1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0.  When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 #include <algorithm>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "loop-unroll"
47 
48 STATISTIC(NumRuntimeUnrolled,
49           "Number of loops unrolled with run-time trip counts");
50 static cl::opt<bool> UnrollRuntimeMultiExit(
51     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
52     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
53              "epilog is generated"));
54 
55 /// Connect the unrolling prolog code to the original loop.
56 /// The unrolling prolog code contains code to execute the
57 /// 'extra' iterations if the run-time trip count modulo the
58 /// unroll count is non-zero.
59 ///
60 /// This function performs the following:
61 /// - Create PHI nodes at prolog end block to combine values
62 ///   that exit the prolog code and jump around the prolog.
63 /// - Add a PHI operand to a PHI node at the loop exit block
64 ///   for values that exit the prolog and go around the loop.
65 /// - Branch around the original loop if the trip count is less
66 ///   than the unroll factor.
67 ///
68 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
69                           BasicBlock *PrologExit,
70                           BasicBlock *OriginalLoopLatchExit,
71                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
72                           ValueToValueMapTy &VMap, DominatorTree *DT,
73                           LoopInfo *LI, bool PreserveLCSSA) {
74   // Loop structure should be the following:
75   // Preheader
76   //  PrologHeader
77   //  ...
78   //  PrologLatch
79   //  PrologExit
80   //   NewPreheader
81   //    Header
82   //    ...
83   //    Latch
84   //      LatchExit
85   BasicBlock *Latch = L->getLoopLatch();
86   assert(Latch && "Loop must have a latch");
87   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
88 
89   // Create a PHI node for each outgoing value from the original loop
90   // (which means it is an outgoing value from the prolog code too).
91   // The new PHI node is inserted in the prolog end basic block.
92   // The new PHI node value is added as an operand of a PHI node in either
93   // the loop header or the loop exit block.
94   for (BasicBlock *Succ : successors(Latch)) {
95     for (PHINode &PN : Succ->phis()) {
96       // Add a new PHI node to the prolog end block and add the
97       // appropriate incoming values.
98       // TODO: This code assumes that the PrologExit (or the LatchExit block for
99       // prolog loop) contains only one predecessor from the loop, i.e. the
100       // PrologLatch. When supporting multiple-exiting block loops, we can have
101       // two or more blocks that have the LatchExit as the target in the
102       // original loop.
103       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
104                                        PrologExit->getFirstNonPHI());
105       // Adding a value to the new PHI node from the original loop preheader.
106       // This is the value that skips all the prolog code.
107       if (L->contains(&PN)) {
108         // Succ is loop header.
109         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
110                            PreHeader);
111       } else {
112         // Succ is LatchExit.
113         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
114       }
115 
116       Value *V = PN.getIncomingValueForBlock(Latch);
117       if (Instruction *I = dyn_cast<Instruction>(V)) {
118         if (L->contains(I)) {
119           V = VMap.lookup(I);
120         }
121       }
122       // Adding a value to the new PHI node from the last prolog block
123       // that was created.
124       NewPN->addIncoming(V, PrologLatch);
125 
126       // Update the existing PHI node operand with the value from the
127       // new PHI node.  How this is done depends on if the existing
128       // PHI node is in the original loop block, or the exit block.
129       if (L->contains(&PN))
130         PN.setIncomingValueForBlock(NewPreHeader, NewPN);
131       else
132         PN.addIncoming(NewPN, PrologExit);
133     }
134   }
135 
136   // Make sure that created prolog loop is in simplified form
137   SmallVector<BasicBlock *, 4> PrologExitPreds;
138   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
139   if (PrologLoop) {
140     for (BasicBlock *PredBB : predecessors(PrologExit))
141       if (PrologLoop->contains(PredBB))
142         PrologExitPreds.push_back(PredBB);
143 
144     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
145                            nullptr, PreserveLCSSA);
146   }
147 
148   // Create a branch around the original loop, which is taken if there are no
149   // iterations remaining to be executed after running the prologue.
150   Instruction *InsertPt = PrologExit->getTerminator();
151   IRBuilder<> B(InsertPt);
152 
153   assert(Count != 0 && "nonsensical Count!");
154 
155   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
156   // This means %xtraiter is (BECount + 1) and all of the iterations of this
157   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
158   // then (BECount + 1) cannot unsigned-overflow.
159   Value *BrLoopExit =
160       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
161   // Split the exit to maintain loop canonicalization guarantees
162   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
163   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
164                          nullptr, PreserveLCSSA);
165   // Add the branch to the exit block (around the unrolled loop)
166   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
167   InsertPt->eraseFromParent();
168   if (DT)
169     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
170 }
171 
172 /// Connect the unrolling epilog code to the original loop.
173 /// The unrolling epilog code contains code to execute the
174 /// 'extra' iterations if the run-time trip count modulo the
175 /// unroll count is non-zero.
176 ///
177 /// This function performs the following:
178 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
179 /// - Create PHI nodes at the unrolling loop exit to combine
180 ///   values that exit the unrolling loop code and jump around it.
181 /// - Update PHI operands in the epilog loop by the new PHI nodes
182 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
183 ///
184 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
185                           BasicBlock *Exit, BasicBlock *PreHeader,
186                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
187                           ValueToValueMapTy &VMap, DominatorTree *DT,
188                           LoopInfo *LI, bool PreserveLCSSA)  {
189   BasicBlock *Latch = L->getLoopLatch();
190   assert(Latch && "Loop must have a latch");
191   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
192 
193   // Loop structure should be the following:
194   //
195   // PreHeader
196   // NewPreHeader
197   //   Header
198   //   ...
199   //   Latch
200   // NewExit (PN)
201   // EpilogPreHeader
202   //   EpilogHeader
203   //   ...
204   //   EpilogLatch
205   // Exit (EpilogPN)
206 
207   // Update PHI nodes at NewExit and Exit.
208   for (PHINode &PN : NewExit->phis()) {
209     // PN should be used in another PHI located in Exit block as
210     // Exit was split by SplitBlockPredecessors into Exit and NewExit
211     // Basicaly it should look like:
212     // NewExit:
213     //   PN = PHI [I, Latch]
214     // ...
215     // Exit:
216     //   EpilogPN = PHI [PN, EpilogPreHeader]
217     //
218     // There is EpilogPreHeader incoming block instead of NewExit as
219     // NewExit was spilt 1 more time to get EpilogPreHeader.
220     assert(PN.hasOneUse() && "The phi should have 1 use");
221     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
222     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
223 
224     // Add incoming PreHeader from branch around the Loop
225     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
226 
227     Value *V = PN.getIncomingValueForBlock(Latch);
228     Instruction *I = dyn_cast<Instruction>(V);
229     if (I && L->contains(I))
230       // If value comes from an instruction in the loop add VMap value.
231       V = VMap.lookup(I);
232     // For the instruction out of the loop, constant or undefined value
233     // insert value itself.
234     EpilogPN->addIncoming(V, EpilogLatch);
235 
236     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
237           "EpilogPN should have EpilogPreHeader incoming block");
238     // Change EpilogPreHeader incoming block to NewExit.
239     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
240                                NewExit);
241     // Now PHIs should look like:
242     // NewExit:
243     //   PN = PHI [I, Latch], [undef, PreHeader]
244     // ...
245     // Exit:
246     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
247   }
248 
249   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
250   // Update corresponding PHI nodes in epilog loop.
251   for (BasicBlock *Succ : successors(Latch)) {
252     // Skip this as we already updated phis in exit blocks.
253     if (!L->contains(Succ))
254       continue;
255     for (PHINode &PN : Succ->phis()) {
256       // Add new PHI nodes to the loop exit block and update epilog
257       // PHIs with the new PHI values.
258       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
259                                        NewExit->getFirstNonPHI());
260       // Adding a value to the new PHI node from the unrolling loop preheader.
261       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
262       // Adding a value to the new PHI node from the unrolling loop latch.
263       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
264 
265       // Update the existing PHI node operand with the value from the new PHI
266       // node.  Corresponding instruction in epilog loop should be PHI.
267       PHINode *VPN = cast<PHINode>(VMap[&PN]);
268       VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
269     }
270   }
271 
272   Instruction *InsertPt = NewExit->getTerminator();
273   IRBuilder<> B(InsertPt);
274   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
275   assert(Exit && "Loop must have a single exit block only");
276   // Split the epilogue exit to maintain loop canonicalization guarantees
277   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
278   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
279                          PreserveLCSSA);
280   // Add the branch to the exit block (around the unrolling loop)
281   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
282   InsertPt->eraseFromParent();
283   if (DT)
284     DT->changeImmediateDominator(Exit, NewExit);
285 
286   // Split the main loop exit to maintain canonicalization guarantees.
287   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
288   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
289                          PreserveLCSSA);
290 }
291 
292 /// Create a clone of the blocks in a loop and connect them together.
293 /// If CreateRemainderLoop is false, loop structure will not be cloned,
294 /// otherwise a new loop will be created including all cloned blocks, and the
295 /// iterator of it switches to count NewIter down to 0.
296 /// The cloned blocks should be inserted between InsertTop and InsertBot.
297 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
298 /// new loop exit.
299 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
300 static Loop *
301 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
302                 const bool UseEpilogRemainder, const bool UnrollRemainder,
303                 BasicBlock *InsertTop,
304                 BasicBlock *InsertBot, BasicBlock *Preheader,
305                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
306                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
307   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
308   BasicBlock *Header = L->getHeader();
309   BasicBlock *Latch = L->getLoopLatch();
310   Function *F = Header->getParent();
311   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
312   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
313   Loop *ParentLoop = L->getParentLoop();
314   NewLoopsMap NewLoops;
315   NewLoops[ParentLoop] = ParentLoop;
316   if (!CreateRemainderLoop)
317     NewLoops[L] = ParentLoop;
318 
319   // For each block in the original loop, create a new copy,
320   // and update the value map with the newly created values.
321   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
322     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
323     NewBlocks.push_back(NewBB);
324 
325     // If we're unrolling the outermost loop, there's no remainder loop,
326     // and this block isn't in a nested loop, then the new block is not
327     // in any loop. Otherwise, add it to loopinfo.
328     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
329       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
330 
331     VMap[*BB] = NewBB;
332     if (Header == *BB) {
333       // For the first block, add a CFG connection to this newly
334       // created block.
335       InsertTop->getTerminator()->setSuccessor(0, NewBB);
336     }
337 
338     if (DT) {
339       if (Header == *BB) {
340         // The header is dominated by the preheader.
341         DT->addNewBlock(NewBB, InsertTop);
342       } else {
343         // Copy information from original loop to unrolled loop.
344         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
345         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
346       }
347     }
348 
349     if (Latch == *BB) {
350       // For the last block, if CreateRemainderLoop is false, create a direct
351       // jump to InsertBot. If not, create a loop back to cloned head.
352       VMap.erase((*BB)->getTerminator());
353       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
354       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
355       IRBuilder<> Builder(LatchBR);
356       if (!CreateRemainderLoop) {
357         Builder.CreateBr(InsertBot);
358       } else {
359         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
360                                           suffix + ".iter",
361                                           FirstLoopBB->getFirstNonPHI());
362         Value *IdxSub =
363             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
364                               NewIdx->getName() + ".sub");
365         Value *IdxCmp =
366             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
367         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
368         NewIdx->addIncoming(NewIter, InsertTop);
369         NewIdx->addIncoming(IdxSub, NewBB);
370       }
371       LatchBR->eraseFromParent();
372     }
373   }
374 
375   // Change the incoming values to the ones defined in the preheader or
376   // cloned loop.
377   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
378     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
379     if (!CreateRemainderLoop) {
380       if (UseEpilogRemainder) {
381         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
382         NewPHI->setIncomingBlock(idx, InsertTop);
383         NewPHI->removeIncomingValue(Latch, false);
384       } else {
385         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
386         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
387       }
388     } else {
389       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
390       NewPHI->setIncomingBlock(idx, InsertTop);
391       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
392       idx = NewPHI->getBasicBlockIndex(Latch);
393       Value *InVal = NewPHI->getIncomingValue(idx);
394       NewPHI->setIncomingBlock(idx, NewLatch);
395       if (Value *V = VMap.lookup(InVal))
396         NewPHI->setIncomingValue(idx, V);
397     }
398   }
399   if (CreateRemainderLoop) {
400     Loop *NewLoop = NewLoops[L];
401     assert(NewLoop && "L should have been cloned");
402     MDNode *LoopID = NewLoop->getLoopID();
403 
404     // Only add loop metadata if the loop is not going to be completely
405     // unrolled.
406     if (UnrollRemainder)
407       return NewLoop;
408 
409     Optional<MDNode *> NewLoopID = makeFollowupLoopID(
410         LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
411     if (NewLoopID.hasValue()) {
412       NewLoop->setLoopID(NewLoopID.getValue());
413 
414       // Do not setLoopAlreadyUnrolled if loop attributes have been defined
415       // explicitly.
416       return NewLoop;
417     }
418 
419     // Add unroll disable metadata to disable future unrolling for this loop.
420     NewLoop->setLoopAlreadyUnrolled();
421     return NewLoop;
422   }
423   else
424     return nullptr;
425 }
426 
427 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
428 /// is populated with all the loop exit blocks other than the LatchExit block.
429 static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit,
430                                          bool PreserveLCSSA,
431                                          bool UseEpilogRemainder) {
432 
433   // We currently have some correctness constrains in unrolling a multi-exit
434   // loop. Check for these below.
435 
436   // We rely on LCSSA form being preserved when the exit blocks are transformed.
437   if (!PreserveLCSSA)
438     return false;
439 
440   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
441   // UnrollRuntimeMultiExit is true. This will need updating the logic in
442   // connectEpilog/connectProlog.
443   if (!LatchExit->getSinglePredecessor()) {
444     LLVM_DEBUG(
445         dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
446                   "predecessor.\n");
447     return false;
448   }
449   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
450   // and L is an inner loop. This is because in presence of multiple exits, the
451   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
452   // outer loop. This is automatically handled in the prolog case, so we do not
453   // have that bug in prolog generation.
454   if (UseEpilogRemainder && L->getParentLoop())
455     return false;
456 
457   // All constraints have been satisfied.
458   return true;
459 }
460 
461 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
462 /// we return true only if UnrollRuntimeMultiExit is set to true.
463 static bool canProfitablyUnrollMultiExitLoop(
464     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
465     bool PreserveLCSSA, bool UseEpilogRemainder) {
466 
467 #if !defined(NDEBUG)
468   assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
469                                       UseEpilogRemainder) &&
470          "Should be safe to unroll before checking profitability!");
471 #endif
472 
473   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
474   if (UnrollRuntimeMultiExit.getNumOccurrences())
475     return UnrollRuntimeMultiExit;
476 
477   // The main pain point with multi-exit loop unrolling is that once unrolled,
478   // we will not be able to merge all blocks into a straight line code.
479   // There are branches within the unrolled loop that go to the OtherExits.
480   // The second point is the increase in code size, but this is true
481   // irrespective of multiple exits.
482 
483   // Note: Both the heuristics below are coarse grained. We are essentially
484   // enabling unrolling of loops that have a single side exit other than the
485   // normal LatchExit (i.e. exiting into a deoptimize block).
486   // The heuristics considered are:
487   // 1. low number of branches in the unrolled version.
488   // 2. high predictability of these extra branches.
489   // We avoid unrolling loops that have more than two exiting blocks. This
490   // limits the total number of branches in the unrolled loop to be atmost
491   // the unroll factor (since one of the exiting blocks is the latch block).
492   SmallVector<BasicBlock*, 4> ExitingBlocks;
493   L->getExitingBlocks(ExitingBlocks);
494   if (ExitingBlocks.size() > 2)
495     return false;
496 
497   // The second heuristic is that L has one exit other than the latchexit and
498   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
499   // taken, which also implies the branch leading to the deoptimize block is
500   // highly predictable.
501   return (OtherExits.size() == 1 &&
502           OtherExits[0]->getTerminatingDeoptimizeCall());
503   // TODO: These can be fine-tuned further to consider code size or deopt states
504   // that are captured by the deoptimize exit block.
505   // Also, we can extend this to support more cases, if we actually
506   // know of kinds of multiexit loops that would benefit from unrolling.
507 }
508 
509 // Assign the maximum possible trip count as the back edge weight for the
510 // remainder loop if the original loop comes with a branch weight.
511 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
512                                                      Loop *RemainderLoop,
513                                                      uint64_t UnrollFactor) {
514   uint64_t TrueWeight, FalseWeight;
515   BranchInst *LatchBR =
516       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
517   if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
518     uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
519                               ? FalseWeight
520                               : TrueWeight;
521     assert(UnrollFactor > 1);
522     uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
523     BasicBlock *Header = RemainderLoop->getHeader();
524     BasicBlock *Latch = RemainderLoop->getLoopLatch();
525     auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
526     unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
527     MDBuilder MDB(RemainderLatchBR->getContext());
528     MDNode *WeightNode =
529         HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
530                   : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
531     RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
532   }
533 }
534 
535 /// Insert code in the prolog/epilog code when unrolling a loop with a
536 /// run-time trip-count.
537 ///
538 /// This method assumes that the loop unroll factor is total number
539 /// of loop bodies in the loop after unrolling. (Some folks refer
540 /// to the unroll factor as the number of *extra* copies added).
541 /// We assume also that the loop unroll factor is a power-of-two. So, after
542 /// unrolling the loop, the number of loop bodies executed is 2,
543 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
544 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
545 /// the switch instruction is generated.
546 ///
547 /// ***Prolog case***
548 ///        extraiters = tripcount % loopfactor
549 ///        if (extraiters == 0) jump Loop:
550 ///        else jump Prol:
551 /// Prol:  LoopBody;
552 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
553 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
554 ///        if (tripcount < loopfactor) jump End:
555 /// Loop:
556 /// ...
557 /// End:
558 ///
559 /// ***Epilog case***
560 ///        extraiters = tripcount % loopfactor
561 ///        if (tripcount < loopfactor) jump LoopExit:
562 ///        unroll_iters = tripcount - extraiters
563 /// Loop:  LoopBody; (executes unroll_iter times);
564 ///        unroll_iter -= 1
565 ///        if (unroll_iter != 0) jump Loop:
566 /// LoopExit:
567 ///        if (extraiters == 0) jump EpilExit:
568 /// Epil:  LoopBody; (executes extraiters times)
569 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
570 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
571 /// EpilExit:
572 
573 bool llvm::UnrollRuntimeLoopRemainder(
574     Loop *L, unsigned Count, bool AllowExpensiveTripCount,
575     bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
576     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
577     const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
578   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
579   LLVM_DEBUG(L->dump());
580   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
581                                 : dbgs() << "Using prolog remainder.\n");
582 
583   // Make sure the loop is in canonical form.
584   if (!L->isLoopSimplifyForm()) {
585     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
586     return false;
587   }
588 
589   // Guaranteed by LoopSimplifyForm.
590   BasicBlock *Latch = L->getLoopLatch();
591   BasicBlock *Header = L->getHeader();
592 
593   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
594 
595   if (!LatchBR || LatchBR->isUnconditional()) {
596     // The loop-rotate pass can be helpful to avoid this in many cases.
597     LLVM_DEBUG(
598         dbgs()
599         << "Loop latch not terminated by a conditional branch.\n");
600     return false;
601   }
602 
603   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
604   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
605 
606   if (L->contains(LatchExit)) {
607     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
608     // targets of the Latch be an exit block out of the loop.
609     LLVM_DEBUG(
610         dbgs()
611         << "One of the loop latch successors must be the exit block.\n");
612     return false;
613   }
614 
615   // These are exit blocks other than the target of the latch exiting block.
616   SmallVector<BasicBlock *, 4> OtherExits;
617   L->getUniqueNonLatchExitBlocks(OtherExits);
618   bool isMultiExitUnrollingEnabled =
619       canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
620                                    UseEpilogRemainder) &&
621       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
622                                        UseEpilogRemainder);
623   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
624   if (!isMultiExitUnrollingEnabled &&
625       (!L->getExitingBlock() || OtherExits.size())) {
626     LLVM_DEBUG(
627         dbgs()
628         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
629            "enabled!\n");
630     return false;
631   }
632   // Use Scalar Evolution to compute the trip count. This allows more loops to
633   // be unrolled than relying on induction var simplification.
634   if (!SE)
635     return false;
636 
637   // Only unroll loops with a computable trip count, and the trip count needs
638   // to be an int value (allowing a pointer type is a TODO item).
639   // We calculate the backedge count by using getExitCount on the Latch block,
640   // which is proven to be the only exiting block in this loop. This is same as
641   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
642   // exiting blocks).
643   const SCEV *BECountSC = SE->getExitCount(L, Latch);
644   if (isa<SCEVCouldNotCompute>(BECountSC) ||
645       !BECountSC->getType()->isIntegerTy()) {
646     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
647     return false;
648   }
649 
650   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
651 
652   // Add 1 since the backedge count doesn't include the first loop iteration.
653   const SCEV *TripCountSC =
654       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
655   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
656     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
657     return false;
658   }
659 
660   BasicBlock *PreHeader = L->getLoopPreheader();
661   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
662   const DataLayout &DL = Header->getModule()->getDataLayout();
663   SCEVExpander Expander(*SE, DL, "loop-unroll");
664   if (!AllowExpensiveTripCount &&
665       Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
666                                    TTI, PreHeaderBR)) {
667     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
668     return false;
669   }
670 
671   // This constraint lets us deal with an overflowing trip count easily; see the
672   // comment on ModVal below.
673   if (Log2_32(Count) > BEWidth) {
674     LLVM_DEBUG(
675         dbgs()
676         << "Count failed constraint on overflow trip count calculation.\n");
677     return false;
678   }
679 
680   // Loop structure is the following:
681   //
682   // PreHeader
683   //   Header
684   //   ...
685   //   Latch
686   // LatchExit
687 
688   BasicBlock *NewPreHeader;
689   BasicBlock *NewExit = nullptr;
690   BasicBlock *PrologExit = nullptr;
691   BasicBlock *EpilogPreHeader = nullptr;
692   BasicBlock *PrologPreHeader = nullptr;
693 
694   if (UseEpilogRemainder) {
695     // If epilog remainder
696     // Split PreHeader to insert a branch around loop for unrolling.
697     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
698     NewPreHeader->setName(PreHeader->getName() + ".new");
699     // Split LatchExit to create phi nodes from branch above.
700     SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
701     NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI,
702                                      nullptr, PreserveLCSSA);
703     // NewExit gets its DebugLoc from LatchExit, which is not part of the
704     // original Loop.
705     // Fix this by setting Loop's DebugLoc to NewExit.
706     auto *NewExitTerminator = NewExit->getTerminator();
707     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
708     // Split NewExit to insert epilog remainder loop.
709     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
710     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
711   } else {
712     // If prolog remainder
713     // Split the original preheader twice to insert prolog remainder loop
714     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
715     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
716     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
717                             DT, LI);
718     PrologExit->setName(Header->getName() + ".prol.loopexit");
719     // Split PrologExit to get NewPreHeader.
720     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
721     NewPreHeader->setName(PreHeader->getName() + ".new");
722   }
723   // Loop structure should be the following:
724   //  Epilog             Prolog
725   //
726   // PreHeader         PreHeader
727   // *NewPreHeader     *PrologPreHeader
728   //   Header          *PrologExit
729   //   ...             *NewPreHeader
730   //   Latch             Header
731   // *NewExit            ...
732   // *EpilogPreHeader    Latch
733   // LatchExit              LatchExit
734 
735   // Calculate conditions for branch around loop for unrolling
736   // in epilog case and around prolog remainder loop in prolog case.
737   // Compute the number of extra iterations required, which is:
738   //  extra iterations = run-time trip count % loop unroll factor
739   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
740   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
741                                             PreHeaderBR);
742   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
743                                           PreHeaderBR);
744   IRBuilder<> B(PreHeaderBR);
745   Value *ModVal;
746   // Calculate ModVal = (BECount + 1) % Count.
747   // Note that TripCount is BECount + 1.
748   if (isPowerOf2_32(Count)) {
749     // When Count is power of 2 we don't BECount for epilog case, however we'll
750     // need it for a branch around unrolling loop for prolog case.
751     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
752     //  1. There are no iterations to be run in the prolog/epilog loop.
753     // OR
754     //  2. The addition computing TripCount overflowed.
755     //
756     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
757     // the number of iterations that remain to be run in the original loop is a
758     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
759     // explicitly check this above).
760   } else {
761     // As (BECount + 1) can potentially unsigned overflow we count
762     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
763     Value *ModValTmp = B.CreateURem(BECount,
764                                     ConstantInt::get(BECount->getType(),
765                                                      Count));
766     Value *ModValAdd = B.CreateAdd(ModValTmp,
767                                    ConstantInt::get(ModValTmp->getType(), 1));
768     // At that point (BECount % Count) + 1 could be equal to Count.
769     // To handle this case we need to take mod by Count one more time.
770     ModVal = B.CreateURem(ModValAdd,
771                           ConstantInt::get(BECount->getType(), Count),
772                           "xtraiter");
773   }
774   Value *BranchVal =
775       UseEpilogRemainder ? B.CreateICmpULT(BECount,
776                                            ConstantInt::get(BECount->getType(),
777                                                             Count - 1)) :
778                            B.CreateIsNotNull(ModVal, "lcmp.mod");
779   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
780   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
781   // Branch to either remainder (extra iterations) loop or unrolling loop.
782   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
783   PreHeaderBR->eraseFromParent();
784   if (DT) {
785     if (UseEpilogRemainder)
786       DT->changeImmediateDominator(NewExit, PreHeader);
787     else
788       DT->changeImmediateDominator(PrologExit, PreHeader);
789   }
790   Function *F = Header->getParent();
791   // Get an ordered list of blocks in the loop to help with the ordering of the
792   // cloned blocks in the prolog/epilog code
793   LoopBlocksDFS LoopBlocks(L);
794   LoopBlocks.perform(LI);
795 
796   //
797   // For each extra loop iteration, create a copy of the loop's basic blocks
798   // and generate a condition that branches to the copy depending on the
799   // number of 'left over' iterations.
800   //
801   std::vector<BasicBlock *> NewBlocks;
802   ValueToValueMapTy VMap;
803 
804   // For unroll factor 2 remainder loop will have 1 iterations.
805   // Do not create 1 iteration loop.
806   bool CreateRemainderLoop = (Count != 2);
807 
808   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
809   // the loop, otherwise we create a cloned loop to execute the extra
810   // iterations. This function adds the appropriate CFG connections.
811   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
812   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
813   Loop *remainderLoop = CloneLoopBlocks(
814       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
815       InsertTop, InsertBot,
816       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
817 
818   // Assign the maximum possible trip count as the back edge weight for the
819   // remainder loop if the original loop comes with a branch weight.
820   if (remainderLoop && !UnrollRemainder)
821     updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
822 
823   // Insert the cloned blocks into the function.
824   F->getBasicBlockList().splice(InsertBot->getIterator(),
825                                 F->getBasicBlockList(),
826                                 NewBlocks[0]->getIterator(),
827                                 F->end());
828 
829   // Now the loop blocks are cloned and the other exiting blocks from the
830   // remainder are connected to the original Loop's exit blocks. The remaining
831   // work is to update the phi nodes in the original loop, and take in the
832   // values from the cloned region.
833   for (auto *BB : OtherExits) {
834    for (auto &II : *BB) {
835 
836      // Given we preserve LCSSA form, we know that the values used outside the
837      // loop will be used through these phi nodes at the exit blocks that are
838      // transformed below.
839      if (!isa<PHINode>(II))
840        break;
841      PHINode *Phi = cast<PHINode>(&II);
842      unsigned oldNumOperands = Phi->getNumIncomingValues();
843      // Add the incoming values from the remainder code to the end of the phi
844      // node.
845      for (unsigned i =0; i < oldNumOperands; i++){
846        Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
847        // newVal can be a constant or derived from values outside the loop, and
848        // hence need not have a VMap value. Also, since lookup already generated
849        // a default "null" VMap entry for this value, we need to populate that
850        // VMap entry correctly, with the mapped entry being itself.
851        if (!newVal) {
852          newVal = Phi->getIncomingValue(i);
853          VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
854        }
855        Phi->addIncoming(newVal,
856                            cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
857      }
858    }
859 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
860     for (BasicBlock *SuccBB : successors(BB)) {
861       assert(!(any_of(OtherExits,
862                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
863                SuccBB == LatchExit) &&
864              "Breaks the definition of dedicated exits!");
865     }
866 #endif
867   }
868 
869   // Update the immediate dominator of the exit blocks and blocks that are
870   // reachable from the exit blocks. This is needed because we now have paths
871   // from both the original loop and the remainder code reaching the exit
872   // blocks. While the IDom of these exit blocks were from the original loop,
873   // now the IDom is the preheader (which decides whether the original loop or
874   // remainder code should run).
875   if (DT && !L->getExitingBlock()) {
876     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
877     // NB! We have to examine the dom children of all loop blocks, not just
878     // those which are the IDom of the exit blocks. This is because blocks
879     // reachable from the exit blocks can have their IDom as the nearest common
880     // dominator of the exit blocks.
881     for (auto *BB : L->blocks()) {
882       auto *DomNodeBB = DT->getNode(BB);
883       for (auto *DomChild : DomNodeBB->children()) {
884         auto *DomChildBB = DomChild->getBlock();
885         if (!L->contains(LI->getLoopFor(DomChildBB)))
886           ChildrenToUpdate.push_back(DomChildBB);
887       }
888     }
889     for (auto *BB : ChildrenToUpdate)
890       DT->changeImmediateDominator(BB, PreHeader);
891   }
892 
893   // Loop structure should be the following:
894   //  Epilog             Prolog
895   //
896   // PreHeader         PreHeader
897   // NewPreHeader      PrologPreHeader
898   //   Header            PrologHeader
899   //   ...               ...
900   //   Latch             PrologLatch
901   // NewExit           PrologExit
902   // EpilogPreHeader   NewPreHeader
903   //   EpilogHeader      Header
904   //   ...               ...
905   //   EpilogLatch       Latch
906   // LatchExit              LatchExit
907 
908   // Rewrite the cloned instruction operands to use the values created when the
909   // clone is created.
910   for (BasicBlock *BB : NewBlocks) {
911     for (Instruction &I : *BB) {
912       RemapInstruction(&I, VMap,
913                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
914     }
915   }
916 
917   if (UseEpilogRemainder) {
918     // Connect the epilog code to the original loop and update the
919     // PHI functions.
920     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
921                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
922                   PreserveLCSSA);
923 
924     // Update counter in loop for unrolling.
925     // I should be multiply of Count.
926     IRBuilder<> B2(NewPreHeader->getTerminator());
927     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
928     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
929     B2.SetInsertPoint(LatchBR);
930     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
931                                       Header->getFirstNonPHI());
932     Value *IdxSub =
933         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
934                      NewIdx->getName() + ".nsub");
935     Value *IdxCmp;
936     if (LatchBR->getSuccessor(0) == Header)
937       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
938     else
939       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
940     NewIdx->addIncoming(TestVal, NewPreHeader);
941     NewIdx->addIncoming(IdxSub, Latch);
942     LatchBR->setCondition(IdxCmp);
943   } else {
944     // Connect the prolog code to the original loop and update the
945     // PHI functions.
946     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
947                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
948   }
949 
950   // If this loop is nested, then the loop unroller changes the code in the any
951   // of its parent loops, so the Scalar Evolution pass needs to be run again.
952   SE->forgetTopmostLoop(L);
953 
954   // Verify that the Dom Tree is correct.
955 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
956   if (DT)
957     assert(DT->verify(DominatorTree::VerificationLevel::Full));
958 #endif
959 
960   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
961   // cannot rely on the LoopUnrollPass to do this because it only does
962   // canonicalization for parent/subloops and not the sibling loops.
963   if (OtherExits.size() > 0) {
964     // Generate dedicated exit blocks for the original loop, to preserve
965     // LoopSimplifyForm.
966     formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
967     // Generate dedicated exit blocks for the remainder loop if one exists, to
968     // preserve LoopSimplifyForm.
969     if (remainderLoop)
970       formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
971   }
972 
973   auto UnrollResult = LoopUnrollResult::Unmodified;
974   if (remainderLoop && UnrollRemainder) {
975     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
976     UnrollResult =
977         UnrollLoop(remainderLoop,
978                    {/*Count*/ Count - 1, /*TripCount*/ Count - 1,
979                     /*Force*/ false, /*AllowRuntime*/ false,
980                     /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
981                     /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
982                     /*PeelCount*/ 0, /*UnrollRemainder*/ false, ForgetAllSCEV},
983                    LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
984   }
985 
986   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
987     *ResultLoop = remainderLoop;
988   NumRuntimeUnrolled++;
989   return true;
990 }
991