1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopPeel.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 66 #include "llvm/Transforms/Utils/UnrollLoop.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <assert.h> 70 #include <type_traits> 71 #include <vector> 72 73 namespace llvm { 74 class DataLayout; 75 class Value; 76 } // namespace llvm 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-unroll" 81 82 // TODO: Should these be here or in LoopUnroll? 83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 86 "latch (completely or otherwise)"); 87 88 static cl::opt<bool> 89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 90 cl::desc("Allow runtime unrolled loops to be unrolled " 91 "with epilog instead of prolog.")); 92 93 static cl::opt<bool> 94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 95 cl::desc("Verify domtree after unrolling"), 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true) 98 #else 99 cl::init(false) 100 #endif 101 ); 102 103 /// Check if unrolling created a situation where we need to insert phi nodes to 104 /// preserve LCSSA form. 105 /// \param Blocks is a vector of basic blocks representing unrolled loop. 106 /// \param L is the outer loop. 107 /// It's possible that some of the blocks are in L, and some are not. In this 108 /// case, if there is a use is outside L, and definition is inside L, we need to 109 /// insert a phi-node, otherwise LCSSA will be broken. 110 /// The function is just a helper function for llvm::UnrollLoop that returns 111 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 112 static bool needToInsertPhisForLCSSA(Loop *L, 113 const std::vector<BasicBlock *> &Blocks, 114 LoopInfo *LI) { 115 for (BasicBlock *BB : Blocks) { 116 if (LI->getLoopFor(BB) == L) 117 continue; 118 for (Instruction &I : *BB) { 119 for (Use &U : I.operands()) { 120 if (const auto *Def = dyn_cast<Instruction>(U)) { 121 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 122 if (!DefLoop) 123 continue; 124 if (DefLoop->contains(L)) 125 return true; 126 } 127 } 128 } 129 } 130 return false; 131 } 132 133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 134 /// and adds a mapping from the original loop to the new loop to NewLoops. 135 /// Returns nullptr if no new loop was created and a pointer to the 136 /// original loop OriginalBB was part of otherwise. 137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 138 BasicBlock *ClonedBB, LoopInfo *LI, 139 NewLoopsMap &NewLoops) { 140 // Figure out which loop New is in. 141 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 142 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 143 144 Loop *&NewLoop = NewLoops[OldLoop]; 145 if (!NewLoop) { 146 // Found a new sub-loop. 147 assert(OriginalBB == OldLoop->getHeader() && 148 "Header should be first in RPO"); 149 150 NewLoop = LI->AllocateLoop(); 151 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 152 153 if (NewLoopParent) 154 NewLoopParent->addChildLoop(NewLoop); 155 else 156 LI->addTopLevelLoop(NewLoop); 157 158 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 159 return OldLoop; 160 } else { 161 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 162 return nullptr; 163 } 164 } 165 166 /// The function chooses which type of unroll (epilog or prolog) is more 167 /// profitabale. 168 /// Epilog unroll is more profitable when there is PHI that starts from 169 /// constant. In this case epilog will leave PHI start from constant, 170 /// but prolog will convert it to non-constant. 171 /// 172 /// loop: 173 /// PN = PHI [I, Latch], [CI, PreHeader] 174 /// I = foo(PN) 175 /// ... 176 /// 177 /// Epilog unroll case. 178 /// loop: 179 /// PN = PHI [I2, Latch], [CI, PreHeader] 180 /// I1 = foo(PN) 181 /// I2 = foo(I1) 182 /// ... 183 /// Prolog unroll case. 184 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 185 /// loop: 186 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 187 /// I1 = foo(PN) 188 /// I2 = foo(I1) 189 /// ... 190 /// 191 static bool isEpilogProfitable(Loop *L) { 192 BasicBlock *PreHeader = L->getLoopPreheader(); 193 BasicBlock *Header = L->getHeader(); 194 assert(PreHeader && Header); 195 for (const PHINode &PN : Header->phis()) { 196 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 197 return true; 198 } 199 return false; 200 } 201 202 /// Perform some cleanup and simplifications on loops after unrolling. It is 203 /// useful to simplify the IV's in the new loop, as well as do a quick 204 /// simplify/dce pass of the instructions. 205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 206 ScalarEvolution *SE, DominatorTree *DT, 207 AssumptionCache *AC, 208 const TargetTransformInfo *TTI) { 209 // Simplify any new induction variables in the partially unrolled loop. 210 if (SE && SimplifyIVs) { 211 SmallVector<WeakTrackingVH, 16> DeadInsts; 212 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 213 214 // Aggressively clean up dead instructions that simplifyLoopIVs already 215 // identified. Any remaining should be cleaned up below. 216 while (!DeadInsts.empty()) { 217 Value *V = DeadInsts.pop_back_val(); 218 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 219 RecursivelyDeleteTriviallyDeadInstructions(Inst); 220 } 221 } 222 223 // At this point, the code is well formed. Perform constprop, instsimplify, 224 // and dce. 225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 226 SmallVector<WeakTrackingVH, 16> DeadInsts; 227 for (BasicBlock *BB : L->getBlocks()) { 228 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 229 Instruction *Inst = &*I++; 230 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 231 if (LI->replacementPreservesLCSSAForm(Inst, V)) 232 Inst->replaceAllUsesWith(V); 233 if (isInstructionTriviallyDead(Inst)) 234 DeadInsts.emplace_back(Inst); 235 } 236 // We can't do recursive deletion until we're done iterating, as we might 237 // have a phi which (potentially indirectly) uses instructions later in 238 // the block we're iterating through. 239 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 240 } 241 } 242 243 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 244 /// can only fail when the loop's latch block is not terminated by a conditional 245 /// branch instruction. However, if the trip count (and multiple) are not known, 246 /// loop unrolling will mostly produce more code that is no faster. 247 /// 248 /// TripCount is an upper bound on the number of times the loop header runs. 249 /// Note that the trip count does not need to be exact, it can be any upper 250 /// bound on the true trip count. 251 /// 252 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 253 /// execute without exiting the loop. 254 /// 255 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 256 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 257 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 258 /// iterations before branching into the unrolled loop. UnrollLoop will not 259 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 260 /// AllowExpensiveTripCount is false. 261 /// 262 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 263 /// number of iterations we want to peel off. 264 /// 265 /// The LoopInfo Analysis that is passed will be kept consistent. 266 /// 267 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 268 /// DominatorTree if they are non-null. 269 /// 270 /// If RemainderLoop is non-null, it will receive the remainder loop (if 271 /// required and not fully unrolled). 272 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 273 ScalarEvolution *SE, DominatorTree *DT, 274 AssumptionCache *AC, 275 const TargetTransformInfo *TTI, 276 OptimizationRemarkEmitter *ORE, 277 bool PreserveLCSSA, Loop **RemainderLoop) { 278 assert(DT && "DomTree is required"); 279 280 if (!L->getLoopPreheader()) { 281 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 282 return LoopUnrollResult::Unmodified; 283 } 284 285 if (!L->getLoopLatch()) { 286 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 287 return LoopUnrollResult::Unmodified; 288 } 289 290 // Loops with indirectbr cannot be cloned. 291 if (!L->isSafeToClone()) { 292 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 293 return LoopUnrollResult::Unmodified; 294 } 295 296 if (L->getHeader()->hasAddressTaken()) { 297 // The loop-rotate pass can be helpful to avoid this in many cases. 298 LLVM_DEBUG( 299 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 300 return LoopUnrollResult::Unmodified; 301 } 302 303 if (ULO.TripCount != 0) 304 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 305 if (ULO.TripMultiple != 1) 306 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 307 308 // Effectively "DCE" unrolled iterations that are beyond the tripcount 309 // and will never be executed. 310 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 311 ULO.Count = ULO.TripCount; 312 313 // Don't enter the unroll code if there is nothing to do. 314 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 315 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 316 return LoopUnrollResult::Unmodified; 317 } 318 319 assert(ULO.Count > 0); 320 assert(ULO.TripMultiple > 0); 321 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 322 323 324 bool Peeled = false; 325 if (ULO.PeelCount) { 326 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 327 328 // Successful peeling may result in a change in the loop preheader/trip 329 // counts. If we later unroll the loop, we want these to be updated. 330 if (Peeled) { 331 // According to our guards and profitability checks the only 332 // meaningful exit should be latch block. Other exits go to deopt, 333 // so we do not worry about them. 334 BasicBlock *ExitingBlock = L->getLoopLatch(); 335 assert(ExitingBlock && "Loop without exiting block?"); 336 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 337 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 338 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 339 } 340 } 341 342 // Are we eliminating the loop control altogether? Note that we can know 343 // we're eliminating the backedge without knowing exactly which iteration 344 // of the unrolled body exits. 345 const bool CompletelyUnroll = ULO.Count == ULO.TripCount; 346 347 // We assume a run-time trip count if the compiler cannot 348 // figure out the loop trip count and the unroll-runtime 349 // flag is specified. 350 bool RuntimeTripCount = 351 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 352 353 assert((!RuntimeTripCount || !ULO.PeelCount) && 354 "Did not expect runtime trip-count unrolling " 355 "and peeling for the same loop"); 356 357 // All these values should be taken only after peeling because they might have 358 // changed. 359 BasicBlock *Preheader = L->getLoopPreheader(); 360 BasicBlock *Header = L->getHeader(); 361 BasicBlock *LatchBlock = L->getLoopLatch(); 362 SmallVector<BasicBlock *, 4> ExitBlocks; 363 L->getExitBlocks(ExitBlocks); 364 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 365 366 // Go through all exits of L and see if there are any phi-nodes there. We just 367 // conservatively assume that they're inserted to preserve LCSSA form, which 368 // means that complete unrolling might break this form. We need to either fix 369 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 370 // now we just recompute LCSSA for the outer loop, but it should be possible 371 // to fix it in-place. 372 bool NeedToFixLCSSA = 373 PreserveLCSSA && CompletelyUnroll && 374 any_of(ExitBlocks, 375 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 376 377 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 378 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 379 380 const bool PreserveOnlyFirst = ULO.Count == MaxTripCount && MaxOrZero; 381 382 // The current loop unroll pass can unroll loops that have 383 // (1) single latch; and 384 // (2a) latch is unconditional; or 385 // (2b) latch is conditional and is an exiting block 386 // FIXME: The implementation can be extended to work with more complicated 387 // cases, e.g. loops with multiple latches. 388 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 389 390 // A conditional branch which exits the loop, which can be optimized to an 391 // unconditional branch in the unrolled loop in some cases. 392 BranchInst *ExitingBI = nullptr; 393 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 394 if (LatchIsExiting) 395 ExitingBI = LatchBI; 396 else if (BasicBlock *ExitingBlock = L->getExitingBlock()) 397 ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 398 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 399 // If the peeling guard is changed this assert may be relaxed or even 400 // deleted. 401 assert(!Peeled && "Peeling guard changed!"); 402 LLVM_DEBUG( 403 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 404 return LoopUnrollResult::Unmodified; 405 } 406 LLVM_DEBUG({ 407 if (ExitingBI) 408 dbgs() << " Exiting Block = " << ExitingBI->getParent()->getName() 409 << "\n"; 410 else 411 dbgs() << " No single exiting block\n"; 412 }); 413 414 // Warning: ExactTripCount is the exact trip count for the block ending in 415 // ExitingBI, not neccessarily an exact exit count *for the loop*. The 416 // distinction comes when we have an exiting latch, but the loop exits 417 // through another exit first. 418 const unsigned ExactTripCount = ExitingBI ? 419 SE->getSmallConstantTripCount(L,ExitingBI->getParent()) : 0; 420 const bool ExactUnroll = (ExactTripCount && ExactTripCount == ULO.Count); 421 422 // Loops containing convergent instructions must have a count that divides 423 // their TripMultiple. 424 LLVM_DEBUG( 425 { 426 bool HasConvergent = false; 427 for (auto &BB : L->blocks()) 428 for (auto &I : *BB) 429 if (auto *CB = dyn_cast<CallBase>(&I)) 430 HasConvergent |= CB->isConvergent(); 431 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 432 "Unroll count must divide trip multiple if loop contains a " 433 "convergent operation."); 434 }); 435 436 bool EpilogProfitability = 437 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 438 : isEpilogProfitable(L); 439 440 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 441 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 442 EpilogProfitability, ULO.UnrollRemainder, 443 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 444 PreserveLCSSA, RemainderLoop)) { 445 if (ULO.Force) 446 RuntimeTripCount = false; 447 else { 448 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 449 "generated when assuming runtime trip count\n"); 450 return LoopUnrollResult::Unmodified; 451 } 452 } 453 454 // If we know the trip count, we know the multiple... 455 unsigned BreakoutTrip = 0; 456 if (ULO.TripCount != 0) { 457 BreakoutTrip = ULO.TripCount % ULO.Count; 458 ULO.TripMultiple = 0; 459 } else { 460 // Figure out what multiple to use. 461 BreakoutTrip = ULO.TripMultiple = 462 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 463 } 464 465 using namespace ore; 466 // Report the unrolling decision. 467 if (CompletelyUnroll) { 468 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 469 << " with trip count " << ULO.TripCount << "!\n"); 470 if (ORE) 471 ORE->emit([&]() { 472 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 473 L->getHeader()) 474 << "completely unrolled loop with " 475 << NV("UnrollCount", ULO.TripCount) << " iterations"; 476 }); 477 } else if (ULO.PeelCount) { 478 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 479 << " with iteration count " << ULO.PeelCount << "!\n"); 480 if (ORE) 481 ORE->emit([&]() { 482 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 483 L->getHeader()) 484 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 485 << " iterations"; 486 }); 487 } else { 488 auto DiagBuilder = [&]() { 489 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 490 L->getHeader()); 491 return Diag << "unrolled loop by a factor of " 492 << NV("UnrollCount", ULO.Count); 493 }; 494 495 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 496 << ULO.Count); 497 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 498 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 499 if (ORE) 500 ORE->emit([&]() { 501 return DiagBuilder() << " with a breakout at trip " 502 << NV("BreakoutTrip", BreakoutTrip); 503 }); 504 } else if (ULO.TripMultiple != 1) { 505 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 506 if (ORE) 507 ORE->emit([&]() { 508 return DiagBuilder() 509 << " with " << NV("TripMultiple", ULO.TripMultiple) 510 << " trips per branch"; 511 }); 512 } else if (RuntimeTripCount) { 513 LLVM_DEBUG(dbgs() << " with run-time trip count"); 514 if (ORE) 515 ORE->emit( 516 [&]() { return DiagBuilder() << " with run-time trip count"; }); 517 } 518 LLVM_DEBUG(dbgs() << "!\n"); 519 } 520 521 // We are going to make changes to this loop. SCEV may be keeping cached info 522 // about it, in particular about backedge taken count. The changes we make 523 // are guaranteed to invalidate this information for our loop. It is tempting 524 // to only invalidate the loop being unrolled, but it is incorrect as long as 525 // all exiting branches from all inner loops have impact on the outer loops, 526 // and if something changes inside them then any of outer loops may also 527 // change. When we forget outermost loop, we also forget all contained loops 528 // and this is what we need here. 529 if (SE) { 530 if (ULO.ForgetAllSCEV) 531 SE->forgetAllLoops(); 532 else 533 SE->forgetTopmostLoop(L); 534 } 535 536 if (!LatchIsExiting) 537 ++NumUnrolledNotLatch; 538 539 // For the first iteration of the loop, we should use the precloned values for 540 // PHI nodes. Insert associations now. 541 ValueToValueMapTy LastValueMap; 542 std::vector<PHINode*> OrigPHINode; 543 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 544 OrigPHINode.push_back(cast<PHINode>(I)); 545 } 546 547 std::vector<BasicBlock *> Headers; 548 std::vector<BasicBlock *> ExitingBlocks; 549 std::vector<BasicBlock *> Latches; 550 Headers.push_back(Header); 551 Latches.push_back(LatchBlock); 552 if (ExitingBI) 553 ExitingBlocks.push_back(ExitingBI->getParent()); 554 555 // The current on-the-fly SSA update requires blocks to be processed in 556 // reverse postorder so that LastValueMap contains the correct value at each 557 // exit. 558 LoopBlocksDFS DFS(L); 559 DFS.perform(LI); 560 561 // Stash the DFS iterators before adding blocks to the loop. 562 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 563 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 564 565 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 566 567 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 568 // might break loop-simplified form for these loops (as they, e.g., would 569 // share the same exit blocks). We'll keep track of loops for which we can 570 // break this so that later we can re-simplify them. 571 SmallSetVector<Loop *, 4> LoopsToSimplify; 572 for (Loop *SubLoop : *L) 573 LoopsToSimplify.insert(SubLoop); 574 575 // When a FSDiscriminator is enabled, we don't need to add the multiply 576 // factors to the discriminators. 577 if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator) 578 for (BasicBlock *BB : L->getBlocks()) 579 for (Instruction &I : *BB) 580 if (!isa<DbgInfoIntrinsic>(&I)) 581 if (const DILocation *DIL = I.getDebugLoc()) { 582 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 583 if (NewDIL) 584 I.setDebugLoc(NewDIL.getValue()); 585 else 586 LLVM_DEBUG(dbgs() 587 << "Failed to create new discriminator: " 588 << DIL->getFilename() << " Line: " << DIL->getLine()); 589 } 590 591 // Identify what noalias metadata is inside the loop: if it is inside the 592 // loop, the associated metadata must be cloned for each iteration. 593 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 594 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 595 596 for (unsigned It = 1; It != ULO.Count; ++It) { 597 SmallVector<BasicBlock *, 8> NewBlocks; 598 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 599 NewLoops[L] = L; 600 601 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 602 ValueToValueMapTy VMap; 603 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 604 Header->getParent()->getBasicBlockList().push_back(New); 605 606 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 607 "Header should not be in a sub-loop"); 608 // Tell LI about New. 609 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 610 if (OldLoop) 611 LoopsToSimplify.insert(NewLoops[OldLoop]); 612 613 if (*BB == Header) 614 // Loop over all of the PHI nodes in the block, changing them to use 615 // the incoming values from the previous block. 616 for (PHINode *OrigPHI : OrigPHINode) { 617 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 618 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 619 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 620 if (It > 1 && L->contains(InValI)) 621 InVal = LastValueMap[InValI]; 622 VMap[OrigPHI] = InVal; 623 New->getInstList().erase(NewPHI); 624 } 625 626 // Update our running map of newest clones 627 LastValueMap[*BB] = New; 628 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 629 VI != VE; ++VI) 630 LastValueMap[VI->first] = VI->second; 631 632 // Add phi entries for newly created values to all exit blocks. 633 for (BasicBlock *Succ : successors(*BB)) { 634 if (L->contains(Succ)) 635 continue; 636 for (PHINode &PHI : Succ->phis()) { 637 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 638 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 639 if (It != LastValueMap.end()) 640 Incoming = It->second; 641 PHI.addIncoming(Incoming, New); 642 } 643 } 644 // Keep track of new headers and latches as we create them, so that 645 // we can insert the proper branches later. 646 if (*BB == Header) 647 Headers.push_back(New); 648 if (*BB == LatchBlock) 649 Latches.push_back(New); 650 651 // Keep track of the exiting block and its successor block contained in 652 // the loop for the current iteration. 653 if (ExitingBI) 654 if (*BB == ExitingBlocks[0]) 655 ExitingBlocks.push_back(New); 656 657 NewBlocks.push_back(New); 658 UnrolledLoopBlocks.push_back(New); 659 660 // Update DomTree: since we just copy the loop body, and each copy has a 661 // dedicated entry block (copy of the header block), this header's copy 662 // dominates all copied blocks. That means, dominance relations in the 663 // copied body are the same as in the original body. 664 if (*BB == Header) 665 DT->addNewBlock(New, Latches[It - 1]); 666 else { 667 auto BBDomNode = DT->getNode(*BB); 668 auto BBIDom = BBDomNode->getIDom(); 669 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 670 DT->addNewBlock( 671 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 672 } 673 } 674 675 // Remap all instructions in the most recent iteration 676 remapInstructionsInBlocks(NewBlocks, LastValueMap); 677 for (BasicBlock *NewBlock : NewBlocks) 678 for (Instruction &I : *NewBlock) 679 if (auto *II = dyn_cast<AssumeInst>(&I)) 680 AC->registerAssumption(II); 681 682 { 683 // Identify what other metadata depends on the cloned version. After 684 // cloning, replace the metadata with the corrected version for both 685 // memory instructions and noalias intrinsics. 686 std::string ext = (Twine("It") + Twine(It)).str(); 687 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 688 Header->getContext(), ext); 689 } 690 } 691 692 // Loop over the PHI nodes in the original block, setting incoming values. 693 for (PHINode *PN : OrigPHINode) { 694 if (CompletelyUnroll) { 695 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 696 Header->getInstList().erase(PN); 697 } else if (ULO.Count > 1) { 698 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 699 // If this value was defined in the loop, take the value defined by the 700 // last iteration of the loop. 701 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 702 if (L->contains(InValI)) 703 InVal = LastValueMap[InVal]; 704 } 705 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 706 PN->addIncoming(InVal, Latches.back()); 707 } 708 } 709 710 // Connect latches of the unrolled iterations to the headers of the next 711 // iteration. Currently they point to the header of the same iteration. 712 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 713 unsigned j = (i + 1) % e; 714 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 715 } 716 717 // Update dominators of blocks we might reach through exits. 718 // Immediate dominator of such block might change, because we add more 719 // routes which can lead to the exit: we can now reach it from the copied 720 // iterations too. 721 if (ULO.Count > 1) { 722 for (auto *BB : OriginalLoopBlocks) { 723 auto *BBDomNode = DT->getNode(BB); 724 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 725 for (auto *ChildDomNode : BBDomNode->children()) { 726 auto *ChildBB = ChildDomNode->getBlock(); 727 if (!L->contains(ChildBB)) 728 ChildrenToUpdate.push_back(ChildBB); 729 } 730 // The new idom of the block will be the nearest common dominator 731 // of all copies of the previous idom. This is equivalent to the 732 // nearest common dominator of the previous idom and the first latch, 733 // which dominates all copies of the previous idom. 734 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 735 for (auto *ChildBB : ChildrenToUpdate) 736 DT->changeImmediateDominator(ChildBB, NewIDom); 737 } 738 } 739 740 assert(!UnrollVerifyDomtree || 741 DT->verify(DominatorTree::VerificationLevel::Fast)); 742 743 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 744 745 if (ExitingBI) { 746 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 747 auto *Term = cast<BranchInst>(Src->getTerminator()); 748 const unsigned Idx = ExitOnTrue ^ WillExit; 749 BasicBlock *Dest = Term->getSuccessor(Idx); 750 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 751 752 // Remove predecessors from all non-Dest successors. 753 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 754 755 // Replace the conditional branch with an unconditional one. 756 BranchInst::Create(Dest, Term); 757 Term->eraseFromParent(); 758 759 DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}}); 760 }; 761 762 auto WillExit = [&](unsigned i, unsigned j) -> Optional<bool> { 763 if (CompletelyUnroll) { 764 if (PreserveOnlyFirst) { 765 if (i == 0) 766 return None; 767 return j == 0; 768 } 769 // Complete (but possibly inexact) unrolling 770 if (j == 0) 771 return true; 772 if (MaxTripCount && j >= MaxTripCount) 773 return false; 774 // Warning: ExactTripCount is the trip count of the exiting 775 // block which ends in ExitingBI, not neccessarily the loop. 776 if (ExactTripCount && j != ExactTripCount) 777 return false; 778 return None; 779 } 780 781 if (RuntimeTripCount && j != 0) 782 return false; 783 784 if (j != BreakoutTrip && 785 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 786 // If we know the trip count or a multiple of it, we can safely use an 787 // unconditional branch for some iterations. 788 return false; 789 } 790 return None; 791 }; 792 793 // Fold branches for iterations where we know that they will exit or not 794 // exit. 795 bool ExitOnTrue = !L->contains(ExitingBI->getSuccessor(0)); 796 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 797 // The branch destination. 798 unsigned j = (i + 1) % e; 799 Optional<bool> KnownWillExit = WillExit(i, j); 800 if (!KnownWillExit) 801 continue; 802 803 // TODO: Also fold known-exiting branches for non-latch exits. 804 if (*KnownWillExit && !LatchIsExiting) 805 continue; 806 807 SetDest(ExitingBlocks[i], *KnownWillExit, ExitOnTrue); 808 } 809 } 810 811 812 // When completely unrolling, the last latch becomes unreachable. 813 if (!LatchIsExiting && CompletelyUnroll) 814 changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false, 815 PreserveLCSSA, &DTU); 816 817 // Merge adjacent basic blocks, if possible. 818 for (BasicBlock *Latch : Latches) { 819 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 820 assert((Term || 821 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 822 "Need a branch as terminator, except when fully unrolling with " 823 "unconditional latch"); 824 if (Term && Term->isUnconditional()) { 825 BasicBlock *Dest = Term->getSuccessor(0); 826 BasicBlock *Fold = Dest->getUniquePredecessor(); 827 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 828 // Dest has been folded into Fold. Update our worklists accordingly. 829 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 830 llvm::erase_value(UnrolledLoopBlocks, Dest); 831 } 832 } 833 } 834 // Apply updates to the DomTree. 835 DT = &DTU.getDomTree(); 836 837 // At this point, the code is well formed. We now simplify the unrolled loop, 838 // doing constant propagation and dead code elimination as we go. 839 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 840 SE, DT, AC, TTI); 841 842 NumCompletelyUnrolled += CompletelyUnroll; 843 ++NumUnrolled; 844 845 Loop *OuterL = L->getParentLoop(); 846 // Update LoopInfo if the loop is completely removed. 847 if (CompletelyUnroll) 848 LI->erase(L); 849 850 // After complete unrolling most of the blocks should be contained in OuterL. 851 // However, some of them might happen to be out of OuterL (e.g. if they 852 // precede a loop exit). In this case we might need to insert PHI nodes in 853 // order to preserve LCSSA form. 854 // We don't need to check this if we already know that we need to fix LCSSA 855 // form. 856 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 857 // it should be possible to fix it in-place. 858 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 859 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 860 861 // Make sure that loop-simplify form is preserved. We want to simplify 862 // at least one layer outside of the loop that was unrolled so that any 863 // changes to the parent loop exposed by the unrolling are considered. 864 if (OuterL) { 865 // OuterL includes all loops for which we can break loop-simplify, so 866 // it's sufficient to simplify only it (it'll recursively simplify inner 867 // loops too). 868 if (NeedToFixLCSSA) { 869 // LCSSA must be performed on the outermost affected loop. The unrolled 870 // loop's last loop latch is guaranteed to be in the outermost loop 871 // after LoopInfo's been updated by LoopInfo::erase. 872 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 873 Loop *FixLCSSALoop = OuterL; 874 if (!FixLCSSALoop->contains(LatchLoop)) 875 while (FixLCSSALoop->getParentLoop() != LatchLoop) 876 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 877 878 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 879 } else if (PreserveLCSSA) { 880 assert(OuterL->isLCSSAForm(*DT) && 881 "Loops should be in LCSSA form after loop-unroll."); 882 } 883 884 // TODO: That potentially might be compile-time expensive. We should try 885 // to fix the loop-simplified form incrementally. 886 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 887 } else { 888 // Simplify loops for which we might've broken loop-simplify form. 889 for (Loop *SubLoop : LoopsToSimplify) 890 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 891 } 892 893 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 894 : LoopUnrollResult::PartiallyUnrolled; 895 } 896 897 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 898 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 899 /// such metadata node exists, then nullptr is returned. 900 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 901 // First operand should refer to the loop id itself. 902 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 903 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 904 905 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 906 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 907 if (!MD) 908 continue; 909 910 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 911 if (!S) 912 continue; 913 914 if (Name.equals(S->getString())) 915 return MD; 916 } 917 return nullptr; 918 } 919