1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ScalarEvolutionExpander.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/UnrollLoop.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 STATISTIC(NumRuntimeUnrolled, 47 "Number of loops unrolled with run-time trip counts"); 48 static cl::opt<bool> UnrollRuntimeMultiExit( 49 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 50 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 51 "epilog is generated")); 52 53 /// Connect the unrolling prolog code to the original loop. 54 /// The unrolling prolog code contains code to execute the 55 /// 'extra' iterations if the run-time trip count modulo the 56 /// unroll count is non-zero. 57 /// 58 /// This function performs the following: 59 /// - Create PHI nodes at prolog end block to combine values 60 /// that exit the prolog code and jump around the prolog. 61 /// - Add a PHI operand to a PHI node at the loop exit block 62 /// for values that exit the prolog and go around the loop. 63 /// - Branch around the original loop if the trip count is less 64 /// than the unroll factor. 65 /// 66 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 67 BasicBlock *PrologExit, 68 BasicBlock *OriginalLoopLatchExit, 69 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 70 ValueToValueMapTy &VMap, DominatorTree *DT, 71 LoopInfo *LI, bool PreserveLCSSA) { 72 // Loop structure should be the following: 73 // Preheader 74 // PrologHeader 75 // ... 76 // PrologLatch 77 // PrologExit 78 // NewPreheader 79 // Header 80 // ... 81 // Latch 82 // LatchExit 83 BasicBlock *Latch = L->getLoopLatch(); 84 assert(Latch && "Loop must have a latch"); 85 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 86 87 // Create a PHI node for each outgoing value from the original loop 88 // (which means it is an outgoing value from the prolog code too). 89 // The new PHI node is inserted in the prolog end basic block. 90 // The new PHI node value is added as an operand of a PHI node in either 91 // the loop header or the loop exit block. 92 for (BasicBlock *Succ : successors(Latch)) { 93 for (PHINode &PN : Succ->phis()) { 94 // Add a new PHI node to the prolog end block and add the 95 // appropriate incoming values. 96 // TODO: This code assumes that the PrologExit (or the LatchExit block for 97 // prolog loop) contains only one predecessor from the loop, i.e. the 98 // PrologLatch. When supporting multiple-exiting block loops, we can have 99 // two or more blocks that have the LatchExit as the target in the 100 // original loop. 101 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 102 PrologExit->getFirstNonPHI()); 103 // Adding a value to the new PHI node from the original loop preheader. 104 // This is the value that skips all the prolog code. 105 if (L->contains(&PN)) { 106 // Succ is loop header. 107 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 108 PreHeader); 109 } else { 110 // Succ is LatchExit. 111 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 112 } 113 114 Value *V = PN.getIncomingValueForBlock(Latch); 115 if (Instruction *I = dyn_cast<Instruction>(V)) { 116 if (L->contains(I)) { 117 V = VMap.lookup(I); 118 } 119 } 120 // Adding a value to the new PHI node from the last prolog block 121 // that was created. 122 NewPN->addIncoming(V, PrologLatch); 123 124 // Update the existing PHI node operand with the value from the 125 // new PHI node. How this is done depends on if the existing 126 // PHI node is in the original loop block, or the exit block. 127 if (L->contains(&PN)) { 128 PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN); 129 } else { 130 PN.addIncoming(NewPN, PrologExit); 131 } 132 } 133 } 134 135 // Make sure that created prolog loop is in simplified form 136 SmallVector<BasicBlock *, 4> PrologExitPreds; 137 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 138 if (PrologLoop) { 139 for (BasicBlock *PredBB : predecessors(PrologExit)) 140 if (PrologLoop->contains(PredBB)) 141 PrologExitPreds.push_back(PredBB); 142 143 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 144 nullptr, PreserveLCSSA); 145 } 146 147 // Create a branch around the original loop, which is taken if there are no 148 // iterations remaining to be executed after running the prologue. 149 Instruction *InsertPt = PrologExit->getTerminator(); 150 IRBuilder<> B(InsertPt); 151 152 assert(Count != 0 && "nonsensical Count!"); 153 154 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 155 // This means %xtraiter is (BECount + 1) and all of the iterations of this 156 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 157 // then (BECount + 1) cannot unsigned-overflow. 158 Value *BrLoopExit = 159 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 160 // Split the exit to maintain loop canonicalization guarantees 161 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 162 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 163 nullptr, PreserveLCSSA); 164 // Add the branch to the exit block (around the unrolled loop) 165 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 166 InsertPt->eraseFromParent(); 167 if (DT) 168 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 169 } 170 171 /// Connect the unrolling epilog code to the original loop. 172 /// The unrolling epilog code contains code to execute the 173 /// 'extra' iterations if the run-time trip count modulo the 174 /// unroll count is non-zero. 175 /// 176 /// This function performs the following: 177 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 178 /// - Create PHI nodes at the unrolling loop exit to combine 179 /// values that exit the unrolling loop code and jump around it. 180 /// - Update PHI operands in the epilog loop by the new PHI nodes 181 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 182 /// 183 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 184 BasicBlock *Exit, BasicBlock *PreHeader, 185 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 186 ValueToValueMapTy &VMap, DominatorTree *DT, 187 LoopInfo *LI, bool PreserveLCSSA) { 188 BasicBlock *Latch = L->getLoopLatch(); 189 assert(Latch && "Loop must have a latch"); 190 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 191 192 // Loop structure should be the following: 193 // 194 // PreHeader 195 // NewPreHeader 196 // Header 197 // ... 198 // Latch 199 // NewExit (PN) 200 // EpilogPreHeader 201 // EpilogHeader 202 // ... 203 // EpilogLatch 204 // Exit (EpilogPN) 205 206 // Update PHI nodes at NewExit and Exit. 207 for (PHINode &PN : NewExit->phis()) { 208 // PN should be used in another PHI located in Exit block as 209 // Exit was split by SplitBlockPredecessors into Exit and NewExit 210 // Basicaly it should look like: 211 // NewExit: 212 // PN = PHI [I, Latch] 213 // ... 214 // Exit: 215 // EpilogPN = PHI [PN, EpilogPreHeader] 216 // 217 // There is EpilogPreHeader incoming block instead of NewExit as 218 // NewExit was spilt 1 more time to get EpilogPreHeader. 219 assert(PN.hasOneUse() && "The phi should have 1 use"); 220 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 221 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 222 223 // Add incoming PreHeader from branch around the Loop 224 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 225 226 Value *V = PN.getIncomingValueForBlock(Latch); 227 Instruction *I = dyn_cast<Instruction>(V); 228 if (I && L->contains(I)) 229 // If value comes from an instruction in the loop add VMap value. 230 V = VMap.lookup(I); 231 // For the instruction out of the loop, constant or undefined value 232 // insert value itself. 233 EpilogPN->addIncoming(V, EpilogLatch); 234 235 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 236 "EpilogPN should have EpilogPreHeader incoming block"); 237 // Change EpilogPreHeader incoming block to NewExit. 238 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 239 NewExit); 240 // Now PHIs should look like: 241 // NewExit: 242 // PN = PHI [I, Latch], [undef, PreHeader] 243 // ... 244 // Exit: 245 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 246 } 247 248 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 249 // Update corresponding PHI nodes in epilog loop. 250 for (BasicBlock *Succ : successors(Latch)) { 251 // Skip this as we already updated phis in exit blocks. 252 if (!L->contains(Succ)) 253 continue; 254 for (PHINode &PN : Succ->phis()) { 255 // Add new PHI nodes to the loop exit block and update epilog 256 // PHIs with the new PHI values. 257 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 258 NewExit->getFirstNonPHI()); 259 // Adding a value to the new PHI node from the unrolling loop preheader. 260 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 261 // Adding a value to the new PHI node from the unrolling loop latch. 262 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 263 264 // Update the existing PHI node operand with the value from the new PHI 265 // node. Corresponding instruction in epilog loop should be PHI. 266 PHINode *VPN = cast<PHINode>(VMap[&PN]); 267 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 268 } 269 } 270 271 Instruction *InsertPt = NewExit->getTerminator(); 272 IRBuilder<> B(InsertPt); 273 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 274 assert(Exit && "Loop must have a single exit block only"); 275 // Split the epilogue exit to maintain loop canonicalization guarantees 276 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 277 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 278 PreserveLCSSA); 279 // Add the branch to the exit block (around the unrolling loop) 280 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 281 InsertPt->eraseFromParent(); 282 if (DT) 283 DT->changeImmediateDominator(Exit, NewExit); 284 285 // Split the main loop exit to maintain canonicalization guarantees. 286 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 287 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 288 PreserveLCSSA); 289 } 290 291 /// Create a clone of the blocks in a loop and connect them together. 292 /// If CreateRemainderLoop is false, loop structure will not be cloned, 293 /// otherwise a new loop will be created including all cloned blocks, and the 294 /// iterator of it switches to count NewIter down to 0. 295 /// The cloned blocks should be inserted between InsertTop and InsertBot. 296 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 297 /// new loop exit. 298 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 299 static Loop * 300 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 301 const bool UseEpilogRemainder, const bool UnrollRemainder, 302 BasicBlock *InsertTop, 303 BasicBlock *InsertBot, BasicBlock *Preheader, 304 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 305 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 306 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 307 BasicBlock *Header = L->getHeader(); 308 BasicBlock *Latch = L->getLoopLatch(); 309 Function *F = Header->getParent(); 310 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 311 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 312 Loop *ParentLoop = L->getParentLoop(); 313 NewLoopsMap NewLoops; 314 NewLoops[ParentLoop] = ParentLoop; 315 if (!CreateRemainderLoop) 316 NewLoops[L] = ParentLoop; 317 318 // For each block in the original loop, create a new copy, 319 // and update the value map with the newly created values. 320 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 321 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 322 NewBlocks.push_back(NewBB); 323 324 // If we're unrolling the outermost loop, there's no remainder loop, 325 // and this block isn't in a nested loop, then the new block is not 326 // in any loop. Otherwise, add it to loopinfo. 327 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 328 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 329 330 VMap[*BB] = NewBB; 331 if (Header == *BB) { 332 // For the first block, add a CFG connection to this newly 333 // created block. 334 InsertTop->getTerminator()->setSuccessor(0, NewBB); 335 } 336 337 if (DT) { 338 if (Header == *BB) { 339 // The header is dominated by the preheader. 340 DT->addNewBlock(NewBB, InsertTop); 341 } else { 342 // Copy information from original loop to unrolled loop. 343 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 344 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 345 } 346 } 347 348 if (Latch == *BB) { 349 // For the last block, if CreateRemainderLoop is false, create a direct 350 // jump to InsertBot. If not, create a loop back to cloned head. 351 VMap.erase((*BB)->getTerminator()); 352 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 353 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 354 IRBuilder<> Builder(LatchBR); 355 if (!CreateRemainderLoop) { 356 Builder.CreateBr(InsertBot); 357 } else { 358 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 359 suffix + ".iter", 360 FirstLoopBB->getFirstNonPHI()); 361 Value *IdxSub = 362 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 363 NewIdx->getName() + ".sub"); 364 Value *IdxCmp = 365 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 366 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 367 NewIdx->addIncoming(NewIter, InsertTop); 368 NewIdx->addIncoming(IdxSub, NewBB); 369 } 370 LatchBR->eraseFromParent(); 371 } 372 } 373 374 // Change the incoming values to the ones defined in the preheader or 375 // cloned loop. 376 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 377 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 378 if (!CreateRemainderLoop) { 379 if (UseEpilogRemainder) { 380 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 381 NewPHI->setIncomingBlock(idx, InsertTop); 382 NewPHI->removeIncomingValue(Latch, false); 383 } else { 384 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 385 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 386 } 387 } else { 388 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 389 NewPHI->setIncomingBlock(idx, InsertTop); 390 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 391 idx = NewPHI->getBasicBlockIndex(Latch); 392 Value *InVal = NewPHI->getIncomingValue(idx); 393 NewPHI->setIncomingBlock(idx, NewLatch); 394 if (Value *V = VMap.lookup(InVal)) 395 NewPHI->setIncomingValue(idx, V); 396 } 397 } 398 if (CreateRemainderLoop) { 399 Loop *NewLoop = NewLoops[L]; 400 MDNode *LoopID = NewLoop->getLoopID(); 401 assert(NewLoop && "L should have been cloned"); 402 403 // Only add loop metadata if the loop is not going to be completely 404 // unrolled. 405 if (UnrollRemainder) 406 return NewLoop; 407 408 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 409 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 410 if (NewLoopID.hasValue()) { 411 NewLoop->setLoopID(NewLoopID.getValue()); 412 413 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 414 // explicitly. 415 return NewLoop; 416 } 417 418 // Add unroll disable metadata to disable future unrolling for this loop. 419 NewLoop->setLoopAlreadyUnrolled(); 420 return NewLoop; 421 } 422 else 423 return nullptr; 424 } 425 426 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 427 /// is populated with all the loop exit blocks other than the LatchExit block. 428 static bool 429 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, 430 BasicBlock *LatchExit, bool PreserveLCSSA, 431 bool UseEpilogRemainder) { 432 433 // We currently have some correctness constrains in unrolling a multi-exit 434 // loop. Check for these below. 435 436 // We rely on LCSSA form being preserved when the exit blocks are transformed. 437 if (!PreserveLCSSA) 438 return false; 439 SmallVector<BasicBlock *, 4> Exits; 440 L->getUniqueExitBlocks(Exits); 441 for (auto *BB : Exits) 442 if (BB != LatchExit) 443 OtherExits.push_back(BB); 444 445 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 446 // UnrollRuntimeMultiExit is true. This will need updating the logic in 447 // connectEpilog/connectProlog. 448 if (!LatchExit->getSinglePredecessor()) { 449 LLVM_DEBUG( 450 dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 451 "predecessor.\n"); 452 return false; 453 } 454 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 455 // and L is an inner loop. This is because in presence of multiple exits, the 456 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 457 // outer loop. This is automatically handled in the prolog case, so we do not 458 // have that bug in prolog generation. 459 if (UseEpilogRemainder && L->getParentLoop()) 460 return false; 461 462 // All constraints have been satisfied. 463 return true; 464 } 465 466 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 467 /// we return true only if UnrollRuntimeMultiExit is set to true. 468 static bool canProfitablyUnrollMultiExitLoop( 469 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 470 bool PreserveLCSSA, bool UseEpilogRemainder) { 471 472 #if !defined(NDEBUG) 473 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck; 474 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit, 475 PreserveLCSSA, UseEpilogRemainder) && 476 "Should be safe to unroll before checking profitability!"); 477 #endif 478 479 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 480 if (UnrollRuntimeMultiExit.getNumOccurrences()) 481 return UnrollRuntimeMultiExit; 482 483 // The main pain point with multi-exit loop unrolling is that once unrolled, 484 // we will not be able to merge all blocks into a straight line code. 485 // There are branches within the unrolled loop that go to the OtherExits. 486 // The second point is the increase in code size, but this is true 487 // irrespective of multiple exits. 488 489 // Note: Both the heuristics below are coarse grained. We are essentially 490 // enabling unrolling of loops that have a single side exit other than the 491 // normal LatchExit (i.e. exiting into a deoptimize block). 492 // The heuristics considered are: 493 // 1. low number of branches in the unrolled version. 494 // 2. high predictability of these extra branches. 495 // We avoid unrolling loops that have more than two exiting blocks. This 496 // limits the total number of branches in the unrolled loop to be atmost 497 // the unroll factor (since one of the exiting blocks is the latch block). 498 SmallVector<BasicBlock*, 4> ExitingBlocks; 499 L->getExitingBlocks(ExitingBlocks); 500 if (ExitingBlocks.size() > 2) 501 return false; 502 503 // The second heuristic is that L has one exit other than the latchexit and 504 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 505 // taken, which also implies the branch leading to the deoptimize block is 506 // highly predictable. 507 return (OtherExits.size() == 1 && 508 OtherExits[0]->getTerminatingDeoptimizeCall()); 509 // TODO: These can be fine-tuned further to consider code size or deopt states 510 // that are captured by the deoptimize exit block. 511 // Also, we can extend this to support more cases, if we actually 512 // know of kinds of multiexit loops that would benefit from unrolling. 513 } 514 515 /// Insert code in the prolog/epilog code when unrolling a loop with a 516 /// run-time trip-count. 517 /// 518 /// This method assumes that the loop unroll factor is total number 519 /// of loop bodies in the loop after unrolling. (Some folks refer 520 /// to the unroll factor as the number of *extra* copies added). 521 /// We assume also that the loop unroll factor is a power-of-two. So, after 522 /// unrolling the loop, the number of loop bodies executed is 2, 523 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 524 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 525 /// the switch instruction is generated. 526 /// 527 /// ***Prolog case*** 528 /// extraiters = tripcount % loopfactor 529 /// if (extraiters == 0) jump Loop: 530 /// else jump Prol: 531 /// Prol: LoopBody; 532 /// extraiters -= 1 // Omitted if unroll factor is 2. 533 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 534 /// if (tripcount < loopfactor) jump End: 535 /// Loop: 536 /// ... 537 /// End: 538 /// 539 /// ***Epilog case*** 540 /// extraiters = tripcount % loopfactor 541 /// if (tripcount < loopfactor) jump LoopExit: 542 /// unroll_iters = tripcount - extraiters 543 /// Loop: LoopBody; (executes unroll_iter times); 544 /// unroll_iter -= 1 545 /// if (unroll_iter != 0) jump Loop: 546 /// LoopExit: 547 /// if (extraiters == 0) jump EpilExit: 548 /// Epil: LoopBody; (executes extraiters times) 549 /// extraiters -= 1 // Omitted if unroll factor is 2. 550 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 551 /// EpilExit: 552 553 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 554 bool AllowExpensiveTripCount, 555 bool UseEpilogRemainder, 556 bool UnrollRemainder, LoopInfo *LI, 557 ScalarEvolution *SE, DominatorTree *DT, 558 AssumptionCache *AC, bool PreserveLCSSA, 559 Loop **ResultLoop) { 560 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 561 LLVM_DEBUG(L->dump()); 562 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 563 : dbgs() << "Using prolog remainder.\n"); 564 565 // Make sure the loop is in canonical form. 566 if (!L->isLoopSimplifyForm()) { 567 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 568 return false; 569 } 570 571 // Guaranteed by LoopSimplifyForm. 572 BasicBlock *Latch = L->getLoopLatch(); 573 BasicBlock *Header = L->getHeader(); 574 575 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 576 577 if (!LatchBR || LatchBR->isUnconditional()) { 578 // The loop-rotate pass can be helpful to avoid this in many cases. 579 LLVM_DEBUG( 580 dbgs() 581 << "Loop latch not terminated by a conditional branch.\n"); 582 return false; 583 } 584 585 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 586 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 587 588 if (L->contains(LatchExit)) { 589 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 590 // targets of the Latch be an exit block out of the loop. 591 LLVM_DEBUG( 592 dbgs() 593 << "One of the loop latch successors must be the exit block.\n"); 594 return false; 595 } 596 597 // These are exit blocks other than the target of the latch exiting block. 598 SmallVector<BasicBlock *, 4> OtherExits; 599 bool isMultiExitUnrollingEnabled = 600 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 601 UseEpilogRemainder) && 602 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 603 UseEpilogRemainder); 604 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 605 if (!isMultiExitUnrollingEnabled && 606 (!L->getExitingBlock() || OtherExits.size())) { 607 LLVM_DEBUG( 608 dbgs() 609 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 610 "enabled!\n"); 611 return false; 612 } 613 // Use Scalar Evolution to compute the trip count. This allows more loops to 614 // be unrolled than relying on induction var simplification. 615 if (!SE) 616 return false; 617 618 // Only unroll loops with a computable trip count, and the trip count needs 619 // to be an int value (allowing a pointer type is a TODO item). 620 // We calculate the backedge count by using getExitCount on the Latch block, 621 // which is proven to be the only exiting block in this loop. This is same as 622 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 623 // exiting blocks). 624 const SCEV *BECountSC = SE->getExitCount(L, Latch); 625 if (isa<SCEVCouldNotCompute>(BECountSC) || 626 !BECountSC->getType()->isIntegerTy()) { 627 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 628 return false; 629 } 630 631 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 632 633 // Add 1 since the backedge count doesn't include the first loop iteration. 634 const SCEV *TripCountSC = 635 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 636 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 637 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 638 return false; 639 } 640 641 BasicBlock *PreHeader = L->getLoopPreheader(); 642 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 643 const DataLayout &DL = Header->getModule()->getDataLayout(); 644 SCEVExpander Expander(*SE, DL, "loop-unroll"); 645 if (!AllowExpensiveTripCount && 646 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) { 647 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 648 return false; 649 } 650 651 // This constraint lets us deal with an overflowing trip count easily; see the 652 // comment on ModVal below. 653 if (Log2_32(Count) > BEWidth) { 654 LLVM_DEBUG( 655 dbgs() 656 << "Count failed constraint on overflow trip count calculation.\n"); 657 return false; 658 } 659 660 // Loop structure is the following: 661 // 662 // PreHeader 663 // Header 664 // ... 665 // Latch 666 // LatchExit 667 668 BasicBlock *NewPreHeader; 669 BasicBlock *NewExit = nullptr; 670 BasicBlock *PrologExit = nullptr; 671 BasicBlock *EpilogPreHeader = nullptr; 672 BasicBlock *PrologPreHeader = nullptr; 673 674 if (UseEpilogRemainder) { 675 // If epilog remainder 676 // Split PreHeader to insert a branch around loop for unrolling. 677 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 678 NewPreHeader->setName(PreHeader->getName() + ".new"); 679 // Split LatchExit to create phi nodes from branch above. 680 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 681 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI, 682 nullptr, PreserveLCSSA); 683 // NewExit gets its DebugLoc from LatchExit, which is not part of the 684 // original Loop. 685 // Fix this by setting Loop's DebugLoc to NewExit. 686 auto *NewExitTerminator = NewExit->getTerminator(); 687 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 688 // Split NewExit to insert epilog remainder loop. 689 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 690 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 691 } else { 692 // If prolog remainder 693 // Split the original preheader twice to insert prolog remainder loop 694 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 695 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 696 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 697 DT, LI); 698 PrologExit->setName(Header->getName() + ".prol.loopexit"); 699 // Split PrologExit to get NewPreHeader. 700 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 701 NewPreHeader->setName(PreHeader->getName() + ".new"); 702 } 703 // Loop structure should be the following: 704 // Epilog Prolog 705 // 706 // PreHeader PreHeader 707 // *NewPreHeader *PrologPreHeader 708 // Header *PrologExit 709 // ... *NewPreHeader 710 // Latch Header 711 // *NewExit ... 712 // *EpilogPreHeader Latch 713 // LatchExit LatchExit 714 715 // Calculate conditions for branch around loop for unrolling 716 // in epilog case and around prolog remainder loop in prolog case. 717 // Compute the number of extra iterations required, which is: 718 // extra iterations = run-time trip count % loop unroll factor 719 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 720 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 721 PreHeaderBR); 722 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 723 PreHeaderBR); 724 IRBuilder<> B(PreHeaderBR); 725 Value *ModVal; 726 // Calculate ModVal = (BECount + 1) % Count. 727 // Note that TripCount is BECount + 1. 728 if (isPowerOf2_32(Count)) { 729 // When Count is power of 2 we don't BECount for epilog case, however we'll 730 // need it for a branch around unrolling loop for prolog case. 731 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 732 // 1. There are no iterations to be run in the prolog/epilog loop. 733 // OR 734 // 2. The addition computing TripCount overflowed. 735 // 736 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 737 // the number of iterations that remain to be run in the original loop is a 738 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 739 // explicitly check this above). 740 } else { 741 // As (BECount + 1) can potentially unsigned overflow we count 742 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 743 Value *ModValTmp = B.CreateURem(BECount, 744 ConstantInt::get(BECount->getType(), 745 Count)); 746 Value *ModValAdd = B.CreateAdd(ModValTmp, 747 ConstantInt::get(ModValTmp->getType(), 1)); 748 // At that point (BECount % Count) + 1 could be equal to Count. 749 // To handle this case we need to take mod by Count one more time. 750 ModVal = B.CreateURem(ModValAdd, 751 ConstantInt::get(BECount->getType(), Count), 752 "xtraiter"); 753 } 754 Value *BranchVal = 755 UseEpilogRemainder ? B.CreateICmpULT(BECount, 756 ConstantInt::get(BECount->getType(), 757 Count - 1)) : 758 B.CreateIsNotNull(ModVal, "lcmp.mod"); 759 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 760 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 761 // Branch to either remainder (extra iterations) loop or unrolling loop. 762 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 763 PreHeaderBR->eraseFromParent(); 764 if (DT) { 765 if (UseEpilogRemainder) 766 DT->changeImmediateDominator(NewExit, PreHeader); 767 else 768 DT->changeImmediateDominator(PrologExit, PreHeader); 769 } 770 Function *F = Header->getParent(); 771 // Get an ordered list of blocks in the loop to help with the ordering of the 772 // cloned blocks in the prolog/epilog code 773 LoopBlocksDFS LoopBlocks(L); 774 LoopBlocks.perform(LI); 775 776 // 777 // For each extra loop iteration, create a copy of the loop's basic blocks 778 // and generate a condition that branches to the copy depending on the 779 // number of 'left over' iterations. 780 // 781 std::vector<BasicBlock *> NewBlocks; 782 ValueToValueMapTy VMap; 783 784 // For unroll factor 2 remainder loop will have 1 iterations. 785 // Do not create 1 iteration loop. 786 bool CreateRemainderLoop = (Count != 2); 787 788 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 789 // the loop, otherwise we create a cloned loop to execute the extra 790 // iterations. This function adds the appropriate CFG connections. 791 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 792 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 793 Loop *remainderLoop = CloneLoopBlocks( 794 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, 795 InsertTop, InsertBot, 796 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 797 798 // Insert the cloned blocks into the function. 799 F->getBasicBlockList().splice(InsertBot->getIterator(), 800 F->getBasicBlockList(), 801 NewBlocks[0]->getIterator(), 802 F->end()); 803 804 // Now the loop blocks are cloned and the other exiting blocks from the 805 // remainder are connected to the original Loop's exit blocks. The remaining 806 // work is to update the phi nodes in the original loop, and take in the 807 // values from the cloned region. 808 for (auto *BB : OtherExits) { 809 for (auto &II : *BB) { 810 811 // Given we preserve LCSSA form, we know that the values used outside the 812 // loop will be used through these phi nodes at the exit blocks that are 813 // transformed below. 814 if (!isa<PHINode>(II)) 815 break; 816 PHINode *Phi = cast<PHINode>(&II); 817 unsigned oldNumOperands = Phi->getNumIncomingValues(); 818 // Add the incoming values from the remainder code to the end of the phi 819 // node. 820 for (unsigned i =0; i < oldNumOperands; i++){ 821 Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); 822 // newVal can be a constant or derived from values outside the loop, and 823 // hence need not have a VMap value. Also, since lookup already generated 824 // a default "null" VMap entry for this value, we need to populate that 825 // VMap entry correctly, with the mapped entry being itself. 826 if (!newVal) { 827 newVal = Phi->getIncomingValue(i); 828 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); 829 } 830 Phi->addIncoming(newVal, 831 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 832 } 833 } 834 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 835 for (BasicBlock *SuccBB : successors(BB)) { 836 assert(!(any_of(OtherExits, 837 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 838 SuccBB == LatchExit) && 839 "Breaks the definition of dedicated exits!"); 840 } 841 #endif 842 } 843 844 // Update the immediate dominator of the exit blocks and blocks that are 845 // reachable from the exit blocks. This is needed because we now have paths 846 // from both the original loop and the remainder code reaching the exit 847 // blocks. While the IDom of these exit blocks were from the original loop, 848 // now the IDom is the preheader (which decides whether the original loop or 849 // remainder code should run). 850 if (DT && !L->getExitingBlock()) { 851 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 852 // NB! We have to examine the dom children of all loop blocks, not just 853 // those which are the IDom of the exit blocks. This is because blocks 854 // reachable from the exit blocks can have their IDom as the nearest common 855 // dominator of the exit blocks. 856 for (auto *BB : L->blocks()) { 857 auto *DomNodeBB = DT->getNode(BB); 858 for (auto *DomChild : DomNodeBB->getChildren()) { 859 auto *DomChildBB = DomChild->getBlock(); 860 if (!L->contains(LI->getLoopFor(DomChildBB))) 861 ChildrenToUpdate.push_back(DomChildBB); 862 } 863 } 864 for (auto *BB : ChildrenToUpdate) 865 DT->changeImmediateDominator(BB, PreHeader); 866 } 867 868 // Loop structure should be the following: 869 // Epilog Prolog 870 // 871 // PreHeader PreHeader 872 // NewPreHeader PrologPreHeader 873 // Header PrologHeader 874 // ... ... 875 // Latch PrologLatch 876 // NewExit PrologExit 877 // EpilogPreHeader NewPreHeader 878 // EpilogHeader Header 879 // ... ... 880 // EpilogLatch Latch 881 // LatchExit LatchExit 882 883 // Rewrite the cloned instruction operands to use the values created when the 884 // clone is created. 885 for (BasicBlock *BB : NewBlocks) { 886 for (Instruction &I : *BB) { 887 RemapInstruction(&I, VMap, 888 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 889 } 890 } 891 892 if (UseEpilogRemainder) { 893 // Connect the epilog code to the original loop and update the 894 // PHI functions. 895 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 896 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 897 PreserveLCSSA); 898 899 // Update counter in loop for unrolling. 900 // I should be multiply of Count. 901 IRBuilder<> B2(NewPreHeader->getTerminator()); 902 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 903 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 904 B2.SetInsertPoint(LatchBR); 905 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 906 Header->getFirstNonPHI()); 907 Value *IdxSub = 908 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 909 NewIdx->getName() + ".nsub"); 910 Value *IdxCmp; 911 if (LatchBR->getSuccessor(0) == Header) 912 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 913 else 914 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 915 NewIdx->addIncoming(TestVal, NewPreHeader); 916 NewIdx->addIncoming(IdxSub, Latch); 917 LatchBR->setCondition(IdxCmp); 918 } else { 919 // Connect the prolog code to the original loop and update the 920 // PHI functions. 921 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 922 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 923 } 924 925 // If this loop is nested, then the loop unroller changes the code in the any 926 // of its parent loops, so the Scalar Evolution pass needs to be run again. 927 SE->forgetTopmostLoop(L); 928 929 // Verify that the Dom Tree is correct. 930 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 931 if (DT) 932 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 933 #endif 934 935 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 936 // cannot rely on the LoopUnrollPass to do this because it only does 937 // canonicalization for parent/subloops and not the sibling loops. 938 if (OtherExits.size() > 0) { 939 // Generate dedicated exit blocks for the original loop, to preserve 940 // LoopSimplifyForm. 941 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 942 // Generate dedicated exit blocks for the remainder loop if one exists, to 943 // preserve LoopSimplifyForm. 944 if (remainderLoop) 945 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 946 } 947 948 auto UnrollResult = LoopUnrollResult::Unmodified; 949 if (remainderLoop && UnrollRemainder) { 950 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 951 UnrollResult = 952 UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1, 953 /*Force*/ false, /*AllowRuntime*/ false, 954 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true, 955 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1, 956 /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC, 957 /*ORE*/ nullptr, PreserveLCSSA); 958 } 959 960 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 961 *ResultLoop = remainderLoop; 962 NumRuntimeUnrolled++; 963 return true; 964 } 965