1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionTracker.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 /// RemapInstruction - Convert the instruction operands from referencing the 48 /// current values into those specified by VMap. 49 static inline void RemapInstruction(Instruction *I, 50 ValueToValueMapTy &VMap) { 51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 52 Value *Op = I->getOperand(op); 53 ValueToValueMapTy::iterator It = VMap.find(Op); 54 if (It != VMap.end()) 55 I->setOperand(op, It->second); 56 } 57 58 if (PHINode *PN = dyn_cast<PHINode>(I)) { 59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 61 if (It != VMap.end()) 62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 63 } 64 } 65 } 66 67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 68 /// only has one predecessor, and that predecessor only has one successor. 69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 70 /// successful references to the containing loop must be removed from 71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 72 /// references to the eliminated BB. The argument ForgottenLoops contains a set 73 /// of loops that have already been forgotten to prevent redundant, expensive 74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 75 static BasicBlock * 76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM, 77 SmallPtrSetImpl<Loop *> &ForgottenLoops) { 78 // Merge basic blocks into their predecessor if there is only one distinct 79 // pred, and if there is only one distinct successor of the predecessor, and 80 // if there are no PHI nodes. 81 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 82 if (!OnlyPred) return nullptr; 83 84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 85 return nullptr; 86 87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 88 89 // Resolve any PHI nodes at the start of the block. They are all 90 // guaranteed to have exactly one entry if they exist, unless there are 91 // multiple duplicate (but guaranteed to be equal) entries for the 92 // incoming edges. This occurs when there are multiple edges from 93 // OnlyPred to OnlySucc. 94 FoldSingleEntryPHINodes(BB); 95 96 // Delete the unconditional branch from the predecessor... 97 OnlyPred->getInstList().pop_back(); 98 99 // Make all PHI nodes that referred to BB now refer to Pred as their 100 // source... 101 BB->replaceAllUsesWith(OnlyPred); 102 103 // Move all definitions in the successor to the predecessor... 104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 105 106 // OldName will be valid until erased. 107 StringRef OldName = BB->getName(); 108 109 // Erase basic block from the function... 110 111 // ScalarEvolution holds references to loop exit blocks. 112 if (LPM) { 113 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { 114 if (Loop *L = LI->getLoopFor(BB)) { 115 if (ForgottenLoops.insert(L)) 116 SE->forgetLoop(L); 117 } 118 } 119 } 120 LI->removeBlock(BB); 121 122 // Inherit predecessor's name if it exists... 123 if (!OldName.empty() && !OnlyPred->hasName()) 124 OnlyPred->setName(OldName); 125 126 BB->eraseFromParent(); 127 128 return OnlyPred; 129 } 130 131 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 132 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 133 /// can only fail when the loop's latch block is not terminated by a conditional 134 /// branch instruction. However, if the trip count (and multiple) are not known, 135 /// loop unrolling will mostly produce more code that is no faster. 136 /// 137 /// TripCount is generally defined as the number of times the loop header 138 /// executes. UnrollLoop relaxes the definition to permit early exits: here 139 /// TripCount is the iteration on which control exits LatchBlock if no early 140 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 141 /// terminates LatchBlock in order to remove unnecesssary instances of the 142 /// test. In other words, control may exit the loop prior to TripCount 143 /// iterations via an early branch, but control may not exit the loop from the 144 /// LatchBlock's terminator prior to TripCount iterations. 145 /// 146 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 147 /// execute without exiting the loop. 148 /// 149 /// The LoopInfo Analysis that is passed will be kept consistent. 150 /// 151 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 152 /// removed from the LoopPassManager as well. LPM can also be NULL. 153 /// 154 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 155 /// available from the Pass it must also preserve those analyses. 156 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 157 bool AllowRuntime, unsigned TripMultiple, 158 LoopInfo *LI, Pass *PP, LPPassManager *LPM, 159 AssumptionTracker *AT) { 160 BasicBlock *Preheader = L->getLoopPreheader(); 161 if (!Preheader) { 162 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 163 return false; 164 } 165 166 BasicBlock *LatchBlock = L->getLoopLatch(); 167 if (!LatchBlock) { 168 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 169 return false; 170 } 171 172 // Loops with indirectbr cannot be cloned. 173 if (!L->isSafeToClone()) { 174 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 175 return false; 176 } 177 178 BasicBlock *Header = L->getHeader(); 179 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 180 181 if (!BI || BI->isUnconditional()) { 182 // The loop-rotate pass can be helpful to avoid this in many cases. 183 DEBUG(dbgs() << 184 " Can't unroll; loop not terminated by a conditional branch.\n"); 185 return false; 186 } 187 188 if (Header->hasAddressTaken()) { 189 // The loop-rotate pass can be helpful to avoid this in many cases. 190 DEBUG(dbgs() << 191 " Won't unroll loop: address of header block is taken.\n"); 192 return false; 193 } 194 195 if (TripCount != 0) 196 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 197 if (TripMultiple != 1) 198 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 199 200 // Effectively "DCE" unrolled iterations that are beyond the tripcount 201 // and will never be executed. 202 if (TripCount != 0 && Count > TripCount) 203 Count = TripCount; 204 205 // Don't enter the unroll code if there is nothing to do. This way we don't 206 // need to support "partial unrolling by 1". 207 if (TripCount == 0 && Count < 2) 208 return false; 209 210 assert(Count > 0); 211 assert(TripMultiple > 0); 212 assert(TripCount == 0 || TripCount % TripMultiple == 0); 213 214 // Are we eliminating the loop control altogether? 215 bool CompletelyUnroll = Count == TripCount; 216 217 // We assume a run-time trip count if the compiler cannot 218 // figure out the loop trip count and the unroll-runtime 219 // flag is specified. 220 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 221 222 if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) 223 return false; 224 225 // Notify ScalarEvolution that the loop will be substantially changed, 226 // if not outright eliminated. 227 ScalarEvolution *SE = 228 PP ? PP->getAnalysisIfAvailable<ScalarEvolution>() : nullptr; 229 if (SE) 230 SE->forgetLoop(L); 231 232 // If we know the trip count, we know the multiple... 233 unsigned BreakoutTrip = 0; 234 if (TripCount != 0) { 235 BreakoutTrip = TripCount % Count; 236 TripMultiple = 0; 237 } else { 238 // Figure out what multiple to use. 239 BreakoutTrip = TripMultiple = 240 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 241 } 242 243 // Report the unrolling decision. 244 DebugLoc LoopLoc = L->getStartLoc(); 245 Function *F = Header->getParent(); 246 LLVMContext &Ctx = F->getContext(); 247 248 if (CompletelyUnroll) { 249 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 250 << " with trip count " << TripCount << "!\n"); 251 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 252 Twine("completely unrolled loop with ") + 253 Twine(TripCount) + " iterations"); 254 } else { 255 auto EmitDiag = [&](const Twine &T) { 256 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 257 "unrolled loop by a factor of " + Twine(Count) + 258 T); 259 }; 260 261 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 262 << " by " << Count); 263 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 264 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 265 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 266 } else if (TripMultiple != 1) { 267 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 268 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 269 } else if (RuntimeTripCount) { 270 DEBUG(dbgs() << " with run-time trip count"); 271 EmitDiag(" with run-time trip count"); 272 } 273 DEBUG(dbgs() << "!\n"); 274 } 275 276 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 277 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 278 279 // For the first iteration of the loop, we should use the precloned values for 280 // PHI nodes. Insert associations now. 281 ValueToValueMapTy LastValueMap; 282 std::vector<PHINode*> OrigPHINode; 283 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 284 OrigPHINode.push_back(cast<PHINode>(I)); 285 } 286 287 std::vector<BasicBlock*> Headers; 288 std::vector<BasicBlock*> Latches; 289 Headers.push_back(Header); 290 Latches.push_back(LatchBlock); 291 292 // The current on-the-fly SSA update requires blocks to be processed in 293 // reverse postorder so that LastValueMap contains the correct value at each 294 // exit. 295 LoopBlocksDFS DFS(L); 296 DFS.perform(LI); 297 298 // Stash the DFS iterators before adding blocks to the loop. 299 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 300 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 301 302 for (unsigned It = 1; It != Count; ++It) { 303 std::vector<BasicBlock*> NewBlocks; 304 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 305 NewLoops[L] = L; 306 307 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 308 ValueToValueMapTy VMap; 309 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 310 Header->getParent()->getBasicBlockList().push_back(New); 311 312 // Tell LI about New. 313 if (*BB == Header) { 314 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 315 L->addBasicBlockToLoop(New, LI->getBase()); 316 } else { 317 // Figure out which loop New is in. 318 const Loop *OldLoop = LI->getLoopFor(*BB); 319 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 320 321 Loop *&NewLoop = NewLoops[OldLoop]; 322 if (!NewLoop) { 323 // Found a new sub-loop. 324 assert(*BB == OldLoop->getHeader() && 325 "Header should be first in RPO"); 326 327 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 328 assert(NewLoopParent && 329 "Expected parent loop before sub-loop in RPO"); 330 NewLoop = new Loop; 331 NewLoopParent->addChildLoop(NewLoop); 332 333 // Forget the old loop, since its inputs may have changed. 334 if (SE) 335 SE->forgetLoop(OldLoop); 336 } 337 NewLoop->addBasicBlockToLoop(New, LI->getBase()); 338 } 339 340 if (*BB == Header) 341 // Loop over all of the PHI nodes in the block, changing them to use 342 // the incoming values from the previous block. 343 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 344 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 345 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 346 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 347 if (It > 1 && L->contains(InValI)) 348 InVal = LastValueMap[InValI]; 349 VMap[OrigPHINode[i]] = InVal; 350 New->getInstList().erase(NewPHI); 351 } 352 353 // Update our running map of newest clones 354 LastValueMap[*BB] = New; 355 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 356 VI != VE; ++VI) 357 LastValueMap[VI->first] = VI->second; 358 359 // Add phi entries for newly created values to all exit blocks. 360 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 361 SI != SE; ++SI) { 362 if (L->contains(*SI)) 363 continue; 364 for (BasicBlock::iterator BBI = (*SI)->begin(); 365 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 366 Value *Incoming = phi->getIncomingValueForBlock(*BB); 367 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 368 if (It != LastValueMap.end()) 369 Incoming = It->second; 370 phi->addIncoming(Incoming, New); 371 } 372 } 373 // Keep track of new headers and latches as we create them, so that 374 // we can insert the proper branches later. 375 if (*BB == Header) 376 Headers.push_back(New); 377 if (*BB == LatchBlock) 378 Latches.push_back(New); 379 380 NewBlocks.push_back(New); 381 } 382 383 // Remap all instructions in the most recent iteration 384 for (unsigned i = 0; i < NewBlocks.size(); ++i) 385 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 386 E = NewBlocks[i]->end(); I != E; ++I) 387 ::RemapInstruction(I, LastValueMap); 388 } 389 390 // Loop over the PHI nodes in the original block, setting incoming values. 391 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 392 PHINode *PN = OrigPHINode[i]; 393 if (CompletelyUnroll) { 394 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 395 Header->getInstList().erase(PN); 396 } 397 else if (Count > 1) { 398 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 399 // If this value was defined in the loop, take the value defined by the 400 // last iteration of the loop. 401 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 402 if (L->contains(InValI)) 403 InVal = LastValueMap[InVal]; 404 } 405 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 406 PN->addIncoming(InVal, Latches.back()); 407 } 408 } 409 410 // Now that all the basic blocks for the unrolled iterations are in place, 411 // set up the branches to connect them. 412 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 413 // The original branch was replicated in each unrolled iteration. 414 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 415 416 // The branch destination. 417 unsigned j = (i + 1) % e; 418 BasicBlock *Dest = Headers[j]; 419 bool NeedConditional = true; 420 421 if (RuntimeTripCount && j != 0) { 422 NeedConditional = false; 423 } 424 425 // For a complete unroll, make the last iteration end with a branch 426 // to the exit block. 427 if (CompletelyUnroll && j == 0) { 428 Dest = LoopExit; 429 NeedConditional = false; 430 } 431 432 // If we know the trip count or a multiple of it, we can safely use an 433 // unconditional branch for some iterations. 434 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 435 NeedConditional = false; 436 } 437 438 if (NeedConditional) { 439 // Update the conditional branch's successor for the following 440 // iteration. 441 Term->setSuccessor(!ContinueOnTrue, Dest); 442 } else { 443 // Remove phi operands at this loop exit 444 if (Dest != LoopExit) { 445 BasicBlock *BB = Latches[i]; 446 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 447 SI != SE; ++SI) { 448 if (*SI == Headers[i]) 449 continue; 450 for (BasicBlock::iterator BBI = (*SI)->begin(); 451 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 452 Phi->removeIncomingValue(BB, false); 453 } 454 } 455 } 456 // Replace the conditional branch with an unconditional one. 457 BranchInst::Create(Dest, Term); 458 Term->eraseFromParent(); 459 } 460 } 461 462 // Merge adjacent basic blocks, if possible. 463 SmallPtrSet<Loop *, 4> ForgottenLoops; 464 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 465 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 466 if (Term->isUnconditional()) { 467 BasicBlock *Dest = Term->getSuccessor(0); 468 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM, 469 ForgottenLoops)) 470 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 471 } 472 } 473 474 // FIXME: We could register any cloned assumptions instead of clearing the 475 // whole function's cache. 476 AT->forgetCachedAssumptions(F); 477 478 DominatorTree *DT = nullptr; 479 if (PP) { 480 // FIXME: Reconstruct dom info, because it is not preserved properly. 481 // Incrementally updating domtree after loop unrolling would be easy. 482 if (DominatorTreeWrapperPass *DTWP = 483 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 484 DT = &DTWP->getDomTree(); 485 DT->recalculate(*L->getHeader()->getParent()); 486 } 487 488 // Simplify any new induction variables in the partially unrolled loop. 489 if (SE && !CompletelyUnroll) { 490 SmallVector<WeakVH, 16> DeadInsts; 491 simplifyLoopIVs(L, SE, LPM, DeadInsts); 492 493 // Aggressively clean up dead instructions that simplifyLoopIVs already 494 // identified. Any remaining should be cleaned up below. 495 while (!DeadInsts.empty()) 496 if (Instruction *Inst = 497 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 498 RecursivelyDeleteTriviallyDeadInstructions(Inst); 499 } 500 } 501 // At this point, the code is well formed. We now do a quick sweep over the 502 // inserted code, doing constant propagation and dead code elimination as we 503 // go. 504 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 505 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 506 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 507 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 508 Instruction *Inst = I++; 509 510 if (isInstructionTriviallyDead(Inst)) 511 (*BB)->getInstList().erase(Inst); 512 else if (Value *V = SimplifyInstruction(Inst)) 513 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 514 Inst->replaceAllUsesWith(V); 515 (*BB)->getInstList().erase(Inst); 516 } 517 } 518 519 NumCompletelyUnrolled += CompletelyUnroll; 520 ++NumUnrolled; 521 522 Loop *OuterL = L->getParentLoop(); 523 // Remove the loop from the LoopPassManager if it's completely removed. 524 if (CompletelyUnroll && LPM != nullptr) 525 LPM->deleteLoopFromQueue(L); 526 527 // If we have a pass and a DominatorTree we should re-simplify impacted loops 528 // to ensure subsequent analyses can rely on this form. We want to simplify 529 // at least one layer outside of the loop that was unrolled so that any 530 // changes to the parent loop exposed by the unrolling are considered. 531 if (PP && DT) { 532 if (!OuterL && !CompletelyUnroll) 533 OuterL = L; 534 if (OuterL) { 535 DataLayoutPass *DLP = PP->getAnalysisIfAvailable<DataLayoutPass>(); 536 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; 537 simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL, AT); 538 539 // LCSSA must be performed on the outermost affected loop. The unrolled 540 // loop's last loop latch is guaranteed to be in the outermost loop after 541 // deleteLoopFromQueue updates LoopInfo. 542 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 543 if (!OuterL->contains(LatchLoop)) 544 while (OuterL->getParentLoop() != LatchLoop) 545 OuterL = OuterL->getParentLoop(); 546 547 formLCSSARecursively(*OuterL, *DT, SE); 548 } 549 } 550 551 return true; 552 } 553