176aa662cSKarthik Bhat //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 276aa662cSKarthik Bhat // 376aa662cSKarthik Bhat // The LLVM Compiler Infrastructure 476aa662cSKarthik Bhat // 576aa662cSKarthik Bhat // This file is distributed under the University of Illinois Open Source 676aa662cSKarthik Bhat // License. See LICENSE.TXT for details. 776aa662cSKarthik Bhat // 876aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 976aa662cSKarthik Bhat // 1076aa662cSKarthik Bhat // This file defines common loop utility functions. 1176aa662cSKarthik Bhat // 1276aa662cSKarthik Bhat //===----------------------------------------------------------------------===// 1376aa662cSKarthik Bhat 142f2bd8caSAdam Nemet #include "llvm/Transforms/Utils/LoopUtils.h" 154a000883SChandler Carruth #include "llvm/ADT/ScopeExit.h" 1631088a9dSChandler Carruth #include "llvm/Analysis/AliasAnalysis.h" 1731088a9dSChandler Carruth #include "llvm/Analysis/BasicAliasAnalysis.h" 1831088a9dSChandler Carruth #include "llvm/Analysis/GlobalsModRef.h" 19a21d5f1eSPhilip Reames #include "llvm/Analysis/InstructionSimplify.h" 202f2bd8caSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 21c3ccf5d7SIgor Laevsky #include "llvm/Analysis/LoopPass.h" 22*23aed5efSPhilip Reames #include "llvm/Analysis/MustExecute.h" 2345d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolution.h" 242f2bd8caSAdam Nemet #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25c434d091SElena Demikhovsky #include "llvm/Analysis/ScalarEvolutionExpander.h" 2645d4cb9aSWeiming Zhao #include "llvm/Analysis/ScalarEvolutionExpressions.h" 276bda14b3SChandler Carruth #include "llvm/Analysis/TargetTransformInfo.h" 28a097bc69SChad Rosier #include "llvm/Analysis/ValueTracking.h" 2931088a9dSChandler Carruth #include "llvm/IR/Dominators.h" 3076aa662cSKarthik Bhat #include "llvm/IR/Instructions.h" 3145d4cb9aSWeiming Zhao #include "llvm/IR/Module.h" 3276aa662cSKarthik Bhat #include "llvm/IR/PatternMatch.h" 3376aa662cSKarthik Bhat #include "llvm/IR/ValueHandle.h" 3431088a9dSChandler Carruth #include "llvm/Pass.h" 3576aa662cSKarthik Bhat #include "llvm/Support/Debug.h" 36a097bc69SChad Rosier #include "llvm/Support/KnownBits.h" 374a000883SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 3876aa662cSKarthik Bhat 3976aa662cSKarthik Bhat using namespace llvm; 4076aa662cSKarthik Bhat using namespace llvm::PatternMatch; 4176aa662cSKarthik Bhat 4276aa662cSKarthik Bhat #define DEBUG_TYPE "loop-utils" 4376aa662cSKarthik Bhat 440a91310cSTyler Nowicki bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 4576aa662cSKarthik Bhat SmallPtrSetImpl<Instruction *> &Set) { 4676aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4776aa662cSKarthik Bhat if (!Set.count(dyn_cast<Instruction>(*Use))) 4876aa662cSKarthik Bhat return false; 4976aa662cSKarthik Bhat return true; 5076aa662cSKarthik Bhat } 5176aa662cSKarthik Bhat 52c94f8e29SChad Rosier bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 53c94f8e29SChad Rosier switch (Kind) { 54c94f8e29SChad Rosier default: 55c94f8e29SChad Rosier break; 56c94f8e29SChad Rosier case RK_IntegerAdd: 57c94f8e29SChad Rosier case RK_IntegerMult: 58c94f8e29SChad Rosier case RK_IntegerOr: 59c94f8e29SChad Rosier case RK_IntegerAnd: 60c94f8e29SChad Rosier case RK_IntegerXor: 61c94f8e29SChad Rosier case RK_IntegerMinMax: 62c94f8e29SChad Rosier return true; 63c94f8e29SChad Rosier } 64c94f8e29SChad Rosier return false; 65c94f8e29SChad Rosier } 66c94f8e29SChad Rosier 67c94f8e29SChad Rosier bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 68c94f8e29SChad Rosier return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 69c94f8e29SChad Rosier } 70c94f8e29SChad Rosier 71c94f8e29SChad Rosier bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 72c94f8e29SChad Rosier switch (Kind) { 73c94f8e29SChad Rosier default: 74c94f8e29SChad Rosier break; 75c94f8e29SChad Rosier case RK_IntegerAdd: 76c94f8e29SChad Rosier case RK_IntegerMult: 77c94f8e29SChad Rosier case RK_FloatAdd: 78c94f8e29SChad Rosier case RK_FloatMult: 79c94f8e29SChad Rosier return true; 80c94f8e29SChad Rosier } 81c94f8e29SChad Rosier return false; 82c94f8e29SChad Rosier } 83c94f8e29SChad Rosier 84a097bc69SChad Rosier /// Determines if Phi may have been type-promoted. If Phi has a single user 85a097bc69SChad Rosier /// that ANDs the Phi with a type mask, return the user. RT is updated to 86a097bc69SChad Rosier /// account for the narrower bit width represented by the mask, and the AND 87a097bc69SChad Rosier /// instruction is added to CI. 88a097bc69SChad Rosier static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 89c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &Visited, 90c94f8e29SChad Rosier SmallPtrSetImpl<Instruction *> &CI) { 91c94f8e29SChad Rosier if (!Phi->hasOneUse()) 92c94f8e29SChad Rosier return Phi; 93c94f8e29SChad Rosier 94c94f8e29SChad Rosier const APInt *M = nullptr; 95c94f8e29SChad Rosier Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 96c94f8e29SChad Rosier 97c94f8e29SChad Rosier // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 98c94f8e29SChad Rosier // with a new integer type of the corresponding bit width. 9972ee6945SCraig Topper if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 100c94f8e29SChad Rosier int32_t Bits = (*M + 1).exactLogBase2(); 101c94f8e29SChad Rosier if (Bits > 0) { 102c94f8e29SChad Rosier RT = IntegerType::get(Phi->getContext(), Bits); 103c94f8e29SChad Rosier Visited.insert(Phi); 104c94f8e29SChad Rosier CI.insert(J); 105c94f8e29SChad Rosier return J; 106c94f8e29SChad Rosier } 107c94f8e29SChad Rosier } 108c94f8e29SChad Rosier return Phi; 109c94f8e29SChad Rosier } 110c94f8e29SChad Rosier 111a097bc69SChad Rosier /// Compute the minimal bit width needed to represent a reduction whose exit 112a097bc69SChad Rosier /// instruction is given by Exit. 113a097bc69SChad Rosier static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 114a097bc69SChad Rosier DemandedBits *DB, 115a097bc69SChad Rosier AssumptionCache *AC, 116a097bc69SChad Rosier DominatorTree *DT) { 117a097bc69SChad Rosier bool IsSigned = false; 118a097bc69SChad Rosier const DataLayout &DL = Exit->getModule()->getDataLayout(); 119a097bc69SChad Rosier uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 120a097bc69SChad Rosier 121a097bc69SChad Rosier if (DB) { 122a097bc69SChad Rosier // Use the demanded bits analysis to determine the bits that are live out 123a097bc69SChad Rosier // of the exit instruction, rounding up to the nearest power of two. If the 124a097bc69SChad Rosier // use of demanded bits results in a smaller bit width, we know the value 125a097bc69SChad Rosier // must be positive (i.e., IsSigned = false), because if this were not the 126a097bc69SChad Rosier // case, the sign bit would have been demanded. 127a097bc69SChad Rosier auto Mask = DB->getDemandedBits(Exit); 128a097bc69SChad Rosier MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 129a097bc69SChad Rosier } 130a097bc69SChad Rosier 131a097bc69SChad Rosier if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 132a097bc69SChad Rosier // If demanded bits wasn't able to limit the bit width, we can try to use 133a097bc69SChad Rosier // value tracking instead. This can be the case, for example, if the value 134a097bc69SChad Rosier // may be negative. 135a097bc69SChad Rosier auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 136a097bc69SChad Rosier auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 137a097bc69SChad Rosier MaxBitWidth = NumTypeBits - NumSignBits; 138a097bc69SChad Rosier KnownBits Bits = computeKnownBits(Exit, DL); 139a097bc69SChad Rosier if (!Bits.isNonNegative()) { 140a097bc69SChad Rosier // If the value is not known to be non-negative, we set IsSigned to true, 141a097bc69SChad Rosier // meaning that we will use sext instructions instead of zext 142a097bc69SChad Rosier // instructions to restore the original type. 143a097bc69SChad Rosier IsSigned = true; 144a097bc69SChad Rosier if (!Bits.isNegative()) 145a097bc69SChad Rosier // If the value is not known to be negative, we don't known what the 146a097bc69SChad Rosier // upper bit is, and therefore, we don't know what kind of extend we 147a097bc69SChad Rosier // will need. In this case, just increase the bit width by one bit and 148a097bc69SChad Rosier // use sext. 149a097bc69SChad Rosier ++MaxBitWidth; 150a097bc69SChad Rosier } 151a097bc69SChad Rosier } 152a097bc69SChad Rosier if (!isPowerOf2_64(MaxBitWidth)) 153a097bc69SChad Rosier MaxBitWidth = NextPowerOf2(MaxBitWidth); 154a097bc69SChad Rosier 155a097bc69SChad Rosier return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 156a097bc69SChad Rosier IsSigned); 157a097bc69SChad Rosier } 158a097bc69SChad Rosier 159a097bc69SChad Rosier /// Collect cast instructions that can be ignored in the vectorizer's cost 160a097bc69SChad Rosier /// model, given a reduction exit value and the minimal type in which the 161a097bc69SChad Rosier /// reduction can be represented. 162a097bc69SChad Rosier static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 163a097bc69SChad Rosier Type *RecurrenceType, 164a097bc69SChad Rosier SmallPtrSetImpl<Instruction *> &Casts) { 165c94f8e29SChad Rosier 166c94f8e29SChad Rosier SmallVector<Instruction *, 8> Worklist; 167a097bc69SChad Rosier SmallPtrSet<Instruction *, 8> Visited; 168c94f8e29SChad Rosier Worklist.push_back(Exit); 169c94f8e29SChad Rosier 170c94f8e29SChad Rosier while (!Worklist.empty()) { 171a097bc69SChad Rosier Instruction *Val = Worklist.pop_back_val(); 172a097bc69SChad Rosier Visited.insert(Val); 173a097bc69SChad Rosier if (auto *Cast = dyn_cast<CastInst>(Val)) 174a097bc69SChad Rosier if (Cast->getSrcTy() == RecurrenceType) { 175a097bc69SChad Rosier // If the source type of a cast instruction is equal to the recurrence 176a097bc69SChad Rosier // type, it will be eliminated, and should be ignored in the vectorizer 17729dc0f70SMatthew Simpson // cost model. 178a097bc69SChad Rosier Casts.insert(Cast); 179a097bc69SChad Rosier continue; 180c94f8e29SChad Rosier } 181a097bc69SChad Rosier 182a097bc69SChad Rosier // Add all operands to the work list if they are loop-varying values that 183a097bc69SChad Rosier // we haven't yet visited. 184a097bc69SChad Rosier for (Value *O : cast<User>(Val)->operands()) 185a097bc69SChad Rosier if (auto *I = dyn_cast<Instruction>(O)) 186a097bc69SChad Rosier if (TheLoop->contains(I) && !Visited.count(I)) 187a097bc69SChad Rosier Worklist.push_back(I); 188c94f8e29SChad Rosier } 189c94f8e29SChad Rosier } 190c94f8e29SChad Rosier 1910a91310cSTyler Nowicki bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 19276aa662cSKarthik Bhat Loop *TheLoop, bool HasFunNoNaNAttr, 193a097bc69SChad Rosier RecurrenceDescriptor &RedDes, 194a097bc69SChad Rosier DemandedBits *DB, 195a097bc69SChad Rosier AssumptionCache *AC, 196a097bc69SChad Rosier DominatorTree *DT) { 19776aa662cSKarthik Bhat if (Phi->getNumIncomingValues() != 2) 19876aa662cSKarthik Bhat return false; 19976aa662cSKarthik Bhat 20076aa662cSKarthik Bhat // Reduction variables are only found in the loop header block. 20176aa662cSKarthik Bhat if (Phi->getParent() != TheLoop->getHeader()) 20276aa662cSKarthik Bhat return false; 20376aa662cSKarthik Bhat 20476aa662cSKarthik Bhat // Obtain the reduction start value from the value that comes from the loop 20576aa662cSKarthik Bhat // preheader. 20676aa662cSKarthik Bhat Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 20776aa662cSKarthik Bhat 20876aa662cSKarthik Bhat // ExitInstruction is the single value which is used outside the loop. 20976aa662cSKarthik Bhat // We only allow for a single reduction value to be used outside the loop. 21076aa662cSKarthik Bhat // This includes users of the reduction, variables (which form a cycle 21176aa662cSKarthik Bhat // which ends in the phi node). 21276aa662cSKarthik Bhat Instruction *ExitInstruction = nullptr; 21376aa662cSKarthik Bhat // Indicates that we found a reduction operation in our scan. 21476aa662cSKarthik Bhat bool FoundReduxOp = false; 21576aa662cSKarthik Bhat 21676aa662cSKarthik Bhat // We start with the PHI node and scan for all of the users of this 21776aa662cSKarthik Bhat // instruction. All users must be instructions that can be used as reduction 21876aa662cSKarthik Bhat // variables (such as ADD). We must have a single out-of-block user. The cycle 21976aa662cSKarthik Bhat // must include the original PHI. 22076aa662cSKarthik Bhat bool FoundStartPHI = false; 22176aa662cSKarthik Bhat 22276aa662cSKarthik Bhat // To recognize min/max patterns formed by a icmp select sequence, we store 22376aa662cSKarthik Bhat // the number of instruction we saw from the recognized min/max pattern, 22476aa662cSKarthik Bhat // to make sure we only see exactly the two instructions. 22576aa662cSKarthik Bhat unsigned NumCmpSelectPatternInst = 0; 22627b2c39eSTyler Nowicki InstDesc ReduxDesc(false, nullptr); 22776aa662cSKarthik Bhat 228c94f8e29SChad Rosier // Data used for determining if the recurrence has been type-promoted. 229c94f8e29SChad Rosier Type *RecurrenceType = Phi->getType(); 230c94f8e29SChad Rosier SmallPtrSet<Instruction *, 4> CastInsts; 231c94f8e29SChad Rosier Instruction *Start = Phi; 232c94f8e29SChad Rosier bool IsSigned = false; 233c94f8e29SChad Rosier 23476aa662cSKarthik Bhat SmallPtrSet<Instruction *, 8> VisitedInsts; 23576aa662cSKarthik Bhat SmallVector<Instruction *, 8> Worklist; 236c94f8e29SChad Rosier 237c94f8e29SChad Rosier // Return early if the recurrence kind does not match the type of Phi. If the 238c94f8e29SChad Rosier // recurrence kind is arithmetic, we attempt to look through AND operations 239c94f8e29SChad Rosier // resulting from the type promotion performed by InstCombine. Vector 240c94f8e29SChad Rosier // operations are not limited to the legal integer widths, so we may be able 241c94f8e29SChad Rosier // to evaluate the reduction in the narrower width. 242c94f8e29SChad Rosier if (RecurrenceType->isFloatingPointTy()) { 243c94f8e29SChad Rosier if (!isFloatingPointRecurrenceKind(Kind)) 244c94f8e29SChad Rosier return false; 245c94f8e29SChad Rosier } else { 246c94f8e29SChad Rosier if (!isIntegerRecurrenceKind(Kind)) 247c94f8e29SChad Rosier return false; 248c94f8e29SChad Rosier if (isArithmeticRecurrenceKind(Kind)) 249c94f8e29SChad Rosier Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 250c94f8e29SChad Rosier } 251c94f8e29SChad Rosier 252c94f8e29SChad Rosier Worklist.push_back(Start); 253c94f8e29SChad Rosier VisitedInsts.insert(Start); 25476aa662cSKarthik Bhat 25576aa662cSKarthik Bhat // A value in the reduction can be used: 25676aa662cSKarthik Bhat // - By the reduction: 25776aa662cSKarthik Bhat // - Reduction operation: 25876aa662cSKarthik Bhat // - One use of reduction value (safe). 25976aa662cSKarthik Bhat // - Multiple use of reduction value (not safe). 26076aa662cSKarthik Bhat // - PHI: 26176aa662cSKarthik Bhat // - All uses of the PHI must be the reduction (safe). 26276aa662cSKarthik Bhat // - Otherwise, not safe. 2637cefb409SMichael Kuperstein // - By instructions outside of the loop (safe). 2647cefb409SMichael Kuperstein // * One value may have several outside users, but all outside 2657cefb409SMichael Kuperstein // uses must be of the same value. 26676aa662cSKarthik Bhat // - By an instruction that is not part of the reduction (not safe). 26776aa662cSKarthik Bhat // This is either: 26876aa662cSKarthik Bhat // * An instruction type other than PHI or the reduction operation. 26976aa662cSKarthik Bhat // * A PHI in the header other than the initial PHI. 27076aa662cSKarthik Bhat while (!Worklist.empty()) { 27176aa662cSKarthik Bhat Instruction *Cur = Worklist.back(); 27276aa662cSKarthik Bhat Worklist.pop_back(); 27376aa662cSKarthik Bhat 27476aa662cSKarthik Bhat // No Users. 27576aa662cSKarthik Bhat // If the instruction has no users then this is a broken chain and can't be 27676aa662cSKarthik Bhat // a reduction variable. 27776aa662cSKarthik Bhat if (Cur->use_empty()) 27876aa662cSKarthik Bhat return false; 27976aa662cSKarthik Bhat 28076aa662cSKarthik Bhat bool IsAPhi = isa<PHINode>(Cur); 28176aa662cSKarthik Bhat 28276aa662cSKarthik Bhat // A header PHI use other than the original PHI. 28376aa662cSKarthik Bhat if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 28476aa662cSKarthik Bhat return false; 28576aa662cSKarthik Bhat 28676aa662cSKarthik Bhat // Reductions of instructions such as Div, and Sub is only possible if the 28776aa662cSKarthik Bhat // LHS is the reduction variable. 28876aa662cSKarthik Bhat if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 28976aa662cSKarthik Bhat !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 29076aa662cSKarthik Bhat !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 29176aa662cSKarthik Bhat return false; 29276aa662cSKarthik Bhat 293c94f8e29SChad Rosier // Any reduction instruction must be of one of the allowed kinds. We ignore 294c94f8e29SChad Rosier // the starting value (the Phi or an AND instruction if the Phi has been 295c94f8e29SChad Rosier // type-promoted). 296c94f8e29SChad Rosier if (Cur != Start) { 2970a91310cSTyler Nowicki ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 2980a91310cSTyler Nowicki if (!ReduxDesc.isRecurrence()) 29976aa662cSKarthik Bhat return false; 300c94f8e29SChad Rosier } 30176aa662cSKarthik Bhat 30276aa662cSKarthik Bhat // A reduction operation must only have one use of the reduction value. 30376aa662cSKarthik Bhat if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 30476aa662cSKarthik Bhat hasMultipleUsesOf(Cur, VisitedInsts)) 30576aa662cSKarthik Bhat return false; 30676aa662cSKarthik Bhat 30776aa662cSKarthik Bhat // All inputs to a PHI node must be a reduction value. 30876aa662cSKarthik Bhat if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 30976aa662cSKarthik Bhat return false; 31076aa662cSKarthik Bhat 31176aa662cSKarthik Bhat if (Kind == RK_IntegerMinMax && 31276aa662cSKarthik Bhat (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 31376aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 31476aa662cSKarthik Bhat if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 31576aa662cSKarthik Bhat ++NumCmpSelectPatternInst; 31676aa662cSKarthik Bhat 31776aa662cSKarthik Bhat // Check whether we found a reduction operator. 318c94f8e29SChad Rosier FoundReduxOp |= !IsAPhi && Cur != Start; 31976aa662cSKarthik Bhat 32076aa662cSKarthik Bhat // Process users of current instruction. Push non-PHI nodes after PHI nodes 32176aa662cSKarthik Bhat // onto the stack. This way we are going to have seen all inputs to PHI 32276aa662cSKarthik Bhat // nodes once we get to them. 32376aa662cSKarthik Bhat SmallVector<Instruction *, 8> NonPHIs; 32476aa662cSKarthik Bhat SmallVector<Instruction *, 8> PHIs; 32576aa662cSKarthik Bhat for (User *U : Cur->users()) { 32676aa662cSKarthik Bhat Instruction *UI = cast<Instruction>(U); 32776aa662cSKarthik Bhat 32876aa662cSKarthik Bhat // Check if we found the exit user. 32976aa662cSKarthik Bhat BasicBlock *Parent = UI->getParent(); 33076aa662cSKarthik Bhat if (!TheLoop->contains(Parent)) { 3317cefb409SMichael Kuperstein // If we already know this instruction is used externally, move on to 3327cefb409SMichael Kuperstein // the next user. 3337cefb409SMichael Kuperstein if (ExitInstruction == Cur) 3347cefb409SMichael Kuperstein continue; 3357cefb409SMichael Kuperstein 3367cefb409SMichael Kuperstein // Exit if you find multiple values used outside or if the header phi 3377cefb409SMichael Kuperstein // node is being used. In this case the user uses the value of the 3387cefb409SMichael Kuperstein // previous iteration, in which case we would loose "VF-1" iterations of 3397cefb409SMichael Kuperstein // the reduction operation if we vectorize. 34076aa662cSKarthik Bhat if (ExitInstruction != nullptr || Cur == Phi) 34176aa662cSKarthik Bhat return false; 34276aa662cSKarthik Bhat 34376aa662cSKarthik Bhat // The instruction used by an outside user must be the last instruction 34476aa662cSKarthik Bhat // before we feed back to the reduction phi. Otherwise, we loose VF-1 34576aa662cSKarthik Bhat // operations on the value. 34642531260SDavid Majnemer if (!is_contained(Phi->operands(), Cur)) 34776aa662cSKarthik Bhat return false; 34876aa662cSKarthik Bhat 34976aa662cSKarthik Bhat ExitInstruction = Cur; 35076aa662cSKarthik Bhat continue; 35176aa662cSKarthik Bhat } 35276aa662cSKarthik Bhat 35376aa662cSKarthik Bhat // Process instructions only once (termination). Each reduction cycle 35476aa662cSKarthik Bhat // value must only be used once, except by phi nodes and min/max 35576aa662cSKarthik Bhat // reductions which are represented as a cmp followed by a select. 35627b2c39eSTyler Nowicki InstDesc IgnoredVal(false, nullptr); 35776aa662cSKarthik Bhat if (VisitedInsts.insert(UI).second) { 35876aa662cSKarthik Bhat if (isa<PHINode>(UI)) 35976aa662cSKarthik Bhat PHIs.push_back(UI); 36076aa662cSKarthik Bhat else 36176aa662cSKarthik Bhat NonPHIs.push_back(UI); 36276aa662cSKarthik Bhat } else if (!isa<PHINode>(UI) && 36376aa662cSKarthik Bhat ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 36476aa662cSKarthik Bhat !isa<SelectInst>(UI)) || 3650a91310cSTyler Nowicki !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 36676aa662cSKarthik Bhat return false; 36776aa662cSKarthik Bhat 36876aa662cSKarthik Bhat // Remember that we completed the cycle. 36976aa662cSKarthik Bhat if (UI == Phi) 37076aa662cSKarthik Bhat FoundStartPHI = true; 37176aa662cSKarthik Bhat } 37276aa662cSKarthik Bhat Worklist.append(PHIs.begin(), PHIs.end()); 37376aa662cSKarthik Bhat Worklist.append(NonPHIs.begin(), NonPHIs.end()); 37476aa662cSKarthik Bhat } 37576aa662cSKarthik Bhat 37676aa662cSKarthik Bhat // This means we have seen one but not the other instruction of the 37776aa662cSKarthik Bhat // pattern or more than just a select and cmp. 37876aa662cSKarthik Bhat if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 37976aa662cSKarthik Bhat NumCmpSelectPatternInst != 2) 38076aa662cSKarthik Bhat return false; 38176aa662cSKarthik Bhat 38276aa662cSKarthik Bhat if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 38376aa662cSKarthik Bhat return false; 38476aa662cSKarthik Bhat 385a097bc69SChad Rosier if (Start != Phi) { 386a097bc69SChad Rosier // If the starting value is not the same as the phi node, we speculatively 387a097bc69SChad Rosier // looked through an 'and' instruction when evaluating a potential 388a097bc69SChad Rosier // arithmetic reduction to determine if it may have been type-promoted. 389a097bc69SChad Rosier // 390a097bc69SChad Rosier // We now compute the minimal bit width that is required to represent the 391a097bc69SChad Rosier // reduction. If this is the same width that was indicated by the 'and', we 392a097bc69SChad Rosier // can represent the reduction in the smaller type. The 'and' instruction 393a097bc69SChad Rosier // will be eliminated since it will essentially be a cast instruction that 394a097bc69SChad Rosier // can be ignore in the cost model. If we compute a different type than we 395a097bc69SChad Rosier // did when evaluating the 'and', the 'and' will not be eliminated, and we 396a097bc69SChad Rosier // will end up with different kinds of operations in the recurrence 397a097bc69SChad Rosier // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is 398a097bc69SChad Rosier // the case. 399a097bc69SChad Rosier // 400a097bc69SChad Rosier // The vectorizer relies on InstCombine to perform the actual 401a097bc69SChad Rosier // type-shrinking. It does this by inserting instructions to truncate the 402a097bc69SChad Rosier // exit value of the reduction to the width indicated by RecurrenceType and 403a097bc69SChad Rosier // then extend this value back to the original width. If IsSigned is false, 404a097bc69SChad Rosier // a 'zext' instruction will be generated; otherwise, a 'sext' will be 405a097bc69SChad Rosier // used. 406a097bc69SChad Rosier // 407a097bc69SChad Rosier // TODO: We should not rely on InstCombine to rewrite the reduction in the 408a097bc69SChad Rosier // smaller type. We should just generate a correctly typed expression 409a097bc69SChad Rosier // to begin with. 410a097bc69SChad Rosier Type *ComputedType; 411a097bc69SChad Rosier std::tie(ComputedType, IsSigned) = 412a097bc69SChad Rosier computeRecurrenceType(ExitInstruction, DB, AC, DT); 413a097bc69SChad Rosier if (ComputedType != RecurrenceType) 414c94f8e29SChad Rosier return false; 415c94f8e29SChad Rosier 416a097bc69SChad Rosier // The recurrence expression will be represented in a narrower type. If 417a097bc69SChad Rosier // there are any cast instructions that will be unnecessary, collect them 418a097bc69SChad Rosier // in CastInsts. Note that the 'and' instruction was already included in 419a097bc69SChad Rosier // this list. 420a097bc69SChad Rosier // 421a097bc69SChad Rosier // TODO: A better way to represent this may be to tag in some way all the 422a097bc69SChad Rosier // instructions that are a part of the reduction. The vectorizer cost 423a097bc69SChad Rosier // model could then apply the recurrence type to these instructions, 424a097bc69SChad Rosier // without needing a white list of instructions to ignore. 425a097bc69SChad Rosier collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 426a097bc69SChad Rosier } 427a097bc69SChad Rosier 42876aa662cSKarthik Bhat // We found a reduction var if we have reached the original phi node and we 42976aa662cSKarthik Bhat // only have a single instruction with out-of-loop users. 43076aa662cSKarthik Bhat 43176aa662cSKarthik Bhat // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 4320a91310cSTyler Nowicki // is saved as part of the RecurrenceDescriptor. 43376aa662cSKarthik Bhat 43476aa662cSKarthik Bhat // Save the description of this reduction variable. 435c94f8e29SChad Rosier RecurrenceDescriptor RD( 436c94f8e29SChad Rosier RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 437c94f8e29SChad Rosier ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 43876aa662cSKarthik Bhat RedDes = RD; 43976aa662cSKarthik Bhat 44076aa662cSKarthik Bhat return true; 44176aa662cSKarthik Bhat } 44276aa662cSKarthik Bhat 44376aa662cSKarthik Bhat /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 44476aa662cSKarthik Bhat /// pattern corresponding to a min(X, Y) or max(X, Y). 44527b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 44627b2c39eSTyler Nowicki RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 44776aa662cSKarthik Bhat 44876aa662cSKarthik Bhat assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 44976aa662cSKarthik Bhat "Expect a select instruction"); 45076aa662cSKarthik Bhat Instruction *Cmp = nullptr; 45176aa662cSKarthik Bhat SelectInst *Select = nullptr; 45276aa662cSKarthik Bhat 45376aa662cSKarthik Bhat // We must handle the select(cmp()) as a single instruction. Advance to the 45476aa662cSKarthik Bhat // select. 45576aa662cSKarthik Bhat if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 45676aa662cSKarthik Bhat if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 45727b2c39eSTyler Nowicki return InstDesc(false, I); 45827b2c39eSTyler Nowicki return InstDesc(Select, Prev.getMinMaxKind()); 45976aa662cSKarthik Bhat } 46076aa662cSKarthik Bhat 46176aa662cSKarthik Bhat // Only handle single use cases for now. 46276aa662cSKarthik Bhat if (!(Select = dyn_cast<SelectInst>(I))) 46327b2c39eSTyler Nowicki return InstDesc(false, I); 46476aa662cSKarthik Bhat if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 46576aa662cSKarthik Bhat !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 46627b2c39eSTyler Nowicki return InstDesc(false, I); 46776aa662cSKarthik Bhat if (!Cmp->hasOneUse()) 46827b2c39eSTyler Nowicki return InstDesc(false, I); 46976aa662cSKarthik Bhat 47076aa662cSKarthik Bhat Value *CmpLeft; 47176aa662cSKarthik Bhat Value *CmpRight; 47276aa662cSKarthik Bhat 47376aa662cSKarthik Bhat // Look for a min/max pattern. 47476aa662cSKarthik Bhat if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 47527b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMin); 47676aa662cSKarthik Bhat else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 47727b2c39eSTyler Nowicki return InstDesc(Select, MRK_UIntMax); 47876aa662cSKarthik Bhat else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 47927b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMax); 48076aa662cSKarthik Bhat else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48127b2c39eSTyler Nowicki return InstDesc(Select, MRK_SIntMin); 48276aa662cSKarthik Bhat else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48327b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 48476aa662cSKarthik Bhat else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48527b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 48676aa662cSKarthik Bhat else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48727b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMin); 48876aa662cSKarthik Bhat else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 48927b2c39eSTyler Nowicki return InstDesc(Select, MRK_FloatMax); 49076aa662cSKarthik Bhat 49127b2c39eSTyler Nowicki return InstDesc(false, I); 49276aa662cSKarthik Bhat } 49376aa662cSKarthik Bhat 49427b2c39eSTyler Nowicki RecurrenceDescriptor::InstDesc 4950a91310cSTyler Nowicki RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 49627b2c39eSTyler Nowicki InstDesc &Prev, bool HasFunNoNaNAttr) { 49776aa662cSKarthik Bhat bool FP = I->getType()->isFloatingPointTy(); 498c1a86f58STyler Nowicki Instruction *UAI = Prev.getUnsafeAlgebraInst(); 499629c4115SSanjay Patel if (!UAI && FP && !I->isFast()) 500c1a86f58STyler Nowicki UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 501c1a86f58STyler Nowicki 50276aa662cSKarthik Bhat switch (I->getOpcode()) { 50376aa662cSKarthik Bhat default: 50427b2c39eSTyler Nowicki return InstDesc(false, I); 50576aa662cSKarthik Bhat case Instruction::PHI: 50610a1e8b1STim Northover return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 50776aa662cSKarthik Bhat case Instruction::Sub: 50876aa662cSKarthik Bhat case Instruction::Add: 50927b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAdd, I); 51076aa662cSKarthik Bhat case Instruction::Mul: 51127b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerMult, I); 51276aa662cSKarthik Bhat case Instruction::And: 51327b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerAnd, I); 51476aa662cSKarthik Bhat case Instruction::Or: 51527b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerOr, I); 51676aa662cSKarthik Bhat case Instruction::Xor: 51727b2c39eSTyler Nowicki return InstDesc(Kind == RK_IntegerXor, I); 51876aa662cSKarthik Bhat case Instruction::FMul: 519c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatMult, I, UAI); 52076aa662cSKarthik Bhat case Instruction::FSub: 52176aa662cSKarthik Bhat case Instruction::FAdd: 522c1a86f58STyler Nowicki return InstDesc(Kind == RK_FloatAdd, I, UAI); 52376aa662cSKarthik Bhat case Instruction::FCmp: 52476aa662cSKarthik Bhat case Instruction::ICmp: 52576aa662cSKarthik Bhat case Instruction::Select: 52676aa662cSKarthik Bhat if (Kind != RK_IntegerMinMax && 52776aa662cSKarthik Bhat (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 52827b2c39eSTyler Nowicki return InstDesc(false, I); 52976aa662cSKarthik Bhat return isMinMaxSelectCmpPattern(I, Prev); 53076aa662cSKarthik Bhat } 53176aa662cSKarthik Bhat } 53276aa662cSKarthik Bhat 5330a91310cSTyler Nowicki bool RecurrenceDescriptor::hasMultipleUsesOf( 53476aa662cSKarthik Bhat Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 53576aa662cSKarthik Bhat unsigned NumUses = 0; 53676aa662cSKarthik Bhat for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 53776aa662cSKarthik Bhat ++Use) { 53876aa662cSKarthik Bhat if (Insts.count(dyn_cast<Instruction>(*Use))) 53976aa662cSKarthik Bhat ++NumUses; 54076aa662cSKarthik Bhat if (NumUses > 1) 54176aa662cSKarthik Bhat return true; 54276aa662cSKarthik Bhat } 54376aa662cSKarthik Bhat 54476aa662cSKarthik Bhat return false; 54576aa662cSKarthik Bhat } 5460a91310cSTyler Nowicki bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 547a097bc69SChad Rosier RecurrenceDescriptor &RedDes, 548a097bc69SChad Rosier DemandedBits *DB, AssumptionCache *AC, 549a097bc69SChad Rosier DominatorTree *DT) { 55076aa662cSKarthik Bhat 55176aa662cSKarthik Bhat BasicBlock *Header = TheLoop->getHeader(); 55276aa662cSKarthik Bhat Function &F = *Header->getParent(); 5538dd66e57SNirav Dave bool HasFunNoNaNAttr = 55476aa662cSKarthik Bhat F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 55576aa662cSKarthik Bhat 556a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 557a097bc69SChad Rosier AC, DT)) { 55876aa662cSKarthik Bhat DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 55976aa662cSKarthik Bhat return true; 56076aa662cSKarthik Bhat } 561a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 562a097bc69SChad Rosier AC, DT)) { 56376aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 56476aa662cSKarthik Bhat return true; 56576aa662cSKarthik Bhat } 566a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, 567a097bc69SChad Rosier AC, DT)) { 56876aa662cSKarthik Bhat DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 56976aa662cSKarthik Bhat return true; 57076aa662cSKarthik Bhat } 571a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 572a097bc69SChad Rosier AC, DT)) { 57376aa662cSKarthik Bhat DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 57476aa662cSKarthik Bhat return true; 57576aa662cSKarthik Bhat } 576a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, 577a097bc69SChad Rosier AC, DT)) { 57876aa662cSKarthik Bhat DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 57976aa662cSKarthik Bhat return true; 58076aa662cSKarthik Bhat } 581a097bc69SChad Rosier if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, 582a097bc69SChad Rosier DB, AC, DT)) { 58376aa662cSKarthik Bhat DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 58476aa662cSKarthik Bhat return true; 58576aa662cSKarthik Bhat } 586a097bc69SChad Rosier if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 587a097bc69SChad Rosier AC, DT)) { 58876aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 58976aa662cSKarthik Bhat return true; 59076aa662cSKarthik Bhat } 591a097bc69SChad Rosier if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 592a097bc69SChad Rosier AC, DT)) { 59376aa662cSKarthik Bhat DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 59476aa662cSKarthik Bhat return true; 59576aa662cSKarthik Bhat } 596a097bc69SChad Rosier if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, 597a097bc69SChad Rosier AC, DT)) { 59876aa662cSKarthik Bhat DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 59976aa662cSKarthik Bhat return true; 60076aa662cSKarthik Bhat } 60176aa662cSKarthik Bhat // Not a reduction of known type. 60276aa662cSKarthik Bhat return false; 60376aa662cSKarthik Bhat } 60476aa662cSKarthik Bhat 6052ff59d43SAyal Zaks bool RecurrenceDescriptor::isFirstOrderRecurrence( 6062ff59d43SAyal Zaks PHINode *Phi, Loop *TheLoop, 6072ff59d43SAyal Zaks DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 60829c997c1SMatthew Simpson 60929c997c1SMatthew Simpson // Ensure the phi node is in the loop header and has two incoming values. 61029c997c1SMatthew Simpson if (Phi->getParent() != TheLoop->getHeader() || 61129c997c1SMatthew Simpson Phi->getNumIncomingValues() != 2) 61229c997c1SMatthew Simpson return false; 61329c997c1SMatthew Simpson 61429c997c1SMatthew Simpson // Ensure the loop has a preheader and a single latch block. The loop 61529c997c1SMatthew Simpson // vectorizer will need the latch to set up the next iteration of the loop. 61629c997c1SMatthew Simpson auto *Preheader = TheLoop->getLoopPreheader(); 61729c997c1SMatthew Simpson auto *Latch = TheLoop->getLoopLatch(); 61829c997c1SMatthew Simpson if (!Preheader || !Latch) 61929c997c1SMatthew Simpson return false; 62029c997c1SMatthew Simpson 62129c997c1SMatthew Simpson // Ensure the phi node's incoming blocks are the loop preheader and latch. 62229c997c1SMatthew Simpson if (Phi->getBasicBlockIndex(Preheader) < 0 || 62329c997c1SMatthew Simpson Phi->getBasicBlockIndex(Latch) < 0) 62429c997c1SMatthew Simpson return false; 62529c997c1SMatthew Simpson 62629c997c1SMatthew Simpson // Get the previous value. The previous value comes from the latch edge while 62729c997c1SMatthew Simpson // the initial value comes form the preheader edge. 62829c997c1SMatthew Simpson auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 6292ff59d43SAyal Zaks if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 6302ff59d43SAyal Zaks SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 63129c997c1SMatthew Simpson return false; 63229c997c1SMatthew Simpson 63300dc1b74SAnna Thomas // Ensure every user of the phi node is dominated by the previous value. 63400dc1b74SAnna Thomas // The dominance requirement ensures the loop vectorizer will not need to 63500dc1b74SAnna Thomas // vectorize the initial value prior to the first iteration of the loop. 6362ff59d43SAyal Zaks // TODO: Consider extending this sinking to handle other kinds of instructions 6372ff59d43SAyal Zaks // and expressions, beyond sinking a single cast past Previous. 6382ff59d43SAyal Zaks if (Phi->hasOneUse()) { 6392ff59d43SAyal Zaks auto *I = Phi->user_back(); 6402ff59d43SAyal Zaks if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && 6412ff59d43SAyal Zaks DT->dominates(Previous, I->user_back())) { 64225e2800eSAyal Zaks if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. 6432ff59d43SAyal Zaks SinkAfter[I] = Previous; 6442ff59d43SAyal Zaks return true; 6452ff59d43SAyal Zaks } 6462ff59d43SAyal Zaks } 6472ff59d43SAyal Zaks 648dcdb325fSAnna Thomas for (User *U : Phi->users()) 649dcdb325fSAnna Thomas if (auto *I = dyn_cast<Instruction>(U)) { 65029c997c1SMatthew Simpson if (!DT->dominates(Previous, I)) 65129c997c1SMatthew Simpson return false; 65200dc1b74SAnna Thomas } 65329c997c1SMatthew Simpson 65429c997c1SMatthew Simpson return true; 65529c997c1SMatthew Simpson } 65629c997c1SMatthew Simpson 65776aa662cSKarthik Bhat /// This function returns the identity element (or neutral element) for 65876aa662cSKarthik Bhat /// the operation K. 6590a91310cSTyler Nowicki Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 6600a91310cSTyler Nowicki Type *Tp) { 66176aa662cSKarthik Bhat switch (K) { 66276aa662cSKarthik Bhat case RK_IntegerXor: 66376aa662cSKarthik Bhat case RK_IntegerAdd: 66476aa662cSKarthik Bhat case RK_IntegerOr: 66576aa662cSKarthik Bhat // Adding, Xoring, Oring zero to a number does not change it. 66676aa662cSKarthik Bhat return ConstantInt::get(Tp, 0); 66776aa662cSKarthik Bhat case RK_IntegerMult: 66876aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 66976aa662cSKarthik Bhat return ConstantInt::get(Tp, 1); 67076aa662cSKarthik Bhat case RK_IntegerAnd: 67176aa662cSKarthik Bhat // AND-ing a number with an all-1 value does not change it. 67276aa662cSKarthik Bhat return ConstantInt::get(Tp, -1, true); 67376aa662cSKarthik Bhat case RK_FloatMult: 67476aa662cSKarthik Bhat // Multiplying a number by 1 does not change it. 67576aa662cSKarthik Bhat return ConstantFP::get(Tp, 1.0L); 67676aa662cSKarthik Bhat case RK_FloatAdd: 67776aa662cSKarthik Bhat // Adding zero to a number does not change it. 67876aa662cSKarthik Bhat return ConstantFP::get(Tp, 0.0L); 67976aa662cSKarthik Bhat default: 6800a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence kind"); 68176aa662cSKarthik Bhat } 68276aa662cSKarthik Bhat } 68376aa662cSKarthik Bhat 6840a91310cSTyler Nowicki /// This function translates the recurrence kind to an LLVM binary operator. 6850a91310cSTyler Nowicki unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 68676aa662cSKarthik Bhat switch (Kind) { 68776aa662cSKarthik Bhat case RK_IntegerAdd: 68876aa662cSKarthik Bhat return Instruction::Add; 68976aa662cSKarthik Bhat case RK_IntegerMult: 69076aa662cSKarthik Bhat return Instruction::Mul; 69176aa662cSKarthik Bhat case RK_IntegerOr: 69276aa662cSKarthik Bhat return Instruction::Or; 69376aa662cSKarthik Bhat case RK_IntegerAnd: 69476aa662cSKarthik Bhat return Instruction::And; 69576aa662cSKarthik Bhat case RK_IntegerXor: 69676aa662cSKarthik Bhat return Instruction::Xor; 69776aa662cSKarthik Bhat case RK_FloatMult: 69876aa662cSKarthik Bhat return Instruction::FMul; 69976aa662cSKarthik Bhat case RK_FloatAdd: 70076aa662cSKarthik Bhat return Instruction::FAdd; 70176aa662cSKarthik Bhat case RK_IntegerMinMax: 70276aa662cSKarthik Bhat return Instruction::ICmp; 70376aa662cSKarthik Bhat case RK_FloatMinMax: 70476aa662cSKarthik Bhat return Instruction::FCmp; 70576aa662cSKarthik Bhat default: 7060a91310cSTyler Nowicki llvm_unreachable("Unknown recurrence operation"); 70776aa662cSKarthik Bhat } 70876aa662cSKarthik Bhat } 70976aa662cSKarthik Bhat 71027b2c39eSTyler Nowicki Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 71127b2c39eSTyler Nowicki MinMaxRecurrenceKind RK, 71276aa662cSKarthik Bhat Value *Left, Value *Right) { 71376aa662cSKarthik Bhat CmpInst::Predicate P = CmpInst::ICMP_NE; 71476aa662cSKarthik Bhat switch (RK) { 71576aa662cSKarthik Bhat default: 7160a91310cSTyler Nowicki llvm_unreachable("Unknown min/max recurrence kind"); 71727b2c39eSTyler Nowicki case MRK_UIntMin: 71876aa662cSKarthik Bhat P = CmpInst::ICMP_ULT; 71976aa662cSKarthik Bhat break; 72027b2c39eSTyler Nowicki case MRK_UIntMax: 72176aa662cSKarthik Bhat P = CmpInst::ICMP_UGT; 72276aa662cSKarthik Bhat break; 72327b2c39eSTyler Nowicki case MRK_SIntMin: 72476aa662cSKarthik Bhat P = CmpInst::ICMP_SLT; 72576aa662cSKarthik Bhat break; 72627b2c39eSTyler Nowicki case MRK_SIntMax: 72776aa662cSKarthik Bhat P = CmpInst::ICMP_SGT; 72876aa662cSKarthik Bhat break; 72927b2c39eSTyler Nowicki case MRK_FloatMin: 73076aa662cSKarthik Bhat P = CmpInst::FCMP_OLT; 73176aa662cSKarthik Bhat break; 73227b2c39eSTyler Nowicki case MRK_FloatMax: 73376aa662cSKarthik Bhat P = CmpInst::FCMP_OGT; 73476aa662cSKarthik Bhat break; 73576aa662cSKarthik Bhat } 73676aa662cSKarthik Bhat 737629c4115SSanjay Patel // We only match FP sequences that are 'fast', so we can unconditionally 73850a4c27fSJames Molloy // set it on any generated instructions. 73950a4c27fSJames Molloy IRBuilder<>::FastMathFlagGuard FMFG(Builder); 74050a4c27fSJames Molloy FastMathFlags FMF; 741629c4115SSanjay Patel FMF.setFast(); 742a252815bSSanjay Patel Builder.setFastMathFlags(FMF); 74350a4c27fSJames Molloy 74476aa662cSKarthik Bhat Value *Cmp; 74527b2c39eSTyler Nowicki if (RK == MRK_FloatMin || RK == MRK_FloatMax) 74676aa662cSKarthik Bhat Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 74776aa662cSKarthik Bhat else 74876aa662cSKarthik Bhat Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 74976aa662cSKarthik Bhat 75076aa662cSKarthik Bhat Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 75176aa662cSKarthik Bhat return Select; 75276aa662cSKarthik Bhat } 75324e6cc2dSKarthik Bhat 7541bbf15c5SJames Molloy InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 7554750c785SDorit Nuzman const SCEV *Step, BinaryOperator *BOp, 7564750c785SDorit Nuzman SmallVectorImpl<Instruction *> *Casts) 757376a18bdSElena Demikhovsky : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 7581bbf15c5SJames Molloy assert(IK != IK_NoInduction && "Not an induction"); 759c434d091SElena Demikhovsky 760c434d091SElena Demikhovsky // Start value type should match the induction kind and the value 761c434d091SElena Demikhovsky // itself should not be null. 7621bbf15c5SJames Molloy assert(StartValue && "StartValue is null"); 7631bbf15c5SJames Molloy assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 7641bbf15c5SJames Molloy "StartValue is not a pointer for pointer induction"); 7651bbf15c5SJames Molloy assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 7661bbf15c5SJames Molloy "StartValue is not an integer for integer induction"); 767c434d091SElena Demikhovsky 768c434d091SElena Demikhovsky // Check the Step Value. It should be non-zero integer value. 769c434d091SElena Demikhovsky assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 770c434d091SElena Demikhovsky "Step value is zero"); 771c434d091SElena Demikhovsky 772c434d091SElena Demikhovsky assert((IK != IK_PtrInduction || getConstIntStepValue()) && 773c434d091SElena Demikhovsky "Step value should be constant for pointer induction"); 774376a18bdSElena Demikhovsky assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 775376a18bdSElena Demikhovsky "StepValue is not an integer"); 776376a18bdSElena Demikhovsky 777376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 778376a18bdSElena Demikhovsky "StepValue is not FP for FpInduction"); 779376a18bdSElena Demikhovsky assert((IK != IK_FpInduction || (InductionBinOp && 780376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 781376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub))) && 782376a18bdSElena Demikhovsky "Binary opcode should be specified for FP induction"); 7834750c785SDorit Nuzman 7844750c785SDorit Nuzman if (Casts) { 7854750c785SDorit Nuzman for (auto &Inst : *Casts) { 7864750c785SDorit Nuzman RedundantCasts.push_back(Inst); 7874750c785SDorit Nuzman } 7884750c785SDorit Nuzman } 7891bbf15c5SJames Molloy } 7901bbf15c5SJames Molloy 7911bbf15c5SJames Molloy int InductionDescriptor::getConsecutiveDirection() const { 792c434d091SElena Demikhovsky ConstantInt *ConstStep = getConstIntStepValue(); 793c434d091SElena Demikhovsky if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 794c434d091SElena Demikhovsky return ConstStep->getSExtValue(); 7951bbf15c5SJames Molloy return 0; 7961bbf15c5SJames Molloy } 7971bbf15c5SJames Molloy 798c434d091SElena Demikhovsky ConstantInt *InductionDescriptor::getConstIntStepValue() const { 799c434d091SElena Demikhovsky if (isa<SCEVConstant>(Step)) 800c434d091SElena Demikhovsky return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 801c434d091SElena Demikhovsky return nullptr; 802c434d091SElena Demikhovsky } 803c434d091SElena Demikhovsky 804c434d091SElena Demikhovsky Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 805c434d091SElena Demikhovsky ScalarEvolution *SE, 806c434d091SElena Demikhovsky const DataLayout& DL) const { 807c434d091SElena Demikhovsky 808c434d091SElena Demikhovsky SCEVExpander Exp(*SE, DL, "induction"); 809376a18bdSElena Demikhovsky assert(Index->getType() == Step->getType() && 810376a18bdSElena Demikhovsky "Index type does not match StepValue type"); 8111bbf15c5SJames Molloy switch (IK) { 812c434d091SElena Demikhovsky case IK_IntInduction: { 8131bbf15c5SJames Molloy assert(Index->getType() == StartValue->getType() && 8141bbf15c5SJames Molloy "Index type does not match StartValue type"); 815c434d091SElena Demikhovsky 816c434d091SElena Demikhovsky // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 817c434d091SElena Demikhovsky // and calculate (Start + Index * Step) for all cases, without 818c434d091SElena Demikhovsky // special handling for "isOne" and "isMinusOne". 819c434d091SElena Demikhovsky // But in the real life the result code getting worse. We mix SCEV 820c434d091SElena Demikhovsky // expressions and ADD/SUB operations and receive redundant 821c434d091SElena Demikhovsky // intermediate values being calculated in different ways and 822c434d091SElena Demikhovsky // Instcombine is unable to reduce them all. 823c434d091SElena Demikhovsky 824c434d091SElena Demikhovsky if (getConstIntStepValue() && 825c434d091SElena Demikhovsky getConstIntStepValue()->isMinusOne()) 8261bbf15c5SJames Molloy return B.CreateSub(StartValue, Index); 827c434d091SElena Demikhovsky if (getConstIntStepValue() && 828c434d091SElena Demikhovsky getConstIntStepValue()->isOne()) 8291bbf15c5SJames Molloy return B.CreateAdd(StartValue, Index); 830c434d091SElena Demikhovsky const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 831c434d091SElena Demikhovsky SE->getMulExpr(Step, SE->getSCEV(Index))); 832c434d091SElena Demikhovsky return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 833c434d091SElena Demikhovsky } 834c434d091SElena Demikhovsky case IK_PtrInduction: { 835c434d091SElena Demikhovsky assert(isa<SCEVConstant>(Step) && 836c434d091SElena Demikhovsky "Expected constant step for pointer induction"); 837c434d091SElena Demikhovsky const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 838c434d091SElena Demikhovsky Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 8391bbf15c5SJames Molloy return B.CreateGEP(nullptr, StartValue, Index); 840c434d091SElena Demikhovsky } 841376a18bdSElena Demikhovsky case IK_FpInduction: { 842376a18bdSElena Demikhovsky assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 843376a18bdSElena Demikhovsky assert(InductionBinOp && 844376a18bdSElena Demikhovsky (InductionBinOp->getOpcode() == Instruction::FAdd || 845376a18bdSElena Demikhovsky InductionBinOp->getOpcode() == Instruction::FSub) && 846376a18bdSElena Demikhovsky "Original bin op should be defined for FP induction"); 847376a18bdSElena Demikhovsky 848376a18bdSElena Demikhovsky Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 849376a18bdSElena Demikhovsky 850376a18bdSElena Demikhovsky // Floating point operations had to be 'fast' to enable the induction. 851376a18bdSElena Demikhovsky FastMathFlags Flags; 852629c4115SSanjay Patel Flags.setFast(); 853376a18bdSElena Demikhovsky 854376a18bdSElena Demikhovsky Value *MulExp = B.CreateFMul(StepValue, Index); 855376a18bdSElena Demikhovsky if (isa<Instruction>(MulExp)) 856376a18bdSElena Demikhovsky // We have to check, the MulExp may be a constant. 857376a18bdSElena Demikhovsky cast<Instruction>(MulExp)->setFastMathFlags(Flags); 858376a18bdSElena Demikhovsky 859376a18bdSElena Demikhovsky Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, 860376a18bdSElena Demikhovsky MulExp, "induction"); 861376a18bdSElena Demikhovsky if (isa<Instruction>(BOp)) 862376a18bdSElena Demikhovsky cast<Instruction>(BOp)->setFastMathFlags(Flags); 863376a18bdSElena Demikhovsky 864376a18bdSElena Demikhovsky return BOp; 865376a18bdSElena Demikhovsky } 8661bbf15c5SJames Molloy case IK_NoInduction: 8671bbf15c5SJames Molloy return nullptr; 8681bbf15c5SJames Molloy } 8691bbf15c5SJames Molloy llvm_unreachable("invalid enum"); 8701bbf15c5SJames Molloy } 8711bbf15c5SJames Molloy 872376a18bdSElena Demikhovsky bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 873376a18bdSElena Demikhovsky ScalarEvolution *SE, 874376a18bdSElena Demikhovsky InductionDescriptor &D) { 875376a18bdSElena Demikhovsky 876376a18bdSElena Demikhovsky // Here we only handle FP induction variables. 877376a18bdSElena Demikhovsky assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 878376a18bdSElena Demikhovsky 879376a18bdSElena Demikhovsky if (TheLoop->getHeader() != Phi->getParent()) 880376a18bdSElena Demikhovsky return false; 881376a18bdSElena Demikhovsky 882376a18bdSElena Demikhovsky // The loop may have multiple entrances or multiple exits; we can analyze 883376a18bdSElena Demikhovsky // this phi if it has a unique entry value and a unique backedge value. 884376a18bdSElena Demikhovsky if (Phi->getNumIncomingValues() != 2) 885376a18bdSElena Demikhovsky return false; 886376a18bdSElena Demikhovsky Value *BEValue = nullptr, *StartValue = nullptr; 887376a18bdSElena Demikhovsky if (TheLoop->contains(Phi->getIncomingBlock(0))) { 888376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(0); 889376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(1); 890376a18bdSElena Demikhovsky } else { 891376a18bdSElena Demikhovsky assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 892376a18bdSElena Demikhovsky "Unexpected Phi node in the loop"); 893376a18bdSElena Demikhovsky BEValue = Phi->getIncomingValue(1); 894376a18bdSElena Demikhovsky StartValue = Phi->getIncomingValue(0); 895376a18bdSElena Demikhovsky } 896376a18bdSElena Demikhovsky 897376a18bdSElena Demikhovsky BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 898376a18bdSElena Demikhovsky if (!BOp) 899376a18bdSElena Demikhovsky return false; 900376a18bdSElena Demikhovsky 901376a18bdSElena Demikhovsky Value *Addend = nullptr; 902376a18bdSElena Demikhovsky if (BOp->getOpcode() == Instruction::FAdd) { 903376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 904376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 905376a18bdSElena Demikhovsky else if (BOp->getOperand(1) == Phi) 906376a18bdSElena Demikhovsky Addend = BOp->getOperand(0); 907376a18bdSElena Demikhovsky } else if (BOp->getOpcode() == Instruction::FSub) 908376a18bdSElena Demikhovsky if (BOp->getOperand(0) == Phi) 909376a18bdSElena Demikhovsky Addend = BOp->getOperand(1); 910376a18bdSElena Demikhovsky 911376a18bdSElena Demikhovsky if (!Addend) 912376a18bdSElena Demikhovsky return false; 913376a18bdSElena Demikhovsky 914376a18bdSElena Demikhovsky // The addend should be loop invariant 915376a18bdSElena Demikhovsky if (auto *I = dyn_cast<Instruction>(Addend)) 916376a18bdSElena Demikhovsky if (TheLoop->contains(I)) 917376a18bdSElena Demikhovsky return false; 918376a18bdSElena Demikhovsky 919376a18bdSElena Demikhovsky // FP Step has unknown SCEV 920376a18bdSElena Demikhovsky const SCEV *Step = SE->getUnknown(Addend); 921376a18bdSElena Demikhovsky D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 922376a18bdSElena Demikhovsky return true; 923376a18bdSElena Demikhovsky } 924376a18bdSElena Demikhovsky 9254750c785SDorit Nuzman /// This function is called when we suspect that the update-chain of a phi node 9264750c785SDorit Nuzman /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 9274750c785SDorit Nuzman /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 9284750c785SDorit Nuzman /// predicate P under which the SCEV expression for the phi can be the 9294750c785SDorit Nuzman /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 9304750c785SDorit Nuzman /// cast instructions that are involved in the update-chain of this induction. 9314750c785SDorit Nuzman /// A caller that adds the required runtime predicate can be free to drop these 9324750c785SDorit Nuzman /// cast instructions, and compute the phi using \p AR (instead of some scev 9334750c785SDorit Nuzman /// expression with casts). 9344750c785SDorit Nuzman /// 9354750c785SDorit Nuzman /// For example, without a predicate the scev expression can take the following 9364750c785SDorit Nuzman /// form: 9374750c785SDorit Nuzman /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 9384750c785SDorit Nuzman /// 9394750c785SDorit Nuzman /// It corresponds to the following IR sequence: 9404750c785SDorit Nuzman /// %for.body: 9414750c785SDorit Nuzman /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 9424750c785SDorit Nuzman /// %casted_phi = "ExtTrunc i64 %x" 9434750c785SDorit Nuzman /// %add = add i64 %casted_phi, %step 9444750c785SDorit Nuzman /// 9454750c785SDorit Nuzman /// where %x is given in \p PN, 9464750c785SDorit Nuzman /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 9474750c785SDorit Nuzman /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 9484750c785SDorit Nuzman /// several forms, for example, such as: 9494750c785SDorit Nuzman /// ExtTrunc1: %casted_phi = and %x, 2^n-1 9504750c785SDorit Nuzman /// or: 9514750c785SDorit Nuzman /// ExtTrunc2: %t = shl %x, m 9524750c785SDorit Nuzman /// %casted_phi = ashr %t, m 9534750c785SDorit Nuzman /// 9544750c785SDorit Nuzman /// If we are able to find such sequence, we return the instructions 9554750c785SDorit Nuzman /// we found, namely %casted_phi and the instructions on its use-def chain up 9564750c785SDorit Nuzman /// to the phi (not including the phi). 957802e6255SBenjamin Kramer static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 958802e6255SBenjamin Kramer const SCEVUnknown *PhiScev, 959802e6255SBenjamin Kramer const SCEVAddRecExpr *AR, 960802e6255SBenjamin Kramer SmallVectorImpl<Instruction *> &CastInsts) { 9614750c785SDorit Nuzman 9624750c785SDorit Nuzman assert(CastInsts.empty() && "CastInsts is expected to be empty."); 9634750c785SDorit Nuzman auto *PN = cast<PHINode>(PhiScev->getValue()); 9644750c785SDorit Nuzman assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 9654750c785SDorit Nuzman const Loop *L = AR->getLoop(); 9664750c785SDorit Nuzman 9674750c785SDorit Nuzman // Find any cast instructions that participate in the def-use chain of 9684750c785SDorit Nuzman // PhiScev in the loop. 9694750c785SDorit Nuzman // FORNOW/TODO: We currently expect the def-use chain to include only 9704750c785SDorit Nuzman // two-operand instructions, where one of the operands is an invariant. 9714750c785SDorit Nuzman // createAddRecFromPHIWithCasts() currently does not support anything more 9724750c785SDorit Nuzman // involved than that, so we keep the search simple. This can be 9734750c785SDorit Nuzman // extended/generalized as needed. 9744750c785SDorit Nuzman 9754750c785SDorit Nuzman auto getDef = [&](const Value *Val) -> Value * { 9764750c785SDorit Nuzman const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 9774750c785SDorit Nuzman if (!BinOp) 9784750c785SDorit Nuzman return nullptr; 9794750c785SDorit Nuzman Value *Op0 = BinOp->getOperand(0); 9804750c785SDorit Nuzman Value *Op1 = BinOp->getOperand(1); 9814750c785SDorit Nuzman Value *Def = nullptr; 9824750c785SDorit Nuzman if (L->isLoopInvariant(Op0)) 9834750c785SDorit Nuzman Def = Op1; 9844750c785SDorit Nuzman else if (L->isLoopInvariant(Op1)) 9854750c785SDorit Nuzman Def = Op0; 9864750c785SDorit Nuzman return Def; 9874750c785SDorit Nuzman }; 9884750c785SDorit Nuzman 9894750c785SDorit Nuzman // Look for the instruction that defines the induction via the 9904750c785SDorit Nuzman // loop backedge. 9914750c785SDorit Nuzman BasicBlock *Latch = L->getLoopLatch(); 9924750c785SDorit Nuzman if (!Latch) 9934750c785SDorit Nuzman return false; 9944750c785SDorit Nuzman Value *Val = PN->getIncomingValueForBlock(Latch); 9954750c785SDorit Nuzman if (!Val) 9964750c785SDorit Nuzman return false; 9974750c785SDorit Nuzman 9984750c785SDorit Nuzman // Follow the def-use chain until the induction phi is reached. 9994750c785SDorit Nuzman // If on the way we encounter a Value that has the same SCEV Expr as the 10004750c785SDorit Nuzman // phi node, we can consider the instructions we visit from that point 10014750c785SDorit Nuzman // as part of the cast-sequence that can be ignored. 10024750c785SDorit Nuzman bool InCastSequence = false; 10034750c785SDorit Nuzman auto *Inst = dyn_cast<Instruction>(Val); 10044750c785SDorit Nuzman while (Val != PN) { 10054750c785SDorit Nuzman // If we encountered a phi node other than PN, or if we left the loop, 10064750c785SDorit Nuzman // we bail out. 10074750c785SDorit Nuzman if (!Inst || !L->contains(Inst)) { 10084750c785SDorit Nuzman return false; 10094750c785SDorit Nuzman } 10104750c785SDorit Nuzman auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 10114750c785SDorit Nuzman if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 10124750c785SDorit Nuzman InCastSequence = true; 10134750c785SDorit Nuzman if (InCastSequence) { 10144750c785SDorit Nuzman // Only the last instruction in the cast sequence is expected to have 10154750c785SDorit Nuzman // uses outside the induction def-use chain. 10164750c785SDorit Nuzman if (!CastInsts.empty()) 10174750c785SDorit Nuzman if (!Inst->hasOneUse()) 10184750c785SDorit Nuzman return false; 10194750c785SDorit Nuzman CastInsts.push_back(Inst); 10204750c785SDorit Nuzman } 10214750c785SDorit Nuzman Val = getDef(Val); 10224750c785SDorit Nuzman if (!Val) 10234750c785SDorit Nuzman return false; 10244750c785SDorit Nuzman Inst = dyn_cast<Instruction>(Val); 10254750c785SDorit Nuzman } 10264750c785SDorit Nuzman 10274750c785SDorit Nuzman return InCastSequence; 10284750c785SDorit Nuzman } 10294750c785SDorit Nuzman 1030376a18bdSElena Demikhovsky bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1031c05bab8aSSilviu Baranga PredicatedScalarEvolution &PSE, 1032c05bab8aSSilviu Baranga InductionDescriptor &D, 1033c05bab8aSSilviu Baranga bool Assume) { 1034c05bab8aSSilviu Baranga Type *PhiTy = Phi->getType(); 1035376a18bdSElena Demikhovsky 1036376a18bdSElena Demikhovsky // Handle integer and pointer inductions variables. 1037376a18bdSElena Demikhovsky // Now we handle also FP induction but not trying to make a 1038376a18bdSElena Demikhovsky // recurrent expression from the PHI node in-place. 1039376a18bdSElena Demikhovsky 1040376a18bdSElena Demikhovsky if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && 1041376a18bdSElena Demikhovsky !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1042c05bab8aSSilviu Baranga return false; 1043c05bab8aSSilviu Baranga 1044376a18bdSElena Demikhovsky if (PhiTy->isFloatingPointTy()) 1045376a18bdSElena Demikhovsky return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1046376a18bdSElena Demikhovsky 1047c05bab8aSSilviu Baranga const SCEV *PhiScev = PSE.getSCEV(Phi); 1048c05bab8aSSilviu Baranga const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1049c05bab8aSSilviu Baranga 1050c05bab8aSSilviu Baranga // We need this expression to be an AddRecExpr. 1051c05bab8aSSilviu Baranga if (Assume && !AR) 1052c05bab8aSSilviu Baranga AR = PSE.getAsAddRec(Phi); 1053c05bab8aSSilviu Baranga 1054c05bab8aSSilviu Baranga if (!AR) { 1055c05bab8aSSilviu Baranga DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1056c05bab8aSSilviu Baranga return false; 1057c05bab8aSSilviu Baranga } 1058c05bab8aSSilviu Baranga 10594750c785SDorit Nuzman // Record any Cast instructions that participate in the induction update 10604750c785SDorit Nuzman const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 10614750c785SDorit Nuzman // If we started from an UnknownSCEV, and managed to build an addRecurrence 10624750c785SDorit Nuzman // only after enabling Assume with PSCEV, this means we may have encountered 10634750c785SDorit Nuzman // cast instructions that required adding a runtime check in order to 10644750c785SDorit Nuzman // guarantee the correctness of the AddRecurence respresentation of the 10654750c785SDorit Nuzman // induction. 10664750c785SDorit Nuzman if (PhiScev != AR && SymbolicPhi) { 10674750c785SDorit Nuzman SmallVector<Instruction *, 2> Casts; 10684750c785SDorit Nuzman if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 10694750c785SDorit Nuzman return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 10704750c785SDorit Nuzman } 10714750c785SDorit Nuzman 1072376a18bdSElena Demikhovsky return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1073c05bab8aSSilviu Baranga } 1074c05bab8aSSilviu Baranga 10754750c785SDorit Nuzman bool InductionDescriptor::isInductionPHI( 10764750c785SDorit Nuzman PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 10774750c785SDorit Nuzman InductionDescriptor &D, const SCEV *Expr, 10784750c785SDorit Nuzman SmallVectorImpl<Instruction *> *CastsToIgnore) { 107924e6cc2dSKarthik Bhat Type *PhiTy = Phi->getType(); 108024e6cc2dSKarthik Bhat // We only handle integer and pointer inductions variables. 108124e6cc2dSKarthik Bhat if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 108224e6cc2dSKarthik Bhat return false; 108324e6cc2dSKarthik Bhat 108424e6cc2dSKarthik Bhat // Check that the PHI is consecutive. 1085c05bab8aSSilviu Baranga const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 108624e6cc2dSKarthik Bhat const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1087c05bab8aSSilviu Baranga 108824e6cc2dSKarthik Bhat if (!AR) { 108924e6cc2dSKarthik Bhat DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 109024e6cc2dSKarthik Bhat return false; 109124e6cc2dSKarthik Bhat } 109224e6cc2dSKarthik Bhat 1093ee31cbe3SMichael Kuperstein if (AR->getLoop() != TheLoop) { 1094ee31cbe3SMichael Kuperstein // FIXME: We should treat this as a uniform. Unfortunately, we 1095ee31cbe3SMichael Kuperstein // don't currently know how to handled uniform PHIs. 1096ee31cbe3SMichael Kuperstein DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1097ee31cbe3SMichael Kuperstein return false; 1098ee31cbe3SMichael Kuperstein } 1099ee31cbe3SMichael Kuperstein 11001bbf15c5SJames Molloy Value *StartValue = 11011bbf15c5SJames Molloy Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 110224e6cc2dSKarthik Bhat const SCEV *Step = AR->getStepRecurrence(*SE); 110324e6cc2dSKarthik Bhat // Calculate the pointer stride and check if it is consecutive. 1104c434d091SElena Demikhovsky // The stride may be a constant or a loop invariant integer value. 1105c434d091SElena Demikhovsky const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1106376a18bdSElena Demikhovsky if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 110724e6cc2dSKarthik Bhat return false; 110824e6cc2dSKarthik Bhat 110924e6cc2dSKarthik Bhat if (PhiTy->isIntegerTy()) { 11104750c785SDorit Nuzman D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr, 11114750c785SDorit Nuzman CastsToIgnore); 111224e6cc2dSKarthik Bhat return true; 111324e6cc2dSKarthik Bhat } 111424e6cc2dSKarthik Bhat 111524e6cc2dSKarthik Bhat assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1116c434d091SElena Demikhovsky // Pointer induction should be a constant. 1117c434d091SElena Demikhovsky if (!ConstStep) 1118c434d091SElena Demikhovsky return false; 1119c434d091SElena Demikhovsky 1120c434d091SElena Demikhovsky ConstantInt *CV = ConstStep->getValue(); 112124e6cc2dSKarthik Bhat Type *PointerElementType = PhiTy->getPointerElementType(); 112224e6cc2dSKarthik Bhat // The pointer stride cannot be determined if the pointer element type is not 112324e6cc2dSKarthik Bhat // sized. 112424e6cc2dSKarthik Bhat if (!PointerElementType->isSized()) 112524e6cc2dSKarthik Bhat return false; 112624e6cc2dSKarthik Bhat 112724e6cc2dSKarthik Bhat const DataLayout &DL = Phi->getModule()->getDataLayout(); 112824e6cc2dSKarthik Bhat int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1129b58f32f7SDavid Majnemer if (!Size) 1130b58f32f7SDavid Majnemer return false; 1131b58f32f7SDavid Majnemer 113224e6cc2dSKarthik Bhat int64_t CVSize = CV->getSExtValue(); 113324e6cc2dSKarthik Bhat if (CVSize % Size) 113424e6cc2dSKarthik Bhat return false; 1135c434d091SElena Demikhovsky auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 1136c434d091SElena Demikhovsky true /* signed */); 11371bbf15c5SJames Molloy D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 113824e6cc2dSKarthik Bhat return true; 113924e6cc2dSKarthik Bhat } 1140c5b7b555SAshutosh Nema 11414a000883SChandler Carruth bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 11424a000883SChandler Carruth bool PreserveLCSSA) { 11434a000883SChandler Carruth bool Changed = false; 11444a000883SChandler Carruth 11454a000883SChandler Carruth // We re-use a vector for the in-loop predecesosrs. 11464a000883SChandler Carruth SmallVector<BasicBlock *, 4> InLoopPredecessors; 11474a000883SChandler Carruth 11484a000883SChandler Carruth auto RewriteExit = [&](BasicBlock *BB) { 11494a000883SChandler Carruth assert(InLoopPredecessors.empty() && 11504a000883SChandler Carruth "Must start with an empty predecessors list!"); 11514a000883SChandler Carruth auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 11524a000883SChandler Carruth 11534a000883SChandler Carruth // See if there are any non-loop predecessors of this exit block and 11544a000883SChandler Carruth // keep track of the in-loop predecessors. 11554a000883SChandler Carruth bool IsDedicatedExit = true; 11564a000883SChandler Carruth for (auto *PredBB : predecessors(BB)) 11574a000883SChandler Carruth if (L->contains(PredBB)) { 11584a000883SChandler Carruth if (isa<IndirectBrInst>(PredBB->getTerminator())) 11594a000883SChandler Carruth // We cannot rewrite exiting edges from an indirectbr. 11604a000883SChandler Carruth return false; 11614a000883SChandler Carruth 11624a000883SChandler Carruth InLoopPredecessors.push_back(PredBB); 11634a000883SChandler Carruth } else { 11644a000883SChandler Carruth IsDedicatedExit = false; 11654a000883SChandler Carruth } 11664a000883SChandler Carruth 11674a000883SChandler Carruth assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 11684a000883SChandler Carruth 11694a000883SChandler Carruth // Nothing to do if this is already a dedicated exit. 11704a000883SChandler Carruth if (IsDedicatedExit) 11714a000883SChandler Carruth return false; 11724a000883SChandler Carruth 11734a000883SChandler Carruth auto *NewExitBB = SplitBlockPredecessors( 11744a000883SChandler Carruth BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA); 11754a000883SChandler Carruth 11764a000883SChandler Carruth if (!NewExitBB) 11774a000883SChandler Carruth DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 11784a000883SChandler Carruth << *L << "\n"); 11794a000883SChandler Carruth else 11804a000883SChandler Carruth DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 11814a000883SChandler Carruth << NewExitBB->getName() << "\n"); 11824a000883SChandler Carruth return true; 11834a000883SChandler Carruth }; 11844a000883SChandler Carruth 11854a000883SChandler Carruth // Walk the exit blocks directly rather than building up a data structure for 11864a000883SChandler Carruth // them, but only visit each one once. 11874a000883SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 11884a000883SChandler Carruth for (auto *BB : L->blocks()) 11894a000883SChandler Carruth for (auto *SuccBB : successors(BB)) { 11904a000883SChandler Carruth // We're looking for exit blocks so skip in-loop successors. 11914a000883SChandler Carruth if (L->contains(SuccBB)) 11924a000883SChandler Carruth continue; 11934a000883SChandler Carruth 11944a000883SChandler Carruth // Visit each exit block exactly once. 11954a000883SChandler Carruth if (!Visited.insert(SuccBB).second) 11964a000883SChandler Carruth continue; 11974a000883SChandler Carruth 11984a000883SChandler Carruth Changed |= RewriteExit(SuccBB); 11994a000883SChandler Carruth } 12004a000883SChandler Carruth 12014a000883SChandler Carruth return Changed; 12024a000883SChandler Carruth } 12034a000883SChandler Carruth 1204c5b7b555SAshutosh Nema /// \brief Returns the instructions that use values defined in the loop. 1205c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 1206c5b7b555SAshutosh Nema SmallVector<Instruction *, 8> UsedOutside; 1207c5b7b555SAshutosh Nema 1208c5b7b555SAshutosh Nema for (auto *Block : L->getBlocks()) 1209c5b7b555SAshutosh Nema // FIXME: I believe that this could use copy_if if the Inst reference could 1210c5b7b555SAshutosh Nema // be adapted into a pointer. 1211c5b7b555SAshutosh Nema for (auto &Inst : *Block) { 1212c5b7b555SAshutosh Nema auto Users = Inst.users(); 12130a16c228SDavid Majnemer if (any_of(Users, [&](User *U) { 1214c5b7b555SAshutosh Nema auto *Use = cast<Instruction>(U); 1215c5b7b555SAshutosh Nema return !L->contains(Use->getParent()); 1216c5b7b555SAshutosh Nema })) 1217c5b7b555SAshutosh Nema UsedOutside.push_back(&Inst); 1218c5b7b555SAshutosh Nema } 1219c5b7b555SAshutosh Nema 1220c5b7b555SAshutosh Nema return UsedOutside; 1221c5b7b555SAshutosh Nema } 122231088a9dSChandler Carruth 122331088a9dSChandler Carruth void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 122431088a9dSChandler Carruth // By definition, all loop passes need the LoopInfo analysis and the 122531088a9dSChandler Carruth // Dominator tree it depends on. Because they all participate in the loop 122631088a9dSChandler Carruth // pass manager, they must also preserve these. 122731088a9dSChandler Carruth AU.addRequired<DominatorTreeWrapperPass>(); 122831088a9dSChandler Carruth AU.addPreserved<DominatorTreeWrapperPass>(); 122931088a9dSChandler Carruth AU.addRequired<LoopInfoWrapperPass>(); 123031088a9dSChandler Carruth AU.addPreserved<LoopInfoWrapperPass>(); 123131088a9dSChandler Carruth 123231088a9dSChandler Carruth // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 123331088a9dSChandler Carruth // here because users shouldn't directly get them from this header. 123431088a9dSChandler Carruth extern char &LoopSimplifyID; 123531088a9dSChandler Carruth extern char &LCSSAID; 123631088a9dSChandler Carruth AU.addRequiredID(LoopSimplifyID); 123731088a9dSChandler Carruth AU.addPreservedID(LoopSimplifyID); 123831088a9dSChandler Carruth AU.addRequiredID(LCSSAID); 123931088a9dSChandler Carruth AU.addPreservedID(LCSSAID); 1240c3ccf5d7SIgor Laevsky // This is used in the LPPassManager to perform LCSSA verification on passes 1241c3ccf5d7SIgor Laevsky // which preserve lcssa form 1242c3ccf5d7SIgor Laevsky AU.addRequired<LCSSAVerificationPass>(); 1243c3ccf5d7SIgor Laevsky AU.addPreserved<LCSSAVerificationPass>(); 124431088a9dSChandler Carruth 124531088a9dSChandler Carruth // Loop passes are designed to run inside of a loop pass manager which means 124631088a9dSChandler Carruth // that any function analyses they require must be required by the first loop 124731088a9dSChandler Carruth // pass in the manager (so that it is computed before the loop pass manager 124831088a9dSChandler Carruth // runs) and preserved by all loop pasess in the manager. To make this 124931088a9dSChandler Carruth // reasonably robust, the set needed for most loop passes is maintained here. 125031088a9dSChandler Carruth // If your loop pass requires an analysis not listed here, you will need to 125131088a9dSChandler Carruth // carefully audit the loop pass manager nesting structure that results. 125231088a9dSChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 125331088a9dSChandler Carruth AU.addPreserved<AAResultsWrapperPass>(); 125431088a9dSChandler Carruth AU.addPreserved<BasicAAWrapperPass>(); 125531088a9dSChandler Carruth AU.addPreserved<GlobalsAAWrapperPass>(); 125631088a9dSChandler Carruth AU.addPreserved<SCEVAAWrapperPass>(); 125731088a9dSChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 125831088a9dSChandler Carruth AU.addPreserved<ScalarEvolutionWrapperPass>(); 125931088a9dSChandler Carruth } 126031088a9dSChandler Carruth 126131088a9dSChandler Carruth /// Manually defined generic "LoopPass" dependency initialization. This is used 126231088a9dSChandler Carruth /// to initialize the exact set of passes from above in \c 126331088a9dSChandler Carruth /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 126431088a9dSChandler Carruth /// with: 126531088a9dSChandler Carruth /// 126631088a9dSChandler Carruth /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 126731088a9dSChandler Carruth /// 126831088a9dSChandler Carruth /// As-if "LoopPass" were a pass. 126931088a9dSChandler Carruth void llvm::initializeLoopPassPass(PassRegistry &Registry) { 127031088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 127131088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 127231088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1273e12c487bSEaswaran Raman INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 127431088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 127531088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 127631088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 127731088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 127831088a9dSChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 127931088a9dSChandler Carruth } 1280963341c8SAdam Nemet 1281fe3def7cSAdam Nemet /// \brief Find string metadata for loop 1282fe3def7cSAdam Nemet /// 1283fe3def7cSAdam Nemet /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1284fe3def7cSAdam Nemet /// operand or null otherwise. If the string metadata is not found return 1285fe3def7cSAdam Nemet /// Optional's not-a-value. 1286fe3def7cSAdam Nemet Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 1287fe3def7cSAdam Nemet StringRef Name) { 1288963341c8SAdam Nemet MDNode *LoopID = TheLoop->getLoopID(); 1289fe3def7cSAdam Nemet // Return none if LoopID is false. 1290963341c8SAdam Nemet if (!LoopID) 1291fe3def7cSAdam Nemet return None; 1292293be666SAdam Nemet 1293293be666SAdam Nemet // First operand should refer to the loop id itself. 1294293be666SAdam Nemet assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1295293be666SAdam Nemet assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1296293be666SAdam Nemet 1297963341c8SAdam Nemet // Iterate over LoopID operands and look for MDString Metadata 1298963341c8SAdam Nemet for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1299963341c8SAdam Nemet MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1300963341c8SAdam Nemet if (!MD) 1301963341c8SAdam Nemet continue; 1302963341c8SAdam Nemet MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1303963341c8SAdam Nemet if (!S) 1304963341c8SAdam Nemet continue; 1305963341c8SAdam Nemet // Return true if MDString holds expected MetaData. 1306963341c8SAdam Nemet if (Name.equals(S->getString())) 1307fe3def7cSAdam Nemet switch (MD->getNumOperands()) { 1308fe3def7cSAdam Nemet case 1: 1309fe3def7cSAdam Nemet return nullptr; 1310fe3def7cSAdam Nemet case 2: 1311fe3def7cSAdam Nemet return &MD->getOperand(1); 1312fe3def7cSAdam Nemet default: 1313fe3def7cSAdam Nemet llvm_unreachable("loop metadata has 0 or 1 operand"); 1314963341c8SAdam Nemet } 1315fe3def7cSAdam Nemet } 1316fe3def7cSAdam Nemet return None; 1317963341c8SAdam Nemet } 1318122f984aSEvgeniy Stepanov 13197ed5856aSAlina Sbirlea /// Does a BFS from a given node to all of its children inside a given loop. 13207ed5856aSAlina Sbirlea /// The returned vector of nodes includes the starting point. 13217ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> 13227ed5856aSAlina Sbirlea llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 13237ed5856aSAlina Sbirlea SmallVector<DomTreeNode *, 16> Worklist; 13247ed5856aSAlina Sbirlea auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 13257ed5856aSAlina Sbirlea // Only include subregions in the top level loop. 13267ed5856aSAlina Sbirlea BasicBlock *BB = DTN->getBlock(); 13277ed5856aSAlina Sbirlea if (CurLoop->contains(BB)) 13287ed5856aSAlina Sbirlea Worklist.push_back(DTN); 13297ed5856aSAlina Sbirlea }; 13307ed5856aSAlina Sbirlea 13317ed5856aSAlina Sbirlea AddRegionToWorklist(N); 13327ed5856aSAlina Sbirlea 13337ed5856aSAlina Sbirlea for (size_t I = 0; I < Worklist.size(); I++) 13347ed5856aSAlina Sbirlea for (DomTreeNode *Child : Worklist[I]->getChildren()) 13357ed5856aSAlina Sbirlea AddRegionToWorklist(Child); 13367ed5856aSAlina Sbirlea 13377ed5856aSAlina Sbirlea return Worklist; 13387ed5856aSAlina Sbirlea } 13397ed5856aSAlina Sbirlea 1340df3e71e0SMarcello Maggioni void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 1341df3e71e0SMarcello Maggioni ScalarEvolution *SE = nullptr, 1342df3e71e0SMarcello Maggioni LoopInfo *LI = nullptr) { 1343899809d5SHans Wennborg assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 1344df3e71e0SMarcello Maggioni auto *Preheader = L->getLoopPreheader(); 1345df3e71e0SMarcello Maggioni assert(Preheader && "Preheader should exist!"); 1346df3e71e0SMarcello Maggioni 1347df3e71e0SMarcello Maggioni // Now that we know the removal is safe, remove the loop by changing the 1348df3e71e0SMarcello Maggioni // branch from the preheader to go to the single exit block. 1349df3e71e0SMarcello Maggioni // 1350df3e71e0SMarcello Maggioni // Because we're deleting a large chunk of code at once, the sequence in which 1351df3e71e0SMarcello Maggioni // we remove things is very important to avoid invalidation issues. 1352df3e71e0SMarcello Maggioni 1353df3e71e0SMarcello Maggioni // Tell ScalarEvolution that the loop is deleted. Do this before 1354df3e71e0SMarcello Maggioni // deleting the loop so that ScalarEvolution can look at the loop 1355df3e71e0SMarcello Maggioni // to determine what it needs to clean up. 1356df3e71e0SMarcello Maggioni if (SE) 1357df3e71e0SMarcello Maggioni SE->forgetLoop(L); 1358df3e71e0SMarcello Maggioni 1359df3e71e0SMarcello Maggioni auto *ExitBlock = L->getUniqueExitBlock(); 1360df3e71e0SMarcello Maggioni assert(ExitBlock && "Should have a unique exit block!"); 1361df3e71e0SMarcello Maggioni assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 1362df3e71e0SMarcello Maggioni 1363df3e71e0SMarcello Maggioni auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 1364df3e71e0SMarcello Maggioni assert(OldBr && "Preheader must end with a branch"); 1365df3e71e0SMarcello Maggioni assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 1366df3e71e0SMarcello Maggioni // Connect the preheader to the exit block. Keep the old edge to the header 1367df3e71e0SMarcello Maggioni // around to perform the dominator tree update in two separate steps 1368df3e71e0SMarcello Maggioni // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 1369df3e71e0SMarcello Maggioni // preheader -> header. 1370df3e71e0SMarcello Maggioni // 1371df3e71e0SMarcello Maggioni // 1372df3e71e0SMarcello Maggioni // 0. Preheader 1. Preheader 2. Preheader 1373df3e71e0SMarcello Maggioni // | | | | 1374df3e71e0SMarcello Maggioni // V | V | 1375df3e71e0SMarcello Maggioni // Header <--\ | Header <--\ | Header <--\ 1376df3e71e0SMarcello Maggioni // | | | | | | | | | | | 1377df3e71e0SMarcello Maggioni // | V | | | V | | | V | 1378df3e71e0SMarcello Maggioni // | Body --/ | | Body --/ | | Body --/ 1379df3e71e0SMarcello Maggioni // V V V V V 1380df3e71e0SMarcello Maggioni // Exit Exit Exit 1381df3e71e0SMarcello Maggioni // 1382df3e71e0SMarcello Maggioni // By doing this is two separate steps we can perform the dominator tree 1383df3e71e0SMarcello Maggioni // update without using the batch update API. 1384df3e71e0SMarcello Maggioni // 1385df3e71e0SMarcello Maggioni // Even when the loop is never executed, we cannot remove the edge from the 1386df3e71e0SMarcello Maggioni // source block to the exit block. Consider the case where the unexecuted loop 1387df3e71e0SMarcello Maggioni // branches back to an outer loop. If we deleted the loop and removed the edge 1388df3e71e0SMarcello Maggioni // coming to this inner loop, this will break the outer loop structure (by 1389df3e71e0SMarcello Maggioni // deleting the backedge of the outer loop). If the outer loop is indeed a 1390df3e71e0SMarcello Maggioni // non-loop, it will be deleted in a future iteration of loop deletion pass. 1391df3e71e0SMarcello Maggioni IRBuilder<> Builder(OldBr); 1392df3e71e0SMarcello Maggioni Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 1393df3e71e0SMarcello Maggioni // Remove the old branch. The conditional branch becomes a new terminator. 1394df3e71e0SMarcello Maggioni OldBr->eraseFromParent(); 1395df3e71e0SMarcello Maggioni 1396df3e71e0SMarcello Maggioni // Rewrite phis in the exit block to get their inputs from the Preheader 1397df3e71e0SMarcello Maggioni // instead of the exiting block. 1398c7fc81e6SBenjamin Kramer for (PHINode &P : ExitBlock->phis()) { 1399df3e71e0SMarcello Maggioni // Set the zero'th element of Phi to be from the preheader and remove all 1400df3e71e0SMarcello Maggioni // other incoming values. Given the loop has dedicated exits, all other 1401df3e71e0SMarcello Maggioni // incoming values must be from the exiting blocks. 1402df3e71e0SMarcello Maggioni int PredIndex = 0; 1403c7fc81e6SBenjamin Kramer P.setIncomingBlock(PredIndex, Preheader); 1404df3e71e0SMarcello Maggioni // Removes all incoming values from all other exiting blocks (including 1405df3e71e0SMarcello Maggioni // duplicate values from an exiting block). 1406df3e71e0SMarcello Maggioni // Nuke all entries except the zero'th entry which is the preheader entry. 1407df3e71e0SMarcello Maggioni // NOTE! We need to remove Incoming Values in the reverse order as done 1408df3e71e0SMarcello Maggioni // below, to keep the indices valid for deletion (removeIncomingValues 1409df3e71e0SMarcello Maggioni // updates getNumIncomingValues and shifts all values down into the operand 1410df3e71e0SMarcello Maggioni // being deleted). 1411c7fc81e6SBenjamin Kramer for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 1412c7fc81e6SBenjamin Kramer P.removeIncomingValue(e - i, false); 1413df3e71e0SMarcello Maggioni 1414c7fc81e6SBenjamin Kramer assert((P.getNumIncomingValues() == 1 && 1415c7fc81e6SBenjamin Kramer P.getIncomingBlock(PredIndex) == Preheader) && 1416df3e71e0SMarcello Maggioni "Should have exactly one value and that's from the preheader!"); 1417df3e71e0SMarcello Maggioni } 1418df3e71e0SMarcello Maggioni 1419df3e71e0SMarcello Maggioni // Disconnect the loop body by branching directly to its exit. 1420df3e71e0SMarcello Maggioni Builder.SetInsertPoint(Preheader->getTerminator()); 1421df3e71e0SMarcello Maggioni Builder.CreateBr(ExitBlock); 1422df3e71e0SMarcello Maggioni // Remove the old branch. 1423df3e71e0SMarcello Maggioni Preheader->getTerminator()->eraseFromParent(); 1424df3e71e0SMarcello Maggioni 1425df3e71e0SMarcello Maggioni if (DT) { 1426df3e71e0SMarcello Maggioni // Update the dominator tree by informing it about the new edge from the 1427df3e71e0SMarcello Maggioni // preheader to the exit. 1428df3e71e0SMarcello Maggioni DT->insertEdge(Preheader, ExitBlock); 1429df3e71e0SMarcello Maggioni // Inform the dominator tree about the removed edge. 1430df3e71e0SMarcello Maggioni DT->deleteEdge(Preheader, L->getHeader()); 1431df3e71e0SMarcello Maggioni } 1432df3e71e0SMarcello Maggioni 1433a757d65cSSerguei Katkov // Given LCSSA form is satisfied, we should not have users of instructions 1434a757d65cSSerguei Katkov // within the dead loop outside of the loop. However, LCSSA doesn't take 1435a757d65cSSerguei Katkov // unreachable uses into account. We handle them here. 1436a757d65cSSerguei Katkov // We could do it after drop all references (in this case all users in the 1437a757d65cSSerguei Katkov // loop will be already eliminated and we have less work to do but according 1438a757d65cSSerguei Katkov // to API doc of User::dropAllReferences only valid operation after dropping 1439a757d65cSSerguei Katkov // references, is deletion. So let's substitute all usages of 1440a757d65cSSerguei Katkov // instruction from the loop with undef value of corresponding type first. 1441a757d65cSSerguei Katkov for (auto *Block : L->blocks()) 1442a757d65cSSerguei Katkov for (Instruction &I : *Block) { 1443a757d65cSSerguei Katkov auto *Undef = UndefValue::get(I.getType()); 1444a757d65cSSerguei Katkov for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 1445a757d65cSSerguei Katkov Use &U = *UI; 1446a757d65cSSerguei Katkov ++UI; 1447a757d65cSSerguei Katkov if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 1448a757d65cSSerguei Katkov if (L->contains(Usr->getParent())) 1449a757d65cSSerguei Katkov continue; 1450a757d65cSSerguei Katkov // If we have a DT then we can check that uses outside a loop only in 1451a757d65cSSerguei Katkov // unreachable block. 1452a757d65cSSerguei Katkov if (DT) 1453a757d65cSSerguei Katkov assert(!DT->isReachableFromEntry(U) && 1454a757d65cSSerguei Katkov "Unexpected user in reachable block"); 1455a757d65cSSerguei Katkov U.set(Undef); 1456a757d65cSSerguei Katkov } 1457a757d65cSSerguei Katkov } 1458a757d65cSSerguei Katkov 1459df3e71e0SMarcello Maggioni // Remove the block from the reference counting scheme, so that we can 1460df3e71e0SMarcello Maggioni // delete it freely later. 1461df3e71e0SMarcello Maggioni for (auto *Block : L->blocks()) 1462df3e71e0SMarcello Maggioni Block->dropAllReferences(); 1463df3e71e0SMarcello Maggioni 1464df3e71e0SMarcello Maggioni if (LI) { 1465df3e71e0SMarcello Maggioni // Erase the instructions and the blocks without having to worry 1466df3e71e0SMarcello Maggioni // about ordering because we already dropped the references. 1467df3e71e0SMarcello Maggioni // NOTE: This iteration is safe because erasing the block does not remove 1468df3e71e0SMarcello Maggioni // its entry from the loop's block list. We do that in the next section. 1469df3e71e0SMarcello Maggioni for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 1470df3e71e0SMarcello Maggioni LpI != LpE; ++LpI) 1471df3e71e0SMarcello Maggioni (*LpI)->eraseFromParent(); 1472df3e71e0SMarcello Maggioni 1473df3e71e0SMarcello Maggioni // Finally, the blocks from loopinfo. This has to happen late because 1474df3e71e0SMarcello Maggioni // otherwise our loop iterators won't work. 1475df3e71e0SMarcello Maggioni 1476df3e71e0SMarcello Maggioni SmallPtrSet<BasicBlock *, 8> blocks; 1477df3e71e0SMarcello Maggioni blocks.insert(L->block_begin(), L->block_end()); 1478df3e71e0SMarcello Maggioni for (BasicBlock *BB : blocks) 1479df3e71e0SMarcello Maggioni LI->removeBlock(BB); 1480df3e71e0SMarcello Maggioni 1481df3e71e0SMarcello Maggioni // The last step is to update LoopInfo now that we've eliminated this loop. 1482df3e71e0SMarcello Maggioni LI->erase(L); 1483df3e71e0SMarcello Maggioni } 1484df3e71e0SMarcello Maggioni } 1485df3e71e0SMarcello Maggioni 148641d72a86SDehao Chen Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 148741d72a86SDehao Chen // Only support loops with a unique exiting block, and a latch. 148841d72a86SDehao Chen if (!L->getExitingBlock()) 148941d72a86SDehao Chen return None; 149041d72a86SDehao Chen 1491d24ddcd6SHiroshi Inoue // Get the branch weights for the loop's backedge. 149241d72a86SDehao Chen BranchInst *LatchBR = 149341d72a86SDehao Chen dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 149441d72a86SDehao Chen if (!LatchBR || LatchBR->getNumSuccessors() != 2) 149541d72a86SDehao Chen return None; 149641d72a86SDehao Chen 149741d72a86SDehao Chen assert((LatchBR->getSuccessor(0) == L->getHeader() || 149841d72a86SDehao Chen LatchBR->getSuccessor(1) == L->getHeader()) && 149941d72a86SDehao Chen "At least one edge out of the latch must go to the header"); 150041d72a86SDehao Chen 150141d72a86SDehao Chen // To estimate the number of times the loop body was executed, we want to 150241d72a86SDehao Chen // know the number of times the backedge was taken, vs. the number of times 150341d72a86SDehao Chen // we exited the loop. 150441d72a86SDehao Chen uint64_t TrueVal, FalseVal; 1505b151a641SMichael Kuperstein if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 150641d72a86SDehao Chen return None; 150741d72a86SDehao Chen 1508b151a641SMichael Kuperstein if (!TrueVal || !FalseVal) 1509b151a641SMichael Kuperstein return 0; 151041d72a86SDehao Chen 1511b151a641SMichael Kuperstein // Divide the count of the backedge by the count of the edge exiting the loop, 1512b151a641SMichael Kuperstein // rounding to nearest. 151341d72a86SDehao Chen if (LatchBR->getSuccessor(0) == L->getHeader()) 1514b151a641SMichael Kuperstein return (TrueVal + (FalseVal / 2)) / FalseVal; 151541d72a86SDehao Chen else 1516b151a641SMichael Kuperstein return (FalseVal + (TrueVal / 2)) / TrueVal; 151741d72a86SDehao Chen } 1518cf9daa33SAmara Emerson 1519cf9daa33SAmara Emerson /// \brief Adds a 'fast' flag to floating point operations. 1520cf9daa33SAmara Emerson static Value *addFastMathFlag(Value *V) { 1521cf9daa33SAmara Emerson if (isa<FPMathOperator>(V)) { 1522cf9daa33SAmara Emerson FastMathFlags Flags; 1523629c4115SSanjay Patel Flags.setFast(); 1524cf9daa33SAmara Emerson cast<Instruction>(V)->setFastMathFlags(Flags); 1525cf9daa33SAmara Emerson } 1526cf9daa33SAmara Emerson return V; 1527cf9daa33SAmara Emerson } 1528cf9daa33SAmara Emerson 1529cf9daa33SAmara Emerson // Helper to generate a log2 shuffle reduction. 1530836b0f48SAmara Emerson Value * 1531836b0f48SAmara Emerson llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 1532836b0f48SAmara Emerson RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 1533836b0f48SAmara Emerson ArrayRef<Value *> RedOps) { 1534cf9daa33SAmara Emerson unsigned VF = Src->getType()->getVectorNumElements(); 1535cf9daa33SAmara Emerson // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1536cf9daa33SAmara Emerson // and vector ops, reducing the set of values being computed by half each 1537cf9daa33SAmara Emerson // round. 1538cf9daa33SAmara Emerson assert(isPowerOf2_32(VF) && 1539cf9daa33SAmara Emerson "Reduction emission only supported for pow2 vectors!"); 1540cf9daa33SAmara Emerson Value *TmpVec = Src; 1541cf9daa33SAmara Emerson SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 1542cf9daa33SAmara Emerson for (unsigned i = VF; i != 1; i >>= 1) { 1543cf9daa33SAmara Emerson // Move the upper half of the vector to the lower half. 1544cf9daa33SAmara Emerson for (unsigned j = 0; j != i / 2; ++j) 1545cf9daa33SAmara Emerson ShuffleMask[j] = Builder.getInt32(i / 2 + j); 1546cf9daa33SAmara Emerson 1547cf9daa33SAmara Emerson // Fill the rest of the mask with undef. 1548cf9daa33SAmara Emerson std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 1549cf9daa33SAmara Emerson UndefValue::get(Builder.getInt32Ty())); 1550cf9daa33SAmara Emerson 1551cf9daa33SAmara Emerson Value *Shuf = Builder.CreateShuffleVector( 1552cf9daa33SAmara Emerson TmpVec, UndefValue::get(TmpVec->getType()), 1553cf9daa33SAmara Emerson ConstantVector::get(ShuffleMask), "rdx.shuf"); 1554cf9daa33SAmara Emerson 1555cf9daa33SAmara Emerson if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1556cf9daa33SAmara Emerson // Floating point operations had to be 'fast' to enable the reduction. 1557cf9daa33SAmara Emerson TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 1558cf9daa33SAmara Emerson TmpVec, Shuf, "bin.rdx")); 1559cf9daa33SAmara Emerson } else { 1560cf9daa33SAmara Emerson assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 1561cf9daa33SAmara Emerson "Invalid min/max"); 1562cf9daa33SAmara Emerson TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, 1563cf9daa33SAmara Emerson Shuf); 1564cf9daa33SAmara Emerson } 1565cf9daa33SAmara Emerson if (!RedOps.empty()) 1566cf9daa33SAmara Emerson propagateIRFlags(TmpVec, RedOps); 1567cf9daa33SAmara Emerson } 1568cf9daa33SAmara Emerson // The result is in the first element of the vector. 1569cf9daa33SAmara Emerson return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1570cf9daa33SAmara Emerson } 1571cf9daa33SAmara Emerson 1572cf9daa33SAmara Emerson /// Create a simple vector reduction specified by an opcode and some 1573cf9daa33SAmara Emerson /// flags (if generating min/max reductions). 1574cf9daa33SAmara Emerson Value *llvm::createSimpleTargetReduction( 1575cf9daa33SAmara Emerson IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 1576cf9daa33SAmara Emerson Value *Src, TargetTransformInfo::ReductionFlags Flags, 1577cf9daa33SAmara Emerson ArrayRef<Value *> RedOps) { 1578cf9daa33SAmara Emerson assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 1579cf9daa33SAmara Emerson 1580cf9daa33SAmara Emerson Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 1581cf9daa33SAmara Emerson std::function<Value*()> BuildFunc; 1582cf9daa33SAmara Emerson using RD = RecurrenceDescriptor; 1583cf9daa33SAmara Emerson RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 1584cf9daa33SAmara Emerson // TODO: Support creating ordered reductions. 15851ea7b6f7SSanjay Patel FastMathFlags FMFFast; 15861ea7b6f7SSanjay Patel FMFFast.setFast(); 1587cf9daa33SAmara Emerson 1588cf9daa33SAmara Emerson switch (Opcode) { 1589cf9daa33SAmara Emerson case Instruction::Add: 1590cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 1591cf9daa33SAmara Emerson break; 1592cf9daa33SAmara Emerson case Instruction::Mul: 1593cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 1594cf9daa33SAmara Emerson break; 1595cf9daa33SAmara Emerson case Instruction::And: 1596cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 1597cf9daa33SAmara Emerson break; 1598cf9daa33SAmara Emerson case Instruction::Or: 1599cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 1600cf9daa33SAmara Emerson break; 1601cf9daa33SAmara Emerson case Instruction::Xor: 1602cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 1603cf9daa33SAmara Emerson break; 1604cf9daa33SAmara Emerson case Instruction::FAdd: 1605cf9daa33SAmara Emerson BuildFunc = [&]() { 1606cf9daa33SAmara Emerson auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 16071ea7b6f7SSanjay Patel cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 1608cf9daa33SAmara Emerson return Rdx; 1609cf9daa33SAmara Emerson }; 1610cf9daa33SAmara Emerson break; 1611cf9daa33SAmara Emerson case Instruction::FMul: 1612cf9daa33SAmara Emerson BuildFunc = [&]() { 1613cf9daa33SAmara Emerson auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 16141ea7b6f7SSanjay Patel cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 1615cf9daa33SAmara Emerson return Rdx; 1616cf9daa33SAmara Emerson }; 1617cf9daa33SAmara Emerson break; 1618cf9daa33SAmara Emerson case Instruction::ICmp: 1619cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1620cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 1621cf9daa33SAmara Emerson BuildFunc = [&]() { 1622cf9daa33SAmara Emerson return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1623cf9daa33SAmara Emerson }; 1624cf9daa33SAmara Emerson } else { 1625cf9daa33SAmara Emerson MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1626cf9daa33SAmara Emerson BuildFunc = [&]() { 1627cf9daa33SAmara Emerson return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1628cf9daa33SAmara Emerson }; 1629cf9daa33SAmara Emerson } 1630cf9daa33SAmara Emerson break; 1631cf9daa33SAmara Emerson case Instruction::FCmp: 1632cf9daa33SAmara Emerson if (Flags.IsMaxOp) { 1633cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMax; 1634cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1635cf9daa33SAmara Emerson } else { 1636cf9daa33SAmara Emerson MinMaxKind = RD::MRK_FloatMin; 1637cf9daa33SAmara Emerson BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1638cf9daa33SAmara Emerson } 1639cf9daa33SAmara Emerson break; 1640cf9daa33SAmara Emerson default: 1641cf9daa33SAmara Emerson llvm_unreachable("Unhandled opcode"); 1642cf9daa33SAmara Emerson break; 1643cf9daa33SAmara Emerson } 1644cf9daa33SAmara Emerson if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1645cf9daa33SAmara Emerson return BuildFunc(); 1646cf9daa33SAmara Emerson return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1647cf9daa33SAmara Emerson } 1648cf9daa33SAmara Emerson 1649cf9daa33SAmara Emerson /// Create a vector reduction using a given recurrence descriptor. 16503e069f57SSanjay Patel Value *llvm::createTargetReduction(IRBuilder<> &B, 1651cf9daa33SAmara Emerson const TargetTransformInfo *TTI, 1652cf9daa33SAmara Emerson RecurrenceDescriptor &Desc, Value *Src, 1653cf9daa33SAmara Emerson bool NoNaN) { 1654cf9daa33SAmara Emerson // TODO: Support in-order reductions based on the recurrence descriptor. 16553e069f57SSanjay Patel using RD = RecurrenceDescriptor; 16563e069f57SSanjay Patel RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1657cf9daa33SAmara Emerson TargetTransformInfo::ReductionFlags Flags; 1658cf9daa33SAmara Emerson Flags.NoNaN = NoNaN; 1659cf9daa33SAmara Emerson switch (RecKind) { 16603e069f57SSanjay Patel case RD::RK_FloatAdd: 16613e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 16623e069f57SSanjay Patel case RD::RK_FloatMult: 16633e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 16643e069f57SSanjay Patel case RD::RK_IntegerAdd: 16653e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 16663e069f57SSanjay Patel case RD::RK_IntegerMult: 16673e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 16683e069f57SSanjay Patel case RD::RK_IntegerAnd: 16693e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 16703e069f57SSanjay Patel case RD::RK_IntegerOr: 16713e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 16723e069f57SSanjay Patel case RD::RK_IntegerXor: 16733e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 16743e069f57SSanjay Patel case RD::RK_IntegerMinMax: { 16753e069f57SSanjay Patel RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 16763e069f57SSanjay Patel Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 16773e069f57SSanjay Patel Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 16783e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 1679cf9daa33SAmara Emerson } 16803e069f57SSanjay Patel case RD::RK_FloatMinMax: { 16813e069f57SSanjay Patel Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 16823e069f57SSanjay Patel return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 1683cf9daa33SAmara Emerson } 1684cf9daa33SAmara Emerson default: 1685cf9daa33SAmara Emerson llvm_unreachable("Unhandled RecKind"); 1686cf9daa33SAmara Emerson } 1687cf9daa33SAmara Emerson } 1688cf9daa33SAmara Emerson 1689a61f4b89SDinar Temirbulatov void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1690a61f4b89SDinar Temirbulatov auto *VecOp = dyn_cast<Instruction>(I); 1691a61f4b89SDinar Temirbulatov if (!VecOp) 1692a61f4b89SDinar Temirbulatov return; 1693a61f4b89SDinar Temirbulatov auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1694a61f4b89SDinar Temirbulatov : dyn_cast<Instruction>(OpValue); 1695a61f4b89SDinar Temirbulatov if (!Intersection) 1696a61f4b89SDinar Temirbulatov return; 1697a61f4b89SDinar Temirbulatov const unsigned Opcode = Intersection->getOpcode(); 1698a61f4b89SDinar Temirbulatov VecOp->copyIRFlags(Intersection); 1699a61f4b89SDinar Temirbulatov for (auto *V : VL) { 1700a61f4b89SDinar Temirbulatov auto *Instr = dyn_cast<Instruction>(V); 1701a61f4b89SDinar Temirbulatov if (!Instr) 1702a61f4b89SDinar Temirbulatov continue; 1703a61f4b89SDinar Temirbulatov if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1704a61f4b89SDinar Temirbulatov VecOp->andIRFlags(V); 1705cf9daa33SAmara Emerson } 1706cf9daa33SAmara Emerson } 1707