aa662cSKarthik Bhat   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
37576aa662cSKarthik Bhat          "Expect a select instruction");
37676aa662cSKarthik Bhat   Instruction *Cmp = nullptr;
37776aa662cSKarthik Bhat   SelectInst *Select = nullptr;
37876aa662cSKarthik Bhat 
37976aa662cSKarthik Bhat   // We must handle the select(cmp()) as a single instruction. Advance to the
38076aa662cSKarthik Bhat   // select.
38176aa662cSKarthik Bhat   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
38276aa662cSKarthik Bhat     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
38327b2c39eSTyler Nowicki       return InstDesc(false, I);
38427b2c39eSTyler Nowicki     return InstDesc(Select, Prev.getMinMaxKind());
38576aa662cSKarthik Bhat   }
38676aa662cSKarthik Bhat 
38776aa662cSKarthik Bhat   // Only handle single use cases for now.
38876aa662cSKarthik Bhat   if (!(Select = dyn_cast<SelectInst>(I)))
38927b2c39eSTyler Nowicki     return InstDesc(false, I);
39076aa662cSKarthik Bhat   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
39176aa662cSKarthik Bhat       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
39227b2c39eSTyler Nowicki     return InstDesc(false, I);
39376aa662cSKarthik Bhat   if (!Cmp->hasOneUse())
39427b2c39eSTyler Nowicki     return InstDesc(false, I);
39576aa662cSKarthik Bhat 
39676aa662cSKarthik Bhat   Value *CmpLeft;
39776aa662cSKarthik Bhat   Value *CmpRight;
39876aa662cSKarthik Bhat 
39976aa662cSKarthik Bhat   // Look for a min/max pattern.
40076aa662cSKarthik Bhat   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40127b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMin);
40276aa662cSKarthik Bhat   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40327b2c39eSTyler Nowicki     return InstDesc(Select, MRK_UIntMax);
40476aa662cSKarthik Bhat   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40527b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMax);
40676aa662cSKarthik Bhat   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40727b2c39eSTyler Nowicki     return InstDesc(Select, MRK_SIntMin);
40876aa662cSKarthik Bhat   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
40927b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
41076aa662cSKarthik Bhat   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41127b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
41276aa662cSKarthik Bhat   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41327b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMin);
41476aa662cSKarthik Bhat   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
41527b2c39eSTyler Nowicki     return InstDesc(Select, MRK_FloatMax);
41676aa662cSKarthik Bhat 
41727b2c39eSTyler Nowicki   return InstDesc(false, I);
41876aa662cSKarthik Bhat }
41976aa662cSKarthik Bhat 
42027b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc
4210a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
42227b2c39eSTyler Nowicki                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
42376aa662cSKarthik Bhat   bool FP = I->getType()->isFloatingPointTy();
424c1a86f58STyler Nowicki   Instruction *UAI = Prev.getUnsafeAlgebraInst();
425c1a86f58STyler Nowicki   if (!UAI && FP && !I->hasUnsafeAlgebra())
426c1a86f58STyler Nowicki     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
427c1a86f58STyler Nowicki 
42876aa662cSKarthik Bhat   switch (I->getOpcode()) {
42976aa662cSKarthik Bhat   default:
43027b2c39eSTyler Nowicki     return InstDesc(false, I);
43176aa662cSKarthik Bhat   case Instruction::PHI:
43227b2c39eSTyler Nowicki     return InstDesc(I, Prev.getMinMaxKind());
43376aa662cSKarthik Bhat   case Instruction::Sub:
43476aa662cSKarthik Bhat   case Instruction::Add:
43527b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAdd, I);
43676aa662cSKarthik Bhat   case Instruction::Mul:
43727b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerMult, I);
43876aa662cSKarthik Bhat   case Instruction::And:
43927b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerAnd, I);
44076aa662cSKarthik Bhat   case Instruction::Or:
44127b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerOr, I);
44276aa662cSKarthik Bhat   case Instruction::Xor:
44327b2c39eSTyler Nowicki     return InstDesc(Kind == RK_IntegerXor, I);
44476aa662cSKarthik Bhat   case Instruction::FMul:
445c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatMult, I, UAI);
44676aa662cSKarthik Bhat   case Instruction::FSub:
44776aa662cSKarthik Bhat   case Instruction::FAdd:
448c1a86f58STyler Nowicki     return InstDesc(Kind == RK_FloatAdd, I, UAI);
44976aa662cSKarthik Bhat   case Instruction::FCmp:
45076aa662cSKarthik Bhat   case Instruction::ICmp:
45176aa662cSKarthik Bhat   case Instruction::Select:
45276aa662cSKarthik Bhat     if (Kind != RK_IntegerMinMax &&
45376aa662cSKarthik Bhat         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
45427b2c39eSTyler Nowicki       return InstDesc(false, I);
45576aa662cSKarthik Bhat     return isMinMaxSelectCmpPattern(I, Prev);
45676aa662cSKarthik Bhat   }
45776aa662cSKarthik Bhat }
45876aa662cSKarthik Bhat 
4590a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf(
46076aa662cSKarthik Bhat     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
46176aa662cSKarthik Bhat   unsigned NumUses = 0;
46276aa662cSKarthik Bhat   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
46376aa662cSKarthik Bhat        ++Use) {
46476aa662cSKarthik Bhat     if (Insts.count(dyn_cast<Instruction>(*Use)))
46576aa662cSKarthik Bhat       ++NumUses;
46676aa662cSKarthik Bhat     if (NumUses > 1)
46776aa662cSKarthik Bhat       return true;
46876aa662cSKarthik Bhat   }
46976aa662cSKarthik Bhat 
47076aa662cSKarthik Bhat   return false;
47176aa662cSKarthik Bhat }
4720a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
4730a91310cSTyler Nowicki                                           RecurrenceDescriptor &RedDes) {
47476aa662cSKarthik Bhat 
47576aa662cSKarthik Bhat   BasicBlock *Header = TheLoop->getHeader();
47676aa662cSKarthik Bhat   Function &F = *Header->getParent();
4778dd66e57SNirav Dave   bool HasFunNoNaNAttr =
47876aa662cSKarthik Bhat       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
47976aa662cSKarthik Bhat 
48076aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
48176aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
48276aa662cSKarthik Bhat     return true;
48376aa662cSKarthik Bhat   }
48476aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
48576aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
48676aa662cSKarthik Bhat     return true;
48776aa662cSKarthik Bhat   }
48876aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
48976aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
49076aa662cSKarthik Bhat     return true;
49176aa662cSKarthik Bhat   }
49276aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
49376aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
49476aa662cSKarthik Bhat     return true;
49576aa662cSKarthik Bhat   }
49676aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
49776aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
49876aa662cSKarthik Bhat     return true;
49976aa662cSKarthik Bhat   }
50076aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
50176aa662cSKarthik Bhat                       RedDes)) {
50276aa662cSKarthik Bhat     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
50376aa662cSKarthik Bhat     return true;
50476aa662cSKarthik Bhat   }
50576aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
50676aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
50776aa662cSKarthik Bhat     return true;
50876aa662cSKarthik Bhat   }
50976aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
51076aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
51176aa662cSKarthik Bhat     return true;
51276aa662cSKarthik Bhat   }
51376aa662cSKarthik Bhat   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
51476aa662cSKarthik Bhat     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
51576aa662cSKarthik Bhat     return true;
51676aa662cSKarthik Bhat   }
51776aa662cSKarthik Bhat   // Not a reduction of known type.
51876aa662cSKarthik Bhat   return false;
51976aa662cSKarthik Bhat }
52076aa662cSKarthik Bhat 
52129c997c1SMatthew Simpson bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
52229c997c1SMatthew Simpson                                                   DominatorTree *DT) {
52329c997c1SMatthew Simpson 
52429c997c1SMatthew Simpson   // Ensure the phi node is in the loop header and has two incoming values.
52529c997c1SMatthew Simpson   if (Phi->getParent() != TheLoop->getHeader() ||
52629c997c1SMatthew Simpson       Phi->getNumIncomingValues() != 2)
52729c997c1SMatthew Simpson     return false;
52829c997c1SMatthew Simpson 
52929c997c1SMatthew Simpson   // Ensure the loop has a preheader and a single latch block. The loop
53029c997c1SMatthew Simpson   // vectorizer will need the latch to set up the next iteration of the loop.
53129c997c1SMatthew Simpson   auto *Preheader = TheLoop->getLoopPreheader();
53229c997c1SMatthew Simpson   auto *Latch = TheLoop->getLoopLatch();
53329c997c1SMatthew Simpson   if (!Preheader || !Latch)
53429c997c1SMatthew Simpson     return false;
53529c997c1SMatthew Simpson 
53629c997c1SMatthew Simpson   // Ensure the phi node's incoming blocks are the loop preheader and latch.
53729c997c1SMatthew Simpson   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
53829c997c1SMatthew Simpson       Phi->getBasicBlockIndex(Latch) < 0)
53929c997c1SMatthew Simpson     return false;
54029c997c1SMatthew Simpson 
54129c997c1SMatthew Simpson   // Get the previous value. The previous value comes from the latch edge while
54229c997c1SMatthew Simpson   // the initial value comes form the preheader edge.
54329c997c1SMatthew Simpson   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
54453207a99SMatthew Simpson   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
54529c997c1SMatthew Simpson     return false;
54629c997c1SMatthew Simpson 
54729c997c1SMatthew Simpson   // Ensure every user of the phi node is dominated by the previous value. The
54829c997c1SMatthew Simpson   // dominance requirement ensures the loop vectorizer will not need to
54929c997c1SMatthew Simpson   // vectorize the initial value prior to the first iteration of the loop.
55029c997c1SMatthew Simpson   for (User *U : Phi->users())
55129c997c1SMatthew Simpson     if (auto *I = dyn_cast<Instruction>(U))
55229c997c1SMatthew Simpson       if (!DT->dominates(Previous, I))
55329c997c1SMatthew Simpson         return false;
55429c997c1SMatthew Simpson 
55529c997c1SMatthew Simpson   return true;
55629c997c1SMatthew Simpson }
55729c997c1SMatthew Simpson 
55876aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for
55976aa662cSKarthik Bhat /// the operation K.
5600a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
5610a91310cSTyler Nowicki                                                       Type *Tp) {
56276aa662cSKarthik Bhat   switch (K) {
56376aa662cSKarthik Bhat   case RK_IntegerXor:
56476aa662cSKarthik Bhat   case RK_IntegerAdd:
56576aa662cSKarthik Bhat   case RK_IntegerOr:
56676aa662cSKarthik Bhat     // Adding, Xoring, Oring zero to a number does not change it.
56776aa662cSKarthik Bhat     return ConstantInt::get(Tp, 0);
56876aa662cSKarthik Bhat   case RK_IntegerMult:
56976aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
57076aa662cSKarthik Bhat     return ConstantInt::get(Tp, 1);
57176aa662cSKarthik Bhat   case RK_IntegerAnd:
57276aa662cSKarthik Bhat     // AND-ing a number with an all-1 value does not change it.
57376aa662cSKarthik Bhat     return ConstantInt::get(Tp, -1, true);
57476aa662cSKarthik Bhat   case RK_FloatMult:
57576aa662cSKarthik Bhat     // Multiplying a number by 1 does not change it.
57676aa662cSKarthik Bhat     return ConstantFP::get(Tp, 1.0L);
57776aa662cSKarthik Bhat   case RK_FloatAdd:
57876aa662cSKarthik Bhat     // Adding zero to a number does not change it.
57976aa662cSKarthik Bhat     return ConstantFP::get(Tp, 0.0L);
58076aa662cSKarthik Bhat   default:
5810a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence kind");
58276aa662cSKarthik Bhat   }
58376aa662cSKarthik Bhat }
58476aa662cSKarthik Bhat 
5850a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator.
5860a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
58776aa662cSKarthik Bhat   switch (Kind) {
58876aa662cSKarthik Bhat   case RK_IntegerAdd:
58976aa662cSKarthik Bhat     return Instruction::Add;
59076aa662cSKarthik Bhat   case RK_IntegerMult:
59176aa662cSKarthik Bhat     return Instruction::Mul;
59276aa662cSKarthik Bhat   case RK_IntegerOr:
59376aa662cSKarthik Bhat     return Instruction::Or;
59476aa662cSKarthik Bhat   case RK_IntegerAnd:
59576aa662cSKarthik Bhat     return Instruction::And;
59676aa662cSKarthik Bhat   case RK_IntegerXor:
59776aa662cSKarthik Bhat     return Instruction::Xor;
59876aa662cSKarthik Bhat   case RK_FloatMult:
59976aa662cSKarthik Bhat     return Instruction::FMul;
60076aa662cSKarthik Bhat   case RK_FloatAdd:
60176aa662cSKarthik Bhat     return Instruction::FAdd;
60276aa662cSKarthik Bhat   case RK_IntegerMinMax:
60376aa662cSKarthik Bhat     return Instruction::ICmp;
60476aa662cSKarthik Bhat   case RK_FloatMinMax:
60576aa662cSKarthik Bhat     return Instruction::FCmp;
60676aa662cSKarthik Bhat   default:
6070a91310cSTyler Nowicki     llvm_unreachable("Unknown recurrence operation");
60876aa662cSKarthik Bhat   }
60976aa662cSKarthik Bhat }
61076aa662cSKarthik Bhat 
61127b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
61227b2c39eSTyler Nowicki                                             MinMaxRecurrenceKind RK,
61376aa662cSKarthik Bhat                                             Value *Left, Value *Right) {
61476aa662cSKarthik Bhat   CmpInst::Predicate P = CmpInst::ICMP_NE;
61576aa662cSKarthik Bhat   switch (RK) {
61676aa662cSKarthik Bhat   default:
6170a91310cSTyler Nowicki     llvm_unreachable("Unknown min/max recurrence kind");
61827b2c39eSTyler Nowicki   case MRK_UIntMin:
61976aa662cSKarthik Bhat     P = CmpInst::ICMP_ULT;
62076aa662cSKarthik Bhat     break;
62127b2c39eSTyler Nowicki   case MRK_UIntMax:
62276aa662cSKarthik Bhat     P = CmpInst::ICMP_UGT;
62376aa662cSKarthik Bhat     break;
62427b2c39eSTyler Nowicki   case MRK_SIntMin:
62576aa662cSKarthik Bhat     P = CmpInst::ICMP_SLT;
62676aa662cSKarthik Bhat     break;
62727b2c39eSTyler Nowicki   case MRK_SIntMax:
62876aa662cSKarthik Bhat     P = CmpInst::ICMP_SGT;
62976aa662cSKarthik Bhat     break;
63027b2c39eSTyler Nowicki   case MRK_FloatMin:
63176aa662cSKarthik Bhat     P = CmpInst::FCMP_OLT;
63276aa662cSKarthik Bhat     break;
63327b2c39eSTyler Nowicki   case MRK_FloatMax:
63476aa662cSKarthik Bhat     P = CmpInst::FCMP_OGT;
63576aa662cSKarthik Bhat     break;
63676aa662cSKarthik Bhat   }
63776aa662cSKarthik Bhat 
63850a4c27fSJames Molloy   // We only match FP sequences with unsafe algebra, so we can unconditionally
63950a4c27fSJames Molloy   // set it on any generated instructions.
64050a4c27fSJames Molloy   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
64150a4c27fSJames Molloy   FastMathFlags FMF;
64250a4c27fSJames Molloy   FMF.setUnsafeAlgebra();
643a252815bSSanjay Patel   Builder.setFastMathFlags(FMF);
64450a4c27fSJames Molloy 
64576aa662cSKarthik Bhat   Value *Cmp;
64627b2c39eSTyler Nowicki   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
64776aa662cSKarthik Bhat     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
64876aa662cSKarthik Bhat   else
64976aa662cSKarthik Bhat     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
65076aa662cSKarthik Bhat 
65176aa662cSKarthik Bhat   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
65276aa662cSKarthik Bhat   return Select;
65376aa662cSKarthik Bhat }
65424e6cc2dSKarthik Bhat 
6551bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
6561bbf15c5SJames Molloy                                          ConstantInt *Step)
6571bbf15c5SJames Molloy   : StartValue(Start), IK(K), StepValue(Step) {
6581bbf15c5SJames Molloy   assert(IK != IK_NoInduction && "Not an induction");
6591bbf15c5SJames Molloy   assert(StartValue && "StartValue is null");
6601bbf15c5SJames Molloy   assert(StepValue && !StepValue->isZero() && "StepValue is zero");
6611bbf15c5SJames Molloy   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
6621bbf15c5SJames Molloy          "StartValue is not a pointer for pointer induction");
6631bbf15c5SJames Molloy   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
6641bbf15c5SJames Molloy          "StartValue is not an integer for integer induction");
6651bbf15c5SJames Molloy   assert(StepValue->getType()->isIntegerTy() &&
6661bbf15c5SJames Molloy          "StepValue is not an integer");
6671bbf15c5SJames Molloy }
6681bbf15c5SJames Molloy 
6691bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const {
6701bbf15c5SJames Molloy   if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
6711bbf15c5SJames Molloy     return StepValue->getSExtValue();
6721bbf15c5SJames Molloy   return 0;
6731bbf15c5SJames Molloy }
6741bbf15c5SJames Molloy 
6751bbf15c5SJames Molloy Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const {
6761bbf15c5SJames Molloy   switch (IK) {
6771bbf15c5SJames Molloy   case IK_IntInduction:
6781bbf15c5SJames Molloy     assert(Index->getType() == StartValue->getType() &&
6791bbf15c5SJames Molloy            "Index type does not match StartValue type");
6801bbf15c5SJames Molloy     if (StepValue->isMinusOne())
6811bbf15c5SJames Molloy       return B.CreateSub(StartValue, Index);
6821bbf15c5SJames Molloy     if (!StepValue->isOne())
6831bbf15c5SJames Molloy       Index = B.CreateMul(Index, StepValue);
6841bbf15c5SJames Molloy     return B.CreateAdd(StartValue, Index);
6851bbf15c5SJames Molloy 
6861bbf15c5SJames Molloy   case IK_PtrInduction:
6871bbf15c5SJames Molloy     assert(Index->getType() == StepValue->getType() &&
6881bbf15c5SJames Molloy            "Index type does not match StepValue type");
6891bbf15c5SJames Molloy     if (StepValue->isMinusOne())
6901bbf15c5SJames Molloy       Index = B.CreateNeg(Index);
6911bbf15c5SJames Molloy     else if (!StepValue->isOne())
6921bbf15c5SJames Molloy       Index = B.CreateMul(Index, StepValue);
6931bbf15c5SJames Molloy     return B.CreateGEP(nullptr, StartValue, Index);
6941bbf15c5SJames Molloy 
6951bbf15c5SJames Molloy   case IK_NoInduction:
6961bbf15c5SJames Molloy     return nullptr;
6971bbf15c5SJames Molloy   }
6981bbf15c5SJames Molloy   llvm_unreachable("invalid enum");
6991bbf15c5SJames Molloy }
7001bbf15c5SJames Molloy 
7011bbf15c5SJames Molloy bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
7021bbf15c5SJames Molloy                                          InductionDescriptor &D) {
70324e6cc2dSKarthik Bhat   Type *PhiTy = Phi->getType();
70424e6cc2dSKarthik Bhat   // We only handle integer and pointer inductions variables.
70524e6cc2dSKarthik Bhat   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
70624e6cc2dSKarthik Bhat     return false;
70724e6cc2dSKarthik Bhat 
70824e6cc2dSKarthik Bhat   // Check that the PHI is consecutive.
70924e6cc2dSKarthik Bhat   const SCEV *PhiScev = SE->getSCEV(Phi);
71024e6cc2dSKarthik Bhat   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
71124e6cc2dSKarthik Bhat   if (!AR) {
71224e6cc2dSKarthik Bhat     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
71324e6cc2dSKarthik Bhat     return false;
71424e6cc2dSKarthik Bhat   }
71524e6cc2dSKarthik Bhat 
7161bbf15c5SJames Molloy   assert(AR->getLoop()->getHeader() == Phi->getParent() &&
7171bbf15c5SJames Molloy          "PHI is an AddRec for a different loop?!");
7181bbf15c5SJames Molloy   Value *StartValue =
7191bbf15c5SJames Molloy     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
72024e6cc2dSKarthik Bhat   const SCEV *Step = AR->getStepRecurrence(*SE);
72124e6cc2dSKarthik Bhat   // Calculate the pointer stride and check if it is consecutive.
72224e6cc2dSKarthik Bhat   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
72324e6cc2dSKarthik Bhat   if (!C)
72424e6cc2dSKarthik Bhat     return false;
72524e6cc2dSKarthik Bhat 
72624e6cc2dSKarthik Bhat   ConstantInt *CV = C->getValue();
72724e6cc2dSKarthik Bhat   if (PhiTy->isIntegerTy()) {
7281bbf15c5SJames Molloy     D = InductionDescriptor(StartValue, IK_IntInduction, CV);
72924e6cc2dSKarthik Bhat     return true;
73024e6cc2dSKarthik Bhat   }
73124e6cc2dSKarthik Bhat 
73224e6cc2dSKarthik Bhat   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
73324e6cc2dSKarthik Bhat   Type *PointerElementType = PhiTy->getPointerElementType();
73424e6cc2dSKarthik Bhat   // The pointer stride cannot be determined if the pointer element type is not
73524e6cc2dSKarthik Bhat   // sized.
73624e6cc2dSKarthik Bhat   if (!PointerElementType->isSized())
73724e6cc2dSKarthik Bhat     return false;
73824e6cc2dSKarthik Bhat 
73924e6cc2dSKarthik Bhat   const DataLayout &DL = Phi->getModule()->getDataLayout();
74024e6cc2dSKarthik Bhat   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
741b58f32f7SDavid Majnemer   if (!Size)
742b58f32f7SDavid Majnemer     return false;
743b58f32f7SDavid Majnemer 
74424e6cc2dSKarthik Bhat   int64_t CVSize = CV->getSExtValue();
74524e6cc2dSKarthik Bhat   if (CVSize % Size)
74624e6cc2dSKarthik Bhat     return false;
7471bbf15c5SJames Molloy   auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
7481bbf15c5SJames Molloy 
7491bbf15c5SJames Molloy   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
75024e6cc2dSKarthik Bhat   return true;
75124e6cc2dSKarthik Bhat }
752c5b7b555SAshutosh Nema 
753c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop.
754c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
755c5b7b555SAshutosh Nema   SmallVector<Instruction *, 8> UsedOutside;
756c5b7b555SAshutosh Nema 
757c5b7b555SAshutosh Nema   for (auto *Block : L->getBlocks())
758c5b7b555SAshutosh Nema     // FIXME: I believe that this could use copy_if if the Inst reference could
759c5b7b555SAshutosh Nema     // be adapted into a pointer.
760c5b7b555SAshutosh Nema     for (auto &Inst : *Block) {
761c5b7b555SAshutosh Nema       auto Users = Inst.users();
762c5b7b555SAshutosh Nema       if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
763c5b7b555SAshutosh Nema             auto *Use = cast<Instruction>(U);
764c5b7b555SAshutosh Nema             return !L->contains(Use->getParent());
765c5b7b555SAshutosh Nema           }))
766c5b7b555SAshutosh Nema         UsedOutside.push_back(&Inst);
767c5b7b555SAshutosh Nema     }
768c5b7b555SAshutosh Nema 
769c5b7b555SAshutosh Nema   return UsedOutside;
770c5b7b555SAshutosh Nema }
77131088a9dSChandler Carruth 
77231088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
77331088a9dSChandler Carruth   // By definition, all loop passes need the LoopInfo analysis and the
77431088a9dSChandler Carruth   // Dominator tree it depends on. Because they all participate in the loop
77531088a9dSChandler Carruth   // pass manager, they must also preserve these.
77631088a9dSChandler Carruth   AU.addRequired<DominatorTreeWrapperPass>();
77731088a9dSChandler Carruth   AU.addPreserved<DominatorTreeWrapperPass>();
77831088a9dSChandler Carruth   AU.addRequired<LoopInfoWrapperPass>();
77931088a9dSChandler Carruth   AU.addPreserved<LoopInfoWrapperPass>();
78031088a9dSChandler Carruth 
78131088a9dSChandler Carruth   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
78231088a9dSChandler Carruth   // here because users shouldn't directly get them from this header.
78331088a9dSChandler Carruth   extern char &LoopSimplifyID;
78431088a9dSChandler Carruth   extern char &LCSSAID;
78531088a9dSChandler Carruth   AU.addRequiredID(LoopSimplifyID);
78631088a9dSChandler Carruth   AU.addPreservedID(LoopSimplifyID);
78731088a9dSChandler Carruth   AU.addRequiredID(LCSSAID);
78831088a9dSChandler Carruth   AU.addPreservedID(LCSSAID);
78931088a9dSChandler Carruth 
79031088a9dSChandler Carruth   // Loop passes are designed to run inside of a loop pass manager which means
79131088a9dSChandler Carruth   // that any function analyses they require must be required by the first loop
79231088a9dSChandler Carruth   // pass in the manager (so that it is computed before the loop pass manager
79331088a9dSChandler Carruth   // runs) and preserved by all loop pasess in the manager. To make this
79431088a9dSChandler Carruth   // reasonably robust, the set needed for most loop passes is maintained here.
79531088a9dSChandler Carruth   // If your loop pass requires an analysis not listed here, you will need to
79631088a9dSChandler Carruth   // carefully audit the loop pass manager nesting structure that results.
79731088a9dSChandler Carruth   AU.addRequired<AAResultsWrapperPass>();
79831088a9dSChandler Carruth   AU.addPreserved<AAResultsWrapperPass>();
79931088a9dSChandler Carruth   AU.addPreserved<BasicAAWrapperPass>();
80031088a9dSChandler Carruth   AU.addPreserved<GlobalsAAWrapperPass>();
80131088a9dSChandler Carruth   AU.addPreserved<SCEVAAWrapperPass>();
80231088a9dSChandler Carruth   AU.addRequired<ScalarEvolutionWrapperPass>();
80331088a9dSChandler Carruth   AU.addPreserved<ScalarEvolutionWrapperPass>();
80431088a9dSChandler Carruth }
80531088a9dSChandler Carruth 
80631088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used
80731088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c
80831088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
80931088a9dSChandler Carruth /// with:
81031088a9dSChandler Carruth ///
81131088a9dSChandler Carruth ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
81231088a9dSChandler Carruth ///
81331088a9dSChandler Carruth /// As-if "LoopPass" were a pass.
81431088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) {
81531088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
81631088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
81731088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
81831088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(LCSSA)
81931088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
82031088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
82131088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
82231088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
82331088a9dSChandler Carruth   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
82431088a9dSChandler Carruth }
825963341c8SAdam Nemet 
826963341c8SAdam Nemet /// \brief Find string metadata for loop, if it exist return true, else return
827963341c8SAdam Nemet /// false.
828963341c8SAdam Nemet bool llvm::findStringMetadataForLoop(Loop *TheLoop, StringRef Name) {
829963341c8SAdam Nemet   MDNode *LoopID = TheLoop->getLoopID();
830963341c8SAdam Nemet   // Return false if LoopID is false.
831963341c8SAdam Nemet   if (!LoopID)
832963341c8SAdam Nemet     return false;
833*293be666SAdam Nemet 
834*293be666SAdam Nemet   // First operand should refer to the loop id itself.
835*293be666SAdam Nemet   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
836*293be666SAdam Nemet   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
837*293be666SAdam Nemet 
838963341c8SAdam Nemet   // Iterate over LoopID operands and look for MDString Metadata
839963341c8SAdam Nemet   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
840963341c8SAdam Nemet     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
841963341c8SAdam Nemet     if (!MD)
842963341c8SAdam Nemet       continue;
843963341c8SAdam Nemet     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
844963341c8SAdam Nemet     if (!S)
845963341c8SAdam Nemet       continue;
846963341c8SAdam Nemet     // Return true if MDString holds expected MetaData.
847963341c8SAdam Nemet     if (Name.equals(S->getString()))
848963341c8SAdam Nemet       return true;
849963341c8SAdam Nemet   }
850963341c8SAdam Nemet   return false;
851963341c8SAdam Nemet }
852