1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 // TODO: Should these be here or in LoopUnroll?
47 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
48 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
49 
50 static cl::opt<bool>
51 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
52                     cl::desc("Allow runtime unrolled loops to be unrolled "
53                              "with epilog instead of prolog."));
54 
55 static cl::opt<bool>
56 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
57                     cl::desc("Verify domtree after unrolling"),
58 #ifdef NDEBUG
59     cl::init(false)
60 #else
61     cl::init(true)
62 #endif
63                     );
64 
65 /// Convert the instruction operands from referencing the current values into
66 /// those specified by VMap.
67 static inline void remapInstruction(Instruction *I,
68                                     ValueToValueMapTy &VMap) {
69   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70     Value *Op = I->getOperand(op);
71     ValueToValueMapTy::iterator It = VMap.find(Op);
72     if (It != VMap.end())
73       I->setOperand(op, It->second);
74   }
75 
76   if (PHINode *PN = dyn_cast<PHINode>(I)) {
77     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
78       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
79       if (It != VMap.end())
80         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
81     }
82   }
83 }
84 
85 /// Folds a basic block into its predecessor if it only has one predecessor, and
86 /// that predecessor only has one successor.
87 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
88 /// successful references to the containing loop must be removed from
89 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
90 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
91 /// of loops that have already been forgotten to prevent redundant, expensive
92 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
93 static BasicBlock *
94 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
95                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
96                          DominatorTree *DT) {
97   // Merge basic blocks into their predecessor if there is only one distinct
98   // pred, and if there is only one distinct successor of the predecessor, and
99   // if there are no PHI nodes.
100   BasicBlock *OnlyPred = BB->getSinglePredecessor();
101   if (!OnlyPred) return nullptr;
102 
103   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
104     return nullptr;
105 
106   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
107 
108   // Resolve any PHI nodes at the start of the block.  They are all
109   // guaranteed to have exactly one entry if they exist, unless there are
110   // multiple duplicate (but guaranteed to be equal) entries for the
111   // incoming edges.  This occurs when there are multiple edges from
112   // OnlyPred to OnlySucc.
113   FoldSingleEntryPHINodes(BB);
114 
115   // Delete the unconditional branch from the predecessor...
116   OnlyPred->getInstList().pop_back();
117 
118   // Make all PHI nodes that referred to BB now refer to Pred as their
119   // source...
120   BB->replaceAllUsesWith(OnlyPred);
121 
122   // Move all definitions in the successor to the predecessor...
123   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
124 
125   // OldName will be valid until erased.
126   StringRef OldName = BB->getName();
127 
128   // Erase the old block and update dominator info.
129   if (DT)
130     if (DomTreeNode *DTN = DT->getNode(BB)) {
131       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
132       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
133       for (auto *DI : Children)
134         DT->changeImmediateDominator(DI, PredDTN);
135 
136       DT->eraseNode(BB);
137     }
138 
139   // ScalarEvolution holds references to loop exit blocks.
140   if (SE) {
141     if (Loop *L = LI->getLoopFor(BB)) {
142       if (ForgottenLoops.insert(L).second)
143         SE->forgetLoop(L);
144     }
145   }
146   LI->removeBlock(BB);
147 
148   // Inherit predecessor's name if it exists...
149   if (!OldName.empty() && !OnlyPred->hasName())
150     OnlyPred->setName(OldName);
151 
152   BB->eraseFromParent();
153 
154   return OnlyPred;
155 }
156 
157 /// Check if unrolling created a situation where we need to insert phi nodes to
158 /// preserve LCSSA form.
159 /// \param Blocks is a vector of basic blocks representing unrolled loop.
160 /// \param L is the outer loop.
161 /// It's possible that some of the blocks are in L, and some are not. In this
162 /// case, if there is a use is outside L, and definition is inside L, we need to
163 /// insert a phi-node, otherwise LCSSA will be broken.
164 /// The function is just a helper function for llvm::UnrollLoop that returns
165 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
167                                      LoopInfo *LI) {
168   for (BasicBlock *BB : Blocks) {
169     if (LI->getLoopFor(BB) == L)
170       continue;
171     for (Instruction &I : *BB) {
172       for (Use &U : I.operands()) {
173         if (auto Def = dyn_cast<Instruction>(U)) {
174           Loop *DefLoop = LI->getLoopFor(Def->getParent());
175           if (!DefLoop)
176             continue;
177           if (DefLoop->contains(L))
178             return true;
179         }
180       }
181     }
182   }
183   return false;
184 }
185 
186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
187 /// and adds a mapping from the original loop to the new loop to NewLoops.
188 /// Returns nullptr if no new loop was created and a pointer to the
189 /// original loop OriginalBB was part of otherwise.
190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
191                                            BasicBlock *ClonedBB, LoopInfo *LI,
192                                            NewLoopsMap &NewLoops) {
193   // Figure out which loop New is in.
194   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
195   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
196 
197   Loop *&NewLoop = NewLoops[OldLoop];
198   if (!NewLoop) {
199     // Found a new sub-loop.
200     assert(OriginalBB == OldLoop->getHeader() &&
201            "Header should be first in RPO");
202 
203     NewLoop = new Loop();
204     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
205 
206     if (NewLoopParent)
207       NewLoopParent->addChildLoop(NewLoop);
208     else
209       LI->addTopLevelLoop(NewLoop);
210 
211     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
212     return OldLoop;
213   } else {
214     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
215     return nullptr;
216   }
217 }
218 
219 /// The function chooses which type of unroll (epilog or prolog) is more
220 /// profitabale.
221 /// Epilog unroll is more profitable when there is PHI that starts from
222 /// constant.  In this case epilog will leave PHI start from constant,
223 /// but prolog will convert it to non-constant.
224 ///
225 /// loop:
226 ///   PN = PHI [I, Latch], [CI, PreHeader]
227 ///   I = foo(PN)
228 ///   ...
229 ///
230 /// Epilog unroll case.
231 /// loop:
232 ///   PN = PHI [I2, Latch], [CI, PreHeader]
233 ///   I1 = foo(PN)
234 ///   I2 = foo(I1)
235 ///   ...
236 /// Prolog unroll case.
237 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
238 /// loop:
239 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
240 ///   I1 = foo(PN)
241 ///   I2 = foo(I1)
242 ///   ...
243 ///
244 static bool isEpilogProfitable(Loop *L) {
245   BasicBlock *PreHeader = L->getLoopPreheader();
246   BasicBlock *Header = L->getHeader();
247   assert(PreHeader && Header);
248   for (Instruction &BBI : *Header) {
249     PHINode *PN = dyn_cast<PHINode>(&BBI);
250     if (!PN)
251       break;
252     if (isa<ConstantInt>(PN->getIncomingValueForBlock(PreHeader)))
253       return true;
254   }
255   return false;
256 }
257 
258 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
259 /// can only fail when the loop's latch block is not terminated by a conditional
260 /// branch instruction. However, if the trip count (and multiple) are not known,
261 /// loop unrolling will mostly produce more code that is no faster.
262 ///
263 /// TripCount is the upper bound of the iteration on which control exits
264 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
265 /// via an early branch in other loop block or via LatchBlock terminator. This
266 /// is relaxed from the general definition of trip count which is the number of
267 /// times the loop header executes. Note that UnrollLoop assumes that the loop
268 /// counter test is in LatchBlock in order to remove unnecesssary instances of
269 /// the test.  If control can exit the loop from the LatchBlock's terminator
270 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
271 ///
272 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
273 /// needs to be preserved.  It is needed when we use trip count upper bound to
274 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
275 /// conditional branch needs to be preserved.
276 ///
277 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
278 /// execute without exiting the loop.
279 ///
280 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
281 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
282 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
283 /// iterations before branching into the unrolled loop.  UnrollLoop will not
284 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
285 /// AllowExpensiveTripCount is false.
286 ///
287 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
288 /// number of iterations we want to peel off.
289 ///
290 /// The LoopInfo Analysis that is passed will be kept consistent.
291 ///
292 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
293 /// DominatorTree if they are non-null.
294 LoopUnrollStatus llvm::UnrollLoop(
295     Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
296     bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
297     unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
298     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
299     OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
300 
301   BasicBlock *Preheader = L->getLoopPreheader();
302   if (!Preheader) {
303     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
304     return LoopUnrollStatus::Unmodified;
305   }
306 
307   BasicBlock *LatchBlock = L->getLoopLatch();
308   if (!LatchBlock) {
309     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
310     return LoopUnrollStatus::Unmodified;
311   }
312 
313   // Loops with indirectbr cannot be cloned.
314   if (!L->isSafeToClone()) {
315     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
316     return LoopUnrollStatus::Unmodified;
317   }
318 
319   // The current loop unroll pass can only unroll loops with a single latch
320   // that's a conditional branch exiting the loop.
321   // FIXME: The implementation can be extended to work with more complicated
322   // cases, e.g. loops with multiple latches.
323   BasicBlock *Header = L->getHeader();
324   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
325 
326   if (!BI || BI->isUnconditional()) {
327     // The loop-rotate pass can be helpful to avoid this in many cases.
328     DEBUG(dbgs() <<
329              "  Can't unroll; loop not terminated by a conditional branch.\n");
330     return LoopUnrollStatus::Unmodified;
331   }
332 
333   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
334     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
335   };
336 
337   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
338     DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
339                     " exiting the loop can be unrolled\n");
340     return LoopUnrollStatus::Unmodified;
341   }
342 
343   if (Header->hasAddressTaken()) {
344     // The loop-rotate pass can be helpful to avoid this in many cases.
345     DEBUG(dbgs() <<
346           "  Won't unroll loop: address of header block is taken.\n");
347     return LoopUnrollStatus::Unmodified;
348   }
349 
350   if (TripCount != 0)
351     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
352   if (TripMultiple != 1)
353     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
354 
355   // Effectively "DCE" unrolled iterations that are beyond the tripcount
356   // and will never be executed.
357   if (TripCount != 0 && Count > TripCount)
358     Count = TripCount;
359 
360   // Don't enter the unroll code if there is nothing to do.
361   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
362     DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
363     return LoopUnrollStatus::Unmodified;
364   }
365 
366   assert(Count > 0);
367   assert(TripMultiple > 0);
368   assert(TripCount == 0 || TripCount % TripMultiple == 0);
369 
370   // Are we eliminating the loop control altogether?
371   bool CompletelyUnroll = Count == TripCount;
372   SmallVector<BasicBlock *, 4> ExitBlocks;
373   L->getExitBlocks(ExitBlocks);
374   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
375 
376   // Go through all exits of L and see if there are any phi-nodes there. We just
377   // conservatively assume that they're inserted to preserve LCSSA form, which
378   // means that complete unrolling might break this form. We need to either fix
379   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
380   // now we just recompute LCSSA for the outer loop, but it should be possible
381   // to fix it in-place.
382   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
383                         any_of(ExitBlocks, [](const BasicBlock *BB) {
384                           return isa<PHINode>(BB->begin());
385                         });
386 
387   // We assume a run-time trip count if the compiler cannot
388   // figure out the loop trip count and the unroll-runtime
389   // flag is specified.
390   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
391 
392   assert((!RuntimeTripCount || !PeelCount) &&
393          "Did not expect runtime trip-count unrolling "
394          "and peeling for the same loop");
395 
396   if (PeelCount) {
397     bool Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
398 
399     // Successful peeling may result in a change in the loop preheader/trip
400     // counts. If we later unroll the loop, we want these to be updated.
401     if (Peeled) {
402       BasicBlock *ExitingBlock = L->getExitingBlock();
403       assert(ExitingBlock && "Loop without exiting block?");
404       Preheader = L->getLoopPreheader();
405       TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
406       TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
407     }
408   }
409 
410   // Loops containing convergent instructions must have a count that divides
411   // their TripMultiple.
412   DEBUG(
413       {
414         bool HasConvergent = false;
415         for (auto &BB : L->blocks())
416           for (auto &I : *BB)
417             if (auto CS = CallSite(&I))
418               HasConvergent |= CS.isConvergent();
419         assert((!HasConvergent || TripMultiple % Count == 0) &&
420                "Unroll count must divide trip multiple if loop contains a "
421                "convergent operation.");
422       });
423 
424   bool EpilogProfitability =
425       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
426                                               : isEpilogProfitable(L);
427 
428   if (RuntimeTripCount && TripMultiple % Count != 0 &&
429       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
430                                   EpilogProfitability, UnrollRemainder,
431                                   LI, SE, DT, AC, ORE,
432                                   PreserveLCSSA)) {
433     if (Force)
434       RuntimeTripCount = false;
435     else {
436       DEBUG(
437           dbgs() << "Wont unroll; remainder loop could not be generated"
438                     "when assuming runtime trip count\n");
439       return LoopUnrollStatus::Unmodified;
440     }
441   }
442 
443   // Notify ScalarEvolution that the loop will be substantially changed,
444   // if not outright eliminated.
445   if (SE)
446     SE->forgetLoop(L);
447 
448   // If we know the trip count, we know the multiple...
449   unsigned BreakoutTrip = 0;
450   if (TripCount != 0) {
451     BreakoutTrip = TripCount % Count;
452     TripMultiple = 0;
453   } else {
454     // Figure out what multiple to use.
455     BreakoutTrip = TripMultiple =
456       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
457   }
458 
459   using namespace ore;
460   // Report the unrolling decision.
461   if (CompletelyUnroll) {
462     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
463           << " with trip count " << TripCount << "!\n");
464     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
465                                  L->getHeader())
466               << "completely unrolled loop with "
467               << NV("UnrollCount", TripCount) << " iterations");
468   } else if (PeelCount) {
469     DEBUG(dbgs() << "PEELING loop %" << Header->getName()
470                  << " with iteration count " << PeelCount << "!\n");
471     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
472                                  L->getHeader())
473               << " peeled loop by " << NV("PeelCount", PeelCount)
474               << " iterations");
475   } else {
476     auto DiagBuilder = [&]() {
477       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
478                               L->getHeader());
479       return Diag << "unrolled loop by a factor of "
480                   << NV("UnrollCount", Count);
481     };
482 
483     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
484           << " by " << Count);
485     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
486       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
487       ORE->emit([&]() {
488         return DiagBuilder() << " with a breakout at trip "
489                              << NV("BreakoutTrip", BreakoutTrip);
490       });
491     } else if (TripMultiple != 1) {
492       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
493       ORE->emit([&]() {
494         return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
495                              << " trips per branch";
496       });
497     } else if (RuntimeTripCount) {
498       DEBUG(dbgs() << " with run-time trip count");
499       ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
500     }
501     DEBUG(dbgs() << "!\n");
502   }
503 
504   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
505   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
506 
507   // For the first iteration of the loop, we should use the precloned values for
508   // PHI nodes.  Insert associations now.
509   ValueToValueMapTy LastValueMap;
510   std::vector<PHINode*> OrigPHINode;
511   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
512     OrigPHINode.push_back(cast<PHINode>(I));
513   }
514 
515   std::vector<BasicBlock*> Headers;
516   std::vector<BasicBlock*> Latches;
517   Headers.push_back(Header);
518   Latches.push_back(LatchBlock);
519 
520   // The current on-the-fly SSA update requires blocks to be processed in
521   // reverse postorder so that LastValueMap contains the correct value at each
522   // exit.
523   LoopBlocksDFS DFS(L);
524   DFS.perform(LI);
525 
526   // Stash the DFS iterators before adding blocks to the loop.
527   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
528   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
529 
530   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
531 
532   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
533   // might break loop-simplified form for these loops (as they, e.g., would
534   // share the same exit blocks). We'll keep track of loops for which we can
535   // break this so that later we can re-simplify them.
536   SmallSetVector<Loop *, 4> LoopsToSimplify;
537   for (Loop *SubLoop : *L)
538     LoopsToSimplify.insert(SubLoop);
539 
540   if (Header->getParent()->isDebugInfoForProfiling())
541     for (BasicBlock *BB : L->getBlocks())
542       for (Instruction &I : *BB)
543         if (const DILocation *DIL = I.getDebugLoc())
544           I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
545 
546   for (unsigned It = 1; It != Count; ++It) {
547     std::vector<BasicBlock*> NewBlocks;
548     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
549     NewLoops[L] = L;
550 
551     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
552       ValueToValueMapTy VMap;
553       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
554       Header->getParent()->getBasicBlockList().push_back(New);
555 
556       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
557              "Header should not be in a sub-loop");
558       // Tell LI about New.
559       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
560       if (OldLoop) {
561         LoopsToSimplify.insert(NewLoops[OldLoop]);
562 
563         // Forget the old loop, since its inputs may have changed.
564         if (SE)
565           SE->forgetLoop(OldLoop);
566       }
567 
568       if (*BB == Header)
569         // Loop over all of the PHI nodes in the block, changing them to use
570         // the incoming values from the previous block.
571         for (PHINode *OrigPHI : OrigPHINode) {
572           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
573           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
574           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
575             if (It > 1 && L->contains(InValI))
576               InVal = LastValueMap[InValI];
577           VMap[OrigPHI] = InVal;
578           New->getInstList().erase(NewPHI);
579         }
580 
581       // Update our running map of newest clones
582       LastValueMap[*BB] = New;
583       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
584            VI != VE; ++VI)
585         LastValueMap[VI->first] = VI->second;
586 
587       // Add phi entries for newly created values to all exit blocks.
588       for (BasicBlock *Succ : successors(*BB)) {
589         if (L->contains(Succ))
590           continue;
591         for (BasicBlock::iterator BBI = Succ->begin();
592              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
593           Value *Incoming = phi->getIncomingValueForBlock(*BB);
594           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
595           if (It != LastValueMap.end())
596             Incoming = It->second;
597           phi->addIncoming(Incoming, New);
598         }
599       }
600       // Keep track of new headers and latches as we create them, so that
601       // we can insert the proper branches later.
602       if (*BB == Header)
603         Headers.push_back(New);
604       if (*BB == LatchBlock)
605         Latches.push_back(New);
606 
607       NewBlocks.push_back(New);
608       UnrolledLoopBlocks.push_back(New);
609 
610       // Update DomTree: since we just copy the loop body, and each copy has a
611       // dedicated entry block (copy of the header block), this header's copy
612       // dominates all copied blocks. That means, dominance relations in the
613       // copied body are the same as in the original body.
614       if (DT) {
615         if (*BB == Header)
616           DT->addNewBlock(New, Latches[It - 1]);
617         else {
618           auto BBDomNode = DT->getNode(*BB);
619           auto BBIDom = BBDomNode->getIDom();
620           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
621           DT->addNewBlock(
622               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
623         }
624       }
625     }
626 
627     // Remap all instructions in the most recent iteration
628     for (BasicBlock *NewBlock : NewBlocks) {
629       for (Instruction &I : *NewBlock) {
630         ::remapInstruction(&I, LastValueMap);
631         if (auto *II = dyn_cast<IntrinsicInst>(&I))
632           if (II->getIntrinsicID() == Intrinsic::assume)
633             AC->registerAssumption(II);
634       }
635     }
636   }
637 
638   // Loop over the PHI nodes in the original block, setting incoming values.
639   for (PHINode *PN : OrigPHINode) {
640     if (CompletelyUnroll) {
641       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
642       Header->getInstList().erase(PN);
643     }
644     else if (Count > 1) {
645       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
646       // If this value was defined in the loop, take the value defined by the
647       // last iteration of the loop.
648       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
649         if (L->contains(InValI))
650           InVal = LastValueMap[InVal];
651       }
652       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
653       PN->addIncoming(InVal, Latches.back());
654     }
655   }
656 
657   // Now that all the basic blocks for the unrolled iterations are in place,
658   // set up the branches to connect them.
659   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
660     // The original branch was replicated in each unrolled iteration.
661     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
662 
663     // The branch destination.
664     unsigned j = (i + 1) % e;
665     BasicBlock *Dest = Headers[j];
666     bool NeedConditional = true;
667 
668     if (RuntimeTripCount && j != 0) {
669       NeedConditional = false;
670     }
671 
672     // For a complete unroll, make the last iteration end with a branch
673     // to the exit block.
674     if (CompletelyUnroll) {
675       if (j == 0)
676         Dest = LoopExit;
677       // If using trip count upper bound to completely unroll, we need to keep
678       // the conditional branch except the last one because the loop may exit
679       // after any iteration.
680       assert(NeedConditional &&
681              "NeedCondition cannot be modified by both complete "
682              "unrolling and runtime unrolling");
683       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
684     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
685       // If we know the trip count or a multiple of it, we can safely use an
686       // unconditional branch for some iterations.
687       NeedConditional = false;
688     }
689 
690     if (NeedConditional) {
691       // Update the conditional branch's successor for the following
692       // iteration.
693       Term->setSuccessor(!ContinueOnTrue, Dest);
694     } else {
695       // Remove phi operands at this loop exit
696       if (Dest != LoopExit) {
697         BasicBlock *BB = Latches[i];
698         for (BasicBlock *Succ: successors(BB)) {
699           if (Succ == Headers[i])
700             continue;
701           for (BasicBlock::iterator BBI = Succ->begin();
702                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
703             Phi->removeIncomingValue(BB, false);
704           }
705         }
706       }
707       // Replace the conditional branch with an unconditional one.
708       BranchInst::Create(Dest, Term);
709       Term->eraseFromParent();
710     }
711   }
712 
713   // Update dominators of blocks we might reach through exits.
714   // Immediate dominator of such block might change, because we add more
715   // routes which can lead to the exit: we can now reach it from the copied
716   // iterations too.
717   if (DT && Count > 1) {
718     for (auto *BB : OriginalLoopBlocks) {
719       auto *BBDomNode = DT->getNode(BB);
720       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
721       for (auto *ChildDomNode : BBDomNode->getChildren()) {
722         auto *ChildBB = ChildDomNode->getBlock();
723         if (!L->contains(ChildBB))
724           ChildrenToUpdate.push_back(ChildBB);
725       }
726       BasicBlock *NewIDom;
727       if (BB == LatchBlock) {
728         // The latch is special because we emit unconditional branches in
729         // some cases where the original loop contained a conditional branch.
730         // Since the latch is always at the bottom of the loop, if the latch
731         // dominated an exit before unrolling, the new dominator of that exit
732         // must also be a latch.  Specifically, the dominator is the first
733         // latch which ends in a conditional branch, or the last latch if
734         // there is no such latch.
735         NewIDom = Latches.back();
736         for (BasicBlock *IterLatch : Latches) {
737           TerminatorInst *Term = IterLatch->getTerminator();
738           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
739             NewIDom = IterLatch;
740             break;
741           }
742         }
743       } else {
744         // The new idom of the block will be the nearest common dominator
745         // of all copies of the previous idom. This is equivalent to the
746         // nearest common dominator of the previous idom and the first latch,
747         // which dominates all copies of the previous idom.
748         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
749       }
750       for (auto *ChildBB : ChildrenToUpdate)
751         DT->changeImmediateDominator(ChildBB, NewIDom);
752     }
753   }
754 
755   if (DT && UnrollVerifyDomtree)
756     DT->verifyDomTree();
757 
758   // Merge adjacent basic blocks, if possible.
759   SmallPtrSet<Loop *, 4> ForgottenLoops;
760   for (BasicBlock *Latch : Latches) {
761     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
762     if (Term->isUnconditional()) {
763       BasicBlock *Dest = Term->getSuccessor(0);
764       if (BasicBlock *Fold =
765               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
766         // Dest has been folded into Fold. Update our worklists accordingly.
767         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
768         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
769                                              UnrolledLoopBlocks.end(), Dest),
770                                  UnrolledLoopBlocks.end());
771       }
772     }
773   }
774 
775   // Simplify any new induction variables in the partially unrolled loop.
776   if (SE && !CompletelyUnroll && Count > 1) {
777     SmallVector<WeakTrackingVH, 16> DeadInsts;
778     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
779 
780     // Aggressively clean up dead instructions that simplifyLoopIVs already
781     // identified. Any remaining should be cleaned up below.
782     while (!DeadInsts.empty())
783       if (Instruction *Inst =
784               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
785         RecursivelyDeleteTriviallyDeadInstructions(Inst);
786   }
787 
788   // At this point, the code is well formed.  We now do a quick sweep over the
789   // inserted code, doing constant propagation and dead code elimination as we
790   // go.
791   const DataLayout &DL = Header->getModule()->getDataLayout();
792   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
793   for (BasicBlock *BB : NewLoopBlocks) {
794     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
795       Instruction *Inst = &*I++;
796 
797       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
798         if (LI->replacementPreservesLCSSAForm(Inst, V))
799           Inst->replaceAllUsesWith(V);
800       if (isInstructionTriviallyDead(Inst))
801         BB->getInstList().erase(Inst);
802     }
803   }
804 
805   // TODO: after peeling or unrolling, previously loop variant conditions are
806   // likely to fold to constants, eagerly propagating those here will require
807   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
808   // appropriate.
809 
810   NumCompletelyUnrolled += CompletelyUnroll;
811   ++NumUnrolled;
812 
813   Loop *OuterL = L->getParentLoop();
814   // Update LoopInfo if the loop is completely removed.
815   if (CompletelyUnroll)
816     LI->erase(L);
817 
818   // After complete unrolling most of the blocks should be contained in OuterL.
819   // However, some of them might happen to be out of OuterL (e.g. if they
820   // precede a loop exit). In this case we might need to insert PHI nodes in
821   // order to preserve LCSSA form.
822   // We don't need to check this if we already know that we need to fix LCSSA
823   // form.
824   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
825   // it should be possible to fix it in-place.
826   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
827     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
828 
829   // If we have a pass and a DominatorTree we should re-simplify impacted loops
830   // to ensure subsequent analyses can rely on this form. We want to simplify
831   // at least one layer outside of the loop that was unrolled so that any
832   // changes to the parent loop exposed by the unrolling are considered.
833   if (DT) {
834     if (OuterL) {
835       // OuterL includes all loops for which we can break loop-simplify, so
836       // it's sufficient to simplify only it (it'll recursively simplify inner
837       // loops too).
838       if (NeedToFixLCSSA) {
839         // LCSSA must be performed on the outermost affected loop. The unrolled
840         // loop's last loop latch is guaranteed to be in the outermost loop
841         // after LoopInfo's been updated by LoopInfo::erase.
842         Loop *LatchLoop = LI->getLoopFor(Latches.back());
843         Loop *FixLCSSALoop = OuterL;
844         if (!FixLCSSALoop->contains(LatchLoop))
845           while (FixLCSSALoop->getParentLoop() != LatchLoop)
846             FixLCSSALoop = FixLCSSALoop->getParentLoop();
847 
848         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
849       } else if (PreserveLCSSA) {
850         assert(OuterL->isLCSSAForm(*DT) &&
851                "Loops should be in LCSSA form after loop-unroll.");
852       }
853 
854       // TODO: That potentially might be compile-time expensive. We should try
855       // to fix the loop-simplified form incrementally.
856       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
857     } else {
858       // Simplify loops for which we might've broken loop-simplify form.
859       for (Loop *SubLoop : LoopsToSimplify)
860         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
861     }
862   }
863 
864   return CompletelyUnroll ? LoopUnrollStatus::FullyUnrolled
865                           : LoopUnrollStatus::PartiallyUnrolled;
866 }
867 
868 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
869 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
870 /// such metadata node exists, then nullptr is returned.
871 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
872   // First operand should refer to the loop id itself.
873   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
874   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
875 
876   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
877     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
878     if (!MD)
879       continue;
880 
881     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
882     if (!S)
883       continue;
884 
885     if (Name.equals(S->getString()))
886       return MD;
887   }
888   return nullptr;
889 }
890