1 //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop unroll and jam as a routine, much like
10 // LoopUnroll.cpp implements loop unroll.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/DependenceAnalysis.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/IR/ValueMap.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/GenericDomTree.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/UnrollLoop.h"
55 #include "llvm/Transforms/Utils/ValueMapper.h"
56 #include <assert.h>
57 #include <memory>
58 #include <type_traits>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "loop-unroll-and-jam"
64 
65 STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
66 STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");
67 
68 typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet;
69 
70 // Partition blocks in an outer/inner loop pair into blocks before and after
71 // the loop
72 static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks,
73                                 BasicBlockSet &AftBlocks, DominatorTree &DT) {
74   Loop *SubLoop = L.getSubLoops()[0];
75   BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
76 
77   for (BasicBlock *BB : L.blocks()) {
78     if (!SubLoop->contains(BB)) {
79       if (DT.dominates(SubLoopLatch, BB))
80         AftBlocks.insert(BB);
81       else
82         ForeBlocks.insert(BB);
83     }
84   }
85 
86   // Check that all blocks in ForeBlocks together dominate the subloop
87   // TODO: This might ideally be done better with a dominator/postdominators.
88   BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
89   for (BasicBlock *BB : ForeBlocks) {
90     if (BB == SubLoopPreHeader)
91       continue;
92     Instruction *TI = BB->getTerminator();
93     for (BasicBlock *Succ : successors(TI))
94       if (!ForeBlocks.count(Succ))
95         return false;
96   }
97 
98   return true;
99 }
100 
101 /// Partition blocks in a loop nest into blocks before and after each inner
102 /// loop.
103 static bool partitionOuterLoopBlocks(
104     Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks,
105     DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
106     DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, DominatorTree &DT) {
107   JamLoopBlocks.insert(JamLoop.block_begin(), JamLoop.block_end());
108 
109   for (Loop *L : Root.getLoopsInPreorder()) {
110     if (L == &JamLoop)
111       break;
112 
113     if (!partitionLoopBlocks(*L, ForeBlocksMap[L], AftBlocksMap[L], DT))
114       return false;
115   }
116 
117   return true;
118 }
119 
120 // TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more
121 // than 2 levels loop.
122 static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
123                                      BasicBlockSet &ForeBlocks,
124                                      BasicBlockSet &SubLoopBlocks,
125                                      BasicBlockSet &AftBlocks,
126                                      DominatorTree *DT) {
127   SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
128   return partitionLoopBlocks(*L, ForeBlocks, AftBlocks, *DT);
129 }
130 
131 // Looks at the phi nodes in Header for values coming from Latch. For these
132 // instructions and all their operands calls Visit on them, keeping going for
133 // all the operands in AftBlocks. Returns false if Visit returns false,
134 // otherwise returns true. This is used to process the instructions in the
135 // Aft blocks that need to be moved before the subloop. It is used in two
136 // places. One to check that the required set of instructions can be moved
137 // before the loop. Then to collect the instructions to actually move in
138 // moveHeaderPhiOperandsToForeBlocks.
139 template <typename T>
140 static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch,
141                                      BasicBlockSet &AftBlocks, T Visit) {
142   SmallVector<Instruction *, 8> Worklist;
143   SmallPtrSet<Instruction *, 8> VisitedInstr;
144   for (auto &Phi : Header->phis()) {
145     Value *V = Phi.getIncomingValueForBlock(Latch);
146     if (Instruction *I = dyn_cast<Instruction>(V))
147       Worklist.push_back(I);
148   }
149 
150   while (!Worklist.empty()) {
151     Instruction *I = Worklist.pop_back_val();
152     if (!Visit(I))
153       return false;
154     VisitedInstr.insert(I);
155 
156     if (AftBlocks.count(I->getParent()))
157       for (auto &U : I->operands())
158         if (Instruction *II = dyn_cast<Instruction>(U))
159           if (!VisitedInstr.count(II))
160             Worklist.push_back(II);
161   }
162 
163   return true;
164 }
165 
166 // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
167 static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header,
168                                               BasicBlock *Latch,
169                                               Instruction *InsertLoc,
170                                               BasicBlockSet &AftBlocks) {
171   // We need to ensure we move the instructions in the correct order,
172   // starting with the earliest required instruction and moving forward.
173   std::vector<Instruction *> Visited;
174   processHeaderPhiOperands(Header, Latch, AftBlocks,
175                            [&Visited, &AftBlocks](Instruction *I) {
176                              if (AftBlocks.count(I->getParent()))
177                                Visited.push_back(I);
178                              return true;
179                            });
180 
181   // Move all instructions in program order to before the InsertLoc
182   BasicBlock *InsertLocBB = InsertLoc->getParent();
183   for (Instruction *I : reverse(Visited)) {
184     if (I->getParent() != InsertLocBB)
185       I->moveBefore(InsertLoc);
186   }
187 }
188 
189 /*
190   This method performs Unroll and Jam. For a simple loop like:
191   for (i = ..)
192     Fore(i)
193     for (j = ..)
194       SubLoop(i, j)
195     Aft(i)
196 
197   Instead of doing normal inner or outer unrolling, we do:
198   for (i = .., i+=2)
199     Fore(i)
200     Fore(i+1)
201     for (j = ..)
202       SubLoop(i, j)
203       SubLoop(i+1, j)
204     Aft(i)
205     Aft(i+1)
206 
207   So the outer loop is essetially unrolled and then the inner loops are fused
208   ("jammed") together into a single loop. This can increase speed when there
209   are loads in SubLoop that are invariant to i, as they become shared between
210   the now jammed inner loops.
211 
212   We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
213   Fore blocks are those before the inner loop, Aft are those after. Normal
214   Unroll code is used to copy each of these sets of blocks and the results are
215   combined together into the final form above.
216 
217   isSafeToUnrollAndJam should be used prior to calling this to make sure the
218   unrolling will be valid. Checking profitablility is also advisable.
219 
220   If EpilogueLoop is non-null, it receives the epilogue loop (if it was
221   necessary to create one and not fully unrolled).
222 */
223 LoopUnrollResult
224 llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount,
225                        unsigned TripMultiple, bool UnrollRemainder,
226                        LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
227                        AssumptionCache *AC, const TargetTransformInfo *TTI,
228                        OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) {
229 
230   // When we enter here we should have already checked that it is safe
231   BasicBlock *Header = L->getHeader();
232   assert(Header && "No header.");
233   assert(L->getSubLoops().size() == 1);
234   Loop *SubLoop = *L->begin();
235 
236   // Don't enter the unroll code if there is nothing to do.
237   if (TripCount == 0 && Count < 2) {
238     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
239     return LoopUnrollResult::Unmodified;
240   }
241 
242   assert(Count > 0);
243   assert(TripMultiple > 0);
244   assert(TripCount == 0 || TripCount % TripMultiple == 0);
245 
246   // Are we eliminating the loop control altogether?
247   bool CompletelyUnroll = (Count == TripCount);
248 
249   // We use the runtime remainder in cases where we don't know trip multiple
250   if (TripMultiple % Count != 0) {
251     if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
252                                     /*UseEpilogRemainder*/ true,
253                                     UnrollRemainder, /*ForgetAllSCEV*/ false,
254                                     LI, SE, DT, AC, TTI, true, EpilogueLoop)) {
255       LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
256                            "generated when assuming runtime trip count\n");
257       return LoopUnrollResult::Unmodified;
258     }
259   }
260 
261   // Notify ScalarEvolution that the loop will be substantially changed,
262   // if not outright eliminated.
263   if (SE) {
264     SE->forgetLoop(L);
265     SE->forgetLoop(SubLoop);
266   }
267 
268   using namespace ore;
269   // Report the unrolling decision.
270   if (CompletelyUnroll) {
271     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
272                       << Header->getName() << " with trip count " << TripCount
273                       << "!\n");
274     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
275                                  L->getHeader())
276               << "completely unroll and jammed loop with "
277               << NV("UnrollCount", TripCount) << " iterations");
278   } else {
279     auto DiagBuilder = [&]() {
280       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
281                               L->getHeader());
282       return Diag << "unroll and jammed loop by a factor of "
283                   << NV("UnrollCount", Count);
284     };
285 
286     LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
287                       << " by " << Count);
288     if (TripMultiple != 1) {
289       LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
290       ORE->emit([&]() {
291         return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
292                              << " trips per branch";
293       });
294     } else {
295       LLVM_DEBUG(dbgs() << " with run-time trip count");
296       ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
297     }
298     LLVM_DEBUG(dbgs() << "!\n");
299   }
300 
301   BasicBlock *Preheader = L->getLoopPreheader();
302   BasicBlock *LatchBlock = L->getLoopLatch();
303   assert(Preheader && "No preheader");
304   assert(LatchBlock && "No latch block");
305   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
306   assert(BI && !BI->isUnconditional());
307   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
308   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
309   bool SubLoopContinueOnTrue = SubLoop->contains(
310       SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));
311 
312   // Partition blocks in an outer/inner loop pair into blocks before and after
313   // the loop
314   BasicBlockSet SubLoopBlocks;
315   BasicBlockSet ForeBlocks;
316   BasicBlockSet AftBlocks;
317   partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
318                            DT);
319 
320   // We keep track of the entering/first and exiting/last block of each of
321   // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
322   // blocks easier.
323   std::vector<BasicBlock *> ForeBlocksFirst;
324   std::vector<BasicBlock *> ForeBlocksLast;
325   std::vector<BasicBlock *> SubLoopBlocksFirst;
326   std::vector<BasicBlock *> SubLoopBlocksLast;
327   std::vector<BasicBlock *> AftBlocksFirst;
328   std::vector<BasicBlock *> AftBlocksLast;
329   ForeBlocksFirst.push_back(Header);
330   ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
331   SubLoopBlocksFirst.push_back(SubLoop->getHeader());
332   SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
333   AftBlocksFirst.push_back(SubLoop->getExitBlock());
334   AftBlocksLast.push_back(L->getExitingBlock());
335   // Maps Blocks[0] -> Blocks[It]
336   ValueToValueMapTy LastValueMap;
337 
338   // Move any instructions from fore phi operands from AftBlocks into Fore.
339   moveHeaderPhiOperandsToForeBlocks(
340       Header, LatchBlock, ForeBlocksLast[0]->getTerminator(), AftBlocks);
341 
342   // The current on-the-fly SSA update requires blocks to be processed in
343   // reverse postorder so that LastValueMap contains the correct value at each
344   // exit.
345   LoopBlocksDFS DFS(L);
346   DFS.perform(LI);
347   // Stash the DFS iterators before adding blocks to the loop.
348   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
349   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
350 
351   // When a FSDiscriminator is enabled, we don't need to add the multiply
352   // factors to the discriminators.
353   if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
354     for (BasicBlock *BB : L->getBlocks())
355       for (Instruction &I : *BB)
356         if (!isa<DbgInfoIntrinsic>(&I))
357           if (const DILocation *DIL = I.getDebugLoc()) {
358             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count);
359             if (NewDIL)
360               I.setDebugLoc(NewDIL.getValue());
361             else
362               LLVM_DEBUG(dbgs()
363                          << "Failed to create new discriminator: "
364                          << DIL->getFilename() << " Line: " << DIL->getLine());
365           }
366 
367   // Copy all blocks
368   for (unsigned It = 1; It != Count; ++It) {
369     SmallVector<BasicBlock *, 8> NewBlocks;
370     // Maps Blocks[It] -> Blocks[It-1]
371     DenseMap<Value *, Value *> PrevItValueMap;
372     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
373     NewLoops[L] = L;
374     NewLoops[SubLoop] = SubLoop;
375 
376     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
377       ValueToValueMapTy VMap;
378       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
379       Header->getParent()->getBasicBlockList().push_back(New);
380 
381       // Tell LI about New.
382       addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
383 
384       if (ForeBlocks.count(*BB)) {
385         if (*BB == ForeBlocksFirst[0])
386           ForeBlocksFirst.push_back(New);
387         if (*BB == ForeBlocksLast[0])
388           ForeBlocksLast.push_back(New);
389       } else if (SubLoopBlocks.count(*BB)) {
390         if (*BB == SubLoopBlocksFirst[0])
391           SubLoopBlocksFirst.push_back(New);
392         if (*BB == SubLoopBlocksLast[0])
393           SubLoopBlocksLast.push_back(New);
394       } else if (AftBlocks.count(*BB)) {
395         if (*BB == AftBlocksFirst[0])
396           AftBlocksFirst.push_back(New);
397         if (*BB == AftBlocksLast[0])
398           AftBlocksLast.push_back(New);
399       } else {
400         llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
401       }
402 
403       // Update our running maps of newest clones
404       PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
405       LastValueMap[*BB] = New;
406       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
407            VI != VE; ++VI) {
408         PrevItValueMap[VI->second] =
409             const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
410         LastValueMap[VI->first] = VI->second;
411       }
412 
413       NewBlocks.push_back(New);
414 
415       // Update DomTree:
416       if (*BB == ForeBlocksFirst[0])
417         DT->addNewBlock(New, ForeBlocksLast[It - 1]);
418       else if (*BB == SubLoopBlocksFirst[0])
419         DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
420       else if (*BB == AftBlocksFirst[0])
421         DT->addNewBlock(New, AftBlocksLast[It - 1]);
422       else {
423         // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
424         // structure.
425         auto BBDomNode = DT->getNode(*BB);
426         auto BBIDom = BBDomNode->getIDom();
427         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
428         assert(OriginalBBIDom);
429         assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
430         DT->addNewBlock(
431             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
432       }
433     }
434 
435     // Remap all instructions in the most recent iteration
436     remapInstructionsInBlocks(NewBlocks, LastValueMap);
437     for (BasicBlock *NewBlock : NewBlocks) {
438       for (Instruction &I : *NewBlock) {
439         if (auto *II = dyn_cast<AssumeInst>(&I))
440           AC->registerAssumption(II);
441       }
442     }
443 
444     // Alter the ForeBlocks phi's, pointing them at the latest version of the
445     // value from the previous iteration's phis
446     for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
447       Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
448       assert(OldValue && "should have incoming edge from Aft[It]");
449       Value *NewValue = OldValue;
450       if (Value *PrevValue = PrevItValueMap[OldValue])
451         NewValue = PrevValue;
452 
453       assert(Phi.getNumOperands() == 2);
454       Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
455       Phi.setIncomingValue(0, NewValue);
456       Phi.removeIncomingValue(1);
457     }
458   }
459 
460   // Now that all the basic blocks for the unrolled iterations are in place,
461   // finish up connecting the blocks and phi nodes. At this point LastValueMap
462   // is the last unrolled iterations values.
463 
464   // Update Phis in BB from OldBB to point to NewBB and use the latest value
465   // from LastValueMap
466   auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
467                                      BasicBlock *NewBB,
468                                      ValueToValueMapTy &LastValueMap) {
469     for (PHINode &Phi : BB->phis()) {
470       for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
471         if (Phi.getIncomingBlock(b) == OldBB) {
472           Value *OldValue = Phi.getIncomingValue(b);
473           if (Value *LastValue = LastValueMap[OldValue])
474             Phi.setIncomingValue(b, LastValue);
475           Phi.setIncomingBlock(b, NewBB);
476           break;
477         }
478       }
479     }
480   };
481   // Move all the phis from Src into Dest
482   auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
483     Instruction *insertPoint = Dest->getFirstNonPHI();
484     while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
485       Phi->moveBefore(insertPoint);
486   };
487 
488   // Update the PHI values outside the loop to point to the last block
489   updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
490                            LastValueMap);
491 
492   // Update ForeBlocks successors and phi nodes
493   BranchInst *ForeTerm =
494       cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
495   assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
496   ForeTerm->setSuccessor(0, SubLoopBlocksFirst[0]);
497 
498   if (CompletelyUnroll) {
499     while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
500       Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
501       Phi->getParent()->getInstList().erase(Phi);
502     }
503   } else {
504     // Update the PHI values to point to the last aft block
505     updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
506                              AftBlocksLast.back(), LastValueMap);
507   }
508 
509   for (unsigned It = 1; It != Count; It++) {
510     // Remap ForeBlock successors from previous iteration to this
511     BranchInst *ForeTerm =
512         cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
513     assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
514     ForeTerm->setSuccessor(0, ForeBlocksFirst[It]);
515   }
516 
517   // Subloop successors and phis
518   BranchInst *SubTerm =
519       cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
520   SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
521   SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
522   SubLoopBlocksFirst[0]->replacePhiUsesWith(ForeBlocksLast[0],
523                                             ForeBlocksLast.back());
524   SubLoopBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0],
525                                             SubLoopBlocksLast.back());
526 
527   for (unsigned It = 1; It != Count; It++) {
528     // Replace the conditional branch of the previous iteration subloop with an
529     // unconditional one to this one
530     BranchInst *SubTerm =
531         cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
532     BranchInst::Create(SubLoopBlocksFirst[It], SubTerm);
533     SubTerm->eraseFromParent();
534 
535     SubLoopBlocksFirst[It]->replacePhiUsesWith(ForeBlocksLast[It],
536                                                ForeBlocksLast.back());
537     SubLoopBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It],
538                                                SubLoopBlocksLast.back());
539     movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
540   }
541 
542   // Aft blocks successors and phis
543   BranchInst *AftTerm = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
544   if (CompletelyUnroll) {
545     BranchInst::Create(LoopExit, AftTerm);
546     AftTerm->eraseFromParent();
547   } else {
548     AftTerm->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
549     assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit &&
550            "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit");
551   }
552   AftBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0],
553                                         SubLoopBlocksLast.back());
554 
555   for (unsigned It = 1; It != Count; It++) {
556     // Replace the conditional branch of the previous iteration subloop with an
557     // unconditional one to this one
558     BranchInst *AftTerm =
559         cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
560     BranchInst::Create(AftBlocksFirst[It], AftTerm);
561     AftTerm->eraseFromParent();
562 
563     AftBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It],
564                                            SubLoopBlocksLast.back());
565     movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
566   }
567 
568   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
569   // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
570   // new ones required.
571   if (Count != 1) {
572     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
573     DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
574                            SubLoopBlocksFirst[0]);
575     DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
576                            SubLoopBlocksLast[0], AftBlocksFirst[0]);
577 
578     DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
579                            ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
580     DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
581                            SubLoopBlocksLast.back(), AftBlocksFirst[0]);
582     DTU.applyUpdatesPermissive(DTUpdates);
583   }
584 
585   // Merge adjacent basic blocks, if possible.
586   SmallPtrSet<BasicBlock *, 16> MergeBlocks;
587   MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
588   MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
589   MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
590 
591   MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, &DTU, LI);
592 
593   // Apply updates to the DomTree.
594   DT = &DTU.getDomTree();
595 
596   // At this point, the code is well formed.  We now do a quick sweep over the
597   // inserted code, doing constant propagation and dead code elimination as we
598   // go.
599   simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC, TTI);
600   simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC,
601                           TTI);
602 
603   NumCompletelyUnrolledAndJammed += CompletelyUnroll;
604   ++NumUnrolledAndJammed;
605 
606   // Update LoopInfo if the loop is completely removed.
607   if (CompletelyUnroll)
608     LI->erase(L);
609 
610 #ifndef NDEBUG
611   // We shouldn't have done anything to break loop simplify form or LCSSA.
612   Loop *OutestLoop = SubLoop->getParentLoop()
613                          ? SubLoop->getParentLoop()->getParentLoop()
614                                ? SubLoop->getParentLoop()->getParentLoop()
615                                : SubLoop->getParentLoop()
616                          : SubLoop;
617   assert(DT->verify());
618   LI->verify(*DT);
619   assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
620   if (!CompletelyUnroll)
621     assert(L->isLoopSimplifyForm());
622   assert(SubLoop->isLoopSimplifyForm());
623   SE->verify();
624 #endif
625 
626   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
627                           : LoopUnrollResult::PartiallyUnrolled;
628 }
629 
630 static bool getLoadsAndStores(BasicBlockSet &Blocks,
631                               SmallVector<Instruction *, 4> &MemInstr) {
632   // Scan the BBs and collect legal loads and stores.
633   // Returns false if non-simple loads/stores are found.
634   for (BasicBlock *BB : Blocks) {
635     for (Instruction &I : *BB) {
636       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
637         if (!Ld->isSimple())
638           return false;
639         MemInstr.push_back(&I);
640       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
641         if (!St->isSimple())
642           return false;
643         MemInstr.push_back(&I);
644       } else if (I.mayReadOrWriteMemory()) {
645         return false;
646       }
647     }
648   }
649   return true;
650 }
651 
652 static bool preservesForwardDependence(Instruction *Src, Instruction *Dst,
653                                        unsigned UnrollLevel, unsigned JamLevel,
654                                        bool Sequentialized, Dependence *D) {
655   // UnrollLevel might carry the dependency Src --> Dst
656   // Does a different loop after unrolling?
657   for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
658        ++CurLoopDepth) {
659     auto JammedDir = D->getDirection(CurLoopDepth);
660     if (JammedDir == Dependence::DVEntry::LT)
661       return true;
662 
663     if (JammedDir & Dependence::DVEntry::GT)
664       return false;
665   }
666 
667   return true;
668 }
669 
670 static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst,
671                                         unsigned UnrollLevel, unsigned JamLevel,
672                                         bool Sequentialized, Dependence *D) {
673   // UnrollLevel might carry the dependency Dst --> Src
674   for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
675        ++CurLoopDepth) {
676     auto JammedDir = D->getDirection(CurLoopDepth);
677     if (JammedDir == Dependence::DVEntry::GT)
678       return true;
679 
680     if (JammedDir & Dependence::DVEntry::LT)
681       return false;
682   }
683 
684   // Backward dependencies are only preserved if not interleaved.
685   return Sequentialized;
686 }
687 
688 // Check whether it is semantically safe Src and Dst considering any potential
689 // dependency between them.
690 //
691 // @param UnrollLevel The level of the loop being unrolled
692 // @param JamLevel    The level of the loop being jammed; if Src and Dst are on
693 // different levels, the outermost common loop counts as jammed level
694 //
695 // @return true if is safe and false if there is a dependency violation.
696 static bool checkDependency(Instruction *Src, Instruction *Dst,
697                             unsigned UnrollLevel, unsigned JamLevel,
698                             bool Sequentialized, DependenceInfo &DI) {
699   assert(UnrollLevel <= JamLevel &&
700          "Expecting JamLevel to be at least UnrollLevel");
701 
702   if (Src == Dst)
703     return true;
704   // Ignore Input dependencies.
705   if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
706     return true;
707 
708   // Check whether unroll-and-jam may violate a dependency.
709   // By construction, every dependency will be lexicographically non-negative
710   // (if it was, it would violate the current execution order), such as
711   //   (0,0,>,*,*)
712   // Unroll-and-jam changes the GT execution of two executions to the same
713   // iteration of the chosen unroll level. That is, a GT dependence becomes a GE
714   // dependence (or EQ, if we fully unrolled the loop) at the loop's position:
715   //   (0,0,>=,*,*)
716   // Now, the dependency is not necessarily non-negative anymore, i.e.
717   // unroll-and-jam may violate correctness.
718   std::unique_ptr<Dependence> D = DI.depends(Src, Dst, true);
719   if (!D)
720     return true;
721   assert(D->isOrdered() && "Expected an output, flow or anti dep.");
722 
723   if (D->isConfused()) {
724     LLVM_DEBUG(dbgs() << "  Confused dependency between:\n"
725                       << "  " << *Src << "\n"
726                       << "  " << *Dst << "\n");
727     return false;
728   }
729 
730   // If outer levels (levels enclosing the loop being unroll-and-jammed) have a
731   // non-equal direction, then the locations accessed in the inner levels cannot
732   // overlap in memory. We assumes the indexes never overlap into neighboring
733   // dimensions.
734   for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth)
735     if (!(D->getDirection(CurLoopDepth) & Dependence::DVEntry::EQ))
736       return true;
737 
738   auto UnrollDirection = D->getDirection(UnrollLevel);
739 
740   // If the distance carried by the unrolled loop is 0, then after unrolling
741   // that distance will become non-zero resulting in non-overlapping accesses in
742   // the inner loops.
743   if (UnrollDirection == Dependence::DVEntry::EQ)
744     return true;
745 
746   if (UnrollDirection & Dependence::DVEntry::LT &&
747       !preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel,
748                                   Sequentialized, D.get()))
749     return false;
750 
751   if (UnrollDirection & Dependence::DVEntry::GT &&
752       !preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel,
753                                    Sequentialized, D.get()))
754     return false;
755 
756   return true;
757 }
758 
759 static bool
760 checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks,
761                   const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
762                   const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap,
763                   DependenceInfo &DI, LoopInfo &LI) {
764   SmallVector<BasicBlockSet, 8> AllBlocks;
765   for (Loop *L : Root.getLoopsInPreorder())
766     if (ForeBlocksMap.find(L) != ForeBlocksMap.end())
767       AllBlocks.push_back(ForeBlocksMap.lookup(L));
768   AllBlocks.push_back(SubLoopBlocks);
769   for (Loop *L : Root.getLoopsInPreorder())
770     if (AftBlocksMap.find(L) != AftBlocksMap.end())
771       AllBlocks.push_back(AftBlocksMap.lookup(L));
772 
773   unsigned LoopDepth = Root.getLoopDepth();
774   SmallVector<Instruction *, 4> EarlierLoadsAndStores;
775   SmallVector<Instruction *, 4> CurrentLoadsAndStores;
776   for (BasicBlockSet &Blocks : AllBlocks) {
777     CurrentLoadsAndStores.clear();
778     if (!getLoadsAndStores(Blocks, CurrentLoadsAndStores))
779       return false;
780 
781     Loop *CurLoop = LI.getLoopFor((*Blocks.begin())->front().getParent());
782     unsigned CurLoopDepth = CurLoop->getLoopDepth();
783 
784     for (auto *Earlier : EarlierLoadsAndStores) {
785       Loop *EarlierLoop = LI.getLoopFor(Earlier->getParent());
786       unsigned EarlierDepth = EarlierLoop->getLoopDepth();
787       unsigned CommonLoopDepth = std::min(EarlierDepth, CurLoopDepth);
788       for (auto *Later : CurrentLoadsAndStores) {
789         if (!checkDependency(Earlier, Later, LoopDepth, CommonLoopDepth, false,
790                              DI))
791           return false;
792       }
793     }
794 
795     size_t NumInsts = CurrentLoadsAndStores.size();
796     for (size_t I = 0; I < NumInsts; ++I) {
797       for (size_t J = I; J < NumInsts; ++J) {
798         if (!checkDependency(CurrentLoadsAndStores[I], CurrentLoadsAndStores[J],
799                              LoopDepth, CurLoopDepth, true, DI))
800           return false;
801       }
802     }
803 
804     EarlierLoadsAndStores.append(CurrentLoadsAndStores.begin(),
805                                  CurrentLoadsAndStores.end());
806   }
807   return true;
808 }
809 
810 static bool isEligibleLoopForm(const Loop &Root) {
811   // Root must have a child.
812   if (Root.getSubLoops().size() != 1)
813     return false;
814 
815   const Loop *L = &Root;
816   do {
817     // All loops in Root need to be in simplify and rotated form.
818     if (!L->isLoopSimplifyForm())
819       return false;
820 
821     if (!L->isRotatedForm())
822       return false;
823 
824     if (L->getHeader()->hasAddressTaken()) {
825       LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
826       return false;
827     }
828 
829     unsigned SubLoopsSize = L->getSubLoops().size();
830     if (SubLoopsSize == 0)
831       return true;
832 
833     // Only one child is allowed.
834     if (SubLoopsSize != 1)
835       return false;
836 
837     // Only loops with a single exit block can be unrolled and jammed.
838     // The function getExitBlock() is used for this check, rather than
839     // getUniqueExitBlock() to ensure loops with mulitple exit edges are
840     // disallowed.
841     if (!L->getExitBlock()) {
842       LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit "
843                            "blocks can be unrolled and jammed.\n");
844       return false;
845     }
846 
847     // Only loops with a single exiting block can be unrolled and jammed.
848     if (!L->getExitingBlock()) {
849       LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single "
850                            "exiting blocks can be unrolled and jammed.\n");
851       return false;
852     }
853 
854     L = L->getSubLoops()[0];
855   } while (L);
856 
857   return true;
858 }
859 
860 static Loop *getInnerMostLoop(Loop *L) {
861   while (!L->getSubLoops().empty())
862     L = L->getSubLoops()[0];
863   return L;
864 }
865 
866 bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
867                                 DependenceInfo &DI, LoopInfo &LI) {
868   if (!isEligibleLoopForm(*L)) {
869     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n");
870     return false;
871   }
872 
873   /* We currently handle outer loops like this:
874         |
875     ForeFirst    <------\   }
876      Blocks             |   } ForeBlocks of L
877     ForeLast            |   }
878         |               |
879        ...              |
880         |               |
881     ForeFirst    <----\ |   }
882      Blocks           | |   } ForeBlocks of a inner loop of L
883     ForeLast          | |   }
884         |             | |
885     JamLoopFirst  <\  | |   }
886      Blocks        |  | |   } JamLoopBlocks of the innermost loop
887     JamLoopLast   -/  | |   }
888         |             | |
889     AftFirst          | |   }
890      Blocks           | |   } AftBlocks of a inner loop of L
891     AftLast     ------/ |   }
892         |               |
893        ...              |
894         |               |
895     AftFirst            |   }
896      Blocks             |   } AftBlocks of L
897     AftLast     --------/   }
898         |
899 
900     There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
901     and AftBlocks, providing that there is one edge from Fores to SubLoops,
902     one edge from SubLoops to Afts and a single outer loop exit (from Afts).
903     In practice we currently limit Aft blocks to a single block, and limit
904     things further in the profitablility checks of the unroll and jam pass.
905 
906     Because of the way we rearrange basic blocks, we also require that
907     the Fore blocks of L on all unrolled iterations are safe to move before the
908     blocks of the direct child of L of all iterations. So we require that the
909     phi node looping operands of ForeHeader can be moved to at least the end of
910     ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and
911     match up Phi's correctly.
912 
913     i.e. The old order of blocks used to be
914            (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2.
915          It needs to be safe to transform this to
916            (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2.
917 
918     There are then a number of checks along the lines of no calls, no
919     exceptions, inner loop IV is consistent, etc. Note that for loops requiring
920     runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
921     UnrollAndJamLoop if the trip count cannot be easily calculated.
922   */
923 
924   // Split blocks into Fore/SubLoop/Aft based on dominators
925   Loop *JamLoop = getInnerMostLoop(L);
926   BasicBlockSet SubLoopBlocks;
927   DenseMap<Loop *, BasicBlockSet> ForeBlocksMap;
928   DenseMap<Loop *, BasicBlockSet> AftBlocksMap;
929   if (!partitionOuterLoopBlocks(*L, *JamLoop, SubLoopBlocks, ForeBlocksMap,
930                                 AftBlocksMap, DT)) {
931     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
932     return false;
933   }
934 
935   // Aft blocks may need to move instructions to fore blocks, which becomes more
936   // difficult if there are multiple (potentially conditionally executed)
937   // blocks. For now we just exclude loops with multiple aft blocks.
938   if (AftBlocksMap[L].size() != 1) {
939     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
940                          "multiple blocks after the loop\n");
941     return false;
942   }
943 
944   // Check inner loop backedge count is consistent on all iterations of the
945   // outer loop
946   if (any_of(L->getLoopsInPreorder(), [&SE](Loop *SubLoop) {
947         return !hasIterationCountInvariantInParent(SubLoop, SE);
948       })) {
949     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
950                          "not consistent on each iteration\n");
951     return false;
952   }
953 
954   // Check the loop safety info for exceptions.
955   SimpleLoopSafetyInfo LSI;
956   LSI.computeLoopSafetyInfo(L);
957   if (LSI.anyBlockMayThrow()) {
958     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
959     return false;
960   }
961 
962   // We've ruled out the easy stuff and now need to check that there are no
963   // interdependencies which may prevent us from moving the:
964   //  ForeBlocks before Subloop and AftBlocks.
965   //  Subloop before AftBlocks.
966   //  ForeBlock phi operands before the subloop
967 
968   // Make sure we can move all instructions we need to before the subloop
969   BasicBlock *Header = L->getHeader();
970   BasicBlock *Latch = L->getLoopLatch();
971   BasicBlockSet AftBlocks = AftBlocksMap[L];
972   Loop *SubLoop = L->getSubLoops()[0];
973   if (!processHeaderPhiOperands(
974           Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
975             if (SubLoop->contains(I->getParent()))
976               return false;
977             if (AftBlocks.count(I->getParent())) {
978               // If we hit a phi node in afts we know we are done (probably
979               // LCSSA)
980               if (isa<PHINode>(I))
981                 return false;
982               // Can't move instructions with side effects or memory
983               // reads/writes
984               if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
985                 return false;
986             }
987             // Keep going
988             return true;
989           })) {
990     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
991                          "instructions after subloop to before it\n");
992     return false;
993   }
994 
995   // Check for memory dependencies which prohibit the unrolling we are doing.
996   // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
997   // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
998   if (!checkDependencies(*L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI,
999                          LI)) {
1000     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
1001     return false;
1002   }
1003 
1004   return true;
1005 }
1006