1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 static cl::opt<bool> UnrollRuntimeOtherExitPredictable( 54 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, 55 cl::desc("Assume the non latch exit block to be predictable")); 56 57 /// Connect the unrolling prolog code to the original loop. 58 /// The unrolling prolog code contains code to execute the 59 /// 'extra' iterations if the run-time trip count modulo the 60 /// unroll count is non-zero. 61 /// 62 /// This function performs the following: 63 /// - Create PHI nodes at prolog end block to combine values 64 /// that exit the prolog code and jump around the prolog. 65 /// - Add a PHI operand to a PHI node at the loop exit block 66 /// for values that exit the prolog and go around the loop. 67 /// - Branch around the original loop if the trip count is less 68 /// than the unroll factor. 69 /// 70 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 71 BasicBlock *PrologExit, 72 BasicBlock *OriginalLoopLatchExit, 73 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 74 ValueToValueMapTy &VMap, DominatorTree *DT, 75 LoopInfo *LI, bool PreserveLCSSA) { 76 // Loop structure should be the following: 77 // Preheader 78 // PrologHeader 79 // ... 80 // PrologLatch 81 // PrologExit 82 // NewPreheader 83 // Header 84 // ... 85 // Latch 86 // LatchExit 87 BasicBlock *Latch = L->getLoopLatch(); 88 assert(Latch && "Loop must have a latch"); 89 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 90 91 // Create a PHI node for each outgoing value from the original loop 92 // (which means it is an outgoing value from the prolog code too). 93 // The new PHI node is inserted in the prolog end basic block. 94 // The new PHI node value is added as an operand of a PHI node in either 95 // the loop header or the loop exit block. 96 for (BasicBlock *Succ : successors(Latch)) { 97 for (PHINode &PN : Succ->phis()) { 98 // Add a new PHI node to the prolog end block and add the 99 // appropriate incoming values. 100 // TODO: This code assumes that the PrologExit (or the LatchExit block for 101 // prolog loop) contains only one predecessor from the loop, i.e. the 102 // PrologLatch. When supporting multiple-exiting block loops, we can have 103 // two or more blocks that have the LatchExit as the target in the 104 // original loop. 105 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 106 PrologExit->getFirstNonPHI()); 107 // Adding a value to the new PHI node from the original loop preheader. 108 // This is the value that skips all the prolog code. 109 if (L->contains(&PN)) { 110 // Succ is loop header. 111 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 112 PreHeader); 113 } else { 114 // Succ is LatchExit. 115 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 116 } 117 118 Value *V = PN.getIncomingValueForBlock(Latch); 119 if (Instruction *I = dyn_cast<Instruction>(V)) { 120 if (L->contains(I)) { 121 V = VMap.lookup(I); 122 } 123 } 124 // Adding a value to the new PHI node from the last prolog block 125 // that was created. 126 NewPN->addIncoming(V, PrologLatch); 127 128 // Update the existing PHI node operand with the value from the 129 // new PHI node. How this is done depends on if the existing 130 // PHI node is in the original loop block, or the exit block. 131 if (L->contains(&PN)) 132 PN.setIncomingValueForBlock(NewPreHeader, NewPN); 133 else 134 PN.addIncoming(NewPN, PrologExit); 135 } 136 } 137 138 // Make sure that created prolog loop is in simplified form 139 SmallVector<BasicBlock *, 4> PrologExitPreds; 140 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 141 if (PrologLoop) { 142 for (BasicBlock *PredBB : predecessors(PrologExit)) 143 if (PrologLoop->contains(PredBB)) 144 PrologExitPreds.push_back(PredBB); 145 146 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 147 nullptr, PreserveLCSSA); 148 } 149 150 // Create a branch around the original loop, which is taken if there are no 151 // iterations remaining to be executed after running the prologue. 152 Instruction *InsertPt = PrologExit->getTerminator(); 153 IRBuilder<> B(InsertPt); 154 155 assert(Count != 0 && "nonsensical Count!"); 156 157 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 158 // This means %xtraiter is (BECount + 1) and all of the iterations of this 159 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 160 // then (BECount + 1) cannot unsigned-overflow. 161 Value *BrLoopExit = 162 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 163 // Split the exit to maintain loop canonicalization guarantees 164 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 165 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 166 nullptr, PreserveLCSSA); 167 // Add the branch to the exit block (around the unrolled loop) 168 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 169 InsertPt->eraseFromParent(); 170 if (DT) 171 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 172 } 173 174 /// Connect the unrolling epilog code to the original loop. 175 /// The unrolling epilog code contains code to execute the 176 /// 'extra' iterations if the run-time trip count modulo the 177 /// unroll count is non-zero. 178 /// 179 /// This function performs the following: 180 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 181 /// - Create PHI nodes at the unrolling loop exit to combine 182 /// values that exit the unrolling loop code and jump around it. 183 /// - Update PHI operands in the epilog loop by the new PHI nodes 184 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 185 /// 186 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 187 BasicBlock *Exit, BasicBlock *PreHeader, 188 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 189 ValueToValueMapTy &VMap, DominatorTree *DT, 190 LoopInfo *LI, bool PreserveLCSSA) { 191 BasicBlock *Latch = L->getLoopLatch(); 192 assert(Latch && "Loop must have a latch"); 193 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 194 195 // Loop structure should be the following: 196 // 197 // PreHeader 198 // NewPreHeader 199 // Header 200 // ... 201 // Latch 202 // NewExit (PN) 203 // EpilogPreHeader 204 // EpilogHeader 205 // ... 206 // EpilogLatch 207 // Exit (EpilogPN) 208 209 // Update PHI nodes at NewExit and Exit. 210 for (PHINode &PN : NewExit->phis()) { 211 // PN should be used in another PHI located in Exit block as 212 // Exit was split by SplitBlockPredecessors into Exit and NewExit 213 // Basicaly it should look like: 214 // NewExit: 215 // PN = PHI [I, Latch] 216 // ... 217 // Exit: 218 // EpilogPN = PHI [PN, EpilogPreHeader] 219 // 220 // There is EpilogPreHeader incoming block instead of NewExit as 221 // NewExit was spilt 1 more time to get EpilogPreHeader. 222 assert(PN.hasOneUse() && "The phi should have 1 use"); 223 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 224 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 225 226 // Add incoming PreHeader from branch around the Loop 227 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 228 229 Value *V = PN.getIncomingValueForBlock(Latch); 230 Instruction *I = dyn_cast<Instruction>(V); 231 if (I && L->contains(I)) 232 // If value comes from an instruction in the loop add VMap value. 233 V = VMap.lookup(I); 234 // For the instruction out of the loop, constant or undefined value 235 // insert value itself. 236 EpilogPN->addIncoming(V, EpilogLatch); 237 238 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 239 "EpilogPN should have EpilogPreHeader incoming block"); 240 // Change EpilogPreHeader incoming block to NewExit. 241 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 242 NewExit); 243 // Now PHIs should look like: 244 // NewExit: 245 // PN = PHI [I, Latch], [undef, PreHeader] 246 // ... 247 // Exit: 248 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 249 } 250 251 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 252 // Update corresponding PHI nodes in epilog loop. 253 for (BasicBlock *Succ : successors(Latch)) { 254 // Skip this as we already updated phis in exit blocks. 255 if (!L->contains(Succ)) 256 continue; 257 for (PHINode &PN : Succ->phis()) { 258 // Add new PHI nodes to the loop exit block and update epilog 259 // PHIs with the new PHI values. 260 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 261 NewExit->getFirstNonPHI()); 262 // Adding a value to the new PHI node from the unrolling loop preheader. 263 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 264 // Adding a value to the new PHI node from the unrolling loop latch. 265 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 266 267 // Update the existing PHI node operand with the value from the new PHI 268 // node. Corresponding instruction in epilog loop should be PHI. 269 PHINode *VPN = cast<PHINode>(VMap[&PN]); 270 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); 271 } 272 } 273 274 Instruction *InsertPt = NewExit->getTerminator(); 275 IRBuilder<> B(InsertPt); 276 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 277 assert(Exit && "Loop must have a single exit block only"); 278 // Split the epilogue exit to maintain loop canonicalization guarantees 279 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 280 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 281 PreserveLCSSA); 282 // Add the branch to the exit block (around the unrolling loop) 283 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 284 InsertPt->eraseFromParent(); 285 if (DT) 286 DT->changeImmediateDominator(Exit, NewExit); 287 288 // Split the main loop exit to maintain canonicalization guarantees. 289 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 290 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 291 PreserveLCSSA); 292 } 293 294 /// Create a clone of the blocks in a loop and connect them together. 295 /// If CreateRemainderLoop is false, loop structure will not be cloned, 296 /// otherwise a new loop will be created including all cloned blocks, and the 297 /// iterator of it switches to count NewIter down to 0. 298 /// The cloned blocks should be inserted between InsertTop and InsertBot. 299 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 300 /// new loop exit. 301 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 302 static Loop * 303 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 304 const bool UseEpilogRemainder, const bool UnrollRemainder, 305 BasicBlock *InsertTop, 306 BasicBlock *InsertBot, BasicBlock *Preheader, 307 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 308 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 309 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 310 BasicBlock *Header = L->getHeader(); 311 BasicBlock *Latch = L->getLoopLatch(); 312 Function *F = Header->getParent(); 313 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 314 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 315 Loop *ParentLoop = L->getParentLoop(); 316 NewLoopsMap NewLoops; 317 NewLoops[ParentLoop] = ParentLoop; 318 if (!CreateRemainderLoop) 319 NewLoops[L] = ParentLoop; 320 321 // For each block in the original loop, create a new copy, 322 // and update the value map with the newly created values. 323 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 324 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 325 NewBlocks.push_back(NewBB); 326 327 // If we're unrolling the outermost loop, there's no remainder loop, 328 // and this block isn't in a nested loop, then the new block is not 329 // in any loop. Otherwise, add it to loopinfo. 330 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 331 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 332 333 VMap[*BB] = NewBB; 334 if (Header == *BB) { 335 // For the first block, add a CFG connection to this newly 336 // created block. 337 InsertTop->getTerminator()->setSuccessor(0, NewBB); 338 } 339 340 if (DT) { 341 if (Header == *BB) { 342 // The header is dominated by the preheader. 343 DT->addNewBlock(NewBB, InsertTop); 344 } else { 345 // Copy information from original loop to unrolled loop. 346 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 347 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 348 } 349 } 350 351 if (Latch == *BB) { 352 // For the last block, if CreateRemainderLoop is false, create a direct 353 // jump to InsertBot. If not, create a loop back to cloned head. 354 VMap.erase((*BB)->getTerminator()); 355 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 356 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 357 IRBuilder<> Builder(LatchBR); 358 if (!CreateRemainderLoop) { 359 Builder.CreateBr(InsertBot); 360 } else { 361 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 362 suffix + ".iter", 363 FirstLoopBB->getFirstNonPHI()); 364 Value *IdxSub = 365 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 366 NewIdx->getName() + ".sub"); 367 Value *IdxCmp = 368 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 369 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 370 NewIdx->addIncoming(NewIter, InsertTop); 371 NewIdx->addIncoming(IdxSub, NewBB); 372 } 373 LatchBR->eraseFromParent(); 374 } 375 } 376 377 // Change the incoming values to the ones defined in the preheader or 378 // cloned loop. 379 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 380 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 381 if (!CreateRemainderLoop) { 382 if (UseEpilogRemainder) { 383 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 384 NewPHI->setIncomingBlock(idx, InsertTop); 385 NewPHI->removeIncomingValue(Latch, false); 386 } else { 387 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 388 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 389 } 390 } else { 391 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 392 NewPHI->setIncomingBlock(idx, InsertTop); 393 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 394 idx = NewPHI->getBasicBlockIndex(Latch); 395 Value *InVal = NewPHI->getIncomingValue(idx); 396 NewPHI->setIncomingBlock(idx, NewLatch); 397 if (Value *V = VMap.lookup(InVal)) 398 NewPHI->setIncomingValue(idx, V); 399 } 400 } 401 if (CreateRemainderLoop) { 402 Loop *NewLoop = NewLoops[L]; 403 assert(NewLoop && "L should have been cloned"); 404 MDNode *LoopID = NewLoop->getLoopID(); 405 406 // Only add loop metadata if the loop is not going to be completely 407 // unrolled. 408 if (UnrollRemainder) 409 return NewLoop; 410 411 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 412 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 413 if (NewLoopID.hasValue()) { 414 NewLoop->setLoopID(NewLoopID.getValue()); 415 416 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 417 // explicitly. 418 return NewLoop; 419 } 420 421 // Add unroll disable metadata to disable future unrolling for this loop. 422 NewLoop->setLoopAlreadyUnrolled(); 423 return NewLoop; 424 } 425 else 426 return nullptr; 427 } 428 429 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 430 /// is populated with all the loop exit blocks other than the LatchExit block. 431 static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit, 432 bool PreserveLCSSA, 433 bool UseEpilogRemainder) { 434 435 // We currently have some correctness constrains in unrolling a multi-exit 436 // loop. Check for these below. 437 438 // We rely on LCSSA form being preserved when the exit blocks are transformed. 439 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) 440 if (!PreserveLCSSA) 441 return false; 442 443 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 444 // UnrollRuntimeMultiExit is true. This will need updating the logic in 445 // connectEpilog/connectProlog. 446 if (!LatchExit->getSinglePredecessor()) { 447 LLVM_DEBUG( 448 dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 449 "predecessor.\n"); 450 return false; 451 } 452 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 453 // and L is an inner loop. This is because in presence of multiple exits, the 454 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 455 // outer loop. This is automatically handled in the prolog case, so we do not 456 // have that bug in prolog generation. 457 if (UseEpilogRemainder && L->getParentLoop()) 458 return false; 459 460 // All constraints have been satisfied. 461 return true; 462 } 463 464 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 465 /// we return true only if UnrollRuntimeMultiExit is set to true. 466 static bool canProfitablyUnrollMultiExitLoop( 467 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 468 bool PreserveLCSSA, bool UseEpilogRemainder) { 469 470 #if !defined(NDEBUG) 471 assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, 472 UseEpilogRemainder) && 473 "Should be safe to unroll before checking profitability!"); 474 #endif 475 476 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 477 if (UnrollRuntimeMultiExit.getNumOccurrences()) 478 return UnrollRuntimeMultiExit; 479 480 // The main pain point with multi-exit loop unrolling is that once unrolled, 481 // we will not be able to merge all blocks into a straight line code. 482 // There are branches within the unrolled loop that go to the OtherExits. 483 // The second point is the increase in code size, but this is true 484 // irrespective of multiple exits. 485 486 // Note: Both the heuristics below are coarse grained. We are essentially 487 // enabling unrolling of loops that have a single side exit other than the 488 // normal LatchExit (i.e. exiting into a deoptimize block). 489 // The heuristics considered are: 490 // 1. low number of branches in the unrolled version. 491 // 2. high predictability of these extra branches. 492 // We avoid unrolling loops that have more than two exiting blocks. This 493 // limits the total number of branches in the unrolled loop to be atmost 494 // the unroll factor (since one of the exiting blocks is the latch block). 495 SmallVector<BasicBlock*, 4> ExitingBlocks; 496 L->getExitingBlocks(ExitingBlocks); 497 if (ExitingBlocks.size() > 2) 498 return false; 499 500 // Allow unrolling of loops with no non latch exit blocks. 501 if (OtherExits.size() == 0) 502 return true; 503 504 // The second heuristic is that L has one exit other than the latchexit and 505 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 506 // taken, which also implies the branch leading to the deoptimize block is 507 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we 508 // assume the other exit branch is predictable even if it has no deoptimize 509 // call. 510 return (OtherExits.size() == 1 && 511 (UnrollRuntimeOtherExitPredictable || 512 OtherExits[0]->getTerminatingDeoptimizeCall())); 513 // TODO: These can be fine-tuned further to consider code size or deopt states 514 // that are captured by the deoptimize exit block. 515 // Also, we can extend this to support more cases, if we actually 516 // know of kinds of multiexit loops that would benefit from unrolling. 517 } 518 519 // Assign the maximum possible trip count as the back edge weight for the 520 // remainder loop if the original loop comes with a branch weight. 521 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, 522 Loop *RemainderLoop, 523 uint64_t UnrollFactor) { 524 uint64_t TrueWeight, FalseWeight; 525 BranchInst *LatchBR = 526 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 527 if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) { 528 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() 529 ? FalseWeight 530 : TrueWeight; 531 assert(UnrollFactor > 1); 532 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; 533 BasicBlock *Header = RemainderLoop->getHeader(); 534 BasicBlock *Latch = RemainderLoop->getLoopLatch(); 535 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); 536 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); 537 MDBuilder MDB(RemainderLatchBR->getContext()); 538 MDNode *WeightNode = 539 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 540 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 541 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 542 } 543 } 544 545 /// Insert code in the prolog/epilog code when unrolling a loop with a 546 /// run-time trip-count. 547 /// 548 /// This method assumes that the loop unroll factor is total number 549 /// of loop bodies in the loop after unrolling. (Some folks refer 550 /// to the unroll factor as the number of *extra* copies added). 551 /// We assume also that the loop unroll factor is a power-of-two. So, after 552 /// unrolling the loop, the number of loop bodies executed is 2, 553 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 554 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 555 /// the switch instruction is generated. 556 /// 557 /// ***Prolog case*** 558 /// extraiters = tripcount % loopfactor 559 /// if (extraiters == 0) jump Loop: 560 /// else jump Prol: 561 /// Prol: LoopBody; 562 /// extraiters -= 1 // Omitted if unroll factor is 2. 563 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 564 /// if (tripcount < loopfactor) jump End: 565 /// Loop: 566 /// ... 567 /// End: 568 /// 569 /// ***Epilog case*** 570 /// extraiters = tripcount % loopfactor 571 /// if (tripcount < loopfactor) jump LoopExit: 572 /// unroll_iters = tripcount - extraiters 573 /// Loop: LoopBody; (executes unroll_iter times); 574 /// unroll_iter -= 1 575 /// if (unroll_iter != 0) jump Loop: 576 /// LoopExit: 577 /// if (extraiters == 0) jump EpilExit: 578 /// Epil: LoopBody; (executes extraiters times) 579 /// extraiters -= 1 // Omitted if unroll factor is 2. 580 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 581 /// EpilExit: 582 583 bool llvm::UnrollRuntimeLoopRemainder( 584 Loop *L, unsigned Count, bool AllowExpensiveTripCount, 585 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, 586 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 587 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { 588 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 589 LLVM_DEBUG(L->dump()); 590 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 591 : dbgs() << "Using prolog remainder.\n"); 592 593 // Make sure the loop is in canonical form. 594 if (!L->isLoopSimplifyForm()) { 595 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 596 return false; 597 } 598 599 // Guaranteed by LoopSimplifyForm. 600 BasicBlock *Latch = L->getLoopLatch(); 601 BasicBlock *Header = L->getHeader(); 602 603 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 604 605 if (!LatchBR || LatchBR->isUnconditional()) { 606 // The loop-rotate pass can be helpful to avoid this in many cases. 607 LLVM_DEBUG( 608 dbgs() 609 << "Loop latch not terminated by a conditional branch.\n"); 610 return false; 611 } 612 613 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 614 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 615 616 if (L->contains(LatchExit)) { 617 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 618 // targets of the Latch be an exit block out of the loop. 619 LLVM_DEBUG( 620 dbgs() 621 << "One of the loop latch successors must be the exit block.\n"); 622 return false; 623 } 624 625 // These are exit blocks other than the target of the latch exiting block. 626 SmallVector<BasicBlock *, 4> OtherExits; 627 L->getUniqueNonLatchExitBlocks(OtherExits); 628 bool isMultiExitUnrollingEnabled = 629 canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, 630 UseEpilogRemainder) && 631 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 632 UseEpilogRemainder); 633 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 634 if (!isMultiExitUnrollingEnabled && 635 (!L->getExitingBlock() || OtherExits.size())) { 636 LLVM_DEBUG( 637 dbgs() 638 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 639 "enabled!\n"); 640 return false; 641 } 642 // Use Scalar Evolution to compute the trip count. This allows more loops to 643 // be unrolled than relying on induction var simplification. 644 if (!SE) 645 return false; 646 647 // Only unroll loops with a computable trip count, and the trip count needs 648 // to be an int value (allowing a pointer type is a TODO item). 649 // We calculate the backedge count by using getExitCount on the Latch block, 650 // which is proven to be the only exiting block in this loop. This is same as 651 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 652 // exiting blocks). 653 const SCEV *BECountSC = SE->getExitCount(L, Latch); 654 if (isa<SCEVCouldNotCompute>(BECountSC) || 655 !BECountSC->getType()->isIntegerTy()) { 656 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 657 return false; 658 } 659 660 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 661 662 // Add 1 since the backedge count doesn't include the first loop iteration. 663 const SCEV *TripCountSC = 664 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 665 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 666 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 667 return false; 668 } 669 670 BasicBlock *PreHeader = L->getLoopPreheader(); 671 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 672 const DataLayout &DL = Header->getModule()->getDataLayout(); 673 SCEVExpander Expander(*SE, DL, "loop-unroll"); 674 if (!AllowExpensiveTripCount && 675 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, 676 TTI, PreHeaderBR)) { 677 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 678 return false; 679 } 680 681 // This constraint lets us deal with an overflowing trip count easily; see the 682 // comment on ModVal below. 683 if (Log2_32(Count) > BEWidth) { 684 LLVM_DEBUG( 685 dbgs() 686 << "Count failed constraint on overflow trip count calculation.\n"); 687 return false; 688 } 689 690 // Loop structure is the following: 691 // 692 // PreHeader 693 // Header 694 // ... 695 // Latch 696 // LatchExit 697 698 BasicBlock *NewPreHeader; 699 BasicBlock *NewExit = nullptr; 700 BasicBlock *PrologExit = nullptr; 701 BasicBlock *EpilogPreHeader = nullptr; 702 BasicBlock *PrologPreHeader = nullptr; 703 704 if (UseEpilogRemainder) { 705 // If epilog remainder 706 // Split PreHeader to insert a branch around loop for unrolling. 707 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 708 NewPreHeader->setName(PreHeader->getName() + ".new"); 709 // Split LatchExit to create phi nodes from branch above. 710 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 711 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI, 712 nullptr, PreserveLCSSA); 713 // NewExit gets its DebugLoc from LatchExit, which is not part of the 714 // original Loop. 715 // Fix this by setting Loop's DebugLoc to NewExit. 716 auto *NewExitTerminator = NewExit->getTerminator(); 717 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 718 // Split NewExit to insert epilog remainder loop. 719 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 720 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 721 } else { 722 // If prolog remainder 723 // Split the original preheader twice to insert prolog remainder loop 724 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 725 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 726 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 727 DT, LI); 728 PrologExit->setName(Header->getName() + ".prol.loopexit"); 729 // Split PrologExit to get NewPreHeader. 730 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 731 NewPreHeader->setName(PreHeader->getName() + ".new"); 732 } 733 // Loop structure should be the following: 734 // Epilog Prolog 735 // 736 // PreHeader PreHeader 737 // *NewPreHeader *PrologPreHeader 738 // Header *PrologExit 739 // ... *NewPreHeader 740 // Latch Header 741 // *NewExit ... 742 // *EpilogPreHeader Latch 743 // LatchExit LatchExit 744 745 // Calculate conditions for branch around loop for unrolling 746 // in epilog case and around prolog remainder loop in prolog case. 747 // Compute the number of extra iterations required, which is: 748 // extra iterations = run-time trip count % loop unroll factor 749 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 750 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 751 PreHeaderBR); 752 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 753 PreHeaderBR); 754 IRBuilder<> B(PreHeaderBR); 755 Value *ModVal; 756 // Calculate ModVal = (BECount + 1) % Count. 757 // Note that TripCount is BECount + 1. 758 if (isPowerOf2_32(Count)) { 759 // When Count is power of 2 we don't BECount for epilog case, however we'll 760 // need it for a branch around unrolling loop for prolog case. 761 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 762 // 1. There are no iterations to be run in the prolog/epilog loop. 763 // OR 764 // 2. The addition computing TripCount overflowed. 765 // 766 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 767 // the number of iterations that remain to be run in the original loop is a 768 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 769 // explicitly check this above). 770 } else { 771 // As (BECount + 1) can potentially unsigned overflow we count 772 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 773 Value *ModValTmp = B.CreateURem(BECount, 774 ConstantInt::get(BECount->getType(), 775 Count)); 776 Value *ModValAdd = B.CreateAdd(ModValTmp, 777 ConstantInt::get(ModValTmp->getType(), 1)); 778 // At that point (BECount % Count) + 1 could be equal to Count. 779 // To handle this case we need to take mod by Count one more time. 780 ModVal = B.CreateURem(ModValAdd, 781 ConstantInt::get(BECount->getType(), Count), 782 "xtraiter"); 783 } 784 Value *BranchVal = 785 UseEpilogRemainder ? B.CreateICmpULT(BECount, 786 ConstantInt::get(BECount->getType(), 787 Count - 1)) : 788 B.CreateIsNotNull(ModVal, "lcmp.mod"); 789 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 790 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 791 // Branch to either remainder (extra iterations) loop or unrolling loop. 792 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 793 PreHeaderBR->eraseFromParent(); 794 if (DT) { 795 if (UseEpilogRemainder) 796 DT->changeImmediateDominator(NewExit, PreHeader); 797 else 798 DT->changeImmediateDominator(PrologExit, PreHeader); 799 } 800 Function *F = Header->getParent(); 801 // Get an ordered list of blocks in the loop to help with the ordering of the 802 // cloned blocks in the prolog/epilog code 803 LoopBlocksDFS LoopBlocks(L); 804 LoopBlocks.perform(LI); 805 806 // 807 // For each extra loop iteration, create a copy of the loop's basic blocks 808 // and generate a condition that branches to the copy depending on the 809 // number of 'left over' iterations. 810 // 811 std::vector<BasicBlock *> NewBlocks; 812 ValueToValueMapTy VMap; 813 814 // For unroll factor 2 remainder loop will have 1 iterations. 815 // Do not create 1 iteration loop. 816 bool CreateRemainderLoop = (Count != 2); 817 818 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 819 // the loop, otherwise we create a cloned loop to execute the extra 820 // iterations. This function adds the appropriate CFG connections. 821 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 822 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 823 Loop *remainderLoop = CloneLoopBlocks( 824 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, 825 InsertTop, InsertBot, 826 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 827 828 // Assign the maximum possible trip count as the back edge weight for the 829 // remainder loop if the original loop comes with a branch weight. 830 if (remainderLoop && !UnrollRemainder) 831 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); 832 833 // Insert the cloned blocks into the function. 834 F->getBasicBlockList().splice(InsertBot->getIterator(), 835 F->getBasicBlockList(), 836 NewBlocks[0]->getIterator(), 837 F->end()); 838 839 // Now the loop blocks are cloned and the other exiting blocks from the 840 // remainder are connected to the original Loop's exit blocks. The remaining 841 // work is to update the phi nodes in the original loop, and take in the 842 // values from the cloned region. 843 for (auto *BB : OtherExits) { 844 for (auto &II : *BB) { 845 846 // Given we preserve LCSSA form, we know that the values used outside the 847 // loop will be used through these phi nodes at the exit blocks that are 848 // transformed below. 849 if (!isa<PHINode>(II)) 850 break; 851 PHINode *Phi = cast<PHINode>(&II); 852 unsigned oldNumOperands = Phi->getNumIncomingValues(); 853 // Add the incoming values from the remainder code to the end of the phi 854 // node. 855 for (unsigned i =0; i < oldNumOperands; i++){ 856 Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); 857 // newVal can be a constant or derived from values outside the loop, and 858 // hence need not have a VMap value. Also, since lookup already generated 859 // a default "null" VMap entry for this value, we need to populate that 860 // VMap entry correctly, with the mapped entry being itself. 861 if (!newVal) { 862 newVal = Phi->getIncomingValue(i); 863 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); 864 } 865 Phi->addIncoming(newVal, 866 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 867 } 868 } 869 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 870 for (BasicBlock *SuccBB : successors(BB)) { 871 assert(!(any_of(OtherExits, 872 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 873 SuccBB == LatchExit) && 874 "Breaks the definition of dedicated exits!"); 875 } 876 #endif 877 } 878 879 // Update the immediate dominator of the exit blocks and blocks that are 880 // reachable from the exit blocks. This is needed because we now have paths 881 // from both the original loop and the remainder code reaching the exit 882 // blocks. While the IDom of these exit blocks were from the original loop, 883 // now the IDom is the preheader (which decides whether the original loop or 884 // remainder code should run). 885 if (DT && !L->getExitingBlock()) { 886 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 887 // NB! We have to examine the dom children of all loop blocks, not just 888 // those which are the IDom of the exit blocks. This is because blocks 889 // reachable from the exit blocks can have their IDom as the nearest common 890 // dominator of the exit blocks. 891 for (auto *BB : L->blocks()) { 892 auto *DomNodeBB = DT->getNode(BB); 893 for (auto *DomChild : DomNodeBB->children()) { 894 auto *DomChildBB = DomChild->getBlock(); 895 if (!L->contains(LI->getLoopFor(DomChildBB))) 896 ChildrenToUpdate.push_back(DomChildBB); 897 } 898 } 899 for (auto *BB : ChildrenToUpdate) 900 DT->changeImmediateDominator(BB, PreHeader); 901 } 902 903 // Loop structure should be the following: 904 // Epilog Prolog 905 // 906 // PreHeader PreHeader 907 // NewPreHeader PrologPreHeader 908 // Header PrologHeader 909 // ... ... 910 // Latch PrologLatch 911 // NewExit PrologExit 912 // EpilogPreHeader NewPreHeader 913 // EpilogHeader Header 914 // ... ... 915 // EpilogLatch Latch 916 // LatchExit LatchExit 917 918 // Rewrite the cloned instruction operands to use the values created when the 919 // clone is created. 920 for (BasicBlock *BB : NewBlocks) { 921 for (Instruction &I : *BB) { 922 RemapInstruction(&I, VMap, 923 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 924 } 925 } 926 927 if (UseEpilogRemainder) { 928 // Connect the epilog code to the original loop and update the 929 // PHI functions. 930 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 931 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 932 PreserveLCSSA); 933 934 // Update counter in loop for unrolling. 935 // I should be multiply of Count. 936 IRBuilder<> B2(NewPreHeader->getTerminator()); 937 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 938 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 939 B2.SetInsertPoint(LatchBR); 940 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 941 Header->getFirstNonPHI()); 942 Value *IdxSub = 943 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 944 NewIdx->getName() + ".nsub"); 945 Value *IdxCmp; 946 if (LatchBR->getSuccessor(0) == Header) 947 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 948 else 949 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 950 NewIdx->addIncoming(TestVal, NewPreHeader); 951 NewIdx->addIncoming(IdxSub, Latch); 952 LatchBR->setCondition(IdxCmp); 953 } else { 954 // Connect the prolog code to the original loop and update the 955 // PHI functions. 956 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 957 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 958 } 959 960 // If this loop is nested, then the loop unroller changes the code in the any 961 // of its parent loops, so the Scalar Evolution pass needs to be run again. 962 SE->forgetTopmostLoop(L); 963 964 // Verify that the Dom Tree is correct. 965 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 966 if (DT) 967 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 968 #endif 969 970 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 971 // cannot rely on the LoopUnrollPass to do this because it only does 972 // canonicalization for parent/subloops and not the sibling loops. 973 if (OtherExits.size() > 0) { 974 // Generate dedicated exit blocks for the original loop, to preserve 975 // LoopSimplifyForm. 976 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 977 // Generate dedicated exit blocks for the remainder loop if one exists, to 978 // preserve LoopSimplifyForm. 979 if (remainderLoop) 980 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 981 } 982 983 auto UnrollResult = LoopUnrollResult::Unmodified; 984 if (remainderLoop && UnrollRemainder) { 985 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 986 UnrollResult = 987 UnrollLoop(remainderLoop, 988 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, 989 /*AllowExpensiveTripCount*/ false, 990 /*UnrollRemainder*/ false, ForgetAllSCEV}, 991 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); 992 } 993 994 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 995 *ResultLoop = remainderLoop; 996 NumRuntimeUnrolled++; 997 return true; 998 } 999