1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 /// Convert the instruction operands from referencing the current values into 55 /// those specified by VMap. 56 static inline void remapInstruction(Instruction *I, 57 ValueToValueMapTy &VMap) { 58 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 59 Value *Op = I->getOperand(op); 60 ValueToValueMapTy::iterator It = VMap.find(Op); 61 if (It != VMap.end()) 62 I->setOperand(op, It->second); 63 } 64 65 if (PHINode *PN = dyn_cast<PHINode>(I)) { 66 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 67 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 68 if (It != VMap.end()) 69 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 70 } 71 } 72 } 73 74 /// Folds a basic block into its predecessor if it only has one predecessor, and 75 /// that predecessor only has one successor. 76 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 77 /// successful references to the containing loop must be removed from 78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 79 /// references to the eliminated BB. The argument ForgottenLoops contains a set 80 /// of loops that have already been forgotten to prevent redundant, expensive 81 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 82 static BasicBlock * 83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 84 SmallPtrSetImpl<Loop *> &ForgottenLoops, 85 DominatorTree *DT) { 86 // Merge basic blocks into their predecessor if there is only one distinct 87 // pred, and if there is only one distinct successor of the predecessor, and 88 // if there are no PHI nodes. 89 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 90 if (!OnlyPred) return nullptr; 91 92 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 93 return nullptr; 94 95 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 96 97 // Resolve any PHI nodes at the start of the block. They are all 98 // guaranteed to have exactly one entry if they exist, unless there are 99 // multiple duplicate (but guaranteed to be equal) entries for the 100 // incoming edges. This occurs when there are multiple edges from 101 // OnlyPred to OnlySucc. 102 FoldSingleEntryPHINodes(BB); 103 104 // Delete the unconditional branch from the predecessor... 105 OnlyPred->getInstList().pop_back(); 106 107 // Make all PHI nodes that referred to BB now refer to Pred as their 108 // source... 109 BB->replaceAllUsesWith(OnlyPred); 110 111 // Move all definitions in the successor to the predecessor... 112 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 113 114 // OldName will be valid until erased. 115 StringRef OldName = BB->getName(); 116 117 // Erase the old block and update dominator info. 118 if (DT) 119 if (DomTreeNode *DTN = DT->getNode(BB)) { 120 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 121 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 122 for (auto *DI : Children) 123 DT->changeImmediateDominator(DI, PredDTN); 124 125 DT->eraseNode(BB); 126 } 127 128 // ScalarEvolution holds references to loop exit blocks. 129 if (SE) { 130 if (Loop *L = LI->getLoopFor(BB)) { 131 if (ForgottenLoops.insert(L).second) 132 SE->forgetLoop(L); 133 } 134 } 135 LI->removeBlock(BB); 136 137 // Inherit predecessor's name if it exists... 138 if (!OldName.empty() && !OnlyPred->hasName()) 139 OnlyPred->setName(OldName); 140 141 BB->eraseFromParent(); 142 143 return OnlyPred; 144 } 145 146 /// Check if unrolling created a situation where we need to insert phi nodes to 147 /// preserve LCSSA form. 148 /// \param Blocks is a vector of basic blocks representing unrolled loop. 149 /// \param L is the outer loop. 150 /// It's possible that some of the blocks are in L, and some are not. In this 151 /// case, if there is a use is outside L, and definition is inside L, we need to 152 /// insert a phi-node, otherwise LCSSA will be broken. 153 /// The function is just a helper function for llvm::UnrollLoop that returns 154 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 156 LoopInfo *LI) { 157 for (BasicBlock *BB : Blocks) { 158 if (LI->getLoopFor(BB) == L) 159 continue; 160 for (Instruction &I : *BB) { 161 for (Use &U : I.operands()) { 162 if (auto Def = dyn_cast<Instruction>(U)) { 163 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 164 if (!DefLoop) 165 continue; 166 if (DefLoop->contains(L)) 167 return true; 168 } 169 } 170 } 171 } 172 return false; 173 } 174 175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 177 /// can only fail when the loop's latch block is not terminated by a conditional 178 /// branch instruction. However, if the trip count (and multiple) are not known, 179 /// loop unrolling will mostly produce more code that is no faster. 180 /// 181 /// TripCount is generally defined as the number of times the loop header 182 /// executes. UnrollLoop relaxes the definition to permit early exits: here 183 /// TripCount is the iteration on which control exits LatchBlock if no early 184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 185 /// terminates LatchBlock in order to remove unnecesssary instances of the 186 /// test. In other words, control may exit the loop prior to TripCount 187 /// iterations via an early branch, but control may not exit the loop from the 188 /// LatchBlock's terminator prior to TripCount iterations. 189 /// 190 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 191 /// needs to be preserved. It is needed when we use trip count upper bound to 192 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 193 /// conditional branch needs to be preserved. 194 /// 195 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 196 /// execute without exiting the loop. 197 /// 198 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 199 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 200 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 201 /// iterations before branching into the unrolled loop. UnrollLoop will not 202 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 203 /// AllowExpensiveTripCount is false. 204 /// 205 /// The LoopInfo Analysis that is passed will be kept consistent. 206 /// 207 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 208 /// DominatorTree if they are non-null. 209 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 210 bool AllowRuntime, bool AllowExpensiveTripCount, 211 bool PreserveCondBr, bool PreserveOnlyFirst, 212 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE, 213 DominatorTree *DT, AssumptionCache *AC, 214 OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) { 215 BasicBlock *Preheader = L->getLoopPreheader(); 216 if (!Preheader) { 217 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 218 return false; 219 } 220 221 BasicBlock *LatchBlock = L->getLoopLatch(); 222 if (!LatchBlock) { 223 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 224 return false; 225 } 226 227 // Loops with indirectbr cannot be cloned. 228 if (!L->isSafeToClone()) { 229 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 230 return false; 231 } 232 233 BasicBlock *Header = L->getHeader(); 234 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 235 236 if (!BI || BI->isUnconditional()) { 237 // The loop-rotate pass can be helpful to avoid this in many cases. 238 DEBUG(dbgs() << 239 " Can't unroll; loop not terminated by a conditional branch.\n"); 240 return false; 241 } 242 243 if (Header->hasAddressTaken()) { 244 // The loop-rotate pass can be helpful to avoid this in many cases. 245 DEBUG(dbgs() << 246 " Won't unroll loop: address of header block is taken.\n"); 247 return false; 248 } 249 250 if (TripCount != 0) 251 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 252 if (TripMultiple != 1) 253 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 254 255 // Effectively "DCE" unrolled iterations that are beyond the tripcount 256 // and will never be executed. 257 if (TripCount != 0 && Count > TripCount) 258 Count = TripCount; 259 260 // Don't enter the unroll code if there is nothing to do. This way we don't 261 // need to support "partial unrolling by 1". 262 if (TripCount == 0 && Count < 2) 263 return false; 264 265 assert(Count > 0); 266 assert(TripMultiple > 0); 267 assert(TripCount == 0 || TripCount % TripMultiple == 0); 268 269 // Are we eliminating the loop control altogether? 270 bool CompletelyUnroll = Count == TripCount; 271 SmallVector<BasicBlock *, 4> ExitBlocks; 272 L->getExitBlocks(ExitBlocks); 273 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 274 275 // Go through all exits of L and see if there are any phi-nodes there. We just 276 // conservatively assume that they're inserted to preserve LCSSA form, which 277 // means that complete unrolling might break this form. We need to either fix 278 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 279 // now we just recompute LCSSA for the outer loop, but it should be possible 280 // to fix it in-place. 281 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 282 any_of(ExitBlocks, [](const BasicBlock *BB) { 283 return isa<PHINode>(BB->begin()); 284 }); 285 286 // We assume a run-time trip count if the compiler cannot 287 // figure out the loop trip count and the unroll-runtime 288 // flag is specified. 289 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 290 291 // Loops containing convergent instructions must have a count that divides 292 // their TripMultiple. 293 DEBUG( 294 { 295 bool HasConvergent = false; 296 for (auto &BB : L->blocks()) 297 for (auto &I : *BB) 298 if (auto CS = CallSite(&I)) 299 HasConvergent |= CS.isConvergent(); 300 assert((!HasConvergent || TripMultiple % Count == 0) && 301 "Unroll count must divide trip multiple if loop contains a " 302 "convergent operation."); 303 }); 304 // Don't output the runtime loop remainder if Count is a multiple of 305 // TripMultiple. Such a remainder is never needed, and is unsafe if the loop 306 // contains a convergent instruction. 307 if (RuntimeTripCount && TripMultiple % Count != 0 && 308 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 309 UnrollRuntimeEpilog, LI, SE, DT, 310 PreserveLCSSA)) { 311 if (Force) 312 RuntimeTripCount = false; 313 else 314 return false; 315 } 316 317 // Notify ScalarEvolution that the loop will be substantially changed, 318 // if not outright eliminated. 319 if (SE) 320 SE->forgetLoop(L); 321 322 // If we know the trip count, we know the multiple... 323 unsigned BreakoutTrip = 0; 324 if (TripCount != 0) { 325 BreakoutTrip = TripCount % Count; 326 TripMultiple = 0; 327 } else { 328 // Figure out what multiple to use. 329 BreakoutTrip = TripMultiple = 330 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 331 } 332 333 using namespace ore; 334 // Report the unrolling decision. 335 if (CompletelyUnroll) { 336 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 337 << " with trip count " << TripCount << "!\n"); 338 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 339 L->getHeader()) 340 << "completely unrolled loop with " 341 << NV("UnrollCount", TripCount) << " iterations"); 342 } else { 343 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 344 L->getHeader()); 345 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 346 347 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 348 << " by " << Count); 349 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 350 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 351 ORE->emit(Diag << " with a breakout at trip " 352 << NV("BreakoutTrip", BreakoutTrip)); 353 } else if (TripMultiple != 1) { 354 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 355 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 356 << " trips per branch"); 357 } else if (RuntimeTripCount) { 358 DEBUG(dbgs() << " with run-time trip count"); 359 ORE->emit(Diag << " with run-time trip count"); 360 } 361 DEBUG(dbgs() << "!\n"); 362 } 363 364 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 365 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 366 367 // For the first iteration of the loop, we should use the precloned values for 368 // PHI nodes. Insert associations now. 369 ValueToValueMapTy LastValueMap; 370 std::vector<PHINode*> OrigPHINode; 371 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 372 OrigPHINode.push_back(cast<PHINode>(I)); 373 } 374 375 std::vector<BasicBlock*> Headers; 376 std::vector<BasicBlock*> Latches; 377 Headers.push_back(Header); 378 Latches.push_back(LatchBlock); 379 380 // The current on-the-fly SSA update requires blocks to be processed in 381 // reverse postorder so that LastValueMap contains the correct value at each 382 // exit. 383 LoopBlocksDFS DFS(L); 384 DFS.perform(LI); 385 386 // Stash the DFS iterators before adding blocks to the loop. 387 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 388 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 389 390 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 391 392 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 393 // might break loop-simplified form for these loops (as they, e.g., would 394 // share the same exit blocks). We'll keep track of loops for which we can 395 // break this so that later we can re-simplify them. 396 SmallSetVector<Loop *, 4> LoopsToSimplify; 397 for (Loop *SubLoop : *L) 398 LoopsToSimplify.insert(SubLoop); 399 400 for (unsigned It = 1; It != Count; ++It) { 401 std::vector<BasicBlock*> NewBlocks; 402 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 403 NewLoops[L] = L; 404 405 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 406 ValueToValueMapTy VMap; 407 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 408 Header->getParent()->getBasicBlockList().push_back(New); 409 410 // Tell LI about New. 411 if (*BB == Header) { 412 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 413 L->addBasicBlockToLoop(New, *LI); 414 } else { 415 // Figure out which loop New is in. 416 const Loop *OldLoop = LI->getLoopFor(*BB); 417 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 418 419 Loop *&NewLoop = NewLoops[OldLoop]; 420 if (!NewLoop) { 421 // Found a new sub-loop. 422 assert(*BB == OldLoop->getHeader() && 423 "Header should be first in RPO"); 424 425 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 426 assert(NewLoopParent && 427 "Expected parent loop before sub-loop in RPO"); 428 NewLoop = new Loop; 429 NewLoopParent->addChildLoop(NewLoop); 430 LoopsToSimplify.insert(NewLoop); 431 432 // Forget the old loop, since its inputs may have changed. 433 if (SE) 434 SE->forgetLoop(OldLoop); 435 } 436 NewLoop->addBasicBlockToLoop(New, *LI); 437 } 438 439 if (*BB == Header) 440 // Loop over all of the PHI nodes in the block, changing them to use 441 // the incoming values from the previous block. 442 for (PHINode *OrigPHI : OrigPHINode) { 443 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 444 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 445 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 446 if (It > 1 && L->contains(InValI)) 447 InVal = LastValueMap[InValI]; 448 VMap[OrigPHI] = InVal; 449 New->getInstList().erase(NewPHI); 450 } 451 452 // Update our running map of newest clones 453 LastValueMap[*BB] = New; 454 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 455 VI != VE; ++VI) 456 LastValueMap[VI->first] = VI->second; 457 458 // Add phi entries for newly created values to all exit blocks. 459 for (BasicBlock *Succ : successors(*BB)) { 460 if (L->contains(Succ)) 461 continue; 462 for (BasicBlock::iterator BBI = Succ->begin(); 463 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 464 Value *Incoming = phi->getIncomingValueForBlock(*BB); 465 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 466 if (It != LastValueMap.end()) 467 Incoming = It->second; 468 phi->addIncoming(Incoming, New); 469 } 470 } 471 // Keep track of new headers and latches as we create them, so that 472 // we can insert the proper branches later. 473 if (*BB == Header) 474 Headers.push_back(New); 475 if (*BB == LatchBlock) 476 Latches.push_back(New); 477 478 NewBlocks.push_back(New); 479 UnrolledLoopBlocks.push_back(New); 480 481 // Update DomTree: since we just copy the loop body, and each copy has a 482 // dedicated entry block (copy of the header block), this header's copy 483 // dominates all copied blocks. That means, dominance relations in the 484 // copied body are the same as in the original body. 485 if (DT) { 486 if (*BB == Header) 487 DT->addNewBlock(New, Latches[It - 1]); 488 else { 489 auto BBDomNode = DT->getNode(*BB); 490 auto BBIDom = BBDomNode->getIDom(); 491 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 492 DT->addNewBlock( 493 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 494 } 495 } 496 } 497 498 // Remap all instructions in the most recent iteration 499 for (BasicBlock *NewBlock : NewBlocks) { 500 for (Instruction &I : *NewBlock) { 501 ::remapInstruction(&I, LastValueMap); 502 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 503 if (II->getIntrinsicID() == Intrinsic::assume) 504 AC->registerAssumption(II); 505 } 506 } 507 } 508 509 // Loop over the PHI nodes in the original block, setting incoming values. 510 for (PHINode *PN : OrigPHINode) { 511 if (CompletelyUnroll) { 512 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 513 Header->getInstList().erase(PN); 514 } 515 else if (Count > 1) { 516 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 517 // If this value was defined in the loop, take the value defined by the 518 // last iteration of the loop. 519 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 520 if (L->contains(InValI)) 521 InVal = LastValueMap[InVal]; 522 } 523 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 524 PN->addIncoming(InVal, Latches.back()); 525 } 526 } 527 528 // Now that all the basic blocks for the unrolled iterations are in place, 529 // set up the branches to connect them. 530 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 531 // The original branch was replicated in each unrolled iteration. 532 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 533 534 // The branch destination. 535 unsigned j = (i + 1) % e; 536 BasicBlock *Dest = Headers[j]; 537 bool NeedConditional = true; 538 539 if (RuntimeTripCount && j != 0) { 540 NeedConditional = false; 541 } 542 543 // For a complete unroll, make the last iteration end with a branch 544 // to the exit block. 545 if (CompletelyUnroll) { 546 if (j == 0) 547 Dest = LoopExit; 548 // If using trip count upper bound to completely unroll, we need to keep 549 // the conditional branch except the last one because the loop may exit 550 // after any iteration. 551 assert(NeedConditional && 552 "NeedCondition cannot be modified by both complete " 553 "unrolling and runtime unrolling"); 554 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 555 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 556 // If we know the trip count or a multiple of it, we can safely use an 557 // unconditional branch for some iterations. 558 NeedConditional = false; 559 } 560 561 if (NeedConditional) { 562 // Update the conditional branch's successor for the following 563 // iteration. 564 Term->setSuccessor(!ContinueOnTrue, Dest); 565 } else { 566 // Remove phi operands at this loop exit 567 if (Dest != LoopExit) { 568 BasicBlock *BB = Latches[i]; 569 for (BasicBlock *Succ: successors(BB)) { 570 if (Succ == Headers[i]) 571 continue; 572 for (BasicBlock::iterator BBI = Succ->begin(); 573 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 574 Phi->removeIncomingValue(BB, false); 575 } 576 } 577 } 578 // Replace the conditional branch with an unconditional one. 579 BranchInst::Create(Dest, Term); 580 Term->eraseFromParent(); 581 } 582 } 583 // Update dominators of blocks we might reach through exits. 584 // Immediate dominator of such block might change, because we add more 585 // routes which can lead to the exit: we can now reach it from the copied 586 // iterations too. Thus, the new idom of the block will be the nearest 587 // common dominator of the previous idom and common dominator of all copies of 588 // the previous idom. This is equivalent to the nearest common dominator of 589 // the previous idom and the first latch, which dominates all copies of the 590 // previous idom. 591 if (DT && Count > 1) { 592 for (auto *BB : OriginalLoopBlocks) { 593 auto *BBDomNode = DT->getNode(BB); 594 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 595 for (auto *ChildDomNode : BBDomNode->getChildren()) { 596 auto *ChildBB = ChildDomNode->getBlock(); 597 if (!L->contains(ChildBB)) 598 ChildrenToUpdate.push_back(ChildBB); 599 } 600 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 601 for (auto *ChildBB : ChildrenToUpdate) 602 DT->changeImmediateDominator(ChildBB, NewIDom); 603 } 604 } 605 606 // Merge adjacent basic blocks, if possible. 607 SmallPtrSet<Loop *, 4> ForgottenLoops; 608 for (BasicBlock *Latch : Latches) { 609 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 610 if (Term->isUnconditional()) { 611 BasicBlock *Dest = Term->getSuccessor(0); 612 if (BasicBlock *Fold = 613 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 614 // Dest has been folded into Fold. Update our worklists accordingly. 615 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 616 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 617 UnrolledLoopBlocks.end(), Dest), 618 UnrolledLoopBlocks.end()); 619 } 620 } 621 } 622 623 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 624 // updating domtree after partial loop unrolling should also be easy. 625 if (DT && !CompletelyUnroll) 626 DT->recalculate(*L->getHeader()->getParent()); 627 else if (DT) 628 DEBUG(DT->verifyDomTree()); 629 630 // Simplify any new induction variables in the partially unrolled loop. 631 if (SE && !CompletelyUnroll) { 632 SmallVector<WeakVH, 16> DeadInsts; 633 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 634 635 // Aggressively clean up dead instructions that simplifyLoopIVs already 636 // identified. Any remaining should be cleaned up below. 637 while (!DeadInsts.empty()) 638 if (Instruction *Inst = 639 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 640 RecursivelyDeleteTriviallyDeadInstructions(Inst); 641 } 642 643 // At this point, the code is well formed. We now do a quick sweep over the 644 // inserted code, doing constant propagation and dead code elimination as we 645 // go. 646 const DataLayout &DL = Header->getModule()->getDataLayout(); 647 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 648 for (BasicBlock *BB : NewLoopBlocks) { 649 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 650 Instruction *Inst = &*I++; 651 652 if (Value *V = SimplifyInstruction(Inst, DL)) 653 if (LI->replacementPreservesLCSSAForm(Inst, V)) 654 Inst->replaceAllUsesWith(V); 655 if (isInstructionTriviallyDead(Inst)) 656 BB->getInstList().erase(Inst); 657 } 658 } 659 660 NumCompletelyUnrolled += CompletelyUnroll; 661 ++NumUnrolled; 662 663 Loop *OuterL = L->getParentLoop(); 664 // Update LoopInfo if the loop is completely removed. 665 if (CompletelyUnroll) 666 LI->markAsRemoved(L); 667 668 // After complete unrolling most of the blocks should be contained in OuterL. 669 // However, some of them might happen to be out of OuterL (e.g. if they 670 // precede a loop exit). In this case we might need to insert PHI nodes in 671 // order to preserve LCSSA form. 672 // We don't need to check this if we already know that we need to fix LCSSA 673 // form. 674 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 675 // it should be possible to fix it in-place. 676 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 677 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 678 679 // If we have a pass and a DominatorTree we should re-simplify impacted loops 680 // to ensure subsequent analyses can rely on this form. We want to simplify 681 // at least one layer outside of the loop that was unrolled so that any 682 // changes to the parent loop exposed by the unrolling are considered. 683 if (DT) { 684 if (!OuterL && !CompletelyUnroll) 685 OuterL = L; 686 if (OuterL) { 687 // OuterL includes all loops for which we can break loop-simplify, so 688 // it's sufficient to simplify only it (it'll recursively simplify inner 689 // loops too). 690 // TODO: That potentially might be compile-time expensive. We should try 691 // to fix the loop-simplified form incrementally. 692 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 693 694 // LCSSA must be performed on the outermost affected loop. The unrolled 695 // loop's last loop latch is guaranteed to be in the outermost loop after 696 // LoopInfo's been updated by markAsRemoved. 697 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 698 if (!OuterL->contains(LatchLoop)) 699 while (OuterL->getParentLoop() != LatchLoop) 700 OuterL = OuterL->getParentLoop(); 701 702 if (NeedToFixLCSSA) 703 formLCSSARecursively(*OuterL, *DT, LI, SE); 704 else 705 assert(OuterL->isLCSSAForm(*DT) && 706 "Loops should be in LCSSA form after loop-unroll."); 707 } else { 708 // Simplify loops for which we might've broken loop-simplify form. 709 for (Loop *SubLoop : LoopsToSimplify) 710 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 711 } 712 } 713 714 return true; 715 } 716 717 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 718 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 719 /// such metadata node exists, then nullptr is returned. 720 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 721 // First operand should refer to the loop id itself. 722 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 723 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 724 725 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 726 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 727 if (!MD) 728 continue; 729 730 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 731 if (!S) 732 continue; 733 734 if (Name.equals(S->getString())) 735 return MD; 736 } 737 return nullptr; 738 } 739