1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopPeel.h"
63 #include "llvm/Transforms/Utils/LoopSimplify.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
66 #include "llvm/Transforms/Utils/UnrollLoop.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <assert.h>
70 #include <type_traits>
71 #include <vector>
72 
73 namespace llvm {
74 class DataLayout;
75 class Value;
76 } // namespace llvm
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "loop-unroll"
81 
82 // TODO: Should these be here or in LoopUnroll?
83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
86                                "latch (completely or otherwise)");
87 
88 static cl::opt<bool>
89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90                     cl::desc("Allow runtime unrolled loops to be unrolled "
91                              "with epilog instead of prolog."));
92 
93 static cl::opt<bool>
94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95                     cl::desc("Verify domtree after unrolling"),
96 #ifdef EXPENSIVE_CHECKS
97     cl::init(true)
98 #else
99     cl::init(false)
100 #endif
101                     );
102 
103 /// Check if unrolling created a situation where we need to insert phi nodes to
104 /// preserve LCSSA form.
105 /// \param Blocks is a vector of basic blocks representing unrolled loop.
106 /// \param L is the outer loop.
107 /// It's possible that some of the blocks are in L, and some are not. In this
108 /// case, if there is a use is outside L, and definition is inside L, we need to
109 /// insert a phi-node, otherwise LCSSA will be broken.
110 /// The function is just a helper function for llvm::UnrollLoop that returns
111 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
112 static bool needToInsertPhisForLCSSA(Loop *L,
113                                      const std::vector<BasicBlock *> &Blocks,
114                                      LoopInfo *LI) {
115   for (BasicBlock *BB : Blocks) {
116     if (LI->getLoopFor(BB) == L)
117       continue;
118     for (Instruction &I : *BB) {
119       for (Use &U : I.operands()) {
120         if (const auto *Def = dyn_cast<Instruction>(U)) {
121           Loop *DefLoop = LI->getLoopFor(Def->getParent());
122           if (!DefLoop)
123             continue;
124           if (DefLoop->contains(L))
125             return true;
126         }
127       }
128     }
129   }
130   return false;
131 }
132 
133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
134 /// and adds a mapping from the original loop to the new loop to NewLoops.
135 /// Returns nullptr if no new loop was created and a pointer to the
136 /// original loop OriginalBB was part of otherwise.
137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
138                                            BasicBlock *ClonedBB, LoopInfo *LI,
139                                            NewLoopsMap &NewLoops) {
140   // Figure out which loop New is in.
141   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
142   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
143 
144   Loop *&NewLoop = NewLoops[OldLoop];
145   if (!NewLoop) {
146     // Found a new sub-loop.
147     assert(OriginalBB == OldLoop->getHeader() &&
148            "Header should be first in RPO");
149 
150     NewLoop = LI->AllocateLoop();
151     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
152 
153     if (NewLoopParent)
154       NewLoopParent->addChildLoop(NewLoop);
155     else
156       LI->addTopLevelLoop(NewLoop);
157 
158     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
159     return OldLoop;
160   } else {
161     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
162     return nullptr;
163   }
164 }
165 
166 /// The function chooses which type of unroll (epilog or prolog) is more
167 /// profitabale.
168 /// Epilog unroll is more profitable when there is PHI that starts from
169 /// constant.  In this case epilog will leave PHI start from constant,
170 /// but prolog will convert it to non-constant.
171 ///
172 /// loop:
173 ///   PN = PHI [I, Latch], [CI, PreHeader]
174 ///   I = foo(PN)
175 ///   ...
176 ///
177 /// Epilog unroll case.
178 /// loop:
179 ///   PN = PHI [I2, Latch], [CI, PreHeader]
180 ///   I1 = foo(PN)
181 ///   I2 = foo(I1)
182 ///   ...
183 /// Prolog unroll case.
184 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
185 /// loop:
186 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
187 ///   I1 = foo(PN)
188 ///   I2 = foo(I1)
189 ///   ...
190 ///
191 static bool isEpilogProfitable(Loop *L) {
192   BasicBlock *PreHeader = L->getLoopPreheader();
193   BasicBlock *Header = L->getHeader();
194   assert(PreHeader && Header);
195   for (const PHINode &PN : Header->phis()) {
196     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
197       return true;
198   }
199   return false;
200 }
201 
202 /// Perform some cleanup and simplifications on loops after unrolling. It is
203 /// useful to simplify the IV's in the new loop, as well as do a quick
204 /// simplify/dce pass of the instructions.
205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
206                                    ScalarEvolution *SE, DominatorTree *DT,
207                                    AssumptionCache *AC,
208                                    const TargetTransformInfo *TTI) {
209   // Simplify any new induction variables in the partially unrolled loop.
210   if (SE && SimplifyIVs) {
211     SmallVector<WeakTrackingVH, 16> DeadInsts;
212     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
213 
214     // Aggressively clean up dead instructions that simplifyLoopIVs already
215     // identified. Any remaining should be cleaned up below.
216     while (!DeadInsts.empty()) {
217       Value *V = DeadInsts.pop_back_val();
218       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
219         RecursivelyDeleteTriviallyDeadInstructions(Inst);
220     }
221   }
222 
223   // At this point, the code is well formed.  Perform constprop, instsimplify,
224   // and dce.
225   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
226   SmallVector<WeakTrackingVH, 16> DeadInsts;
227   for (BasicBlock *BB : L->getBlocks()) {
228     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
229       Instruction *Inst = &*I++;
230       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
231         if (LI->replacementPreservesLCSSAForm(Inst, V))
232           Inst->replaceAllUsesWith(V);
233       if (isInstructionTriviallyDead(Inst))
234         DeadInsts.emplace_back(Inst);
235     }
236     // We can't do recursive deletion until we're done iterating, as we might
237     // have a phi which (potentially indirectly) uses instructions later in
238     // the block we're iterating through.
239     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
240   }
241 }
242 
243 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
244 /// can only fail when the loop's latch block is not terminated by a conditional
245 /// branch instruction. However, if the trip count (and multiple) are not known,
246 /// loop unrolling will mostly produce more code that is no faster.
247 ///
248 /// TripCount is the upper bound of the iteration on which control exits
249 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
250 /// via an early branch in other loop block or via LatchBlock terminator. This
251 /// is relaxed from the general definition of trip count which is the number of
252 /// times the loop header executes. Note that UnrollLoop assumes that the loop
253 /// counter test is in LatchBlock in order to remove unnecesssary instances of
254 /// the test.  If control can exit the loop from the LatchBlock's terminator
255 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
256 ///
257 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
258 /// needs to be preserved.  It is needed when we use trip count upper bound to
259 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
260 /// conditional branch needs to be preserved.
261 ///
262 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
263 /// execute without exiting the loop.
264 ///
265 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
266 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
267 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
268 /// iterations before branching into the unrolled loop.  UnrollLoop will not
269 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
270 /// AllowExpensiveTripCount is false.
271 ///
272 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
273 /// number of iterations we want to peel off.
274 ///
275 /// The LoopInfo Analysis that is passed will be kept consistent.
276 ///
277 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
278 /// DominatorTree if they are non-null.
279 ///
280 /// If RemainderLoop is non-null, it will receive the remainder loop (if
281 /// required and not fully unrolled).
282 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
283                                   ScalarEvolution *SE, DominatorTree *DT,
284                                   AssumptionCache *AC,
285                                   const TargetTransformInfo *TTI,
286                                   OptimizationRemarkEmitter *ORE,
287                                   bool PreserveLCSSA, Loop **RemainderLoop) {
288 
289   if (!L->getLoopPreheader()) {
290     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
291     return LoopUnrollResult::Unmodified;
292   }
293 
294   if (!L->getLoopLatch()) {
295     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
296     return LoopUnrollResult::Unmodified;
297   }
298 
299   // Loops with indirectbr cannot be cloned.
300   if (!L->isSafeToClone()) {
301     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
302     return LoopUnrollResult::Unmodified;
303   }
304 
305   if (L->getHeader()->hasAddressTaken()) {
306     // The loop-rotate pass can be helpful to avoid this in many cases.
307     LLVM_DEBUG(
308         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
309     return LoopUnrollResult::Unmodified;
310   }
311 
312   if (ULO.TripCount != 0)
313     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
314   if (ULO.TripMultiple != 1)
315     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
316 
317   // Effectively "DCE" unrolled iterations that are beyond the tripcount
318   // and will never be executed.
319   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
320     ULO.Count = ULO.TripCount;
321 
322   // Don't enter the unroll code if there is nothing to do.
323   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
324     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
325     return LoopUnrollResult::Unmodified;
326   }
327 
328   assert(ULO.Count > 0);
329   assert(ULO.TripMultiple > 0);
330   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
331 
332   // Are we eliminating the loop control altogether?
333   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
334 
335   // We assume a run-time trip count if the compiler cannot
336   // figure out the loop trip count and the unroll-runtime
337   // flag is specified.
338   bool RuntimeTripCount =
339       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
340 
341   assert((!RuntimeTripCount || !ULO.PeelCount) &&
342          "Did not expect runtime trip-count unrolling "
343          "and peeling for the same loop");
344 
345   bool Peeled = false;
346   if (ULO.PeelCount) {
347     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
348 
349     // Successful peeling may result in a change in the loop preheader/trip
350     // counts. If we later unroll the loop, we want these to be updated.
351     if (Peeled) {
352       // According to our guards and profitability checks the only
353       // meaningful exit should be latch block. Other exits go to deopt,
354       // so we do not worry about them.
355       BasicBlock *ExitingBlock = L->getLoopLatch();
356       assert(ExitingBlock && "Loop without exiting block?");
357       assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
358       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
359       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
360     }
361   }
362 
363   // All these values should be taken only after peeling because they might have
364   // changed.
365   BasicBlock *Preheader = L->getLoopPreheader();
366   BasicBlock *Header = L->getHeader();
367   BasicBlock *LatchBlock = L->getLoopLatch();
368   SmallVector<BasicBlock *, 4> ExitBlocks;
369   L->getExitBlocks(ExitBlocks);
370   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
371 
372   // Go through all exits of L and see if there are any phi-nodes there. We just
373   // conservatively assume that they're inserted to preserve LCSSA form, which
374   // means that complete unrolling might break this form. We need to either fix
375   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
376   // now we just recompute LCSSA for the outer loop, but it should be possible
377   // to fix it in-place.
378   bool NeedToFixLCSSA =
379       PreserveLCSSA && CompletelyUnroll &&
380       any_of(ExitBlocks,
381              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
382 
383   // The current loop unroll pass can unroll loops that have
384   // (1) single latch; and
385   // (2a) latch is unconditional; or
386   // (2b) latch is conditional and is an exiting block
387   // FIXME: The implementation can be extended to work with more complicated
388   // cases, e.g. loops with multiple latches.
389   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
390 
391   // A conditional branch which exits the loop, which can be optimized to an
392   // unconditional branch in the unrolled loop in some cases.
393   BranchInst *ExitingBI = nullptr;
394   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
395   if (LatchIsExiting)
396     ExitingBI = LatchBI;
397   else if (BasicBlock *ExitingBlock = L->getExitingBlock())
398     ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
399   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
400     // If the peeling guard is changed this assert may be relaxed or even
401     // deleted.
402     assert(!Peeled && "Peeling guard changed!");
403     LLVM_DEBUG(
404         dbgs() << "Can't unroll; a conditional latch must exit the loop");
405     return LoopUnrollResult::Unmodified;
406   }
407   LLVM_DEBUG({
408     if (ExitingBI)
409       dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName()
410              << "\n";
411     else
412       dbgs() << "  No single exiting block\n";
413   });
414 
415   // Loops containing convergent instructions must have a count that divides
416   // their TripMultiple.
417   LLVM_DEBUG(
418       {
419         bool HasConvergent = false;
420         for (auto &BB : L->blocks())
421           for (auto &I : *BB)
422             if (auto *CB = dyn_cast<CallBase>(&I))
423               HasConvergent |= CB->isConvergent();
424         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
425                "Unroll count must divide trip multiple if loop contains a "
426                "convergent operation.");
427       });
428 
429   bool EpilogProfitability =
430       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
431                                               : isEpilogProfitable(L);
432 
433   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
434       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
435                                   EpilogProfitability, ULO.UnrollRemainder,
436                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
437                                   PreserveLCSSA, RemainderLoop)) {
438     if (ULO.Force)
439       RuntimeTripCount = false;
440     else {
441       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
442                            "generated when assuming runtime trip count\n");
443       return LoopUnrollResult::Unmodified;
444     }
445   }
446 
447   // If we know the trip count, we know the multiple...
448   unsigned BreakoutTrip = 0;
449   if (ULO.TripCount != 0) {
450     BreakoutTrip = ULO.TripCount % ULO.Count;
451     ULO.TripMultiple = 0;
452   } else {
453     // Figure out what multiple to use.
454     BreakoutTrip = ULO.TripMultiple =
455         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
456   }
457 
458   using namespace ore;
459   // Report the unrolling decision.
460   if (CompletelyUnroll) {
461     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
462                       << " with trip count " << ULO.TripCount << "!\n");
463     if (ORE)
464       ORE->emit([&]() {
465         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
466                                   L->getHeader())
467                << "completely unrolled loop with "
468                << NV("UnrollCount", ULO.TripCount) << " iterations";
469       });
470   } else if (ULO.PeelCount) {
471     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
472                       << " with iteration count " << ULO.PeelCount << "!\n");
473     if (ORE)
474       ORE->emit([&]() {
475         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
476                                   L->getHeader())
477                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
478                << " iterations";
479       });
480   } else {
481     auto DiagBuilder = [&]() {
482       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
483                               L->getHeader());
484       return Diag << "unrolled loop by a factor of "
485                   << NV("UnrollCount", ULO.Count);
486     };
487 
488     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
489                       << ULO.Count);
490     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
491       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
492       if (ORE)
493         ORE->emit([&]() {
494           return DiagBuilder() << " with a breakout at trip "
495                                << NV("BreakoutTrip", BreakoutTrip);
496         });
497     } else if (ULO.TripMultiple != 1) {
498       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
499       if (ORE)
500         ORE->emit([&]() {
501           return DiagBuilder()
502                  << " with " << NV("TripMultiple", ULO.TripMultiple)
503                  << " trips per branch";
504         });
505     } else if (RuntimeTripCount) {
506       LLVM_DEBUG(dbgs() << " with run-time trip count");
507       if (ORE)
508         ORE->emit(
509             [&]() { return DiagBuilder() << " with run-time trip count"; });
510     }
511     LLVM_DEBUG(dbgs() << "!\n");
512   }
513 
514   // We are going to make changes to this loop. SCEV may be keeping cached info
515   // about it, in particular about backedge taken count. The changes we make
516   // are guaranteed to invalidate this information for our loop. It is tempting
517   // to only invalidate the loop being unrolled, but it is incorrect as long as
518   // all exiting branches from all inner loops have impact on the outer loops,
519   // and if something changes inside them then any of outer loops may also
520   // change. When we forget outermost loop, we also forget all contained loops
521   // and this is what we need here.
522   if (SE) {
523     if (ULO.ForgetAllSCEV)
524       SE->forgetAllLoops();
525     else
526       SE->forgetTopmostLoop(L);
527   }
528 
529   if (!LatchIsExiting)
530     ++NumUnrolledNotLatch;
531 
532   // For the first iteration of the loop, we should use the precloned values for
533   // PHI nodes.  Insert associations now.
534   ValueToValueMapTy LastValueMap;
535   std::vector<PHINode*> OrigPHINode;
536   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
537     OrigPHINode.push_back(cast<PHINode>(I));
538   }
539 
540   std::vector<BasicBlock *> Headers;
541   std::vector<BasicBlock *> ExitingBlocks;
542   std::vector<BasicBlock *> Latches;
543   Headers.push_back(Header);
544   Latches.push_back(LatchBlock);
545   if (ExitingBI)
546     ExitingBlocks.push_back(ExitingBI->getParent());
547 
548   // The current on-the-fly SSA update requires blocks to be processed in
549   // reverse postorder so that LastValueMap contains the correct value at each
550   // exit.
551   LoopBlocksDFS DFS(L);
552   DFS.perform(LI);
553 
554   // Stash the DFS iterators before adding blocks to the loop.
555   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
556   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
557 
558   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
559 
560   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
561   // might break loop-simplified form for these loops (as they, e.g., would
562   // share the same exit blocks). We'll keep track of loops for which we can
563   // break this so that later we can re-simplify them.
564   SmallSetVector<Loop *, 4> LoopsToSimplify;
565   for (Loop *SubLoop : *L)
566     LoopsToSimplify.insert(SubLoop);
567 
568   // When a FSDiscriminator is enabled, we don't need to add the multiply
569   // factors to the discriminators.
570   if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
571     for (BasicBlock *BB : L->getBlocks())
572       for (Instruction &I : *BB)
573         if (!isa<DbgInfoIntrinsic>(&I))
574           if (const DILocation *DIL = I.getDebugLoc()) {
575             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
576             if (NewDIL)
577               I.setDebugLoc(NewDIL.getValue());
578             else
579               LLVM_DEBUG(dbgs()
580                          << "Failed to create new discriminator: "
581                          << DIL->getFilename() << " Line: " << DIL->getLine());
582           }
583 
584   // Identify what noalias metadata is inside the loop: if it is inside the
585   // loop, the associated metadata must be cloned for each iteration.
586   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
587   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
588 
589   for (unsigned It = 1; It != ULO.Count; ++It) {
590     SmallVector<BasicBlock *, 8> NewBlocks;
591     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
592     NewLoops[L] = L;
593 
594     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
595       ValueToValueMapTy VMap;
596       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
597       Header->getParent()->getBasicBlockList().push_back(New);
598 
599       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
600              "Header should not be in a sub-loop");
601       // Tell LI about New.
602       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
603       if (OldLoop)
604         LoopsToSimplify.insert(NewLoops[OldLoop]);
605 
606       if (*BB == Header)
607         // Loop over all of the PHI nodes in the block, changing them to use
608         // the incoming values from the previous block.
609         for (PHINode *OrigPHI : OrigPHINode) {
610           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
611           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
612           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
613             if (It > 1 && L->contains(InValI))
614               InVal = LastValueMap[InValI];
615           VMap[OrigPHI] = InVal;
616           New->getInstList().erase(NewPHI);
617         }
618 
619       // Update our running map of newest clones
620       LastValueMap[*BB] = New;
621       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
622            VI != VE; ++VI)
623         LastValueMap[VI->first] = VI->second;
624 
625       // Add phi entries for newly created values to all exit blocks.
626       for (BasicBlock *Succ : successors(*BB)) {
627         if (L->contains(Succ))
628           continue;
629         for (PHINode &PHI : Succ->phis()) {
630           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
631           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
632           if (It != LastValueMap.end())
633             Incoming = It->second;
634           PHI.addIncoming(Incoming, New);
635         }
636       }
637       // Keep track of new headers and latches as we create them, so that
638       // we can insert the proper branches later.
639       if (*BB == Header)
640         Headers.push_back(New);
641       if (*BB == LatchBlock)
642         Latches.push_back(New);
643 
644       // Keep track of the exiting block and its successor block contained in
645       // the loop for the current iteration.
646       if (ExitingBI)
647         if (*BB == ExitingBlocks[0])
648           ExitingBlocks.push_back(New);
649 
650       NewBlocks.push_back(New);
651       UnrolledLoopBlocks.push_back(New);
652 
653       // Update DomTree: since we just copy the loop body, and each copy has a
654       // dedicated entry block (copy of the header block), this header's copy
655       // dominates all copied blocks. That means, dominance relations in the
656       // copied body are the same as in the original body.
657       if (DT) {
658         if (*BB == Header)
659           DT->addNewBlock(New, Latches[It - 1]);
660         else {
661           auto BBDomNode = DT->getNode(*BB);
662           auto BBIDom = BBDomNode->getIDom();
663           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
664           DT->addNewBlock(
665               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
666         }
667       }
668     }
669 
670     // Remap all instructions in the most recent iteration
671     remapInstructionsInBlocks(NewBlocks, LastValueMap);
672     for (BasicBlock *NewBlock : NewBlocks)
673       for (Instruction &I : *NewBlock)
674         if (auto *II = dyn_cast<AssumeInst>(&I))
675           AC->registerAssumption(II);
676 
677     {
678       // Identify what other metadata depends on the cloned version. After
679       // cloning, replace the metadata with the corrected version for both
680       // memory instructions and noalias intrinsics.
681       std::string ext = (Twine("It") + Twine(It)).str();
682       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
683                                  Header->getContext(), ext);
684     }
685   }
686 
687   // Loop over the PHI nodes in the original block, setting incoming values.
688   for (PHINode *PN : OrigPHINode) {
689     if (CompletelyUnroll) {
690       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
691       Header->getInstList().erase(PN);
692     } else if (ULO.Count > 1) {
693       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
694       // If this value was defined in the loop, take the value defined by the
695       // last iteration of the loop.
696       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
697         if (L->contains(InValI))
698           InVal = LastValueMap[InVal];
699       }
700       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
701       PN->addIncoming(InVal, Latches.back());
702     }
703   }
704 
705   // Connect latches of the unrolled iterations to the headers of the next
706   // iteration. Currently they point to the header of the same iteration.
707   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
708     unsigned j = (i + 1) % e;
709     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
710   }
711 
712   if (ExitingBI) {
713     auto SetDest = [](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
714       auto *Term = cast<BranchInst>(Src->getTerminator());
715       BasicBlock *Dest = Term->getSuccessor(ExitOnTrue ^ WillExit);
716 
717       // Remove predecessors from all non-Dest successors.
718       for (BasicBlock *Succ : successors(Src)) {
719         if (Succ == Dest)
720           continue;
721         Succ->removePredecessor(Src, /* KeepOneInputPHIs */ true);
722       }
723 
724       // Replace the conditional branch with an unconditional one.
725       BranchInst::Create(Dest, Term);
726       Term->eraseFromParent();
727     };
728 
729     auto WillExit = [&](unsigned i, unsigned j) -> Optional<bool> {
730       if (CompletelyUnroll) {
731         if (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0))
732           return None;
733         return j == 0;
734       }
735 
736       if (RuntimeTripCount && j != 0)
737         return false;
738 
739       if (j != BreakoutTrip &&
740           (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
741         // If we know the trip count or a multiple of it, we can safely use an
742         // unconditional branch for some iterations.
743         return false;
744       }
745       return None;
746     };
747 
748     // Fold branches for iterations where we know that they will exit or not
749     // exit.
750     bool ExitOnTrue = !L->contains(ExitingBI->getSuccessor(0));
751     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
752       // The branch destination.
753       unsigned j = (i + 1) % e;
754       Optional<bool> KnownWillExit = WillExit(i, j);
755       if (!KnownWillExit)
756         continue;
757 
758       // TODO: Also fold known-exiting branches for non-latch exits.
759       if (*KnownWillExit && !LatchIsExiting)
760         continue;
761 
762       SetDest(ExitingBlocks[i], *KnownWillExit, ExitOnTrue);
763     }
764   }
765 
766   // When completely unrolling, the last latch becomes unreachable.
767   if (!LatchIsExiting && CompletelyUnroll) {
768     BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator());
769     new UnreachableInst(Term->getContext(), Term);
770     Term->eraseFromParent();
771   }
772 
773   // Update dominators of blocks we might reach through exits.
774   // Immediate dominator of such block might change, because we add more
775   // routes which can lead to the exit: we can now reach it from the copied
776   // iterations too.
777   if (DT && ULO.Count > 1) {
778     for (auto *BB : OriginalLoopBlocks) {
779       auto *BBDomNode = DT->getNode(BB);
780       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
781       for (auto *ChildDomNode : BBDomNode->children()) {
782         auto *ChildBB = ChildDomNode->getBlock();
783         if (!L->contains(ChildBB))
784           ChildrenToUpdate.push_back(ChildBB);
785       }
786       BasicBlock *NewIDom;
787       if (ExitingBI && BB == ExitingBlocks[0]) {
788         // The latch is special because we emit unconditional branches in
789         // some cases where the original loop contained a conditional branch.
790         // Since the latch is always at the bottom of the loop, if the latch
791         // dominated an exit before unrolling, the new dominator of that exit
792         // must also be a latch.  Specifically, the dominator is the first
793         // latch which ends in a conditional branch, or the last latch if
794         // there is no such latch.
795         // For loops exiting from non latch exiting block, we limit the
796         // branch simplification to single exiting block loops.
797         NewIDom = ExitingBlocks.back();
798         for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
799           Instruction *Term = ExitingBlocks[i]->getTerminator();
800           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
801             NewIDom =
802                 DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]);
803             break;
804           }
805         }
806       } else {
807         // The new idom of the block will be the nearest common dominator
808         // of all copies of the previous idom. This is equivalent to the
809         // nearest common dominator of the previous idom and the first latch,
810         // which dominates all copies of the previous idom.
811         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
812       }
813       for (auto *ChildBB : ChildrenToUpdate)
814         DT->changeImmediateDominator(ChildBB, NewIDom);
815     }
816   }
817 
818   assert(!DT || !UnrollVerifyDomtree ||
819          DT->verify(DominatorTree::VerificationLevel::Fast));
820 
821   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
822   // Merge adjacent basic blocks, if possible.
823   for (BasicBlock *Latch : Latches) {
824     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
825     assert((Term ||
826             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
827            "Need a branch as terminator, except when fully unrolling with "
828            "unconditional latch");
829     if (Term && Term->isUnconditional()) {
830       BasicBlock *Dest = Term->getSuccessor(0);
831       BasicBlock *Fold = Dest->getUniquePredecessor();
832       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
833         // Dest has been folded into Fold. Update our worklists accordingly.
834         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
835         llvm::erase_value(UnrolledLoopBlocks, Dest);
836       }
837     }
838   }
839   // Apply updates to the DomTree.
840   DT = &DTU.getDomTree();
841 
842   // At this point, the code is well formed.  We now simplify the unrolled loop,
843   // doing constant propagation and dead code elimination as we go.
844   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
845                           SE, DT, AC, TTI);
846 
847   NumCompletelyUnrolled += CompletelyUnroll;
848   ++NumUnrolled;
849 
850   Loop *OuterL = L->getParentLoop();
851   // Update LoopInfo if the loop is completely removed.
852   if (CompletelyUnroll)
853     LI->erase(L);
854 
855   // After complete unrolling most of the blocks should be contained in OuterL.
856   // However, some of them might happen to be out of OuterL (e.g. if they
857   // precede a loop exit). In this case we might need to insert PHI nodes in
858   // order to preserve LCSSA form.
859   // We don't need to check this if we already know that we need to fix LCSSA
860   // form.
861   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
862   // it should be possible to fix it in-place.
863   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
864     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
865 
866   // If we have a pass and a DominatorTree we should re-simplify impacted loops
867   // to ensure subsequent analyses can rely on this form. We want to simplify
868   // at least one layer outside of the loop that was unrolled so that any
869   // changes to the parent loop exposed by the unrolling are considered.
870   if (DT) {
871     if (OuterL) {
872       // OuterL includes all loops for which we can break loop-simplify, so
873       // it's sufficient to simplify only it (it'll recursively simplify inner
874       // loops too).
875       if (NeedToFixLCSSA) {
876         // LCSSA must be performed on the outermost affected loop. The unrolled
877         // loop's last loop latch is guaranteed to be in the outermost loop
878         // after LoopInfo's been updated by LoopInfo::erase.
879         Loop *LatchLoop = LI->getLoopFor(Latches.back());
880         Loop *FixLCSSALoop = OuterL;
881         if (!FixLCSSALoop->contains(LatchLoop))
882           while (FixLCSSALoop->getParentLoop() != LatchLoop)
883             FixLCSSALoop = FixLCSSALoop->getParentLoop();
884 
885         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
886       } else if (PreserveLCSSA) {
887         assert(OuterL->isLCSSAForm(*DT) &&
888                "Loops should be in LCSSA form after loop-unroll.");
889       }
890 
891       // TODO: That potentially might be compile-time expensive. We should try
892       // to fix the loop-simplified form incrementally.
893       simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
894     } else {
895       // Simplify loops for which we might've broken loop-simplify form.
896       for (Loop *SubLoop : LoopsToSimplify)
897         simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
898     }
899   }
900 
901   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
902                           : LoopUnrollResult::PartiallyUnrolled;
903 }
904 
905 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
906 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
907 /// such metadata node exists, then nullptr is returned.
908 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
909   // First operand should refer to the loop id itself.
910   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
911   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
912 
913   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
914     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
915     if (!MD)
916       continue;
917 
918     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
919     if (!S)
920       continue;
921 
922     if (Name.equals(S->getString()))
923       return MD;
924   }
925   return nullptr;
926 }
927