1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 /// RemapInstruction - Convert the instruction operands from referencing the 48 /// current values into those specified by VMap. 49 static inline void RemapInstruction(Instruction *I, 50 ValueToValueMapTy &VMap) { 51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 52 Value *Op = I->getOperand(op); 53 ValueToValueMapTy::iterator It = VMap.find(Op); 54 if (It != VMap.end()) 55 I->setOperand(op, It->second); 56 } 57 58 if (PHINode *PN = dyn_cast<PHINode>(I)) { 59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 61 if (It != VMap.end()) 62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 63 } 64 } 65 } 66 67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 68 /// only has one predecessor, and that predecessor only has one successor. 69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 70 /// successful references to the containing loop must be removed from 71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 72 /// references to the eliminated BB. The argument ForgottenLoops contains a set 73 /// of loops that have already been forgotten to prevent redundant, expensive 74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 75 static BasicBlock * 76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 77 SmallPtrSetImpl<Loop *> &ForgottenLoops, 78 DominatorTree *DT) { 79 // Merge basic blocks into their predecessor if there is only one distinct 80 // pred, and if there is only one distinct successor of the predecessor, and 81 // if there are no PHI nodes. 82 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 83 if (!OnlyPred) return nullptr; 84 85 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 86 return nullptr; 87 88 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 89 90 // Resolve any PHI nodes at the start of the block. They are all 91 // guaranteed to have exactly one entry if they exist, unless there are 92 // multiple duplicate (but guaranteed to be equal) entries for the 93 // incoming edges. This occurs when there are multiple edges from 94 // OnlyPred to OnlySucc. 95 FoldSingleEntryPHINodes(BB); 96 97 // Delete the unconditional branch from the predecessor... 98 OnlyPred->getInstList().pop_back(); 99 100 // Make all PHI nodes that referred to BB now refer to Pred as their 101 // source... 102 BB->replaceAllUsesWith(OnlyPred); 103 104 // Move all definitions in the successor to the predecessor... 105 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 106 107 // OldName will be valid until erased. 108 StringRef OldName = BB->getName(); 109 110 // Erase the old block and update dominator info. 111 if (DT) 112 if (DomTreeNode *DTN = DT->getNode(BB)) { 113 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 114 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 115 for (auto *DI : Children) 116 DT->changeImmediateDominator(DI, PredDTN); 117 118 DT->eraseNode(BB); 119 } 120 121 // ScalarEvolution holds references to loop exit blocks. 122 if (SE) { 123 if (Loop *L = LI->getLoopFor(BB)) { 124 if (ForgottenLoops.insert(L).second) 125 SE->forgetLoop(L); 126 } 127 } 128 LI->removeBlock(BB); 129 130 // Inherit predecessor's name if it exists... 131 if (!OldName.empty() && !OnlyPred->hasName()) 132 OnlyPred->setName(OldName); 133 134 BB->eraseFromParent(); 135 136 return OnlyPred; 137 } 138 139 /// Check if unrolling created a situation where we need to insert phi nodes to 140 /// preserve LCSSA form. 141 /// \param Blocks is a vector of basic blocks representing unrolled loop. 142 /// \param L is the outer loop. 143 /// It's possible that some of the blocks are in L, and some are not. In this 144 /// case, if there is a use is outside L, and definition is inside L, we need to 145 /// insert a phi-node, otherwise LCSSA will be broken. 146 /// The function is just a helper function for llvm::UnrollLoop that returns 147 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 148 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 149 LoopInfo *LI) { 150 for (BasicBlock *BB : Blocks) { 151 if (LI->getLoopFor(BB) == L) 152 continue; 153 for (Instruction &I : *BB) { 154 for (Use &U : I.operands()) { 155 if (auto Def = dyn_cast<Instruction>(U)) { 156 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 157 if (!DefLoop) 158 continue; 159 if (DefLoop->contains(L)) 160 return true; 161 } 162 } 163 } 164 } 165 return false; 166 } 167 168 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 169 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 170 /// can only fail when the loop's latch block is not terminated by a conditional 171 /// branch instruction. However, if the trip count (and multiple) are not known, 172 /// loop unrolling will mostly produce more code that is no faster. 173 /// 174 /// TripCount is generally defined as the number of times the loop header 175 /// executes. UnrollLoop relaxes the definition to permit early exits: here 176 /// TripCount is the iteration on which control exits LatchBlock if no early 177 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 178 /// terminates LatchBlock in order to remove unnecesssary instances of the 179 /// test. In other words, control may exit the loop prior to TripCount 180 /// iterations via an early branch, but control may not exit the loop from the 181 /// LatchBlock's terminator prior to TripCount iterations. 182 /// 183 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 184 /// execute without exiting the loop. 185 /// 186 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 187 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 188 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 189 /// iterations before branching into the unrolled loop. UnrollLoop will not 190 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 191 /// AllowExpensiveTripCount is false. 192 /// 193 /// The LoopInfo Analysis that is passed will be kept consistent. 194 /// 195 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 196 /// DominatorTree if they are non-null. 197 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 198 bool AllowRuntime, bool AllowExpensiveTripCount, 199 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE, 200 DominatorTree *DT, AssumptionCache *AC, 201 bool PreserveLCSSA) { 202 BasicBlock *Preheader = L->getLoopPreheader(); 203 if (!Preheader) { 204 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 205 return false; 206 } 207 208 BasicBlock *LatchBlock = L->getLoopLatch(); 209 if (!LatchBlock) { 210 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 211 return false; 212 } 213 214 // Loops with indirectbr cannot be cloned. 215 if (!L->isSafeToClone()) { 216 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 217 return false; 218 } 219 220 BasicBlock *Header = L->getHeader(); 221 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 222 223 if (!BI || BI->isUnconditional()) { 224 // The loop-rotate pass can be helpful to avoid this in many cases. 225 DEBUG(dbgs() << 226 " Can't unroll; loop not terminated by a conditional branch.\n"); 227 return false; 228 } 229 230 if (Header->hasAddressTaken()) { 231 // The loop-rotate pass can be helpful to avoid this in many cases. 232 DEBUG(dbgs() << 233 " Won't unroll loop: address of header block is taken.\n"); 234 return false; 235 } 236 237 if (TripCount != 0) 238 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 239 if (TripMultiple != 1) 240 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 241 242 // Effectively "DCE" unrolled iterations that are beyond the tripcount 243 // and will never be executed. 244 if (TripCount != 0 && Count > TripCount) 245 Count = TripCount; 246 247 // Don't enter the unroll code if there is nothing to do. This way we don't 248 // need to support "partial unrolling by 1". 249 if (TripCount == 0 && Count < 2) 250 return false; 251 252 assert(Count > 0); 253 assert(TripMultiple > 0); 254 assert(TripCount == 0 || TripCount % TripMultiple == 0); 255 256 // Are we eliminating the loop control altogether? 257 bool CompletelyUnroll = Count == TripCount; 258 SmallVector<BasicBlock *, 4> ExitBlocks; 259 L->getExitBlocks(ExitBlocks); 260 261 // Go through all exits of L and see if there are any phi-nodes there. We just 262 // conservatively assume that they're inserted to preserve LCSSA form, which 263 // means that complete unrolling might break this form. We need to either fix 264 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 265 // now we just recompute LCSSA for the outer loop, but it should be possible 266 // to fix it in-place. 267 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 268 std::any_of(ExitBlocks.begin(), ExitBlocks.end(), 269 [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 270 271 // We assume a run-time trip count if the compiler cannot 272 // figure out the loop trip count and the unroll-runtime 273 // flag is specified. 274 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 275 276 if (RuntimeTripCount && 277 !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT, 278 PreserveLCSSA)) 279 return false; 280 281 // Notify ScalarEvolution that the loop will be substantially changed, 282 // if not outright eliminated. 283 if (SE) 284 SE->forgetLoop(L); 285 286 // If we know the trip count, we know the multiple... 287 unsigned BreakoutTrip = 0; 288 if (TripCount != 0) { 289 BreakoutTrip = TripCount % Count; 290 TripMultiple = 0; 291 } else { 292 // Figure out what multiple to use. 293 BreakoutTrip = TripMultiple = 294 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 295 } 296 297 // Report the unrolling decision. 298 DebugLoc LoopLoc = L->getStartLoc(); 299 Function *F = Header->getParent(); 300 LLVMContext &Ctx = F->getContext(); 301 302 if (CompletelyUnroll) { 303 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 304 << " with trip count " << TripCount << "!\n"); 305 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 306 Twine("completely unrolled loop with ") + 307 Twine(TripCount) + " iterations"); 308 } else { 309 auto EmitDiag = [&](const Twine &T) { 310 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 311 "unrolled loop by a factor of " + Twine(Count) + 312 T); 313 }; 314 315 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 316 << " by " << Count); 317 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 318 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 319 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 320 } else if (TripMultiple != 1) { 321 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 322 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 323 } else if (RuntimeTripCount) { 324 DEBUG(dbgs() << " with run-time trip count"); 325 EmitDiag(" with run-time trip count"); 326 } 327 DEBUG(dbgs() << "!\n"); 328 } 329 330 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 331 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 332 333 // For the first iteration of the loop, we should use the precloned values for 334 // PHI nodes. Insert associations now. 335 ValueToValueMapTy LastValueMap; 336 std::vector<PHINode*> OrigPHINode; 337 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 338 OrigPHINode.push_back(cast<PHINode>(I)); 339 } 340 341 std::vector<BasicBlock*> Headers; 342 std::vector<BasicBlock*> Latches; 343 Headers.push_back(Header); 344 Latches.push_back(LatchBlock); 345 346 // The current on-the-fly SSA update requires blocks to be processed in 347 // reverse postorder so that LastValueMap contains the correct value at each 348 // exit. 349 LoopBlocksDFS DFS(L); 350 DFS.perform(LI); 351 352 // Stash the DFS iterators before adding blocks to the loop. 353 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 354 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 355 356 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 357 for (unsigned It = 1; It != Count; ++It) { 358 std::vector<BasicBlock*> NewBlocks; 359 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 360 NewLoops[L] = L; 361 362 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 363 ValueToValueMapTy VMap; 364 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 365 Header->getParent()->getBasicBlockList().push_back(New); 366 367 // Tell LI about New. 368 if (*BB == Header) { 369 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 370 L->addBasicBlockToLoop(New, *LI); 371 } else { 372 // Figure out which loop New is in. 373 const Loop *OldLoop = LI->getLoopFor(*BB); 374 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 375 376 Loop *&NewLoop = NewLoops[OldLoop]; 377 if (!NewLoop) { 378 // Found a new sub-loop. 379 assert(*BB == OldLoop->getHeader() && 380 "Header should be first in RPO"); 381 382 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 383 assert(NewLoopParent && 384 "Expected parent loop before sub-loop in RPO"); 385 NewLoop = new Loop; 386 NewLoopParent->addChildLoop(NewLoop); 387 388 // Forget the old loop, since its inputs may have changed. 389 if (SE) 390 SE->forgetLoop(OldLoop); 391 } 392 NewLoop->addBasicBlockToLoop(New, *LI); 393 } 394 395 if (*BB == Header) 396 // Loop over all of the PHI nodes in the block, changing them to use 397 // the incoming values from the previous block. 398 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 399 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 400 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 401 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 402 if (It > 1 && L->contains(InValI)) 403 InVal = LastValueMap[InValI]; 404 VMap[OrigPHINode[i]] = InVal; 405 New->getInstList().erase(NewPHI); 406 } 407 408 // Update our running map of newest clones 409 LastValueMap[*BB] = New; 410 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 411 VI != VE; ++VI) 412 LastValueMap[VI->first] = VI->second; 413 414 // Add phi entries for newly created values to all exit blocks. 415 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 416 SI != SE; ++SI) { 417 if (L->contains(*SI)) 418 continue; 419 for (BasicBlock::iterator BBI = (*SI)->begin(); 420 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 421 Value *Incoming = phi->getIncomingValueForBlock(*BB); 422 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 423 if (It != LastValueMap.end()) 424 Incoming = It->second; 425 phi->addIncoming(Incoming, New); 426 } 427 } 428 // Keep track of new headers and latches as we create them, so that 429 // we can insert the proper branches later. 430 if (*BB == Header) 431 Headers.push_back(New); 432 if (*BB == LatchBlock) 433 Latches.push_back(New); 434 435 NewBlocks.push_back(New); 436 UnrolledLoopBlocks.push_back(New); 437 438 // Update DomTree: since we just copy the loop body, and each copy has a 439 // dedicated entry block (copy of the header block), this header's copy 440 // dominates all copied blocks. That means, dominance relations in the 441 // copied body are the same as in the original body. 442 if (DT) { 443 if (*BB == Header) 444 DT->addNewBlock(New, Latches[It - 1]); 445 else { 446 auto BBDomNode = DT->getNode(*BB); 447 auto BBIDom = BBDomNode->getIDom(); 448 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 449 DT->addNewBlock( 450 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 451 } 452 } 453 } 454 455 // Remap all instructions in the most recent iteration 456 for (unsigned i = 0; i < NewBlocks.size(); ++i) 457 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 458 E = NewBlocks[i]->end(); I != E; ++I) 459 ::RemapInstruction(&*I, LastValueMap); 460 } 461 462 // Loop over the PHI nodes in the original block, setting incoming values. 463 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 464 PHINode *PN = OrigPHINode[i]; 465 if (CompletelyUnroll) { 466 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 467 Header->getInstList().erase(PN); 468 } 469 else if (Count > 1) { 470 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 471 // If this value was defined in the loop, take the value defined by the 472 // last iteration of the loop. 473 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 474 if (L->contains(InValI)) 475 InVal = LastValueMap[InVal]; 476 } 477 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 478 PN->addIncoming(InVal, Latches.back()); 479 } 480 } 481 482 // Now that all the basic blocks for the unrolled iterations are in place, 483 // set up the branches to connect them. 484 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 485 // The original branch was replicated in each unrolled iteration. 486 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 487 488 // The branch destination. 489 unsigned j = (i + 1) % e; 490 BasicBlock *Dest = Headers[j]; 491 bool NeedConditional = true; 492 493 if (RuntimeTripCount && j != 0) { 494 NeedConditional = false; 495 } 496 497 // For a complete unroll, make the last iteration end with a branch 498 // to the exit block. 499 if (CompletelyUnroll) { 500 if (j == 0) 501 Dest = LoopExit; 502 NeedConditional = false; 503 } 504 505 // If we know the trip count or a multiple of it, we can safely use an 506 // unconditional branch for some iterations. 507 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 508 NeedConditional = false; 509 } 510 511 if (NeedConditional) { 512 // Update the conditional branch's successor for the following 513 // iteration. 514 Term->setSuccessor(!ContinueOnTrue, Dest); 515 } else { 516 // Remove phi operands at this loop exit 517 if (Dest != LoopExit) { 518 BasicBlock *BB = Latches[i]; 519 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 520 SI != SE; ++SI) { 521 if (*SI == Headers[i]) 522 continue; 523 for (BasicBlock::iterator BBI = (*SI)->begin(); 524 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 525 Phi->removeIncomingValue(BB, false); 526 } 527 } 528 } 529 // Replace the conditional branch with an unconditional one. 530 BranchInst::Create(Dest, Term); 531 Term->eraseFromParent(); 532 } 533 } 534 // Update dominators of loop exit blocks. 535 // Immediate dominator of an exit block might change, because we add more 536 // routes which can lead to the exit: we can now reach it from the copied 537 // iterations too. Thus, the new idom of the exit block will be the nearest 538 // common dominator of the previous idom and common dominator of all copies of 539 // the exiting block. This is equivalent to the nearest common dominator of 540 // the previous idom and the first latch, which dominates all copies of the 541 // exiting block. 542 if (DT && Count > 1) { 543 for (auto Exit : ExitBlocks) { 544 BasicBlock *PrevIDom = DT->getNode(Exit)->getIDom()->getBlock(); 545 BasicBlock *NewIDom = 546 DT->findNearestCommonDominator(PrevIDom, Latches[0]); 547 DT->changeImmediateDominator(Exit, NewIDom); 548 } 549 } 550 551 // Merge adjacent basic blocks, if possible. 552 SmallPtrSet<Loop *, 4> ForgottenLoops; 553 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 554 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 555 if (Term->isUnconditional()) { 556 BasicBlock *Dest = Term->getSuccessor(0); 557 if (BasicBlock *Fold = 558 FoldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 559 // Dest has been folded into Fold. Update our worklists accordingly. 560 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 561 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 562 UnrolledLoopBlocks.end(), Dest), 563 UnrolledLoopBlocks.end()); 564 } 565 } 566 } 567 568 // FIXME: We could register any cloned assumptions instead of clearing the 569 // whole function's cache. 570 AC->clear(); 571 572 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 573 // updating domtree after partial loop unrolling should also be easy. 574 if (DT && !CompletelyUnroll) 575 DT->recalculate(*L->getHeader()->getParent()); 576 else 577 DEBUG(DT->verifyDomTree()); 578 579 // Simplify any new induction variables in the partially unrolled loop. 580 if (SE && !CompletelyUnroll) { 581 SmallVector<WeakVH, 16> DeadInsts; 582 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 583 584 // Aggressively clean up dead instructions that simplifyLoopIVs already 585 // identified. Any remaining should be cleaned up below. 586 while (!DeadInsts.empty()) 587 if (Instruction *Inst = 588 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 589 RecursivelyDeleteTriviallyDeadInstructions(Inst); 590 } 591 592 // At this point, the code is well formed. We now do a quick sweep over the 593 // inserted code, doing constant propagation and dead code elimination as we 594 // go. 595 const DataLayout &DL = Header->getModule()->getDataLayout(); 596 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 597 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 598 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 599 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 600 Instruction *Inst = &*I++; 601 602 if (isInstructionTriviallyDead(Inst)) 603 (*BB)->getInstList().erase(Inst); 604 else if (Value *V = SimplifyInstruction(Inst, DL)) 605 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 606 Inst->replaceAllUsesWith(V); 607 (*BB)->getInstList().erase(Inst); 608 } 609 } 610 611 NumCompletelyUnrolled += CompletelyUnroll; 612 ++NumUnrolled; 613 614 Loop *OuterL = L->getParentLoop(); 615 // Update LoopInfo if the loop is completely removed. 616 if (CompletelyUnroll) 617 LI->markAsRemoved(L); 618 619 // After complete unrolling most of the blocks should be contained in OuterL. 620 // However, some of them might happen to be out of OuterL (e.g. if they 621 // precede a loop exit). In this case we might need to insert PHI nodes in 622 // order to preserve LCSSA form. 623 // We don't need to check this if we already know that we need to fix LCSSA 624 // form. 625 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 626 // it should be possible to fix it in-place. 627 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 628 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 629 630 // If we have a pass and a DominatorTree we should re-simplify impacted loops 631 // to ensure subsequent analyses can rely on this form. We want to simplify 632 // at least one layer outside of the loop that was unrolled so that any 633 // changes to the parent loop exposed by the unrolling are considered. 634 if (DT) { 635 if (!OuterL && !CompletelyUnroll) 636 OuterL = L; 637 if (OuterL) { 638 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 639 640 // LCSSA must be performed on the outermost affected loop. The unrolled 641 // loop's last loop latch is guaranteed to be in the outermost loop after 642 // LoopInfo's been updated by markAsRemoved. 643 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 644 if (!OuterL->contains(LatchLoop)) 645 while (OuterL->getParentLoop() != LatchLoop) 646 OuterL = OuterL->getParentLoop(); 647 648 if (NeedToFixLCSSA) 649 formLCSSARecursively(*OuterL, *DT, LI, SE); 650 else 651 assert(OuterL->isLCSSAForm(*DT) && 652 "Loops should be in LCSSA form after loop-unroll."); 653 } 654 } 655 656 return true; 657 } 658 659 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 660 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 661 /// such metadata node exists, then nullptr is returned. 662 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 663 // First operand should refer to the loop id itself. 664 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 665 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 666 667 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 668 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 669 if (!MD) 670 continue; 671 672 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 673 if (!S) 674 continue; 675 676 if (Name.equals(S->getString())) 677 return MD; 678 } 679 return nullptr; 680 } 681