1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/UnrollLoop.h" 42 #include <algorithm> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "loop-unroll" 47 48 STATISTIC(NumRuntimeUnrolled, 49 "Number of loops unrolled with run-time trip counts"); 50 static cl::opt<bool> UnrollRuntimeMultiExit( 51 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 52 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 53 "epilog is generated")); 54 55 /// Connect the unrolling prolog code to the original loop. 56 /// The unrolling prolog code contains code to execute the 57 /// 'extra' iterations if the run-time trip count modulo the 58 /// unroll count is non-zero. 59 /// 60 /// This function performs the following: 61 /// - Create PHI nodes at prolog end block to combine values 62 /// that exit the prolog code and jump around the prolog. 63 /// - Add a PHI operand to a PHI node at the loop exit block 64 /// for values that exit the prolog and go around the loop. 65 /// - Branch around the original loop if the trip count is less 66 /// than the unroll factor. 67 /// 68 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 69 BasicBlock *PrologExit, 70 BasicBlock *OriginalLoopLatchExit, 71 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 72 ValueToValueMapTy &VMap, DominatorTree *DT, 73 LoopInfo *LI, bool PreserveLCSSA) { 74 BasicBlock *Latch = L->getLoopLatch(); 75 assert(Latch && "Loop must have a latch"); 76 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 77 78 // Create a PHI node for each outgoing value from the original loop 79 // (which means it is an outgoing value from the prolog code too). 80 // The new PHI node is inserted in the prolog end basic block. 81 // The new PHI node value is added as an operand of a PHI node in either 82 // the loop header or the loop exit block. 83 for (BasicBlock *Succ : successors(Latch)) { 84 for (Instruction &BBI : *Succ) { 85 PHINode *PN = dyn_cast<PHINode>(&BBI); 86 // Exit when we passed all PHI nodes. 87 if (!PN) 88 break; 89 // Add a new PHI node to the prolog end block and add the 90 // appropriate incoming values. 91 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 92 PrologExit->getFirstNonPHI()); 93 // Adding a value to the new PHI node from the original loop preheader. 94 // This is the value that skips all the prolog code. 95 if (L->contains(PN)) { 96 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 97 PreHeader); 98 } else { 99 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 100 } 101 102 Value *V = PN->getIncomingValueForBlock(Latch); 103 if (Instruction *I = dyn_cast<Instruction>(V)) { 104 if (L->contains(I)) { 105 V = VMap.lookup(I); 106 } 107 } 108 // Adding a value to the new PHI node from the last prolog block 109 // that was created. 110 NewPN->addIncoming(V, PrologLatch); 111 112 // Update the existing PHI node operand with the value from the 113 // new PHI node. How this is done depends on if the existing 114 // PHI node is in the original loop block, or the exit block. 115 if (L->contains(PN)) { 116 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 117 } else { 118 PN->addIncoming(NewPN, PrologExit); 119 } 120 } 121 } 122 123 // Make sure that created prolog loop is in simplified form 124 SmallVector<BasicBlock *, 4> PrologExitPreds; 125 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 126 if (PrologLoop) { 127 for (BasicBlock *PredBB : predecessors(PrologExit)) 128 if (PrologLoop->contains(PredBB)) 129 PrologExitPreds.push_back(PredBB); 130 131 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 132 PreserveLCSSA); 133 } 134 135 // Create a branch around the original loop, which is taken if there are no 136 // iterations remaining to be executed after running the prologue. 137 Instruction *InsertPt = PrologExit->getTerminator(); 138 IRBuilder<> B(InsertPt); 139 140 assert(Count != 0 && "nonsensical Count!"); 141 142 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 143 // This means %xtraiter is (BECount + 1) and all of the iterations of this 144 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 145 // then (BECount + 1) cannot unsigned-overflow. 146 Value *BrLoopExit = 147 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 148 // Split the exit to maintain loop canonicalization guarantees 149 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 150 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 151 PreserveLCSSA); 152 // Add the branch to the exit block (around the unrolled loop) 153 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 154 InsertPt->eraseFromParent(); 155 if (DT) 156 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 157 } 158 159 /// Connect the unrolling epilog code to the original loop. 160 /// The unrolling epilog code contains code to execute the 161 /// 'extra' iterations if the run-time trip count modulo the 162 /// unroll count is non-zero. 163 /// 164 /// This function performs the following: 165 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 166 /// - Create PHI nodes at the unrolling loop exit to combine 167 /// values that exit the unrolling loop code and jump around it. 168 /// - Update PHI operands in the epilog loop by the new PHI nodes 169 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 170 /// 171 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 172 BasicBlock *Exit, BasicBlock *PreHeader, 173 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 174 ValueToValueMapTy &VMap, DominatorTree *DT, 175 LoopInfo *LI, bool PreserveLCSSA) { 176 BasicBlock *Latch = L->getLoopLatch(); 177 assert(Latch && "Loop must have a latch"); 178 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 179 180 // Loop structure should be the following: 181 // 182 // PreHeader 183 // NewPreHeader 184 // Header 185 // ... 186 // Latch 187 // NewExit (PN) 188 // EpilogPreHeader 189 // EpilogHeader 190 // ... 191 // EpilogLatch 192 // Exit (EpilogPN) 193 194 // Update PHI nodes at NewExit and Exit. 195 for (Instruction &BBI : *NewExit) { 196 PHINode *PN = dyn_cast<PHINode>(&BBI); 197 // Exit when we passed all PHI nodes. 198 if (!PN) 199 break; 200 // PN should be used in another PHI located in Exit block as 201 // Exit was split by SplitBlockPredecessors into Exit and NewExit 202 // Basicaly it should look like: 203 // NewExit: 204 // PN = PHI [I, Latch] 205 // ... 206 // Exit: 207 // EpilogPN = PHI [PN, EpilogPreHeader] 208 // 209 // There is EpilogPreHeader incoming block instead of NewExit as 210 // NewExit was spilt 1 more time to get EpilogPreHeader. 211 assert(PN->hasOneUse() && "The phi should have 1 use"); 212 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 213 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 214 215 // Add incoming PreHeader from branch around the Loop 216 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 217 218 Value *V = PN->getIncomingValueForBlock(Latch); 219 Instruction *I = dyn_cast<Instruction>(V); 220 if (I && L->contains(I)) 221 // If value comes from an instruction in the loop add VMap value. 222 V = VMap.lookup(I); 223 // For the instruction out of the loop, constant or undefined value 224 // insert value itself. 225 EpilogPN->addIncoming(V, EpilogLatch); 226 227 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 228 "EpilogPN should have EpilogPreHeader incoming block"); 229 // Change EpilogPreHeader incoming block to NewExit. 230 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 231 NewExit); 232 // Now PHIs should look like: 233 // NewExit: 234 // PN = PHI [I, Latch], [undef, PreHeader] 235 // ... 236 // Exit: 237 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 238 } 239 240 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 241 // Update corresponding PHI nodes in epilog loop. 242 for (BasicBlock *Succ : successors(Latch)) { 243 // Skip this as we already updated phis in exit blocks. 244 if (!L->contains(Succ)) 245 continue; 246 for (Instruction &BBI : *Succ) { 247 PHINode *PN = dyn_cast<PHINode>(&BBI); 248 // Exit when we passed all PHI nodes. 249 if (!PN) 250 break; 251 // Add new PHI nodes to the loop exit block and update epilog 252 // PHIs with the new PHI values. 253 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 254 NewExit->getFirstNonPHI()); 255 // Adding a value to the new PHI node from the unrolling loop preheader. 256 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 257 // Adding a value to the new PHI node from the unrolling loop latch. 258 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 259 260 // Update the existing PHI node operand with the value from the new PHI 261 // node. Corresponding instruction in epilog loop should be PHI. 262 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 263 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 264 } 265 } 266 267 Instruction *InsertPt = NewExit->getTerminator(); 268 IRBuilder<> B(InsertPt); 269 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 270 assert(Exit && "Loop must have a single exit block only"); 271 // Split the epilogue exit to maintain loop canonicalization guarantees 272 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 273 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 274 PreserveLCSSA); 275 // Add the branch to the exit block (around the unrolling loop) 276 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 277 InsertPt->eraseFromParent(); 278 if (DT) 279 DT->changeImmediateDominator(Exit, NewExit); 280 281 // Split the main loop exit to maintain canonicalization guarantees. 282 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 283 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, 284 PreserveLCSSA); 285 } 286 287 /// Create a clone of the blocks in a loop and connect them together. 288 /// If CreateRemainderLoop is false, loop structure will not be cloned, 289 /// otherwise a new loop will be created including all cloned blocks, and the 290 /// iterator of it switches to count NewIter down to 0. 291 /// The cloned blocks should be inserted between InsertTop and InsertBot. 292 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 293 /// new loop exit. 294 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 295 static Loop * 296 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 297 const bool UseEpilogRemainder, BasicBlock *InsertTop, 298 BasicBlock *InsertBot, BasicBlock *Preheader, 299 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 300 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 301 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 302 BasicBlock *Header = L->getHeader(); 303 BasicBlock *Latch = L->getLoopLatch(); 304 Function *F = Header->getParent(); 305 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 306 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 307 Loop *ParentLoop = L->getParentLoop(); 308 NewLoopsMap NewLoops; 309 NewLoops[ParentLoop] = ParentLoop; 310 if (!CreateRemainderLoop) 311 NewLoops[L] = ParentLoop; 312 313 // For each block in the original loop, create a new copy, 314 // and update the value map with the newly created values. 315 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 316 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 317 NewBlocks.push_back(NewBB); 318 319 // If we're unrolling the outermost loop, there's no remainder loop, 320 // and this block isn't in a nested loop, then the new block is not 321 // in any loop. Otherwise, add it to loopinfo. 322 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 323 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 324 325 VMap[*BB] = NewBB; 326 if (Header == *BB) { 327 // For the first block, add a CFG connection to this newly 328 // created block. 329 InsertTop->getTerminator()->setSuccessor(0, NewBB); 330 } 331 332 if (DT) { 333 if (Header == *BB) { 334 // The header is dominated by the preheader. 335 DT->addNewBlock(NewBB, InsertTop); 336 } else { 337 // Copy information from original loop to unrolled loop. 338 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 339 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 340 } 341 } 342 343 if (Latch == *BB) { 344 // For the last block, if CreateRemainderLoop is false, create a direct 345 // jump to InsertBot. If not, create a loop back to cloned head. 346 VMap.erase((*BB)->getTerminator()); 347 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 348 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 349 IRBuilder<> Builder(LatchBR); 350 if (!CreateRemainderLoop) { 351 Builder.CreateBr(InsertBot); 352 } else { 353 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 354 suffix + ".iter", 355 FirstLoopBB->getFirstNonPHI()); 356 Value *IdxSub = 357 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 358 NewIdx->getName() + ".sub"); 359 Value *IdxCmp = 360 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 361 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 362 NewIdx->addIncoming(NewIter, InsertTop); 363 NewIdx->addIncoming(IdxSub, NewBB); 364 } 365 LatchBR->eraseFromParent(); 366 } 367 } 368 369 // Change the incoming values to the ones defined in the preheader or 370 // cloned loop. 371 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 372 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 373 if (!CreateRemainderLoop) { 374 if (UseEpilogRemainder) { 375 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 376 NewPHI->setIncomingBlock(idx, InsertTop); 377 NewPHI->removeIncomingValue(Latch, false); 378 } else { 379 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 380 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 381 } 382 } else { 383 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 384 NewPHI->setIncomingBlock(idx, InsertTop); 385 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 386 idx = NewPHI->getBasicBlockIndex(Latch); 387 Value *InVal = NewPHI->getIncomingValue(idx); 388 NewPHI->setIncomingBlock(idx, NewLatch); 389 if (Value *V = VMap.lookup(InVal)) 390 NewPHI->setIncomingValue(idx, V); 391 } 392 } 393 if (CreateRemainderLoop) { 394 Loop *NewLoop = NewLoops[L]; 395 assert(NewLoop && "L should have been cloned"); 396 // Add unroll disable metadata to disable future unrolling for this loop. 397 SmallVector<Metadata *, 4> MDs; 398 // Reserve first location for self reference to the LoopID metadata node. 399 MDs.push_back(nullptr); 400 MDNode *LoopID = NewLoop->getLoopID(); 401 if (LoopID) { 402 // First remove any existing loop unrolling metadata. 403 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 404 bool IsUnrollMetadata = false; 405 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 406 if (MD) { 407 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 408 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 409 } 410 if (!IsUnrollMetadata) 411 MDs.push_back(LoopID->getOperand(i)); 412 } 413 } 414 415 LLVMContext &Context = NewLoop->getHeader()->getContext(); 416 SmallVector<Metadata *, 1> DisableOperands; 417 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 418 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 419 MDs.push_back(DisableNode); 420 421 MDNode *NewLoopID = MDNode::get(Context, MDs); 422 // Set operand 0 to refer to the loop id itself. 423 NewLoopID->replaceOperandWith(0, NewLoopID); 424 NewLoop->setLoopID(NewLoopID); 425 return NewLoop; 426 } 427 else 428 return nullptr; 429 } 430 431 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 432 /// is populated with all the loop exit blocks other than the LatchExit block. 433 static bool 434 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, 435 BasicBlock *LatchExit, bool PreserveLCSSA, 436 bool UseEpilogRemainder) { 437 438 // We currently have some correctness constrains in unrolling a multi-exit 439 // loop. Check for these below. 440 441 // We rely on LCSSA form being preserved when the exit blocks are transformed. 442 if (!PreserveLCSSA) 443 return false; 444 SmallVector<BasicBlock *, 4> Exits; 445 L->getUniqueExitBlocks(Exits); 446 for (auto *BB : Exits) 447 if (BB != LatchExit) 448 OtherExits.push_back(BB); 449 450 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 451 // UnrollRuntimeMultiExit is true. This will need updating the logic in 452 // connectEpilog/connectProlog. 453 if (!LatchExit->getSinglePredecessor()) { 454 DEBUG(dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 455 "predecessor.\n"); 456 return false; 457 } 458 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 459 // and L is an inner loop. This is because in presence of multiple exits, the 460 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 461 // outer loop. This is automatically handled in the prolog case, so we do not 462 // have that bug in prolog generation. 463 if (UseEpilogRemainder && L->getParentLoop()) 464 return false; 465 466 // All constraints have been satisfied. 467 return true; 468 } 469 470 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 471 /// we return true only if UnrollRuntimeMultiExit is set to true. 472 static bool canProfitablyUnrollMultiExitLoop( 473 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 474 bool PreserveLCSSA, bool UseEpilogRemainder) { 475 476 #if !defined(NDEBUG) 477 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck; 478 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit, 479 PreserveLCSSA, UseEpilogRemainder) && 480 "Should be safe to unroll before checking profitability!"); 481 #endif 482 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 483 return UnrollRuntimeMultiExit.getNumOccurrences() ? UnrollRuntimeMultiExit 484 : false; 485 } 486 487 /// Insert code in the prolog/epilog code when unrolling a loop with a 488 /// run-time trip-count. 489 /// 490 /// This method assumes that the loop unroll factor is total number 491 /// of loop bodies in the loop after unrolling. (Some folks refer 492 /// to the unroll factor as the number of *extra* copies added). 493 /// We assume also that the loop unroll factor is a power-of-two. So, after 494 /// unrolling the loop, the number of loop bodies executed is 2, 495 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 496 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 497 /// the switch instruction is generated. 498 /// 499 /// ***Prolog case*** 500 /// extraiters = tripcount % loopfactor 501 /// if (extraiters == 0) jump Loop: 502 /// else jump Prol: 503 /// Prol: LoopBody; 504 /// extraiters -= 1 // Omitted if unroll factor is 2. 505 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 506 /// if (tripcount < loopfactor) jump End: 507 /// Loop: 508 /// ... 509 /// End: 510 /// 511 /// ***Epilog case*** 512 /// extraiters = tripcount % loopfactor 513 /// if (tripcount < loopfactor) jump LoopExit: 514 /// unroll_iters = tripcount - extraiters 515 /// Loop: LoopBody; (executes unroll_iter times); 516 /// unroll_iter -= 1 517 /// if (unroll_iter != 0) jump Loop: 518 /// LoopExit: 519 /// if (extraiters == 0) jump EpilExit: 520 /// Epil: LoopBody; (executes extraiters times) 521 /// extraiters -= 1 // Omitted if unroll factor is 2. 522 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 523 /// EpilExit: 524 525 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 526 bool AllowExpensiveTripCount, 527 bool UseEpilogRemainder, 528 LoopInfo *LI, ScalarEvolution *SE, 529 DominatorTree *DT, bool PreserveLCSSA) { 530 DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 531 DEBUG(L->dump()); 532 533 // Make sure the loop is in canonical form. 534 if (!L->isLoopSimplifyForm()) { 535 DEBUG(dbgs() << "Not in simplify form!\n"); 536 return false; 537 } 538 539 // Guaranteed by LoopSimplifyForm. 540 BasicBlock *Latch = L->getLoopLatch(); 541 BasicBlock *Header = L->getHeader(); 542 543 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 544 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 545 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 546 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 547 // targets of the Latch be an exit block out of the loop. This needs 548 // to be guaranteed by the callers of UnrollRuntimeLoopRemainder. 549 assert(!L->contains(LatchExit) && 550 "one of the loop latch successors should be the exit block!"); 551 // These are exit blocks other than the target of the latch exiting block. 552 SmallVector<BasicBlock *, 4> OtherExits; 553 bool isMultiExitUnrollingEnabled = 554 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 555 UseEpilogRemainder) && 556 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 557 UseEpilogRemainder); 558 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 559 if (!isMultiExitUnrollingEnabled && 560 (!L->getExitingBlock() || OtherExits.size())) { 561 DEBUG( 562 dbgs() 563 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 564 "enabled!\n"); 565 return false; 566 } 567 // Use Scalar Evolution to compute the trip count. This allows more loops to 568 // be unrolled than relying on induction var simplification. 569 if (!SE) 570 return false; 571 572 // Only unroll loops with a computable trip count, and the trip count needs 573 // to be an int value (allowing a pointer type is a TODO item). 574 // We calculate the backedge count by using getExitCount on the Latch block, 575 // which is proven to be the only exiting block in this loop. This is same as 576 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 577 // exiting blocks). 578 const SCEV *BECountSC = SE->getExitCount(L, Latch); 579 if (isa<SCEVCouldNotCompute>(BECountSC) || 580 !BECountSC->getType()->isIntegerTy()) { 581 DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 582 return false; 583 } 584 585 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 586 587 // Add 1 since the backedge count doesn't include the first loop iteration. 588 const SCEV *TripCountSC = 589 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 590 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 591 DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 592 return false; 593 } 594 595 BasicBlock *PreHeader = L->getLoopPreheader(); 596 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 597 const DataLayout &DL = Header->getModule()->getDataLayout(); 598 SCEVExpander Expander(*SE, DL, "loop-unroll"); 599 if (!AllowExpensiveTripCount && 600 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) { 601 DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 602 return false; 603 } 604 605 // This constraint lets us deal with an overflowing trip count easily; see the 606 // comment on ModVal below. 607 if (Log2_32(Count) > BEWidth) { 608 DEBUG(dbgs() 609 << "Count failed constraint on overflow trip count calculation.\n"); 610 return false; 611 } 612 613 // Loop structure is the following: 614 // 615 // PreHeader 616 // Header 617 // ... 618 // Latch 619 // LatchExit 620 621 BasicBlock *NewPreHeader; 622 BasicBlock *NewExit = nullptr; 623 BasicBlock *PrologExit = nullptr; 624 BasicBlock *EpilogPreHeader = nullptr; 625 BasicBlock *PrologPreHeader = nullptr; 626 627 if (UseEpilogRemainder) { 628 // If epilog remainder 629 // Split PreHeader to insert a branch around loop for unrolling. 630 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 631 NewPreHeader->setName(PreHeader->getName() + ".new"); 632 // Split LatchExit to create phi nodes from branch above. 633 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 634 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", 635 DT, LI, PreserveLCSSA); 636 // Split NewExit to insert epilog remainder loop. 637 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 638 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 639 } else { 640 // If prolog remainder 641 // Split the original preheader twice to insert prolog remainder loop 642 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 643 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 644 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 645 DT, LI); 646 PrologExit->setName(Header->getName() + ".prol.loopexit"); 647 // Split PrologExit to get NewPreHeader. 648 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 649 NewPreHeader->setName(PreHeader->getName() + ".new"); 650 } 651 // Loop structure should be the following: 652 // Epilog Prolog 653 // 654 // PreHeader PreHeader 655 // *NewPreHeader *PrologPreHeader 656 // Header *PrologExit 657 // ... *NewPreHeader 658 // Latch Header 659 // *NewExit ... 660 // *EpilogPreHeader Latch 661 // LatchExit LatchExit 662 663 // Calculate conditions for branch around loop for unrolling 664 // in epilog case and around prolog remainder loop in prolog case. 665 // Compute the number of extra iterations required, which is: 666 // extra iterations = run-time trip count % loop unroll factor 667 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 668 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 669 PreHeaderBR); 670 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 671 PreHeaderBR); 672 IRBuilder<> B(PreHeaderBR); 673 Value *ModVal; 674 // Calculate ModVal = (BECount + 1) % Count. 675 // Note that TripCount is BECount + 1. 676 if (isPowerOf2_32(Count)) { 677 // When Count is power of 2 we don't BECount for epilog case, however we'll 678 // need it for a branch around unrolling loop for prolog case. 679 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 680 // 1. There are no iterations to be run in the prolog/epilog loop. 681 // OR 682 // 2. The addition computing TripCount overflowed. 683 // 684 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 685 // the number of iterations that remain to be run in the original loop is a 686 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 687 // explicitly check this above). 688 } else { 689 // As (BECount + 1) can potentially unsigned overflow we count 690 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 691 Value *ModValTmp = B.CreateURem(BECount, 692 ConstantInt::get(BECount->getType(), 693 Count)); 694 Value *ModValAdd = B.CreateAdd(ModValTmp, 695 ConstantInt::get(ModValTmp->getType(), 1)); 696 // At that point (BECount % Count) + 1 could be equal to Count. 697 // To handle this case we need to take mod by Count one more time. 698 ModVal = B.CreateURem(ModValAdd, 699 ConstantInt::get(BECount->getType(), Count), 700 "xtraiter"); 701 } 702 Value *BranchVal = 703 UseEpilogRemainder ? B.CreateICmpULT(BECount, 704 ConstantInt::get(BECount->getType(), 705 Count - 1)) : 706 B.CreateIsNotNull(ModVal, "lcmp.mod"); 707 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 708 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 709 // Branch to either remainder (extra iterations) loop or unrolling loop. 710 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 711 PreHeaderBR->eraseFromParent(); 712 if (DT) { 713 if (UseEpilogRemainder) 714 DT->changeImmediateDominator(NewExit, PreHeader); 715 else 716 DT->changeImmediateDominator(PrologExit, PreHeader); 717 } 718 Function *F = Header->getParent(); 719 // Get an ordered list of blocks in the loop to help with the ordering of the 720 // cloned blocks in the prolog/epilog code 721 LoopBlocksDFS LoopBlocks(L); 722 LoopBlocks.perform(LI); 723 724 // 725 // For each extra loop iteration, create a copy of the loop's basic blocks 726 // and generate a condition that branches to the copy depending on the 727 // number of 'left over' iterations. 728 // 729 std::vector<BasicBlock *> NewBlocks; 730 ValueToValueMapTy VMap; 731 732 // For unroll factor 2 remainder loop will have 1 iterations. 733 // Do not create 1 iteration loop. 734 bool CreateRemainderLoop = (Count != 2); 735 736 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 737 // the loop, otherwise we create a cloned loop to execute the extra 738 // iterations. This function adds the appropriate CFG connections. 739 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 740 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 741 Loop *remainderLoop = CloneLoopBlocks( 742 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, InsertBot, 743 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 744 745 // Insert the cloned blocks into the function. 746 F->getBasicBlockList().splice(InsertBot->getIterator(), 747 F->getBasicBlockList(), 748 NewBlocks[0]->getIterator(), 749 F->end()); 750 751 // Now the loop blocks are cloned and the other exiting blocks from the 752 // remainder are connected to the original Loop's exit blocks. The remaining 753 // work is to update the phi nodes in the original loop, and take in the 754 // values from the cloned region. Also update the dominator info for 755 // OtherExits and their immediate successors, since we have new edges into 756 // OtherExits. 757 SmallSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks; 758 for (auto *BB : OtherExits) { 759 for (auto &II : *BB) { 760 761 // Given we preserve LCSSA form, we know that the values used outside the 762 // loop will be used through these phi nodes at the exit blocks that are 763 // transformed below. 764 if (!isa<PHINode>(II)) 765 break; 766 PHINode *Phi = cast<PHINode>(&II); 767 unsigned oldNumOperands = Phi->getNumIncomingValues(); 768 // Add the incoming values from the remainder code to the end of the phi 769 // node. 770 for (unsigned i =0; i < oldNumOperands; i++){ 771 Value *newVal = VMap[Phi->getIncomingValue(i)]; 772 // newVal can be a constant or derived from values outside the loop, and 773 // hence need not have a VMap value. 774 if (!newVal) 775 newVal = Phi->getIncomingValue(i); 776 Phi->addIncoming(newVal, 777 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 778 } 779 } 780 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 781 for (BasicBlock *SuccBB : successors(BB)) { 782 assert(!(any_of(OtherExits, 783 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 784 SuccBB == LatchExit) && 785 "Breaks the definition of dedicated exits!"); 786 } 787 #endif 788 // Update the dominator info because the immediate dominator is no longer the 789 // header of the original Loop. BB has edges both from L and remainder code. 790 // Since the preheader determines which loop is run (L or directly jump to 791 // the remainder code), we set the immediate dominator as the preheader. 792 if (DT) { 793 DT->changeImmediateDominator(BB, PreHeader); 794 // Also update the IDom for immediate successors of BB. If the current 795 // IDom is the header, update the IDom to be the preheader because that is 796 // the nearest common dominator of all predecessors of SuccBB. We need to 797 // check for IDom being the header because successors of exit blocks can 798 // have edges from outside the loop, and we should not incorrectly update 799 // the IDom in that case. 800 for (BasicBlock *SuccBB: successors(BB)) 801 if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) { 802 if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) { 803 assert(!SuccBB->getSinglePredecessor() && 804 "BB should be the IDom then!"); 805 DT->changeImmediateDominator(SuccBB, PreHeader); 806 } 807 } 808 } 809 } 810 811 // Loop structure should be the following: 812 // Epilog Prolog 813 // 814 // PreHeader PreHeader 815 // NewPreHeader PrologPreHeader 816 // Header PrologHeader 817 // ... ... 818 // Latch PrologLatch 819 // NewExit PrologExit 820 // EpilogPreHeader NewPreHeader 821 // EpilogHeader Header 822 // ... ... 823 // EpilogLatch Latch 824 // LatchExit LatchExit 825 826 // Rewrite the cloned instruction operands to use the values created when the 827 // clone is created. 828 for (BasicBlock *BB : NewBlocks) { 829 for (Instruction &I : *BB) { 830 RemapInstruction(&I, VMap, 831 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 832 } 833 } 834 835 if (UseEpilogRemainder) { 836 // Connect the epilog code to the original loop and update the 837 // PHI functions. 838 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 839 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 840 PreserveLCSSA); 841 842 // Update counter in loop for unrolling. 843 // I should be multiply of Count. 844 IRBuilder<> B2(NewPreHeader->getTerminator()); 845 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 846 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 847 B2.SetInsertPoint(LatchBR); 848 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 849 Header->getFirstNonPHI()); 850 Value *IdxSub = 851 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 852 NewIdx->getName() + ".nsub"); 853 Value *IdxCmp; 854 if (LatchBR->getSuccessor(0) == Header) 855 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 856 else 857 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 858 NewIdx->addIncoming(TestVal, NewPreHeader); 859 NewIdx->addIncoming(IdxSub, Latch); 860 LatchBR->setCondition(IdxCmp); 861 } else { 862 // Connect the prolog code to the original loop and update the 863 // PHI functions. 864 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 865 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 866 } 867 868 // If this loop is nested, then the loop unroller changes the code in the 869 // parent loop, so the Scalar Evolution pass needs to be run again. 870 if (Loop *ParentLoop = L->getParentLoop()) 871 SE->forgetLoop(ParentLoop); 872 873 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 874 // cannot rely on the LoopUnrollPass to do this because it only does 875 // canonicalization for parent/subloops and not the sibling loops. 876 if (OtherExits.size() > 0) { 877 // Generate dedicated exit blocks for the original loop, to preserve 878 // LoopSimplifyForm. 879 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); 880 // Generate dedicated exit blocks for the remainder loop if one exists, to 881 // preserve LoopSimplifyForm. 882 if (remainderLoop) 883 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); 884 } 885 886 NumRuntimeUnrolled++; 887 return true; 888 } 889