1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 static cl::opt<bool>
55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
56                     cl::desc("Verify domtree after unrolling"),
57 #ifdef NDEBUG
58     cl::init(false)
59 #else
60     cl::init(true)
61 #endif
62                     );
63 
64 /// Convert the instruction operands from referencing the current values into
65 /// those specified by VMap.
66 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
67   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
68     Value *Op = I->getOperand(op);
69 
70     // Unwrap arguments of dbg.value intrinsics.
71     bool Wrapped = false;
72     if (auto *V = dyn_cast<MetadataAsValue>(Op))
73       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
74         Op = Unwrapped->getValue();
75         Wrapped = true;
76       }
77 
78     auto wrap = [&](Value *V) {
79       auto &C = I->getContext();
80       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
81     };
82 
83     ValueToValueMapTy::iterator It = VMap.find(Op);
84     if (It != VMap.end())
85       I->setOperand(op, wrap(It->second));
86   }
87 
88   if (PHINode *PN = dyn_cast<PHINode>(I)) {
89     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
90       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
91       if (It != VMap.end())
92         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
93     }
94   }
95 }
96 
97 /// Folds a basic block into its predecessor if it only has one predecessor, and
98 /// that predecessor only has one successor.
99 /// The LoopInfo Analysis that is passed will be kept consistent.
100 BasicBlock *llvm::foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI,
101                                            ScalarEvolution *SE,
102                                            DominatorTree *DT) {
103   // Merge basic blocks into their predecessor if there is only one distinct
104   // pred, and if there is only one distinct successor of the predecessor, and
105   // if there are no PHI nodes.
106   BasicBlock *OnlyPred = BB->getSinglePredecessor();
107   if (!OnlyPred) return nullptr;
108 
109   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
110     return nullptr;
111 
112   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
113                     << OnlyPred->getName() << "\n");
114 
115   // Resolve any PHI nodes at the start of the block.  They are all
116   // guaranteed to have exactly one entry if they exist, unless there are
117   // multiple duplicate (but guaranteed to be equal) entries for the
118   // incoming edges.  This occurs when there are multiple edges from
119   // OnlyPred to OnlySucc.
120   FoldSingleEntryPHINodes(BB);
121 
122   // Delete the unconditional branch from the predecessor...
123   OnlyPred->getInstList().pop_back();
124 
125   // Make all PHI nodes that referred to BB now refer to Pred as their
126   // source...
127   BB->replaceAllUsesWith(OnlyPred);
128 
129   // Move all definitions in the successor to the predecessor...
130   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
131 
132   // OldName will be valid until erased.
133   StringRef OldName = BB->getName();
134 
135   // Erase the old block and update dominator info.
136   if (DT)
137     if (DomTreeNode *DTN = DT->getNode(BB)) {
138       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
139       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
140       for (auto *DI : Children)
141         DT->changeImmediateDominator(DI, PredDTN);
142 
143       DT->eraseNode(BB);
144     }
145 
146   LI->removeBlock(BB);
147 
148   // Inherit predecessor's name if it exists...
149   if (!OldName.empty() && !OnlyPred->hasName())
150     OnlyPred->setName(OldName);
151 
152   BB->eraseFromParent();
153 
154   return OnlyPred;
155 }
156 
157 /// Check if unrolling created a situation where we need to insert phi nodes to
158 /// preserve LCSSA form.
159 /// \param Blocks is a vector of basic blocks representing unrolled loop.
160 /// \param L is the outer loop.
161 /// It's possible that some of the blocks are in L, and some are not. In this
162 /// case, if there is a use is outside L, and definition is inside L, we need to
163 /// insert a phi-node, otherwise LCSSA will be broken.
164 /// The function is just a helper function for llvm::UnrollLoop that returns
165 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
167                                      LoopInfo *LI) {
168   for (BasicBlock *BB : Blocks) {
169     if (LI->getLoopFor(BB) == L)
170       continue;
171     for (Instruction &I : *BB) {
172       for (Use &U : I.operands()) {
173         if (auto Def = dyn_cast<Instruction>(U)) {
174           Loop *DefLoop = LI->getLoopFor(Def->getParent());
175           if (!DefLoop)
176             continue;
177           if (DefLoop->contains(L))
178             return true;
179         }
180       }
181     }
182   }
183   return false;
184 }
185 
186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
187 /// and adds a mapping from the original loop to the new loop to NewLoops.
188 /// Returns nullptr if no new loop was created and a pointer to the
189 /// original loop OriginalBB was part of otherwise.
190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
191                                            BasicBlock *ClonedBB, LoopInfo *LI,
192                                            NewLoopsMap &NewLoops) {
193   // Figure out which loop New is in.
194   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
195   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
196 
197   Loop *&NewLoop = NewLoops[OldLoop];
198   if (!NewLoop) {
199     // Found a new sub-loop.
200     assert(OriginalBB == OldLoop->getHeader() &&
201            "Header should be first in RPO");
202 
203     NewLoop = LI->AllocateLoop();
204     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
205 
206     if (NewLoopParent)
207       NewLoopParent->addChildLoop(NewLoop);
208     else
209       LI->addTopLevelLoop(NewLoop);
210 
211     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
212     return OldLoop;
213   } else {
214     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
215     return nullptr;
216   }
217 }
218 
219 /// The function chooses which type of unroll (epilog or prolog) is more
220 /// profitabale.
221 /// Epilog unroll is more profitable when there is PHI that starts from
222 /// constant.  In this case epilog will leave PHI start from constant,
223 /// but prolog will convert it to non-constant.
224 ///
225 /// loop:
226 ///   PN = PHI [I, Latch], [CI, PreHeader]
227 ///   I = foo(PN)
228 ///   ...
229 ///
230 /// Epilog unroll case.
231 /// loop:
232 ///   PN = PHI [I2, Latch], [CI, PreHeader]
233 ///   I1 = foo(PN)
234 ///   I2 = foo(I1)
235 ///   ...
236 /// Prolog unroll case.
237 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
238 /// loop:
239 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
240 ///   I1 = foo(PN)
241 ///   I2 = foo(I1)
242 ///   ...
243 ///
244 static bool isEpilogProfitable(Loop *L) {
245   BasicBlock *PreHeader = L->getLoopPreheader();
246   BasicBlock *Header = L->getHeader();
247   assert(PreHeader && Header);
248   for (const PHINode &PN : Header->phis()) {
249     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
250       return true;
251   }
252   return false;
253 }
254 
255 /// Perform some cleanup and simplifications on loops after unrolling. It is
256 /// useful to simplify the IV's in the new loop, as well as do a quick
257 /// simplify/dce pass of the instructions.
258 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
259                                    ScalarEvolution *SE, DominatorTree *DT,
260                                    AssumptionCache *AC) {
261   // Simplify any new induction variables in the partially unrolled loop.
262   if (SE && SimplifyIVs) {
263     SmallVector<WeakTrackingVH, 16> DeadInsts;
264     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
265 
266     // Aggressively clean up dead instructions that simplifyLoopIVs already
267     // identified. Any remaining should be cleaned up below.
268     while (!DeadInsts.empty())
269       if (Instruction *Inst =
270               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
271         RecursivelyDeleteTriviallyDeadInstructions(Inst);
272   }
273 
274   // At this point, the code is well formed.  We now do a quick sweep over the
275   // inserted code, doing constant propagation and dead code elimination as we
276   // go.
277   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
278   for (BasicBlock *BB : L->getBlocks()) {
279     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
280       Instruction *Inst = &*I++;
281 
282       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
283         if (LI->replacementPreservesLCSSAForm(Inst, V))
284           Inst->replaceAllUsesWith(V);
285       if (isInstructionTriviallyDead(Inst))
286         BB->getInstList().erase(Inst);
287     }
288   }
289 
290   // TODO: after peeling or unrolling, previously loop variant conditions are
291   // likely to fold to constants, eagerly propagating those here will require
292   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
293   // appropriate.
294 }
295 
296 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
297 /// can only fail when the loop's latch block is not terminated by a conditional
298 /// branch instruction. However, if the trip count (and multiple) are not known,
299 /// loop unrolling will mostly produce more code that is no faster.
300 ///
301 /// TripCount is the upper bound of the iteration on which control exits
302 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
303 /// via an early branch in other loop block or via LatchBlock terminator. This
304 /// is relaxed from the general definition of trip count which is the number of
305 /// times the loop header executes. Note that UnrollLoop assumes that the loop
306 /// counter test is in LatchBlock in order to remove unnecesssary instances of
307 /// the test.  If control can exit the loop from the LatchBlock's terminator
308 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
309 ///
310 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
311 /// needs to be preserved.  It is needed when we use trip count upper bound to
312 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
313 /// conditional branch needs to be preserved.
314 ///
315 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
316 /// execute without exiting the loop.
317 ///
318 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
319 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
320 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
321 /// iterations before branching into the unrolled loop.  UnrollLoop will not
322 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
323 /// AllowExpensiveTripCount is false.
324 ///
325 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
326 /// number of iterations we want to peel off.
327 ///
328 /// The LoopInfo Analysis that is passed will be kept consistent.
329 ///
330 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
331 /// DominatorTree if they are non-null.
332 LoopUnrollResult llvm::UnrollLoop(
333     Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
334     bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
335     unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
336     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
337     OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
338 
339   BasicBlock *Preheader = L->getLoopPreheader();
340   if (!Preheader) {
341     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
342     return LoopUnrollResult::Unmodified;
343   }
344 
345   BasicBlock *LatchBlock = L->getLoopLatch();
346   if (!LatchBlock) {
347     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
348     return LoopUnrollResult::Unmodified;
349   }
350 
351   // Loops with indirectbr cannot be cloned.
352   if (!L->isSafeToClone()) {
353     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
354     return LoopUnrollResult::Unmodified;
355   }
356 
357   // The current loop unroll pass can only unroll loops with a single latch
358   // that's a conditional branch exiting the loop.
359   // FIXME: The implementation can be extended to work with more complicated
360   // cases, e.g. loops with multiple latches.
361   BasicBlock *Header = L->getHeader();
362   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
363 
364   if (!BI || BI->isUnconditional()) {
365     // The loop-rotate pass can be helpful to avoid this in many cases.
366     LLVM_DEBUG(
367         dbgs()
368         << "  Can't unroll; loop not terminated by a conditional branch.\n");
369     return LoopUnrollResult::Unmodified;
370   }
371 
372   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
373     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
374   };
375 
376   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
377     LLVM_DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
378                          " exiting the loop can be unrolled\n");
379     return LoopUnrollResult::Unmodified;
380   }
381 
382   if (Header->hasAddressTaken()) {
383     // The loop-rotate pass can be helpful to avoid this in many cases.
384     LLVM_DEBUG(
385         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
386     return LoopUnrollResult::Unmodified;
387   }
388 
389   if (TripCount != 0)
390     LLVM_DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
391   if (TripMultiple != 1)
392     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
393 
394   // Effectively "DCE" unrolled iterations that are beyond the tripcount
395   // and will never be executed.
396   if (TripCount != 0 && Count > TripCount)
397     Count = TripCount;
398 
399   // Don't enter the unroll code if there is nothing to do.
400   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
401     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
402     return LoopUnrollResult::Unmodified;
403   }
404 
405   assert(Count > 0);
406   assert(TripMultiple > 0);
407   assert(TripCount == 0 || TripCount % TripMultiple == 0);
408 
409   // Are we eliminating the loop control altogether?
410   bool CompletelyUnroll = Count == TripCount;
411   SmallVector<BasicBlock *, 4> ExitBlocks;
412   L->getExitBlocks(ExitBlocks);
413   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
414 
415   // Go through all exits of L and see if there are any phi-nodes there. We just
416   // conservatively assume that they're inserted to preserve LCSSA form, which
417   // means that complete unrolling might break this form. We need to either fix
418   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
419   // now we just recompute LCSSA for the outer loop, but it should be possible
420   // to fix it in-place.
421   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
422                         any_of(ExitBlocks, [](const BasicBlock *BB) {
423                           return isa<PHINode>(BB->begin());
424                         });
425 
426   // We assume a run-time trip count if the compiler cannot
427   // figure out the loop trip count and the unroll-runtime
428   // flag is specified.
429   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
430 
431   assert((!RuntimeTripCount || !PeelCount) &&
432          "Did not expect runtime trip-count unrolling "
433          "and peeling for the same loop");
434 
435   bool Peeled = false;
436   if (PeelCount) {
437     Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
438 
439     // Successful peeling may result in a change in the loop preheader/trip
440     // counts. If we later unroll the loop, we want these to be updated.
441     if (Peeled) {
442       BasicBlock *ExitingBlock = L->getExitingBlock();
443       assert(ExitingBlock && "Loop without exiting block?");
444       Preheader = L->getLoopPreheader();
445       TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
446       TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
447     }
448   }
449 
450   // Loops containing convergent instructions must have a count that divides
451   // their TripMultiple.
452   LLVM_DEBUG(
453       {
454         bool HasConvergent = false;
455         for (auto &BB : L->blocks())
456           for (auto &I : *BB)
457             if (auto CS = CallSite(&I))
458               HasConvergent |= CS.isConvergent();
459         assert((!HasConvergent || TripMultiple % Count == 0) &&
460                "Unroll count must divide trip multiple if loop contains a "
461                "convergent operation.");
462       });
463 
464   bool EpilogProfitability =
465       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
466                                               : isEpilogProfitable(L);
467 
468   if (RuntimeTripCount && TripMultiple % Count != 0 &&
469       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
470                                   EpilogProfitability, UnrollRemainder, LI, SE,
471                                   DT, AC, PreserveLCSSA)) {
472     if (Force)
473       RuntimeTripCount = false;
474     else {
475       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
476                            "generated when assuming runtime trip count\n");
477       return LoopUnrollResult::Unmodified;
478     }
479   }
480 
481   // If we know the trip count, we know the multiple...
482   unsigned BreakoutTrip = 0;
483   if (TripCount != 0) {
484     BreakoutTrip = TripCount % Count;
485     TripMultiple = 0;
486   } else {
487     // Figure out what multiple to use.
488     BreakoutTrip = TripMultiple =
489       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
490   }
491 
492   using namespace ore;
493   // Report the unrolling decision.
494   if (CompletelyUnroll) {
495     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
496                       << " with trip count " << TripCount << "!\n");
497     if (ORE)
498       ORE->emit([&]() {
499         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
500                                   L->getHeader())
501                << "completely unrolled loop with "
502                << NV("UnrollCount", TripCount) << " iterations";
503       });
504   } else if (PeelCount) {
505     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
506                       << " with iteration count " << PeelCount << "!\n");
507     if (ORE)
508       ORE->emit([&]() {
509         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
510                                   L->getHeader())
511                << " peeled loop by " << NV("PeelCount", PeelCount)
512                << " iterations";
513       });
514   } else {
515     auto DiagBuilder = [&]() {
516       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
517                               L->getHeader());
518       return Diag << "unrolled loop by a factor of "
519                   << NV("UnrollCount", Count);
520     };
521 
522     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
523                       << Count);
524     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
525       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
526       if (ORE)
527         ORE->emit([&]() {
528           return DiagBuilder() << " with a breakout at trip "
529                                << NV("BreakoutTrip", BreakoutTrip);
530         });
531     } else if (TripMultiple != 1) {
532       LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
533       if (ORE)
534         ORE->emit([&]() {
535           return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
536                                << " trips per branch";
537         });
538     } else if (RuntimeTripCount) {
539       LLVM_DEBUG(dbgs() << " with run-time trip count");
540       if (ORE)
541         ORE->emit(
542             [&]() { return DiagBuilder() << " with run-time trip count"; });
543     }
544     LLVM_DEBUG(dbgs() << "!\n");
545   }
546 
547   // We are going to make changes to this loop. SCEV may be keeping cached info
548   // about it, in particular about backedge taken count. The changes we make
549   // are guaranteed to invalidate this information for our loop. It is tempting
550   // to only invalidate the loop being unrolled, but it is incorrect as long as
551   // all exiting branches from all inner loops have impact on the outer loops,
552   // and if something changes inside them then any of outer loops may also
553   // change. When we forget outermost loop, we also forget all contained loops
554   // and this is what we need here.
555   if (SE)
556     SE->forgetTopmostLoop(L);
557 
558   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
559   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
560 
561   // For the first iteration of the loop, we should use the precloned values for
562   // PHI nodes.  Insert associations now.
563   ValueToValueMapTy LastValueMap;
564   std::vector<PHINode*> OrigPHINode;
565   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
566     OrigPHINode.push_back(cast<PHINode>(I));
567   }
568 
569   std::vector<BasicBlock*> Headers;
570   std::vector<BasicBlock*> Latches;
571   Headers.push_back(Header);
572   Latches.push_back(LatchBlock);
573 
574   // The current on-the-fly SSA update requires blocks to be processed in
575   // reverse postorder so that LastValueMap contains the correct value at each
576   // exit.
577   LoopBlocksDFS DFS(L);
578   DFS.perform(LI);
579 
580   // Stash the DFS iterators before adding blocks to the loop.
581   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
582   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
583 
584   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
585 
586   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
587   // might break loop-simplified form for these loops (as they, e.g., would
588   // share the same exit blocks). We'll keep track of loops for which we can
589   // break this so that later we can re-simplify them.
590   SmallSetVector<Loop *, 4> LoopsToSimplify;
591   for (Loop *SubLoop : *L)
592     LoopsToSimplify.insert(SubLoop);
593 
594   if (Header->getParent()->isDebugInfoForProfiling())
595     for (BasicBlock *BB : L->getBlocks())
596       for (Instruction &I : *BB)
597         if (!isa<DbgInfoIntrinsic>(&I))
598           if (const DILocation *DIL = I.getDebugLoc())
599             I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
600 
601   for (unsigned It = 1; It != Count; ++It) {
602     std::vector<BasicBlock*> NewBlocks;
603     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
604     NewLoops[L] = L;
605 
606     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
607       ValueToValueMapTy VMap;
608       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
609       Header->getParent()->getBasicBlockList().push_back(New);
610 
611       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
612              "Header should not be in a sub-loop");
613       // Tell LI about New.
614       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
615       if (OldLoop)
616         LoopsToSimplify.insert(NewLoops[OldLoop]);
617 
618       if (*BB == Header)
619         // Loop over all of the PHI nodes in the block, changing them to use
620         // the incoming values from the previous block.
621         for (PHINode *OrigPHI : OrigPHINode) {
622           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
623           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
624           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
625             if (It > 1 && L->contains(InValI))
626               InVal = LastValueMap[InValI];
627           VMap[OrigPHI] = InVal;
628           New->getInstList().erase(NewPHI);
629         }
630 
631       // Update our running map of newest clones
632       LastValueMap[*BB] = New;
633       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
634            VI != VE; ++VI)
635         LastValueMap[VI->first] = VI->second;
636 
637       // Add phi entries for newly created values to all exit blocks.
638       for (BasicBlock *Succ : successors(*BB)) {
639         if (L->contains(Succ))
640           continue;
641         for (PHINode &PHI : Succ->phis()) {
642           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
643           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
644           if (It != LastValueMap.end())
645             Incoming = It->second;
646           PHI.addIncoming(Incoming, New);
647         }
648       }
649       // Keep track of new headers and latches as we create them, so that
650       // we can insert the proper branches later.
651       if (*BB == Header)
652         Headers.push_back(New);
653       if (*BB == LatchBlock)
654         Latches.push_back(New);
655 
656       NewBlocks.push_back(New);
657       UnrolledLoopBlocks.push_back(New);
658 
659       // Update DomTree: since we just copy the loop body, and each copy has a
660       // dedicated entry block (copy of the header block), this header's copy
661       // dominates all copied blocks. That means, dominance relations in the
662       // copied body are the same as in the original body.
663       if (DT) {
664         if (*BB == Header)
665           DT->addNewBlock(New, Latches[It - 1]);
666         else {
667           auto BBDomNode = DT->getNode(*BB);
668           auto BBIDom = BBDomNode->getIDom();
669           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
670           DT->addNewBlock(
671               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
672         }
673       }
674     }
675 
676     // Remap all instructions in the most recent iteration
677     for (BasicBlock *NewBlock : NewBlocks) {
678       for (Instruction &I : *NewBlock) {
679         ::remapInstruction(&I, LastValueMap);
680         if (auto *II = dyn_cast<IntrinsicInst>(&I))
681           if (II->getIntrinsicID() == Intrinsic::assume)
682             AC->registerAssumption(II);
683       }
684     }
685   }
686 
687   // Loop over the PHI nodes in the original block, setting incoming values.
688   for (PHINode *PN : OrigPHINode) {
689     if (CompletelyUnroll) {
690       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
691       Header->getInstList().erase(PN);
692     }
693     else if (Count > 1) {
694       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
695       // If this value was defined in the loop, take the value defined by the
696       // last iteration of the loop.
697       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
698         if (L->contains(InValI))
699           InVal = LastValueMap[InVal];
700       }
701       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
702       PN->addIncoming(InVal, Latches.back());
703     }
704   }
705 
706   // Now that all the basic blocks for the unrolled iterations are in place,
707   // set up the branches to connect them.
708   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
709     // The original branch was replicated in each unrolled iteration.
710     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
711 
712     // The branch destination.
713     unsigned j = (i + 1) % e;
714     BasicBlock *Dest = Headers[j];
715     bool NeedConditional = true;
716 
717     if (RuntimeTripCount && j != 0) {
718       NeedConditional = false;
719     }
720 
721     // For a complete unroll, make the last iteration end with a branch
722     // to the exit block.
723     if (CompletelyUnroll) {
724       if (j == 0)
725         Dest = LoopExit;
726       // If using trip count upper bound to completely unroll, we need to keep
727       // the conditional branch except the last one because the loop may exit
728       // after any iteration.
729       assert(NeedConditional &&
730              "NeedCondition cannot be modified by both complete "
731              "unrolling and runtime unrolling");
732       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
733     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
734       // If we know the trip count or a multiple of it, we can safely use an
735       // unconditional branch for some iterations.
736       NeedConditional = false;
737     }
738 
739     if (NeedConditional) {
740       // Update the conditional branch's successor for the following
741       // iteration.
742       Term->setSuccessor(!ContinueOnTrue, Dest);
743     } else {
744       // Remove phi operands at this loop exit
745       if (Dest != LoopExit) {
746         BasicBlock *BB = Latches[i];
747         for (BasicBlock *Succ: successors(BB)) {
748           if (Succ == Headers[i])
749             continue;
750           for (PHINode &Phi : Succ->phis())
751             Phi.removeIncomingValue(BB, false);
752         }
753       }
754       // Replace the conditional branch with an unconditional one.
755       BranchInst::Create(Dest, Term);
756       Term->eraseFromParent();
757     }
758   }
759 
760   // Update dominators of blocks we might reach through exits.
761   // Immediate dominator of such block might change, because we add more
762   // routes which can lead to the exit: we can now reach it from the copied
763   // iterations too.
764   if (DT && Count > 1) {
765     for (auto *BB : OriginalLoopBlocks) {
766       auto *BBDomNode = DT->getNode(BB);
767       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
768       for (auto *ChildDomNode : BBDomNode->getChildren()) {
769         auto *ChildBB = ChildDomNode->getBlock();
770         if (!L->contains(ChildBB))
771           ChildrenToUpdate.push_back(ChildBB);
772       }
773       BasicBlock *NewIDom;
774       if (BB == LatchBlock) {
775         // The latch is special because we emit unconditional branches in
776         // some cases where the original loop contained a conditional branch.
777         // Since the latch is always at the bottom of the loop, if the latch
778         // dominated an exit before unrolling, the new dominator of that exit
779         // must also be a latch.  Specifically, the dominator is the first
780         // latch which ends in a conditional branch, or the last latch if
781         // there is no such latch.
782         NewIDom = Latches.back();
783         for (BasicBlock *IterLatch : Latches) {
784           TerminatorInst *Term = IterLatch->getTerminator();
785           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
786             NewIDom = IterLatch;
787             break;
788           }
789         }
790       } else {
791         // The new idom of the block will be the nearest common dominator
792         // of all copies of the previous idom. This is equivalent to the
793         // nearest common dominator of the previous idom and the first latch,
794         // which dominates all copies of the previous idom.
795         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
796       }
797       for (auto *ChildBB : ChildrenToUpdate)
798         DT->changeImmediateDominator(ChildBB, NewIDom);
799     }
800   }
801 
802   assert(!DT || !UnrollVerifyDomtree ||
803       DT->verify(DominatorTree::VerificationLevel::Fast));
804 
805   // Merge adjacent basic blocks, if possible.
806   for (BasicBlock *Latch : Latches) {
807     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
808     if (Term->isUnconditional()) {
809       BasicBlock *Dest = Term->getSuccessor(0);
810       if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
811         // Dest has been folded into Fold. Update our worklists accordingly.
812         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
813         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
814                                              UnrolledLoopBlocks.end(), Dest),
815                                  UnrolledLoopBlocks.end());
816       }
817     }
818   }
819 
820   // At this point, the code is well formed.  We now simplify the unrolled loop,
821   // doing constant propagation and dead code elimination as we go.
822   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (Count > 1 || Peeled), LI, SE,
823                           DT, AC);
824 
825   NumCompletelyUnrolled += CompletelyUnroll;
826   ++NumUnrolled;
827 
828   Loop *OuterL = L->getParentLoop();
829   // Update LoopInfo if the loop is completely removed.
830   if (CompletelyUnroll)
831     LI->erase(L);
832 
833   // After complete unrolling most of the blocks should be contained in OuterL.
834   // However, some of them might happen to be out of OuterL (e.g. if they
835   // precede a loop exit). In this case we might need to insert PHI nodes in
836   // order to preserve LCSSA form.
837   // We don't need to check this if we already know that we need to fix LCSSA
838   // form.
839   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
840   // it should be possible to fix it in-place.
841   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
842     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
843 
844   // If we have a pass and a DominatorTree we should re-simplify impacted loops
845   // to ensure subsequent analyses can rely on this form. We want to simplify
846   // at least one layer outside of the loop that was unrolled so that any
847   // changes to the parent loop exposed by the unrolling are considered.
848   if (DT) {
849     if (OuterL) {
850       // OuterL includes all loops for which we can break loop-simplify, so
851       // it's sufficient to simplify only it (it'll recursively simplify inner
852       // loops too).
853       if (NeedToFixLCSSA) {
854         // LCSSA must be performed on the outermost affected loop. The unrolled
855         // loop's last loop latch is guaranteed to be in the outermost loop
856         // after LoopInfo's been updated by LoopInfo::erase.
857         Loop *LatchLoop = LI->getLoopFor(Latches.back());
858         Loop *FixLCSSALoop = OuterL;
859         if (!FixLCSSALoop->contains(LatchLoop))
860           while (FixLCSSALoop->getParentLoop() != LatchLoop)
861             FixLCSSALoop = FixLCSSALoop->getParentLoop();
862 
863         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
864       } else if (PreserveLCSSA) {
865         assert(OuterL->isLCSSAForm(*DT) &&
866                "Loops should be in LCSSA form after loop-unroll.");
867       }
868 
869       // TODO: That potentially might be compile-time expensive. We should try
870       // to fix the loop-simplified form incrementally.
871       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
872     } else {
873       // Simplify loops for which we might've broken loop-simplify form.
874       for (Loop *SubLoop : LoopsToSimplify)
875         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
876     }
877   }
878 
879   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
880                           : LoopUnrollResult::PartiallyUnrolled;
881 }
882 
883 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
884 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
885 /// such metadata node exists, then nullptr is returned.
886 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
887   // First operand should refer to the loop id itself.
888   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
889   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
890 
891   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
892     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
893     if (!MD)
894       continue;
895 
896     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
897     if (!S)
898       continue;
899 
900     if (Name.equals(S->getString()))
901       return MD;
902   }
903   return nullptr;
904 }
905