1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 /// Convert the instruction operands from referencing the current values into
55 /// those specified by VMap.
56 static inline void remapInstruction(Instruction *I,
57                                     ValueToValueMapTy &VMap) {
58   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
59     Value *Op = I->getOperand(op);
60     ValueToValueMapTy::iterator It = VMap.find(Op);
61     if (It != VMap.end())
62       I->setOperand(op, It->second);
63   }
64 
65   if (PHINode *PN = dyn_cast<PHINode>(I)) {
66     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
67       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
68       if (It != VMap.end())
69         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
70     }
71   }
72 }
73 
74 /// Folds a basic block into its predecessor if it only has one predecessor, and
75 /// that predecessor only has one successor.
76 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
77 /// successful references to the containing loop must be removed from
78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
79 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
80 /// of loops that have already been forgotten to prevent redundant, expensive
81 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
82 static BasicBlock *
83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
84                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
85                          DominatorTree *DT) {
86   // Merge basic blocks into their predecessor if there is only one distinct
87   // pred, and if there is only one distinct successor of the predecessor, and
88   // if there are no PHI nodes.
89   BasicBlock *OnlyPred = BB->getSinglePredecessor();
90   if (!OnlyPred) return nullptr;
91 
92   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
93     return nullptr;
94 
95   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
96 
97   // Resolve any PHI nodes at the start of the block.  They are all
98   // guaranteed to have exactly one entry if they exist, unless there are
99   // multiple duplicate (but guaranteed to be equal) entries for the
100   // incoming edges.  This occurs when there are multiple edges from
101   // OnlyPred to OnlySucc.
102   FoldSingleEntryPHINodes(BB);
103 
104   // Delete the unconditional branch from the predecessor...
105   OnlyPred->getInstList().pop_back();
106 
107   // Make all PHI nodes that referred to BB now refer to Pred as their
108   // source...
109   BB->replaceAllUsesWith(OnlyPred);
110 
111   // Move all definitions in the successor to the predecessor...
112   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
113 
114   // OldName will be valid until erased.
115   StringRef OldName = BB->getName();
116 
117   // Erase the old block and update dominator info.
118   if (DT)
119     if (DomTreeNode *DTN = DT->getNode(BB)) {
120       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
121       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
122       for (auto *DI : Children)
123         DT->changeImmediateDominator(DI, PredDTN);
124 
125       DT->eraseNode(BB);
126     }
127 
128   // ScalarEvolution holds references to loop exit blocks.
129   if (SE) {
130     if (Loop *L = LI->getLoopFor(BB)) {
131       if (ForgottenLoops.insert(L).second)
132         SE->forgetLoop(L);
133     }
134   }
135   LI->removeBlock(BB);
136 
137   // Inherit predecessor's name if it exists...
138   if (!OldName.empty() && !OnlyPred->hasName())
139     OnlyPred->setName(OldName);
140 
141   BB->eraseFromParent();
142 
143   return OnlyPred;
144 }
145 
146 /// Check if unrolling created a situation where we need to insert phi nodes to
147 /// preserve LCSSA form.
148 /// \param Blocks is a vector of basic blocks representing unrolled loop.
149 /// \param L is the outer loop.
150 /// It's possible that some of the blocks are in L, and some are not. In this
151 /// case, if there is a use is outside L, and definition is inside L, we need to
152 /// insert a phi-node, otherwise LCSSA will be broken.
153 /// The function is just a helper function for llvm::UnrollLoop that returns
154 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
156                                      LoopInfo *LI) {
157   for (BasicBlock *BB : Blocks) {
158     if (LI->getLoopFor(BB) == L)
159       continue;
160     for (Instruction &I : *BB) {
161       for (Use &U : I.operands()) {
162         if (auto Def = dyn_cast<Instruction>(U)) {
163           Loop *DefLoop = LI->getLoopFor(Def->getParent());
164           if (!DefLoop)
165             continue;
166           if (DefLoop->contains(L))
167             return true;
168         }
169       }
170     }
171   }
172   return false;
173 }
174 
175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
177 /// can only fail when the loop's latch block is not terminated by a conditional
178 /// branch instruction. However, if the trip count (and multiple) are not known,
179 /// loop unrolling will mostly produce more code that is no faster.
180 ///
181 /// TripCount is generally defined as the number of times the loop header
182 /// executes. UnrollLoop relaxes the definition to permit early exits: here
183 /// TripCount is the iteration on which control exits LatchBlock if no early
184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
185 /// terminates LatchBlock in order to remove unnecesssary instances of the
186 /// test. In other words, control may exit the loop prior to TripCount
187 /// iterations via an early branch, but control may not exit the loop from the
188 /// LatchBlock's terminator prior to TripCount iterations.
189 ///
190 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
191 /// needs to be preserved.  It is needed when we use trip count upper bound to
192 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
193 /// conditional branch needs to be preserved.
194 ///
195 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
196 /// execute without exiting the loop.
197 ///
198 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
199 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
200 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
201 /// iterations before branching into the unrolled loop.  UnrollLoop will not
202 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
203 /// AllowExpensiveTripCount is false.
204 ///
205 /// The LoopInfo Analysis that is passed will be kept consistent.
206 ///
207 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
208 /// DominatorTree if they are non-null.
209 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
210                       bool AllowRuntime, bool AllowExpensiveTripCount,
211                       bool PreserveCondBr, bool PreserveOnlyFirst,
212                       unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
213                       DominatorTree *DT, AssumptionCache *AC,
214                       OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
215   BasicBlock *Preheader = L->getLoopPreheader();
216   if (!Preheader) {
217     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
218     return false;
219   }
220 
221   BasicBlock *LatchBlock = L->getLoopLatch();
222   if (!LatchBlock) {
223     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
224     return false;
225   }
226 
227   // Loops with indirectbr cannot be cloned.
228   if (!L->isSafeToClone()) {
229     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
230     return false;
231   }
232 
233   BasicBlock *Header = L->getHeader();
234   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
235 
236   if (!BI || BI->isUnconditional()) {
237     // The loop-rotate pass can be helpful to avoid this in many cases.
238     DEBUG(dbgs() <<
239              "  Can't unroll; loop not terminated by a conditional branch.\n");
240     return false;
241   }
242 
243   if (Header->hasAddressTaken()) {
244     // The loop-rotate pass can be helpful to avoid this in many cases.
245     DEBUG(dbgs() <<
246           "  Won't unroll loop: address of header block is taken.\n");
247     return false;
248   }
249 
250   if (TripCount != 0)
251     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
252   if (TripMultiple != 1)
253     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
254 
255   // Effectively "DCE" unrolled iterations that are beyond the tripcount
256   // and will never be executed.
257   if (TripCount != 0 && Count > TripCount)
258     Count = TripCount;
259 
260   // Don't enter the unroll code if there is nothing to do. This way we don't
261   // need to support "partial unrolling by 1".
262   if (TripCount == 0 && Count < 2)
263     return false;
264 
265   assert(Count > 0);
266   assert(TripMultiple > 0);
267   assert(TripCount == 0 || TripCount % TripMultiple == 0);
268 
269   // Are we eliminating the loop control altogether?
270   bool CompletelyUnroll = Count == TripCount;
271   SmallVector<BasicBlock *, 4> ExitBlocks;
272   L->getExitBlocks(ExitBlocks);
273   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
274 
275   // Go through all exits of L and see if there are any phi-nodes there. We just
276   // conservatively assume that they're inserted to preserve LCSSA form, which
277   // means that complete unrolling might break this form. We need to either fix
278   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
279   // now we just recompute LCSSA for the outer loop, but it should be possible
280   // to fix it in-place.
281   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
282                         any_of(ExitBlocks, [](const BasicBlock *BB) {
283                           return isa<PHINode>(BB->begin());
284                         });
285 
286   // We assume a run-time trip count if the compiler cannot
287   // figure out the loop trip count and the unroll-runtime
288   // flag is specified.
289   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
290 
291   // Loops containing convergent instructions must have a count that divides
292   // their TripMultiple.
293   DEBUG(
294       {
295         bool HasConvergent = false;
296         for (auto &BB : L->blocks())
297           for (auto &I : *BB)
298             if (auto CS = CallSite(&I))
299               HasConvergent |= CS.isConvergent();
300         assert((!HasConvergent || TripMultiple % Count == 0) &&
301                "Unroll count must divide trip multiple if loop contains a "
302                "convergent operation.");
303       });
304   // Don't output the runtime loop remainder if Count is a multiple of
305   // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
306   // contains a convergent instruction.
307   if (RuntimeTripCount && TripMultiple % Count != 0 &&
308       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
309                                   UnrollRuntimeEpilog, LI, SE, DT,
310                                   PreserveLCSSA)) {
311     if (Force)
312       RuntimeTripCount = false;
313     else
314       return false;
315   }
316 
317   // Notify ScalarEvolution that the loop will be substantially changed,
318   // if not outright eliminated.
319   if (SE)
320     SE->forgetLoop(L);
321 
322   // If we know the trip count, we know the multiple...
323   unsigned BreakoutTrip = 0;
324   if (TripCount != 0) {
325     BreakoutTrip = TripCount % Count;
326     TripMultiple = 0;
327   } else {
328     // Figure out what multiple to use.
329     BreakoutTrip = TripMultiple =
330       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
331   }
332 
333   using namespace ore;
334   // Report the unrolling decision.
335   if (CompletelyUnroll) {
336     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
337           << " with trip count " << TripCount << "!\n");
338     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
339                                  L->getHeader())
340               << "completely unrolled loop with "
341               << NV("UnrollCount", TripCount) << " iterations");
342   } else {
343     OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
344                             L->getHeader());
345     Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count);
346 
347     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
348           << " by " << Count);
349     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
350       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
351       ORE->emit(Diag << " with a breakout at trip "
352                      << NV("BreakoutTrip", BreakoutTrip));
353     } else if (TripMultiple != 1) {
354       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
355       ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple)
356                      << " trips per branch");
357     } else if (RuntimeTripCount) {
358       DEBUG(dbgs() << " with run-time trip count");
359       ORE->emit(Diag << " with run-time trip count");
360     }
361     DEBUG(dbgs() << "!\n");
362   }
363 
364   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
365   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
366 
367   // For the first iteration of the loop, we should use the precloned values for
368   // PHI nodes.  Insert associations now.
369   ValueToValueMapTy LastValueMap;
370   std::vector<PHINode*> OrigPHINode;
371   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
372     OrigPHINode.push_back(cast<PHINode>(I));
373   }
374 
375   std::vector<BasicBlock*> Headers;
376   std::vector<BasicBlock*> Latches;
377   Headers.push_back(Header);
378   Latches.push_back(LatchBlock);
379 
380   // The current on-the-fly SSA update requires blocks to be processed in
381   // reverse postorder so that LastValueMap contains the correct value at each
382   // exit.
383   LoopBlocksDFS DFS(L);
384   DFS.perform(LI);
385 
386   // Stash the DFS iterators before adding blocks to the loop.
387   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
388   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
389 
390   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
391 
392   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
393   // might break loop-simplified form for these loops (as they, e.g., would
394   // share the same exit blocks). We'll keep track of loops for which we can
395   // break this so that later we can re-simplify them.
396   SmallSetVector<Loop *, 4> LoopsToSimplify;
397   for (Loop *SubLoop : *L)
398     LoopsToSimplify.insert(SubLoop);
399 
400   for (unsigned It = 1; It != Count; ++It) {
401     std::vector<BasicBlock*> NewBlocks;
402     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
403     NewLoops[L] = L;
404 
405     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
406       ValueToValueMapTy VMap;
407       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
408       Header->getParent()->getBasicBlockList().push_back(New);
409 
410       // Tell LI about New.
411       if (*BB == Header) {
412         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
413         L->addBasicBlockToLoop(New, *LI);
414       } else {
415         // Figure out which loop New is in.
416         const Loop *OldLoop = LI->getLoopFor(*BB);
417         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
418 
419         Loop *&NewLoop = NewLoops[OldLoop];
420         if (!NewLoop) {
421           // Found a new sub-loop.
422           assert(*BB == OldLoop->getHeader() &&
423                  "Header should be first in RPO");
424 
425           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
426           assert(NewLoopParent &&
427                  "Expected parent loop before sub-loop in RPO");
428           NewLoop = new Loop;
429           NewLoopParent->addChildLoop(NewLoop);
430           LoopsToSimplify.insert(NewLoop);
431 
432           // Forget the old loop, since its inputs may have changed.
433           if (SE)
434             SE->forgetLoop(OldLoop);
435         }
436         NewLoop->addBasicBlockToLoop(New, *LI);
437       }
438 
439       if (*BB == Header)
440         // Loop over all of the PHI nodes in the block, changing them to use
441         // the incoming values from the previous block.
442         for (PHINode *OrigPHI : OrigPHINode) {
443           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
444           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
445           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
446             if (It > 1 && L->contains(InValI))
447               InVal = LastValueMap[InValI];
448           VMap[OrigPHI] = InVal;
449           New->getInstList().erase(NewPHI);
450         }
451 
452       // Update our running map of newest clones
453       LastValueMap[*BB] = New;
454       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
455            VI != VE; ++VI)
456         LastValueMap[VI->first] = VI->second;
457 
458       // Add phi entries for newly created values to all exit blocks.
459       for (BasicBlock *Succ : successors(*BB)) {
460         if (L->contains(Succ))
461           continue;
462         for (BasicBlock::iterator BBI = Succ->begin();
463              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
464           Value *Incoming = phi->getIncomingValueForBlock(*BB);
465           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
466           if (It != LastValueMap.end())
467             Incoming = It->second;
468           phi->addIncoming(Incoming, New);
469         }
470       }
471       // Keep track of new headers and latches as we create them, so that
472       // we can insert the proper branches later.
473       if (*BB == Header)
474         Headers.push_back(New);
475       if (*BB == LatchBlock)
476         Latches.push_back(New);
477 
478       NewBlocks.push_back(New);
479       UnrolledLoopBlocks.push_back(New);
480 
481       // Update DomTree: since we just copy the loop body, and each copy has a
482       // dedicated entry block (copy of the header block), this header's copy
483       // dominates all copied blocks. That means, dominance relations in the
484       // copied body are the same as in the original body.
485       if (DT) {
486         if (*BB == Header)
487           DT->addNewBlock(New, Latches[It - 1]);
488         else {
489           auto BBDomNode = DT->getNode(*BB);
490           auto BBIDom = BBDomNode->getIDom();
491           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
492           DT->addNewBlock(
493               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
494         }
495       }
496     }
497 
498     // Remap all instructions in the most recent iteration
499     for (BasicBlock *NewBlock : NewBlocks) {
500       for (Instruction &I : *NewBlock) {
501         ::remapInstruction(&I, LastValueMap);
502         if (auto *II = dyn_cast<IntrinsicInst>(&I))
503           if (II->getIntrinsicID() == Intrinsic::assume)
504             AC->registerAssumption(II);
505       }
506     }
507   }
508 
509   // Loop over the PHI nodes in the original block, setting incoming values.
510   for (PHINode *PN : OrigPHINode) {
511     if (CompletelyUnroll) {
512       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
513       Header->getInstList().erase(PN);
514     }
515     else if (Count > 1) {
516       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
517       // If this value was defined in the loop, take the value defined by the
518       // last iteration of the loop.
519       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
520         if (L->contains(InValI))
521           InVal = LastValueMap[InVal];
522       }
523       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
524       PN->addIncoming(InVal, Latches.back());
525     }
526   }
527 
528   // Now that all the basic blocks for the unrolled iterations are in place,
529   // set up the branches to connect them.
530   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
531     // The original branch was replicated in each unrolled iteration.
532     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
533 
534     // The branch destination.
535     unsigned j = (i + 1) % e;
536     BasicBlock *Dest = Headers[j];
537     bool NeedConditional = true;
538 
539     if (RuntimeTripCount && j != 0) {
540       NeedConditional = false;
541     }
542 
543     // For a complete unroll, make the last iteration end with a branch
544     // to the exit block.
545     if (CompletelyUnroll) {
546       if (j == 0)
547         Dest = LoopExit;
548       // If using trip count upper bound to completely unroll, we need to keep
549       // the conditional branch except the last one because the loop may exit
550       // after any iteration.
551       assert(NeedConditional &&
552              "NeedCondition cannot be modified by both complete "
553              "unrolling and runtime unrolling");
554       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
555     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
556       // If we know the trip count or a multiple of it, we can safely use an
557       // unconditional branch for some iterations.
558       NeedConditional = false;
559     }
560 
561     if (NeedConditional) {
562       // Update the conditional branch's successor for the following
563       // iteration.
564       Term->setSuccessor(!ContinueOnTrue, Dest);
565     } else {
566       // Remove phi operands at this loop exit
567       if (Dest != LoopExit) {
568         BasicBlock *BB = Latches[i];
569         for (BasicBlock *Succ: successors(BB)) {
570           if (Succ == Headers[i])
571             continue;
572           for (BasicBlock::iterator BBI = Succ->begin();
573                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
574             Phi->removeIncomingValue(BB, false);
575           }
576         }
577       }
578       // Replace the conditional branch with an unconditional one.
579       BranchInst::Create(Dest, Term);
580       Term->eraseFromParent();
581     }
582   }
583   // Update dominators of blocks we might reach through exits.
584   // Immediate dominator of such block might change, because we add more
585   // routes which can lead to the exit: we can now reach it from the copied
586   // iterations too. Thus, the new idom of the block will be the nearest
587   // common dominator of the previous idom and common dominator of all copies of
588   // the previous idom. This is equivalent to the nearest common dominator of
589   // the previous idom and the first latch, which dominates all copies of the
590   // previous idom.
591   if (DT && Count > 1) {
592     for (auto *BB : OriginalLoopBlocks) {
593       auto *BBDomNode = DT->getNode(BB);
594       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
595       for (auto *ChildDomNode : BBDomNode->getChildren()) {
596         auto *ChildBB = ChildDomNode->getBlock();
597         if (!L->contains(ChildBB))
598           ChildrenToUpdate.push_back(ChildBB);
599       }
600       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
601       for (auto *ChildBB : ChildrenToUpdate)
602         DT->changeImmediateDominator(ChildBB, NewIDom);
603     }
604   }
605 
606   // Merge adjacent basic blocks, if possible.
607   SmallPtrSet<Loop *, 4> ForgottenLoops;
608   for (BasicBlock *Latch : Latches) {
609     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
610     if (Term->isUnconditional()) {
611       BasicBlock *Dest = Term->getSuccessor(0);
612       if (BasicBlock *Fold =
613               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
614         // Dest has been folded into Fold. Update our worklists accordingly.
615         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
616         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
617                                              UnrolledLoopBlocks.end(), Dest),
618                                  UnrolledLoopBlocks.end());
619       }
620     }
621   }
622 
623   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
624   // updating domtree after partial loop unrolling should also be easy.
625   if (DT && !CompletelyUnroll)
626     DT->recalculate(*L->getHeader()->getParent());
627   else if (DT)
628     DEBUG(DT->verifyDomTree());
629 
630   // Simplify any new induction variables in the partially unrolled loop.
631   if (SE && !CompletelyUnroll) {
632     SmallVector<WeakVH, 16> DeadInsts;
633     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
634 
635     // Aggressively clean up dead instructions that simplifyLoopIVs already
636     // identified. Any remaining should be cleaned up below.
637     while (!DeadInsts.empty())
638       if (Instruction *Inst =
639               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
640         RecursivelyDeleteTriviallyDeadInstructions(Inst);
641   }
642 
643   // At this point, the code is well formed.  We now do a quick sweep over the
644   // inserted code, doing constant propagation and dead code elimination as we
645   // go.
646   const DataLayout &DL = Header->getModule()->getDataLayout();
647   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
648   for (BasicBlock *BB : NewLoopBlocks) {
649     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
650       Instruction *Inst = &*I++;
651 
652       if (Value *V = SimplifyInstruction(Inst, DL))
653         if (LI->replacementPreservesLCSSAForm(Inst, V))
654           Inst->replaceAllUsesWith(V);
655       if (isInstructionTriviallyDead(Inst))
656         BB->getInstList().erase(Inst);
657     }
658   }
659 
660   NumCompletelyUnrolled += CompletelyUnroll;
661   ++NumUnrolled;
662 
663   Loop *OuterL = L->getParentLoop();
664   // Update LoopInfo if the loop is completely removed.
665   if (CompletelyUnroll)
666     LI->markAsRemoved(L);
667 
668   // After complete unrolling most of the blocks should be contained in OuterL.
669   // However, some of them might happen to be out of OuterL (e.g. if they
670   // precede a loop exit). In this case we might need to insert PHI nodes in
671   // order to preserve LCSSA form.
672   // We don't need to check this if we already know that we need to fix LCSSA
673   // form.
674   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
675   // it should be possible to fix it in-place.
676   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
677     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
678 
679   // If we have a pass and a DominatorTree we should re-simplify impacted loops
680   // to ensure subsequent analyses can rely on this form. We want to simplify
681   // at least one layer outside of the loop that was unrolled so that any
682   // changes to the parent loop exposed by the unrolling are considered.
683   if (DT) {
684     if (!OuterL && !CompletelyUnroll)
685       OuterL = L;
686     if (OuterL) {
687       // OuterL includes all loops for which we can break loop-simplify, so
688       // it's sufficient to simplify only it (it'll recursively simplify inner
689       // loops too).
690       // TODO: That potentially might be compile-time expensive. We should try
691       // to fix the loop-simplified form incrementally.
692       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
693 
694       // LCSSA must be performed on the outermost affected loop. The unrolled
695       // loop's last loop latch is guaranteed to be in the outermost loop after
696       // LoopInfo's been updated by markAsRemoved.
697       Loop *LatchLoop = LI->getLoopFor(Latches.back());
698       if (!OuterL->contains(LatchLoop))
699         while (OuterL->getParentLoop() != LatchLoop)
700           OuterL = OuterL->getParentLoop();
701 
702       if (NeedToFixLCSSA)
703         formLCSSARecursively(*OuterL, *DT, LI, SE);
704       else
705         assert(OuterL->isLCSSAForm(*DT) &&
706                "Loops should be in LCSSA form after loop-unroll.");
707     } else {
708       // Simplify loops for which we might've broken loop-simplify form.
709       for (Loop *SubLoop : LoopsToSimplify)
710         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
711     }
712   }
713 
714   return true;
715 }
716 
717 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
718 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
719 /// such metadata node exists, then nullptr is returned.
720 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
721   // First operand should refer to the loop id itself.
722   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
723   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
724 
725   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
726     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
727     if (!MD)
728       continue;
729 
730     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
731     if (!S)
732       continue;
733 
734     if (Name.equals(S->getString()))
735       return MD;
736   }
737   return nullptr;
738 }
739