1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 65 #include "llvm/Transforms/Utils/UnrollLoop.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <assert.h> 69 #include <type_traits> 70 #include <vector> 71 72 namespace llvm { 73 class DataLayout; 74 class Value; 75 } // namespace llvm 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-unroll" 80 81 // TODO: Should these be here or in LoopUnroll? 82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 85 "latch (completely or otherwise)"); 86 87 static cl::opt<bool> 88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 89 cl::desc("Allow runtime unrolled loops to be unrolled " 90 "with epilog instead of prolog.")); 91 92 static cl::opt<bool> 93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 94 cl::desc("Verify domtree after unrolling"), 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true) 97 #else 98 cl::init(false) 99 #endif 100 ); 101 102 /// Check if unrolling created a situation where we need to insert phi nodes to 103 /// preserve LCSSA form. 104 /// \param Blocks is a vector of basic blocks representing unrolled loop. 105 /// \param L is the outer loop. 106 /// It's possible that some of the blocks are in L, and some are not. In this 107 /// case, if there is a use is outside L, and definition is inside L, we need to 108 /// insert a phi-node, otherwise LCSSA will be broken. 109 /// The function is just a helper function for llvm::UnrollLoop that returns 110 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 111 static bool needToInsertPhisForLCSSA(Loop *L, 112 const std::vector<BasicBlock *> &Blocks, 113 LoopInfo *LI) { 114 for (BasicBlock *BB : Blocks) { 115 if (LI->getLoopFor(BB) == L) 116 continue; 117 for (Instruction &I : *BB) { 118 for (Use &U : I.operands()) { 119 if (const auto *Def = dyn_cast<Instruction>(U)) { 120 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 121 if (!DefLoop) 122 continue; 123 if (DefLoop->contains(L)) 124 return true; 125 } 126 } 127 } 128 } 129 return false; 130 } 131 132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 133 /// and adds a mapping from the original loop to the new loop to NewLoops. 134 /// Returns nullptr if no new loop was created and a pointer to the 135 /// original loop OriginalBB was part of otherwise. 136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 137 BasicBlock *ClonedBB, LoopInfo *LI, 138 NewLoopsMap &NewLoops) { 139 // Figure out which loop New is in. 140 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 141 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 142 143 Loop *&NewLoop = NewLoops[OldLoop]; 144 if (!NewLoop) { 145 // Found a new sub-loop. 146 assert(OriginalBB == OldLoop->getHeader() && 147 "Header should be first in RPO"); 148 149 NewLoop = LI->AllocateLoop(); 150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 151 152 if (NewLoopParent) 153 NewLoopParent->addChildLoop(NewLoop); 154 else 155 LI->addTopLevelLoop(NewLoop); 156 157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 158 return OldLoop; 159 } else { 160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 161 return nullptr; 162 } 163 } 164 165 /// The function chooses which type of unroll (epilog or prolog) is more 166 /// profitabale. 167 /// Epilog unroll is more profitable when there is PHI that starts from 168 /// constant. In this case epilog will leave PHI start from constant, 169 /// but prolog will convert it to non-constant. 170 /// 171 /// loop: 172 /// PN = PHI [I, Latch], [CI, PreHeader] 173 /// I = foo(PN) 174 /// ... 175 /// 176 /// Epilog unroll case. 177 /// loop: 178 /// PN = PHI [I2, Latch], [CI, PreHeader] 179 /// I1 = foo(PN) 180 /// I2 = foo(I1) 181 /// ... 182 /// Prolog unroll case. 183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 184 /// loop: 185 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 186 /// I1 = foo(PN) 187 /// I2 = foo(I1) 188 /// ... 189 /// 190 static bool isEpilogProfitable(Loop *L) { 191 BasicBlock *PreHeader = L->getLoopPreheader(); 192 BasicBlock *Header = L->getHeader(); 193 assert(PreHeader && Header); 194 for (const PHINode &PN : Header->phis()) { 195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 196 return true; 197 } 198 return false; 199 } 200 201 /// Perform some cleanup and simplifications on loops after unrolling. It is 202 /// useful to simplify the IV's in the new loop, as well as do a quick 203 /// simplify/dce pass of the instructions. 204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 205 ScalarEvolution *SE, DominatorTree *DT, 206 AssumptionCache *AC, 207 const TargetTransformInfo *TTI) { 208 // Simplify any new induction variables in the partially unrolled loop. 209 if (SE && SimplifyIVs) { 210 SmallVector<WeakTrackingVH, 16> DeadInsts; 211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 212 213 // Aggressively clean up dead instructions that simplifyLoopIVs already 214 // identified. Any remaining should be cleaned up below. 215 while (!DeadInsts.empty()) { 216 Value *V = DeadInsts.pop_back_val(); 217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 218 RecursivelyDeleteTriviallyDeadInstructions(Inst); 219 } 220 } 221 222 // At this point, the code is well formed. Perform constprop, instsimplify, 223 // and dce. 224 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 225 SmallVector<WeakTrackingVH, 16> DeadInsts; 226 for (BasicBlock *BB : L->getBlocks()) { 227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 228 Instruction *Inst = &*I++; 229 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 230 if (LI->replacementPreservesLCSSAForm(Inst, V)) 231 Inst->replaceAllUsesWith(V); 232 if (isInstructionTriviallyDead(Inst)) 233 DeadInsts.emplace_back(Inst); 234 } 235 // We can't do recursive deletion until we're done iterating, as we might 236 // have a phi which (potentially indirectly) uses instructions later in 237 // the block we're iterating through. 238 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 239 } 240 } 241 242 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 243 /// can only fail when the loop's latch block is not terminated by a conditional 244 /// branch instruction. However, if the trip count (and multiple) are not known, 245 /// loop unrolling will mostly produce more code that is no faster. 246 /// 247 /// TripCount is an upper bound on the number of times the loop header runs. 248 /// Note that the trip count does not need to be exact, it can be any upper 249 /// bound on the true trip count. 250 /// 251 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 252 /// execute without exiting the loop. 253 /// 254 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 255 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 256 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 257 /// iterations before branching into the unrolled loop. UnrollLoop will not 258 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 259 /// AllowExpensiveTripCount is false. 260 /// 261 /// The LoopInfo Analysis that is passed will be kept consistent. 262 /// 263 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 264 /// DominatorTree if they are non-null. 265 /// 266 /// If RemainderLoop is non-null, it will receive the remainder loop (if 267 /// required and not fully unrolled). 268 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 269 ScalarEvolution *SE, DominatorTree *DT, 270 AssumptionCache *AC, 271 const TargetTransformInfo *TTI, 272 OptimizationRemarkEmitter *ORE, 273 bool PreserveLCSSA, Loop **RemainderLoop) { 274 assert(DT && "DomTree is required"); 275 276 if (!L->getLoopPreheader()) { 277 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 278 return LoopUnrollResult::Unmodified; 279 } 280 281 if (!L->getLoopLatch()) { 282 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 283 return LoopUnrollResult::Unmodified; 284 } 285 286 // Loops with indirectbr cannot be cloned. 287 if (!L->isSafeToClone()) { 288 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 289 return LoopUnrollResult::Unmodified; 290 } 291 292 if (L->getHeader()->hasAddressTaken()) { 293 // The loop-rotate pass can be helpful to avoid this in many cases. 294 LLVM_DEBUG( 295 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 296 return LoopUnrollResult::Unmodified; 297 } 298 299 if (ULO.TripCount != 0) 300 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 301 if (ULO.TripMultiple != 1) 302 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 303 304 // Don't enter the unroll code if there is nothing to do. 305 if (ULO.TripCount == 0 && ULO.Count < 2) { 306 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 307 return LoopUnrollResult::Unmodified; 308 } 309 310 assert(ULO.Count > 0); 311 assert(ULO.TripMultiple > 0); 312 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 313 314 // All these values should be taken only after peeling because they might have 315 // changed. 316 BasicBlock *Preheader = L->getLoopPreheader(); 317 BasicBlock *Header = L->getHeader(); 318 BasicBlock *LatchBlock = L->getLoopLatch(); 319 SmallVector<BasicBlock *, 4> ExitBlocks; 320 L->getExitBlocks(ExitBlocks); 321 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 322 323 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 324 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 325 326 // Effectively "DCE" unrolled iterations that are beyond the max tripcount 327 // and will never be executed. 328 if (MaxTripCount && ULO.Count > MaxTripCount) 329 ULO.Count = MaxTripCount; 330 331 // Are we eliminating the loop control altogether? Note that we can know 332 // we're eliminating the backedge without knowing exactly which iteration 333 // of the unrolled body exits. 334 const bool CompletelyUnroll = ULO.Count == MaxTripCount; 335 336 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; 337 338 // We assume a run-time trip count if the compiler cannot 339 // figure out the loop trip count and the unroll-runtime 340 // flag is specified. 341 bool RuntimeTripCount = 342 !CompletelyUnroll && ULO.TripCount == 0 && ULO.AllowRuntime; 343 344 // Go through all exits of L and see if there are any phi-nodes there. We just 345 // conservatively assume that they're inserted to preserve LCSSA form, which 346 // means that complete unrolling might break this form. We need to either fix 347 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 348 // now we just recompute LCSSA for the outer loop, but it should be possible 349 // to fix it in-place. 350 bool NeedToFixLCSSA = 351 PreserveLCSSA && CompletelyUnroll && 352 any_of(ExitBlocks, 353 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 354 355 // The current loop unroll pass can unroll loops that have 356 // (1) single latch; and 357 // (2a) latch is unconditional; or 358 // (2b) latch is conditional and is an exiting block 359 // FIXME: The implementation can be extended to work with more complicated 360 // cases, e.g. loops with multiple latches. 361 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 362 363 // A conditional branch which exits the loop, which can be optimized to an 364 // unconditional branch in the unrolled loop in some cases. 365 BranchInst *ExitingBI = nullptr; 366 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 367 if (LatchIsExiting) 368 ExitingBI = LatchBI; 369 else if (BasicBlock *ExitingBlock = L->getExitingBlock()) 370 ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 371 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 372 LLVM_DEBUG( 373 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 374 return LoopUnrollResult::Unmodified; 375 } 376 LLVM_DEBUG({ 377 if (ExitingBI) 378 dbgs() << " Exiting Block = " << ExitingBI->getParent()->getName() 379 << "\n"; 380 else 381 dbgs() << " No single exiting block\n"; 382 }); 383 384 // Warning: ExactTripCount is the exact trip count for the block ending in 385 // ExitingBI, not neccessarily an exact exit count *for the loop*. The 386 // distinction comes when we have an exiting latch, but the loop exits 387 // through another exit first. 388 const unsigned ExactTripCount = ExitingBI ? 389 SE->getSmallConstantTripCount(L,ExitingBI->getParent()) : 0; 390 391 // Loops containing convergent instructions must have a count that divides 392 // their TripMultiple. 393 LLVM_DEBUG( 394 { 395 bool HasConvergent = false; 396 for (auto &BB : L->blocks()) 397 for (auto &I : *BB) 398 if (auto *CB = dyn_cast<CallBase>(&I)) 399 HasConvergent |= CB->isConvergent(); 400 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 401 "Unroll count must divide trip multiple if loop contains a " 402 "convergent operation."); 403 }); 404 405 bool EpilogProfitability = 406 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 407 : isEpilogProfitable(L); 408 409 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 410 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 411 EpilogProfitability, ULO.UnrollRemainder, 412 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 413 PreserveLCSSA, RemainderLoop)) { 414 if (ULO.Force) 415 RuntimeTripCount = false; 416 else { 417 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 418 "generated when assuming runtime trip count\n"); 419 return LoopUnrollResult::Unmodified; 420 } 421 } 422 423 // If we know the trip count, we know the multiple... 424 unsigned BreakoutTrip = 0; 425 if (ULO.TripCount != 0) { 426 BreakoutTrip = ULO.TripCount % ULO.Count; 427 ULO.TripMultiple = 0; 428 } else { 429 // Figure out what multiple to use. 430 BreakoutTrip = ULO.TripMultiple = 431 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 432 } 433 434 using namespace ore; 435 // Report the unrolling decision. 436 if (CompletelyUnroll) { 437 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 438 << " with trip count " << ULO.TripCount << "!\n"); 439 if (ORE) 440 ORE->emit([&]() { 441 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 442 L->getHeader()) 443 << "completely unrolled loop with " 444 << NV("UnrollCount", ULO.TripCount) << " iterations"; 445 }); 446 } else { 447 auto DiagBuilder = [&]() { 448 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 449 L->getHeader()); 450 return Diag << "unrolled loop by a factor of " 451 << NV("UnrollCount", ULO.Count); 452 }; 453 454 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 455 << ULO.Count); 456 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 457 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 458 if (ORE) 459 ORE->emit([&]() { 460 return DiagBuilder() << " with a breakout at trip " 461 << NV("BreakoutTrip", BreakoutTrip); 462 }); 463 } else if (ULO.TripMultiple != 1) { 464 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 465 if (ORE) 466 ORE->emit([&]() { 467 return DiagBuilder() 468 << " with " << NV("TripMultiple", ULO.TripMultiple) 469 << " trips per branch"; 470 }); 471 } else if (RuntimeTripCount) { 472 LLVM_DEBUG(dbgs() << " with run-time trip count"); 473 if (ORE) 474 ORE->emit( 475 [&]() { return DiagBuilder() << " with run-time trip count"; }); 476 } 477 LLVM_DEBUG(dbgs() << "!\n"); 478 } 479 480 // We are going to make changes to this loop. SCEV may be keeping cached info 481 // about it, in particular about backedge taken count. The changes we make 482 // are guaranteed to invalidate this information for our loop. It is tempting 483 // to only invalidate the loop being unrolled, but it is incorrect as long as 484 // all exiting branches from all inner loops have impact on the outer loops, 485 // and if something changes inside them then any of outer loops may also 486 // change. When we forget outermost loop, we also forget all contained loops 487 // and this is what we need here. 488 if (SE) { 489 if (ULO.ForgetAllSCEV) 490 SE->forgetAllLoops(); 491 else 492 SE->forgetTopmostLoop(L); 493 } 494 495 if (!LatchIsExiting) 496 ++NumUnrolledNotLatch; 497 498 // For the first iteration of the loop, we should use the precloned values for 499 // PHI nodes. Insert associations now. 500 ValueToValueMapTy LastValueMap; 501 std::vector<PHINode*> OrigPHINode; 502 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 503 OrigPHINode.push_back(cast<PHINode>(I)); 504 } 505 506 std::vector<BasicBlock *> Headers; 507 std::vector<BasicBlock *> ExitingBlocks; 508 std::vector<BasicBlock *> Latches; 509 Headers.push_back(Header); 510 Latches.push_back(LatchBlock); 511 if (ExitingBI) 512 ExitingBlocks.push_back(ExitingBI->getParent()); 513 514 // The current on-the-fly SSA update requires blocks to be processed in 515 // reverse postorder so that LastValueMap contains the correct value at each 516 // exit. 517 LoopBlocksDFS DFS(L); 518 DFS.perform(LI); 519 520 // Stash the DFS iterators before adding blocks to the loop. 521 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 522 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 523 524 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 525 526 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 527 // might break loop-simplified form for these loops (as they, e.g., would 528 // share the same exit blocks). We'll keep track of loops for which we can 529 // break this so that later we can re-simplify them. 530 SmallSetVector<Loop *, 4> LoopsToSimplify; 531 for (Loop *SubLoop : *L) 532 LoopsToSimplify.insert(SubLoop); 533 534 // When a FSDiscriminator is enabled, we don't need to add the multiply 535 // factors to the discriminators. 536 if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator) 537 for (BasicBlock *BB : L->getBlocks()) 538 for (Instruction &I : *BB) 539 if (!isa<DbgInfoIntrinsic>(&I)) 540 if (const DILocation *DIL = I.getDebugLoc()) { 541 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 542 if (NewDIL) 543 I.setDebugLoc(NewDIL.getValue()); 544 else 545 LLVM_DEBUG(dbgs() 546 << "Failed to create new discriminator: " 547 << DIL->getFilename() << " Line: " << DIL->getLine()); 548 } 549 550 // Identify what noalias metadata is inside the loop: if it is inside the 551 // loop, the associated metadata must be cloned for each iteration. 552 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 553 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 554 555 for (unsigned It = 1; It != ULO.Count; ++It) { 556 SmallVector<BasicBlock *, 8> NewBlocks; 557 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 558 NewLoops[L] = L; 559 560 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 561 ValueToValueMapTy VMap; 562 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 563 Header->getParent()->getBasicBlockList().push_back(New); 564 565 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 566 "Header should not be in a sub-loop"); 567 // Tell LI about New. 568 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 569 if (OldLoop) 570 LoopsToSimplify.insert(NewLoops[OldLoop]); 571 572 if (*BB == Header) 573 // Loop over all of the PHI nodes in the block, changing them to use 574 // the incoming values from the previous block. 575 for (PHINode *OrigPHI : OrigPHINode) { 576 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 577 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 578 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 579 if (It > 1 && L->contains(InValI)) 580 InVal = LastValueMap[InValI]; 581 VMap[OrigPHI] = InVal; 582 New->getInstList().erase(NewPHI); 583 } 584 585 // Update our running map of newest clones 586 LastValueMap[*BB] = New; 587 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 588 VI != VE; ++VI) 589 LastValueMap[VI->first] = VI->second; 590 591 // Add phi entries for newly created values to all exit blocks. 592 for (BasicBlock *Succ : successors(*BB)) { 593 if (L->contains(Succ)) 594 continue; 595 for (PHINode &PHI : Succ->phis()) { 596 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 597 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 598 if (It != LastValueMap.end()) 599 Incoming = It->second; 600 PHI.addIncoming(Incoming, New); 601 } 602 } 603 // Keep track of new headers and latches as we create them, so that 604 // we can insert the proper branches later. 605 if (*BB == Header) 606 Headers.push_back(New); 607 if (*BB == LatchBlock) 608 Latches.push_back(New); 609 610 // Keep track of the exiting block and its successor block contained in 611 // the loop for the current iteration. 612 if (ExitingBI) 613 if (*BB == ExitingBlocks[0]) 614 ExitingBlocks.push_back(New); 615 616 NewBlocks.push_back(New); 617 UnrolledLoopBlocks.push_back(New); 618 619 // Update DomTree: since we just copy the loop body, and each copy has a 620 // dedicated entry block (copy of the header block), this header's copy 621 // dominates all copied blocks. That means, dominance relations in the 622 // copied body are the same as in the original body. 623 if (*BB == Header) 624 DT->addNewBlock(New, Latches[It - 1]); 625 else { 626 auto BBDomNode = DT->getNode(*BB); 627 auto BBIDom = BBDomNode->getIDom(); 628 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 629 DT->addNewBlock( 630 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 631 } 632 } 633 634 // Remap all instructions in the most recent iteration 635 remapInstructionsInBlocks(NewBlocks, LastValueMap); 636 for (BasicBlock *NewBlock : NewBlocks) 637 for (Instruction &I : *NewBlock) 638 if (auto *II = dyn_cast<AssumeInst>(&I)) 639 AC->registerAssumption(II); 640 641 { 642 // Identify what other metadata depends on the cloned version. After 643 // cloning, replace the metadata with the corrected version for both 644 // memory instructions and noalias intrinsics. 645 std::string ext = (Twine("It") + Twine(It)).str(); 646 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 647 Header->getContext(), ext); 648 } 649 } 650 651 // Loop over the PHI nodes in the original block, setting incoming values. 652 for (PHINode *PN : OrigPHINode) { 653 if (CompletelyUnroll) { 654 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 655 Header->getInstList().erase(PN); 656 } else if (ULO.Count > 1) { 657 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 658 // If this value was defined in the loop, take the value defined by the 659 // last iteration of the loop. 660 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 661 if (L->contains(InValI)) 662 InVal = LastValueMap[InVal]; 663 } 664 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 665 PN->addIncoming(InVal, Latches.back()); 666 } 667 } 668 669 // Connect latches of the unrolled iterations to the headers of the next 670 // iteration. Currently they point to the header of the same iteration. 671 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 672 unsigned j = (i + 1) % e; 673 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 674 } 675 676 // Update dominators of blocks we might reach through exits. 677 // Immediate dominator of such block might change, because we add more 678 // routes which can lead to the exit: we can now reach it from the copied 679 // iterations too. 680 if (ULO.Count > 1) { 681 for (auto *BB : OriginalLoopBlocks) { 682 auto *BBDomNode = DT->getNode(BB); 683 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 684 for (auto *ChildDomNode : BBDomNode->children()) { 685 auto *ChildBB = ChildDomNode->getBlock(); 686 if (!L->contains(ChildBB)) 687 ChildrenToUpdate.push_back(ChildBB); 688 } 689 // The new idom of the block will be the nearest common dominator 690 // of all copies of the previous idom. This is equivalent to the 691 // nearest common dominator of the previous idom and the first latch, 692 // which dominates all copies of the previous idom. 693 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 694 for (auto *ChildBB : ChildrenToUpdate) 695 DT->changeImmediateDominator(ChildBB, NewIDom); 696 } 697 } 698 699 assert(!UnrollVerifyDomtree || 700 DT->verify(DominatorTree::VerificationLevel::Fast)); 701 702 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 703 704 if (ExitingBI) { 705 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 706 auto *Term = cast<BranchInst>(Src->getTerminator()); 707 const unsigned Idx = ExitOnTrue ^ WillExit; 708 BasicBlock *Dest = Term->getSuccessor(Idx); 709 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 710 711 // Remove predecessors from all non-Dest successors. 712 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 713 714 // Replace the conditional branch with an unconditional one. 715 BranchInst::Create(Dest, Term); 716 Term->eraseFromParent(); 717 718 DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}}); 719 }; 720 721 auto WillExit = [&](unsigned i, unsigned j) -> Optional<bool> { 722 if (CompletelyUnroll) { 723 if (PreserveOnlyFirst) { 724 if (i == 0) 725 return None; 726 return j == 0; 727 } 728 // Complete (but possibly inexact) unrolling 729 if (j == 0) 730 return true; 731 // Warning: ExactTripCount is the trip count of the exiting 732 // block which ends in ExitingBI, not neccessarily the loop. 733 if (ExactTripCount && j != ExactTripCount) 734 return false; 735 return None; 736 } 737 738 if (RuntimeTripCount && j != 0) 739 return false; 740 741 if (j != BreakoutTrip && 742 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 743 // If we know the trip count or a multiple of it, we can safely use an 744 // unconditional branch for some iterations. 745 return false; 746 } 747 return None; 748 }; 749 750 // Fold branches for iterations where we know that they will exit or not 751 // exit. 752 bool ExitOnTrue = !L->contains(ExitingBI->getSuccessor(0)); 753 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 754 // The branch destination. 755 unsigned j = (i + 1) % e; 756 Optional<bool> KnownWillExit = WillExit(i, j); 757 if (!KnownWillExit) 758 continue; 759 760 // TODO: Also fold known-exiting branches for non-latch exits. 761 if (*KnownWillExit && !LatchIsExiting) 762 continue; 763 764 SetDest(ExitingBlocks[i], *KnownWillExit, ExitOnTrue); 765 } 766 } 767 768 769 // When completely unrolling, the last latch becomes unreachable. 770 if (!LatchIsExiting && CompletelyUnroll) 771 changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false, 772 PreserveLCSSA, &DTU); 773 774 // Merge adjacent basic blocks, if possible. 775 for (BasicBlock *Latch : Latches) { 776 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 777 assert((Term || 778 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 779 "Need a branch as terminator, except when fully unrolling with " 780 "unconditional latch"); 781 if (Term && Term->isUnconditional()) { 782 BasicBlock *Dest = Term->getSuccessor(0); 783 BasicBlock *Fold = Dest->getUniquePredecessor(); 784 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 785 // Dest has been folded into Fold. Update our worklists accordingly. 786 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 787 llvm::erase_value(UnrolledLoopBlocks, Dest); 788 } 789 } 790 } 791 // Apply updates to the DomTree. 792 DT = &DTU.getDomTree(); 793 794 // At this point, the code is well formed. We now simplify the unrolled loop, 795 // doing constant propagation and dead code elimination as we go. 796 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, 797 TTI); 798 799 NumCompletelyUnrolled += CompletelyUnroll; 800 ++NumUnrolled; 801 802 Loop *OuterL = L->getParentLoop(); 803 // Update LoopInfo if the loop is completely removed. 804 if (CompletelyUnroll) 805 LI->erase(L); 806 807 // After complete unrolling most of the blocks should be contained in OuterL. 808 // However, some of them might happen to be out of OuterL (e.g. if they 809 // precede a loop exit). In this case we might need to insert PHI nodes in 810 // order to preserve LCSSA form. 811 // We don't need to check this if we already know that we need to fix LCSSA 812 // form. 813 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 814 // it should be possible to fix it in-place. 815 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 816 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 817 818 // Make sure that loop-simplify form is preserved. We want to simplify 819 // at least one layer outside of the loop that was unrolled so that any 820 // changes to the parent loop exposed by the unrolling are considered. 821 if (OuterL) { 822 // OuterL includes all loops for which we can break loop-simplify, so 823 // it's sufficient to simplify only it (it'll recursively simplify inner 824 // loops too). 825 if (NeedToFixLCSSA) { 826 // LCSSA must be performed on the outermost affected loop. The unrolled 827 // loop's last loop latch is guaranteed to be in the outermost loop 828 // after LoopInfo's been updated by LoopInfo::erase. 829 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 830 Loop *FixLCSSALoop = OuterL; 831 if (!FixLCSSALoop->contains(LatchLoop)) 832 while (FixLCSSALoop->getParentLoop() != LatchLoop) 833 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 834 835 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 836 } else if (PreserveLCSSA) { 837 assert(OuterL->isLCSSAForm(*DT) && 838 "Loops should be in LCSSA form after loop-unroll."); 839 } 840 841 // TODO: That potentially might be compile-time expensive. We should try 842 // to fix the loop-simplified form incrementally. 843 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 844 } else { 845 // Simplify loops for which we might've broken loop-simplify form. 846 for (Loop *SubLoop : LoopsToSimplify) 847 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 848 } 849 850 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 851 : LoopUnrollResult::PartiallyUnrolled; 852 } 853 854 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 855 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 856 /// such metadata node exists, then nullptr is returned. 857 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 858 // First operand should refer to the loop id itself. 859 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 860 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 861 862 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 863 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 864 if (!MD) 865 continue; 866 867 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 868 if (!S) 869 continue; 870 871 if (Name.equals(S->getString())) 872 return MD; 873 } 874 return nullptr; 875 } 876