1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "
49                                  "conditional latch (completely or otherwise)");
50 
51 static cl::opt<bool>
52 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
53                     cl::desc("Allow runtime unrolled loops to be unrolled "
54                              "with epilog instead of prolog."));
55 
56 static cl::opt<bool>
57 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
58                     cl::desc("Verify domtree after unrolling"),
59 #ifdef EXPENSIVE_CHECKS
60     cl::init(true)
61 #else
62     cl::init(false)
63 #endif
64                     );
65 
66 /// Convert the instruction operands from referencing the current values into
67 /// those specified by VMap.
68 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
69   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70     Value *Op = I->getOperand(op);
71 
72     // Unwrap arguments of dbg.value intrinsics.
73     bool Wrapped = false;
74     if (auto *V = dyn_cast<MetadataAsValue>(Op))
75       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
76         Op = Unwrapped->getValue();
77         Wrapped = true;
78       }
79 
80     auto wrap = [&](Value *V) {
81       auto &C = I->getContext();
82       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
83     };
84 
85     ValueToValueMapTy::iterator It = VMap.find(Op);
86     if (It != VMap.end())
87       I->setOperand(op, wrap(It->second));
88   }
89 
90   if (PHINode *PN = dyn_cast<PHINode>(I)) {
91     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
92       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
93       if (It != VMap.end())
94         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
95     }
96   }
97 }
98 
99 /// Check if unrolling created a situation where we need to insert phi nodes to
100 /// preserve LCSSA form.
101 /// \param Blocks is a vector of basic blocks representing unrolled loop.
102 /// \param L is the outer loop.
103 /// It's possible that some of the blocks are in L, and some are not. In this
104 /// case, if there is a use is outside L, and definition is inside L, we need to
105 /// insert a phi-node, otherwise LCSSA will be broken.
106 /// The function is just a helper function for llvm::UnrollLoop that returns
107 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
108 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
109                                      LoopInfo *LI) {
110   for (BasicBlock *BB : Blocks) {
111     if (LI->getLoopFor(BB) == L)
112       continue;
113     for (Instruction &I : *BB) {
114       for (Use &U : I.operands()) {
115         if (auto Def = dyn_cast<Instruction>(U)) {
116           Loop *DefLoop = LI->getLoopFor(Def->getParent());
117           if (!DefLoop)
118             continue;
119           if (DefLoop->contains(L))
120             return true;
121         }
122       }
123     }
124   }
125   return false;
126 }
127 
128 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
129 /// and adds a mapping from the original loop to the new loop to NewLoops.
130 /// Returns nullptr if no new loop was created and a pointer to the
131 /// original loop OriginalBB was part of otherwise.
132 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
133                                            BasicBlock *ClonedBB, LoopInfo *LI,
134                                            NewLoopsMap &NewLoops) {
135   // Figure out which loop New is in.
136   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
137   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
138 
139   Loop *&NewLoop = NewLoops[OldLoop];
140   if (!NewLoop) {
141     // Found a new sub-loop.
142     assert(OriginalBB == OldLoop->getHeader() &&
143            "Header should be first in RPO");
144 
145     NewLoop = LI->AllocateLoop();
146     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
147 
148     if (NewLoopParent)
149       NewLoopParent->addChildLoop(NewLoop);
150     else
151       LI->addTopLevelLoop(NewLoop);
152 
153     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
154     return OldLoop;
155   } else {
156     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
157     return nullptr;
158   }
159 }
160 
161 /// The function chooses which type of unroll (epilog or prolog) is more
162 /// profitabale.
163 /// Epilog unroll is more profitable when there is PHI that starts from
164 /// constant.  In this case epilog will leave PHI start from constant,
165 /// but prolog will convert it to non-constant.
166 ///
167 /// loop:
168 ///   PN = PHI [I, Latch], [CI, PreHeader]
169 ///   I = foo(PN)
170 ///   ...
171 ///
172 /// Epilog unroll case.
173 /// loop:
174 ///   PN = PHI [I2, Latch], [CI, PreHeader]
175 ///   I1 = foo(PN)
176 ///   I2 = foo(I1)
177 ///   ...
178 /// Prolog unroll case.
179 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
180 /// loop:
181 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
182 ///   I1 = foo(PN)
183 ///   I2 = foo(I1)
184 ///   ...
185 ///
186 static bool isEpilogProfitable(Loop *L) {
187   BasicBlock *PreHeader = L->getLoopPreheader();
188   BasicBlock *Header = L->getHeader();
189   assert(PreHeader && Header);
190   for (const PHINode &PN : Header->phis()) {
191     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
192       return true;
193   }
194   return false;
195 }
196 
197 /// Perform some cleanup and simplifications on loops after unrolling. It is
198 /// useful to simplify the IV's in the new loop, as well as do a quick
199 /// simplify/dce pass of the instructions.
200 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
201                                    ScalarEvolution *SE, DominatorTree *DT,
202                                    AssumptionCache *AC) {
203   // Simplify any new induction variables in the partially unrolled loop.
204   if (SE && SimplifyIVs) {
205     SmallVector<WeakTrackingVH, 16> DeadInsts;
206     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
207 
208     // Aggressively clean up dead instructions that simplifyLoopIVs already
209     // identified. Any remaining should be cleaned up below.
210     while (!DeadInsts.empty()) {
211       Value *V = DeadInsts.pop_back_val();
212       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
213         RecursivelyDeleteTriviallyDeadInstructions(Inst);
214     }
215   }
216 
217   // At this point, the code is well formed.  We now do a quick sweep over the
218   // inserted code, doing constant propagation and dead code elimination as we
219   // go.
220   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
221   for (BasicBlock *BB : L->getBlocks()) {
222     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
223       Instruction *Inst = &*I++;
224 
225       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
226         if (LI->replacementPreservesLCSSAForm(Inst, V))
227           Inst->replaceAllUsesWith(V);
228       if (isInstructionTriviallyDead(Inst))
229         BB->getInstList().erase(Inst);
230     }
231   }
232 
233   // TODO: after peeling or unrolling, previously loop variant conditions are
234   // likely to fold to constants, eagerly propagating those here will require
235   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
236   // appropriate.
237 }
238 
239 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
240 /// can only fail when the loop's latch block is not terminated by a conditional
241 /// branch instruction. However, if the trip count (and multiple) are not known,
242 /// loop unrolling will mostly produce more code that is no faster.
243 ///
244 /// TripCount is the upper bound of the iteration on which control exits
245 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
246 /// via an early branch in other loop block or via LatchBlock terminator. This
247 /// is relaxed from the general definition of trip count which is the number of
248 /// times the loop header executes. Note that UnrollLoop assumes that the loop
249 /// counter test is in LatchBlock in order to remove unnecesssary instances of
250 /// the test.  If control can exit the loop from the LatchBlock's terminator
251 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
252 ///
253 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
254 /// needs to be preserved.  It is needed when we use trip count upper bound to
255 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
256 /// conditional branch needs to be preserved.
257 ///
258 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
259 /// execute without exiting the loop.
260 ///
261 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
262 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
263 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
264 /// iterations before branching into the unrolled loop.  UnrollLoop will not
265 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
266 /// AllowExpensiveTripCount is false.
267 ///
268 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
269 /// number of iterations we want to peel off.
270 ///
271 /// The LoopInfo Analysis that is passed will be kept consistent.
272 ///
273 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
274 /// DominatorTree if they are non-null.
275 ///
276 /// If RemainderLoop is non-null, it will receive the remainder loop (if
277 /// required and not fully unrolled).
278 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
279                                   ScalarEvolution *SE, DominatorTree *DT,
280                                   AssumptionCache *AC,
281                                   OptimizationRemarkEmitter *ORE,
282                                   bool PreserveLCSSA, Loop **RemainderLoop) {
283 
284   BasicBlock *Preheader = L->getLoopPreheader();
285   if (!Preheader) {
286     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
287     return LoopUnrollResult::Unmodified;
288   }
289 
290   BasicBlock *LatchBlock = L->getLoopLatch();
291   if (!LatchBlock) {
292     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
293     return LoopUnrollResult::Unmodified;
294   }
295 
296   // Loops with indirectbr cannot be cloned.
297   if (!L->isSafeToClone()) {
298     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
299     return LoopUnrollResult::Unmodified;
300   }
301 
302   // The current loop unroll pass can unroll loops with a single latch or header
303   // that's a conditional branch exiting the loop.
304   // FIXME: The implementation can be extended to work with more complicated
305   // cases, e.g. loops with multiple latches.
306   BasicBlock *Header = L->getHeader();
307   BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
308   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
309 
310   // FIXME: Support loops without conditional latch and multiple exiting blocks.
311   if (!BI ||
312       (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
313                                  L->getExitingBlock() != Header))) {
314     LLVM_DEBUG(dbgs() << "  Can't unroll; loop not terminated by a conditional "
315                          "branch in the latch or header.\n");
316     return LoopUnrollResult::Unmodified;
317   }
318 
319   auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
320     return BI->isConditional() && BI->getSuccessor(S1) == Header &&
321            !L->contains(BI->getSuccessor(S2));
322   };
323 
324   // If we have a conditional latch, it must exit the loop.
325   if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
326       !CheckLatchSuccessors(1, 0)) {
327     LLVM_DEBUG(
328         dbgs() << "Can't unroll; a conditional latch must exit the loop");
329     return LoopUnrollResult::Unmodified;
330   }
331 
332   auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
333     return HeaderBI && HeaderBI->isConditional() &&
334            L->contains(HeaderBI->getSuccessor(S1)) &&
335            !L->contains(HeaderBI->getSuccessor(S2));
336   };
337 
338   // If we do not have a conditional latch, the header must exit the loop.
339   if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() &&
340       !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
341     LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop");
342     return LoopUnrollResult::Unmodified;
343   }
344 
345   if (Header->hasAddressTaken()) {
346     // The loop-rotate pass can be helpful to avoid this in many cases.
347     LLVM_DEBUG(
348         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
349     return LoopUnrollResult::Unmodified;
350   }
351 
352   if (ULO.TripCount != 0)
353     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
354   if (ULO.TripMultiple != 1)
355     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
356 
357   // Effectively "DCE" unrolled iterations that are beyond the tripcount
358   // and will never be executed.
359   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
360     ULO.Count = ULO.TripCount;
361 
362   // Don't enter the unroll code if there is nothing to do.
363   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
364     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
365     return LoopUnrollResult::Unmodified;
366   }
367 
368   assert(ULO.Count > 0);
369   assert(ULO.TripMultiple > 0);
370   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
371 
372   // Are we eliminating the loop control altogether?
373   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
374   SmallVector<BasicBlock *, 4> ExitBlocks;
375   L->getExitBlocks(ExitBlocks);
376   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
377 
378   // Go through all exits of L and see if there are any phi-nodes there. We just
379   // conservatively assume that they're inserted to preserve LCSSA form, which
380   // means that complete unrolling might break this form. We need to either fix
381   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
382   // now we just recompute LCSSA for the outer loop, but it should be possible
383   // to fix it in-place.
384   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
385                         any_of(ExitBlocks, [](const BasicBlock *BB) {
386                           return isa<PHINode>(BB->begin());
387                         });
388 
389   // We assume a run-time trip count if the compiler cannot
390   // figure out the loop trip count and the unroll-runtime
391   // flag is specified.
392   bool RuntimeTripCount =
393       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
394 
395   assert((!RuntimeTripCount || !ULO.PeelCount) &&
396          "Did not expect runtime trip-count unrolling "
397          "and peeling for the same loop");
398 
399   bool Peeled = false;
400   if (ULO.PeelCount) {
401     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
402 
403     // Successful peeling may result in a change in the loop preheader/trip
404     // counts. If we later unroll the loop, we want these to be updated.
405     if (Peeled) {
406       // According to our guards and profitability checks the only
407       // meaningful exit should be latch block. Other exits go to deopt,
408       // so we do not worry about them.
409       BasicBlock *ExitingBlock = L->getLoopLatch();
410       assert(ExitingBlock && "Loop without exiting block?");
411       assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
412       Preheader = L->getLoopPreheader();
413       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
414       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
415     }
416   }
417 
418   // Loops containing convergent instructions must have a count that divides
419   // their TripMultiple.
420   LLVM_DEBUG(
421       {
422         bool HasConvergent = false;
423         for (auto &BB : L->blocks())
424           for (auto &I : *BB)
425             if (auto CS = CallSite(&I))
426               HasConvergent |= CS.isConvergent();
427         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
428                "Unroll count must divide trip multiple if loop contains a "
429                "convergent operation.");
430       });
431 
432   bool EpilogProfitability =
433       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
434                                               : isEpilogProfitable(L);
435 
436   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
437       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
438                                   EpilogProfitability, ULO.UnrollRemainder,
439                                   ULO.ForgetAllSCEV, LI, SE, DT, AC,
440                                   PreserveLCSSA, RemainderLoop)) {
441     if (ULO.Force)
442       RuntimeTripCount = false;
443     else {
444       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
445                            "generated when assuming runtime trip count\n");
446       return LoopUnrollResult::Unmodified;
447     }
448   }
449 
450   // If we know the trip count, we know the multiple...
451   unsigned BreakoutTrip = 0;
452   if (ULO.TripCount != 0) {
453     BreakoutTrip = ULO.TripCount % ULO.Count;
454     ULO.TripMultiple = 0;
455   } else {
456     // Figure out what multiple to use.
457     BreakoutTrip = ULO.TripMultiple =
458         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
459   }
460 
461   using namespace ore;
462   // Report the unrolling decision.
463   if (CompletelyUnroll) {
464     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
465                       << " with trip count " << ULO.TripCount << "!\n");
466     if (ORE)
467       ORE->emit([&]() {
468         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
469                                   L->getHeader())
470                << "completely unrolled loop with "
471                << NV("UnrollCount", ULO.TripCount) << " iterations";
472       });
473   } else if (ULO.PeelCount) {
474     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
475                       << " with iteration count " << ULO.PeelCount << "!\n");
476     if (ORE)
477       ORE->emit([&]() {
478         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
479                                   L->getHeader())
480                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
481                << " iterations";
482       });
483   } else {
484     auto DiagBuilder = [&]() {
485       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
486                               L->getHeader());
487       return Diag << "unrolled loop by a factor of "
488                   << NV("UnrollCount", ULO.Count);
489     };
490 
491     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
492                       << ULO.Count);
493     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
494       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
495       if (ORE)
496         ORE->emit([&]() {
497           return DiagBuilder() << " with a breakout at trip "
498                                << NV("BreakoutTrip", BreakoutTrip);
499         });
500     } else if (ULO.TripMultiple != 1) {
501       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
502       if (ORE)
503         ORE->emit([&]() {
504           return DiagBuilder()
505                  << " with " << NV("TripMultiple", ULO.TripMultiple)
506                  << " trips per branch";
507         });
508     } else if (RuntimeTripCount) {
509       LLVM_DEBUG(dbgs() << " with run-time trip count");
510       if (ORE)
511         ORE->emit(
512             [&]() { return DiagBuilder() << " with run-time trip count"; });
513     }
514     LLVM_DEBUG(dbgs() << "!\n");
515   }
516 
517   // We are going to make changes to this loop. SCEV may be keeping cached info
518   // about it, in particular about backedge taken count. The changes we make
519   // are guaranteed to invalidate this information for our loop. It is tempting
520   // to only invalidate the loop being unrolled, but it is incorrect as long as
521   // all exiting branches from all inner loops have impact on the outer loops,
522   // and if something changes inside them then any of outer loops may also
523   // change. When we forget outermost loop, we also forget all contained loops
524   // and this is what we need here.
525   if (SE) {
526     if (ULO.ForgetAllSCEV)
527       SE->forgetAllLoops();
528     else
529       SE->forgetTopmostLoop(L);
530   }
531 
532   bool ContinueOnTrue;
533   bool LatchIsExiting = BI->isConditional();
534   BasicBlock *LoopExit = nullptr;
535   if (LatchIsExiting) {
536     ContinueOnTrue = L->contains(BI->getSuccessor(0));
537     LoopExit = BI->getSuccessor(ContinueOnTrue);
538   } else {
539     NumUnrolledWithHeader++;
540     ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
541     LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
542   }
543 
544   // For the first iteration of the loop, we should use the precloned values for
545   // PHI nodes.  Insert associations now.
546   ValueToValueMapTy LastValueMap;
547   std::vector<PHINode*> OrigPHINode;
548   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
549     OrigPHINode.push_back(cast<PHINode>(I));
550   }
551 
552   std::vector<BasicBlock *> Headers;
553   std::vector<BasicBlock *> HeaderSucc;
554   std::vector<BasicBlock *> Latches;
555   Headers.push_back(Header);
556   Latches.push_back(LatchBlock);
557 
558   if (!LatchIsExiting) {
559     auto *Term = cast<BranchInst>(Header->getTerminator());
560     if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
561       assert(L->contains(Term->getSuccessor(0)));
562       HeaderSucc.push_back(Term->getSuccessor(0));
563     } else {
564       assert(L->contains(Term->getSuccessor(1)));
565       HeaderSucc.push_back(Term->getSuccessor(1));
566     }
567   }
568 
569   // The current on-the-fly SSA update requires blocks to be processed in
570   // reverse postorder so that LastValueMap contains the correct value at each
571   // exit.
572   LoopBlocksDFS DFS(L);
573   DFS.perform(LI);
574 
575   // Stash the DFS iterators before adding blocks to the loop.
576   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
577   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
578 
579   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
580 
581   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
582   // might break loop-simplified form for these loops (as they, e.g., would
583   // share the same exit blocks). We'll keep track of loops for which we can
584   // break this so that later we can re-simplify them.
585   SmallSetVector<Loop *, 4> LoopsToSimplify;
586   for (Loop *SubLoop : *L)
587     LoopsToSimplify.insert(SubLoop);
588 
589   if (Header->getParent()->isDebugInfoForProfiling())
590     for (BasicBlock *BB : L->getBlocks())
591       for (Instruction &I : *BB)
592         if (!isa<DbgInfoIntrinsic>(&I))
593           if (const DILocation *DIL = I.getDebugLoc()) {
594             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
595             if (NewDIL)
596               I.setDebugLoc(NewDIL.getValue());
597             else
598               LLVM_DEBUG(dbgs()
599                          << "Failed to create new discriminator: "
600                          << DIL->getFilename() << " Line: " << DIL->getLine());
601           }
602 
603   for (unsigned It = 1; It != ULO.Count; ++It) {
604     std::vector<BasicBlock*> NewBlocks;
605     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
606     NewLoops[L] = L;
607 
608     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
609       ValueToValueMapTy VMap;
610       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
611       Header->getParent()->getBasicBlockList().push_back(New);
612 
613       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
614              "Header should not be in a sub-loop");
615       // Tell LI about New.
616       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
617       if (OldLoop)
618         LoopsToSimplify.insert(NewLoops[OldLoop]);
619 
620       if (*BB == Header)
621         // Loop over all of the PHI nodes in the block, changing them to use
622         // the incoming values from the previous block.
623         for (PHINode *OrigPHI : OrigPHINode) {
624           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
625           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
626           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
627             if (It > 1 && L->contains(InValI))
628               InVal = LastValueMap[InValI];
629           VMap[OrigPHI] = InVal;
630           New->getInstList().erase(NewPHI);
631         }
632 
633       // Update our running map of newest clones
634       LastValueMap[*BB] = New;
635       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
636            VI != VE; ++VI)
637         LastValueMap[VI->first] = VI->second;
638 
639       // Add phi entries for newly created values to all exit blocks.
640       for (BasicBlock *Succ : successors(*BB)) {
641         if (L->contains(Succ))
642           continue;
643         for (PHINode &PHI : Succ->phis()) {
644           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
645           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
646           if (It != LastValueMap.end())
647             Incoming = It->second;
648           PHI.addIncoming(Incoming, New);
649         }
650       }
651       // Keep track of new headers and latches as we create them, so that
652       // we can insert the proper branches later.
653       if (*BB == Header)
654         Headers.push_back(New);
655       if (*BB == LatchBlock)
656         Latches.push_back(New);
657 
658       // Keep track of the successor of the new header in the current iteration.
659       for (auto *Pred : predecessors(*BB))
660         if (Pred == Header) {
661           HeaderSucc.push_back(New);
662           break;
663         }
664 
665       NewBlocks.push_back(New);
666       UnrolledLoopBlocks.push_back(New);
667 
668       // Update DomTree: since we just copy the loop body, and each copy has a
669       // dedicated entry block (copy of the header block), this header's copy
670       // dominates all copied blocks. That means, dominance relations in the
671       // copied body are the same as in the original body.
672       if (DT) {
673         if (*BB == Header)
674           DT->addNewBlock(New, Latches[It - 1]);
675         else {
676           auto BBDomNode = DT->getNode(*BB);
677           auto BBIDom = BBDomNode->getIDom();
678           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
679           DT->addNewBlock(
680               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
681         }
682       }
683     }
684 
685     // Remap all instructions in the most recent iteration
686     for (BasicBlock *NewBlock : NewBlocks) {
687       for (Instruction &I : *NewBlock) {
688         ::remapInstruction(&I, LastValueMap);
689         if (auto *II = dyn_cast<IntrinsicInst>(&I))
690           if (II->getIntrinsicID() == Intrinsic::assume)
691             AC->registerAssumption(II);
692       }
693     }
694   }
695 
696   // Loop over the PHI nodes in the original block, setting incoming values.
697   for (PHINode *PN : OrigPHINode) {
698     if (CompletelyUnroll) {
699       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
700       Header->getInstList().erase(PN);
701     } else if (ULO.Count > 1) {
702       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
703       // If this value was defined in the loop, take the value defined by the
704       // last iteration of the loop.
705       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
706         if (L->contains(InValI))
707           InVal = LastValueMap[InVal];
708       }
709       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
710       PN->addIncoming(InVal, Latches.back());
711     }
712   }
713 
714   auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
715                                             ArrayRef<BasicBlock *> NextBlocks,
716                                             BasicBlock *BlockInLoop,
717                                             bool NeedConditional) {
718     auto *Term = cast<BranchInst>(Src->getTerminator());
719     if (NeedConditional) {
720       // Update the conditional branch's successor for the following
721       // iteration.
722       Term->setSuccessor(!ContinueOnTrue, Dest);
723     } else {
724       // Remove phi operands at this loop exit
725       if (Dest != LoopExit) {
726         BasicBlock *BB = Src;
727         for (BasicBlock *Succ : successors(BB)) {
728           // Preserve the incoming value from BB if we are jumping to the block
729           // in the current loop.
730           if (Succ == BlockInLoop)
731             continue;
732           for (PHINode &Phi : Succ->phis())
733             Phi.removeIncomingValue(BB, false);
734         }
735       }
736       // Replace the conditional branch with an unconditional one.
737       BranchInst::Create(Dest, Term);
738       Term->eraseFromParent();
739     }
740   };
741 
742   // Now that all the basic blocks for the unrolled iterations are in place,
743   // set up the branches to connect them.
744   if (LatchIsExiting) {
745     // Set up latches to branch to the new header in the unrolled iterations or
746     // the loop exit for the last latch in a fully unrolled loop.
747     for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
748       // The branch destination.
749       unsigned j = (i + 1) % e;
750       BasicBlock *Dest = Headers[j];
751       bool NeedConditional = true;
752 
753       if (RuntimeTripCount && j != 0) {
754         NeedConditional = false;
755       }
756 
757       // For a complete unroll, make the last iteration end with a branch
758       // to the exit block.
759       if (CompletelyUnroll) {
760         if (j == 0)
761           Dest = LoopExit;
762         // If using trip count upper bound to completely unroll, we need to keep
763         // the conditional branch except the last one because the loop may exit
764         // after any iteration.
765         assert(NeedConditional &&
766                "NeedCondition cannot be modified by both complete "
767                "unrolling and runtime unrolling");
768         NeedConditional =
769             (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
770       } else if (j != BreakoutTrip &&
771                  (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
772         // If we know the trip count or a multiple of it, we can safely use an
773         // unconditional branch for some iterations.
774         NeedConditional = false;
775       }
776 
777       setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
778     }
779   } else {
780     // Setup headers to branch to their new successors in the unrolled
781     // iterations.
782     for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
783       // The branch destination.
784       unsigned j = (i + 1) % e;
785       BasicBlock *Dest = HeaderSucc[i];
786       bool NeedConditional = true;
787 
788       if (RuntimeTripCount && j != 0)
789         NeedConditional = false;
790 
791       if (CompletelyUnroll)
792         // We cannot drop the conditional branch for the last condition, as we
793         // may have to execute the loop body depending on the condition.
794         NeedConditional = j == 0 || ULO.PreserveCondBr;
795       else if (j != BreakoutTrip &&
796                (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
797         // If we know the trip count or a multiple of it, we can safely use an
798         // unconditional branch for some iterations.
799         NeedConditional = false;
800 
801       setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
802     }
803 
804     // Set up latches to branch to the new header in the unrolled iterations or
805     // the loop exit for the last latch in a fully unrolled loop.
806 
807     for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
808       // The original branch was replicated in each unrolled iteration.
809       BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
810 
811       // The branch destination.
812       unsigned j = (i + 1) % e;
813       BasicBlock *Dest = Headers[j];
814 
815       // When completely unrolling, the last latch becomes unreachable.
816       if (CompletelyUnroll && j == 0)
817         new UnreachableInst(Term->getContext(), Term);
818       else
819         // Replace the conditional branch with an unconditional one.
820         BranchInst::Create(Dest, Term);
821 
822       Term->eraseFromParent();
823     }
824   }
825 
826   // Update dominators of blocks we might reach through exits.
827   // Immediate dominator of such block might change, because we add more
828   // routes which can lead to the exit: we can now reach it from the copied
829   // iterations too.
830   if (DT && ULO.Count > 1) {
831     for (auto *BB : OriginalLoopBlocks) {
832       auto *BBDomNode = DT->getNode(BB);
833       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
834       for (auto *ChildDomNode : BBDomNode->getChildren()) {
835         auto *ChildBB = ChildDomNode->getBlock();
836         if (!L->contains(ChildBB))
837           ChildrenToUpdate.push_back(ChildBB);
838       }
839       BasicBlock *NewIDom;
840       BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
841       auto &TermBlocks = LatchIsExiting ? Latches : Headers;
842       if (BB == TermBlock) {
843         // The latch is special because we emit unconditional branches in
844         // some cases where the original loop contained a conditional branch.
845         // Since the latch is always at the bottom of the loop, if the latch
846         // dominated an exit before unrolling, the new dominator of that exit
847         // must also be a latch.  Specifically, the dominator is the first
848         // latch which ends in a conditional branch, or the last latch if
849         // there is no such latch.
850         // For loops exiting from the header, we limit the supported loops
851         // to have a single exiting block.
852         NewIDom = TermBlocks.back();
853         for (BasicBlock *Iter : TermBlocks) {
854           Instruction *Term = Iter->getTerminator();
855           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
856             NewIDom = Iter;
857             break;
858           }
859         }
860       } else {
861         // The new idom of the block will be the nearest common dominator
862         // of all copies of the previous idom. This is equivalent to the
863         // nearest common dominator of the previous idom and the first latch,
864         // which dominates all copies of the previous idom.
865         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
866       }
867       for (auto *ChildBB : ChildrenToUpdate)
868         DT->changeImmediateDominator(ChildBB, NewIDom);
869     }
870   }
871 
872   assert(!DT || !UnrollVerifyDomtree ||
873          DT->verify(DominatorTree::VerificationLevel::Fast));
874 
875   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
876   // Merge adjacent basic blocks, if possible.
877   for (BasicBlock *Latch : Latches) {
878     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
879     assert((Term ||
880             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
881            "Need a branch as terminator, except when fully unrolling with "
882            "unconditional latch");
883     if (Term && Term->isUnconditional()) {
884       BasicBlock *Dest = Term->getSuccessor(0);
885       BasicBlock *Fold = Dest->getUniquePredecessor();
886       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
887         // Dest has been folded into Fold. Update our worklists accordingly.
888         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
889         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
890                                              UnrolledLoopBlocks.end(), Dest),
891                                  UnrolledLoopBlocks.end());
892       }
893     }
894   }
895   // Apply updates to the DomTree.
896   DT = &DTU.getDomTree();
897 
898   // At this point, the code is well formed.  We now simplify the unrolled loop,
899   // doing constant propagation and dead code elimination as we go.
900   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
901                           SE, DT, AC);
902 
903   NumCompletelyUnrolled += CompletelyUnroll;
904   ++NumUnrolled;
905 
906   Loop *OuterL = L->getParentLoop();
907   // Update LoopInfo if the loop is completely removed.
908   if (CompletelyUnroll)
909     LI->erase(L);
910 
911   // After complete unrolling most of the blocks should be contained in OuterL.
912   // However, some of them might happen to be out of OuterL (e.g. if they
913   // precede a loop exit). In this case we might need to insert PHI nodes in
914   // order to preserve LCSSA form.
915   // We don't need to check this if we already know that we need to fix LCSSA
916   // form.
917   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
918   // it should be possible to fix it in-place.
919   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
920     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
921 
922   // If we have a pass and a DominatorTree we should re-simplify impacted loops
923   // to ensure subsequent analyses can rely on this form. We want to simplify
924   // at least one layer outside of the loop that was unrolled so that any
925   // changes to the parent loop exposed by the unrolling are considered.
926   if (DT) {
927     if (OuterL) {
928       // OuterL includes all loops for which we can break loop-simplify, so
929       // it's sufficient to simplify only it (it'll recursively simplify inner
930       // loops too).
931       if (NeedToFixLCSSA) {
932         // LCSSA must be performed on the outermost affected loop. The unrolled
933         // loop's last loop latch is guaranteed to be in the outermost loop
934         // after LoopInfo's been updated by LoopInfo::erase.
935         Loop *LatchLoop = LI->getLoopFor(Latches.back());
936         Loop *FixLCSSALoop = OuterL;
937         if (!FixLCSSALoop->contains(LatchLoop))
938           while (FixLCSSALoop->getParentLoop() != LatchLoop)
939             FixLCSSALoop = FixLCSSALoop->getParentLoop();
940 
941         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
942       } else if (PreserveLCSSA) {
943         assert(OuterL->isLCSSAForm(*DT) &&
944                "Loops should be in LCSSA form after loop-unroll.");
945       }
946 
947       // TODO: That potentially might be compile-time expensive. We should try
948       // to fix the loop-simplified form incrementally.
949       simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
950     } else {
951       // Simplify loops for which we might've broken loop-simplify form.
952       for (Loop *SubLoop : LoopsToSimplify)
953         simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
954     }
955   }
956 
957   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
958                           : LoopUnrollResult::PartiallyUnrolled;
959 }
960 
961 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
962 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
963 /// such metadata node exists, then nullptr is returned.
964 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
965   // First operand should refer to the loop id itself.
966   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
967   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
968 
969   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
970     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
971     if (!MD)
972       continue;
973 
974     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
975     if (!S)
976       continue;
977 
978     if (Name.equals(S->getString()))
979       return MD;
980   }
981   return nullptr;
982 }
983