1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 static cl::opt<bool> 55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 56 cl::desc("Verify domtree after unrolling"), 57 #ifdef NDEBUG 58 cl::init(false) 59 #else 60 cl::init(true) 61 #endif 62 ); 63 64 /// Convert the instruction operands from referencing the current values into 65 /// those specified by VMap. 66 static inline void remapInstruction(Instruction *I, 67 ValueToValueMapTy &VMap) { 68 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 69 Value *Op = I->getOperand(op); 70 ValueToValueMapTy::iterator It = VMap.find(Op); 71 if (It != VMap.end()) 72 I->setOperand(op, It->second); 73 } 74 75 if (PHINode *PN = dyn_cast<PHINode>(I)) { 76 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 77 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 78 if (It != VMap.end()) 79 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 80 } 81 } 82 } 83 84 /// Folds a basic block into its predecessor if it only has one predecessor, and 85 /// that predecessor only has one successor. 86 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 87 /// successful references to the containing loop must be removed from 88 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 89 /// references to the eliminated BB. The argument ForgottenLoops contains a set 90 /// of loops that have already been forgotten to prevent redundant, expensive 91 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 92 static BasicBlock * 93 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 94 SmallPtrSetImpl<Loop *> &ForgottenLoops, 95 DominatorTree *DT) { 96 // Merge basic blocks into their predecessor if there is only one distinct 97 // pred, and if there is only one distinct successor of the predecessor, and 98 // if there are no PHI nodes. 99 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 100 if (!OnlyPred) return nullptr; 101 102 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 103 return nullptr; 104 105 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 106 107 // Resolve any PHI nodes at the start of the block. They are all 108 // guaranteed to have exactly one entry if they exist, unless there are 109 // multiple duplicate (but guaranteed to be equal) entries for the 110 // incoming edges. This occurs when there are multiple edges from 111 // OnlyPred to OnlySucc. 112 FoldSingleEntryPHINodes(BB); 113 114 // Delete the unconditional branch from the predecessor... 115 OnlyPred->getInstList().pop_back(); 116 117 // Make all PHI nodes that referred to BB now refer to Pred as their 118 // source... 119 BB->replaceAllUsesWith(OnlyPred); 120 121 // Move all definitions in the successor to the predecessor... 122 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 123 124 // OldName will be valid until erased. 125 StringRef OldName = BB->getName(); 126 127 // Erase the old block and update dominator info. 128 if (DT) 129 if (DomTreeNode *DTN = DT->getNode(BB)) { 130 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 131 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 132 for (auto *DI : Children) 133 DT->changeImmediateDominator(DI, PredDTN); 134 135 DT->eraseNode(BB); 136 } 137 138 // ScalarEvolution holds references to loop exit blocks. 139 if (SE) { 140 if (Loop *L = LI->getLoopFor(BB)) { 141 if (ForgottenLoops.insert(L).second) 142 SE->forgetLoop(L); 143 } 144 } 145 LI->removeBlock(BB); 146 147 // Inherit predecessor's name if it exists... 148 if (!OldName.empty() && !OnlyPred->hasName()) 149 OnlyPred->setName(OldName); 150 151 BB->eraseFromParent(); 152 153 return OnlyPred; 154 } 155 156 /// Check if unrolling created a situation where we need to insert phi nodes to 157 /// preserve LCSSA form. 158 /// \param Blocks is a vector of basic blocks representing unrolled loop. 159 /// \param L is the outer loop. 160 /// It's possible that some of the blocks are in L, and some are not. In this 161 /// case, if there is a use is outside L, and definition is inside L, we need to 162 /// insert a phi-node, otherwise LCSSA will be broken. 163 /// The function is just a helper function for llvm::UnrollLoop that returns 164 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 165 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 166 LoopInfo *LI) { 167 for (BasicBlock *BB : Blocks) { 168 if (LI->getLoopFor(BB) == L) 169 continue; 170 for (Instruction &I : *BB) { 171 for (Use &U : I.operands()) { 172 if (auto Def = dyn_cast<Instruction>(U)) { 173 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 174 if (!DefLoop) 175 continue; 176 if (DefLoop->contains(L)) 177 return true; 178 } 179 } 180 } 181 } 182 return false; 183 } 184 185 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 186 /// and adds a mapping from the original loop to the new loop to NewLoops. 187 /// Returns nullptr if no new loop was created and a pointer to the 188 /// original loop OriginalBB was part of otherwise. 189 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 190 BasicBlock *ClonedBB, LoopInfo *LI, 191 NewLoopsMap &NewLoops) { 192 // Figure out which loop New is in. 193 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 194 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 195 196 Loop *&NewLoop = NewLoops[OldLoop]; 197 if (!NewLoop) { 198 // Found a new sub-loop. 199 assert(OriginalBB == OldLoop->getHeader() && 200 "Header should be first in RPO"); 201 202 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 203 assert(NewLoopParent && 204 "Expected parent loop before sub-loop in RPO"); 205 NewLoop = new Loop; 206 NewLoopParent->addChildLoop(NewLoop); 207 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 208 return OldLoop; 209 } else { 210 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 211 return nullptr; 212 } 213 } 214 215 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 216 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 217 /// can only fail when the loop's latch block is not terminated by a conditional 218 /// branch instruction. However, if the trip count (and multiple) are not known, 219 /// loop unrolling will mostly produce more code that is no faster. 220 /// 221 /// TripCount is the upper bound of the iteration on which control exits 222 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 223 /// via an early branch in other loop block or via LatchBlock terminator. This 224 /// is relaxed from the general definition of trip count which is the number of 225 /// times the loop header executes. Note that UnrollLoop assumes that the loop 226 /// counter test is in LatchBlock in order to remove unnecesssary instances of 227 /// the test. If control can exit the loop from the LatchBlock's terminator 228 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 229 /// 230 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 231 /// needs to be preserved. It is needed when we use trip count upper bound to 232 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 233 /// conditional branch needs to be preserved. 234 /// 235 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 236 /// execute without exiting the loop. 237 /// 238 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 239 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 240 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 241 /// iterations before branching into the unrolled loop. UnrollLoop will not 242 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 243 /// AllowExpensiveTripCount is false. 244 /// 245 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 246 /// number of iterations we want to peel off. 247 /// 248 /// The LoopInfo Analysis that is passed will be kept consistent. 249 /// 250 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 251 /// DominatorTree if they are non-null. 252 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 253 bool AllowRuntime, bool AllowExpensiveTripCount, 254 bool PreserveCondBr, bool PreserveOnlyFirst, 255 unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI, 256 ScalarEvolution *SE, DominatorTree *DT, 257 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, 258 bool PreserveLCSSA) { 259 260 BasicBlock *Preheader = L->getLoopPreheader(); 261 if (!Preheader) { 262 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 263 return false; 264 } 265 266 BasicBlock *LatchBlock = L->getLoopLatch(); 267 if (!LatchBlock) { 268 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 269 return false; 270 } 271 272 // Loops with indirectbr cannot be cloned. 273 if (!L->isSafeToClone()) { 274 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 275 return false; 276 } 277 278 BasicBlock *Header = L->getHeader(); 279 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 280 281 if (!BI || BI->isUnconditional()) { 282 // The loop-rotate pass can be helpful to avoid this in many cases. 283 DEBUG(dbgs() << 284 " Can't unroll; loop not terminated by a conditional branch.\n"); 285 return false; 286 } 287 288 if (Header->hasAddressTaken()) { 289 // The loop-rotate pass can be helpful to avoid this in many cases. 290 DEBUG(dbgs() << 291 " Won't unroll loop: address of header block is taken.\n"); 292 return false; 293 } 294 295 if (TripCount != 0) 296 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 297 if (TripMultiple != 1) 298 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 299 300 // Effectively "DCE" unrolled iterations that are beyond the tripcount 301 // and will never be executed. 302 if (TripCount != 0 && Count > TripCount) 303 Count = TripCount; 304 305 // Don't enter the unroll code if there is nothing to do. 306 if (TripCount == 0 && Count < 2 && PeelCount == 0) 307 return false; 308 309 assert(Count > 0); 310 assert(TripMultiple > 0); 311 assert(TripCount == 0 || TripCount % TripMultiple == 0); 312 313 // Are we eliminating the loop control altogether? 314 bool CompletelyUnroll = Count == TripCount; 315 SmallVector<BasicBlock *, 4> ExitBlocks; 316 L->getExitBlocks(ExitBlocks); 317 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 318 319 // Go through all exits of L and see if there are any phi-nodes there. We just 320 // conservatively assume that they're inserted to preserve LCSSA form, which 321 // means that complete unrolling might break this form. We need to either fix 322 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 323 // now we just recompute LCSSA for the outer loop, but it should be possible 324 // to fix it in-place. 325 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 326 any_of(ExitBlocks, [](const BasicBlock *BB) { 327 return isa<PHINode>(BB->begin()); 328 }); 329 330 // We assume a run-time trip count if the compiler cannot 331 // figure out the loop trip count and the unroll-runtime 332 // flag is specified. 333 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 334 335 assert((!RuntimeTripCount || !PeelCount) && 336 "Did not expect runtime trip-count unrolling " 337 "and peeling for the same loop"); 338 339 if (PeelCount) 340 peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); 341 342 // Loops containing convergent instructions must have a count that divides 343 // their TripMultiple. 344 DEBUG( 345 { 346 bool HasConvergent = false; 347 for (auto &BB : L->blocks()) 348 for (auto &I : *BB) 349 if (auto CS = CallSite(&I)) 350 HasConvergent |= CS.isConvergent(); 351 assert((!HasConvergent || TripMultiple % Count == 0) && 352 "Unroll count must divide trip multiple if loop contains a " 353 "convergent operation."); 354 }); 355 356 if (RuntimeTripCount && TripMultiple % Count != 0 && 357 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 358 UnrollRuntimeEpilog, LI, SE, DT, 359 PreserveLCSSA)) { 360 if (Force) 361 RuntimeTripCount = false; 362 else 363 return false; 364 } 365 366 // Notify ScalarEvolution that the loop will be substantially changed, 367 // if not outright eliminated. 368 if (SE) 369 SE->forgetLoop(L); 370 371 // If we know the trip count, we know the multiple... 372 unsigned BreakoutTrip = 0; 373 if (TripCount != 0) { 374 BreakoutTrip = TripCount % Count; 375 TripMultiple = 0; 376 } else { 377 // Figure out what multiple to use. 378 BreakoutTrip = TripMultiple = 379 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 380 } 381 382 using namespace ore; 383 // Report the unrolling decision. 384 if (CompletelyUnroll) { 385 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 386 << " with trip count " << TripCount << "!\n"); 387 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 388 L->getHeader()) 389 << "completely unrolled loop with " 390 << NV("UnrollCount", TripCount) << " iterations"); 391 } else if (PeelCount) { 392 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 393 << " with iteration count " << PeelCount << "!\n"); 394 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 395 L->getHeader()) 396 << " peeled loop by " << NV("PeelCount", PeelCount) 397 << " iterations"); 398 } else { 399 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 400 L->getHeader()); 401 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 402 403 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 404 << " by " << Count); 405 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 406 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 407 ORE->emit(Diag << " with a breakout at trip " 408 << NV("BreakoutTrip", BreakoutTrip)); 409 } else if (TripMultiple != 1) { 410 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 411 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 412 << " trips per branch"); 413 } else if (RuntimeTripCount) { 414 DEBUG(dbgs() << " with run-time trip count"); 415 ORE->emit(Diag << " with run-time trip count"); 416 } 417 DEBUG(dbgs() << "!\n"); 418 } 419 420 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 421 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 422 423 // For the first iteration of the loop, we should use the precloned values for 424 // PHI nodes. Insert associations now. 425 ValueToValueMapTy LastValueMap; 426 std::vector<PHINode*> OrigPHINode; 427 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 428 OrigPHINode.push_back(cast<PHINode>(I)); 429 } 430 431 std::vector<BasicBlock*> Headers; 432 std::vector<BasicBlock*> Latches; 433 Headers.push_back(Header); 434 Latches.push_back(LatchBlock); 435 436 // The current on-the-fly SSA update requires blocks to be processed in 437 // reverse postorder so that LastValueMap contains the correct value at each 438 // exit. 439 LoopBlocksDFS DFS(L); 440 DFS.perform(LI); 441 442 // Stash the DFS iterators before adding blocks to the loop. 443 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 444 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 445 446 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 447 448 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 449 // might break loop-simplified form for these loops (as they, e.g., would 450 // share the same exit blocks). We'll keep track of loops for which we can 451 // break this so that later we can re-simplify them. 452 SmallSetVector<Loop *, 4> LoopsToSimplify; 453 for (Loop *SubLoop : *L) 454 LoopsToSimplify.insert(SubLoop); 455 456 for (unsigned It = 1; It != Count; ++It) { 457 std::vector<BasicBlock*> NewBlocks; 458 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 459 NewLoops[L] = L; 460 461 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 462 ValueToValueMapTy VMap; 463 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 464 Header->getParent()->getBasicBlockList().push_back(New); 465 466 // Tell LI about New. 467 if (*BB == Header) { 468 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 469 L->addBasicBlockToLoop(New, *LI); 470 } else { 471 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 472 if (OldLoop) { 473 LoopsToSimplify.insert(NewLoops[OldLoop]); 474 475 // Forget the old loop, since its inputs may have changed. 476 if (SE) 477 SE->forgetLoop(OldLoop); 478 } 479 } 480 481 if (*BB == Header) 482 // Loop over all of the PHI nodes in the block, changing them to use 483 // the incoming values from the previous block. 484 for (PHINode *OrigPHI : OrigPHINode) { 485 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 486 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 487 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 488 if (It > 1 && L->contains(InValI)) 489 InVal = LastValueMap[InValI]; 490 VMap[OrigPHI] = InVal; 491 New->getInstList().erase(NewPHI); 492 } 493 494 // Update our running map of newest clones 495 LastValueMap[*BB] = New; 496 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 497 VI != VE; ++VI) 498 LastValueMap[VI->first] = VI->second; 499 500 // Add phi entries for newly created values to all exit blocks. 501 for (BasicBlock *Succ : successors(*BB)) { 502 if (L->contains(Succ)) 503 continue; 504 for (BasicBlock::iterator BBI = Succ->begin(); 505 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 506 Value *Incoming = phi->getIncomingValueForBlock(*BB); 507 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 508 if (It != LastValueMap.end()) 509 Incoming = It->second; 510 phi->addIncoming(Incoming, New); 511 } 512 } 513 // Keep track of new headers and latches as we create them, so that 514 // we can insert the proper branches later. 515 if (*BB == Header) 516 Headers.push_back(New); 517 if (*BB == LatchBlock) 518 Latches.push_back(New); 519 520 NewBlocks.push_back(New); 521 UnrolledLoopBlocks.push_back(New); 522 523 // Update DomTree: since we just copy the loop body, and each copy has a 524 // dedicated entry block (copy of the header block), this header's copy 525 // dominates all copied blocks. That means, dominance relations in the 526 // copied body are the same as in the original body. 527 if (DT) { 528 if (*BB == Header) 529 DT->addNewBlock(New, Latches[It - 1]); 530 else { 531 auto BBDomNode = DT->getNode(*BB); 532 auto BBIDom = BBDomNode->getIDom(); 533 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 534 DT->addNewBlock( 535 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 536 } 537 } 538 } 539 540 // Remap all instructions in the most recent iteration 541 for (BasicBlock *NewBlock : NewBlocks) { 542 for (Instruction &I : *NewBlock) { 543 ::remapInstruction(&I, LastValueMap); 544 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 545 if (II->getIntrinsicID() == Intrinsic::assume) 546 AC->registerAssumption(II); 547 } 548 } 549 } 550 551 // Loop over the PHI nodes in the original block, setting incoming values. 552 for (PHINode *PN : OrigPHINode) { 553 if (CompletelyUnroll) { 554 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 555 Header->getInstList().erase(PN); 556 } 557 else if (Count > 1) { 558 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 559 // If this value was defined in the loop, take the value defined by the 560 // last iteration of the loop. 561 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 562 if (L->contains(InValI)) 563 InVal = LastValueMap[InVal]; 564 } 565 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 566 PN->addIncoming(InVal, Latches.back()); 567 } 568 } 569 570 // Now that all the basic blocks for the unrolled iterations are in place, 571 // set up the branches to connect them. 572 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 573 // The original branch was replicated in each unrolled iteration. 574 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 575 576 // The branch destination. 577 unsigned j = (i + 1) % e; 578 BasicBlock *Dest = Headers[j]; 579 bool NeedConditional = true; 580 581 if (RuntimeTripCount && j != 0) { 582 NeedConditional = false; 583 } 584 585 // For a complete unroll, make the last iteration end with a branch 586 // to the exit block. 587 if (CompletelyUnroll) { 588 if (j == 0) 589 Dest = LoopExit; 590 // If using trip count upper bound to completely unroll, we need to keep 591 // the conditional branch except the last one because the loop may exit 592 // after any iteration. 593 assert(NeedConditional && 594 "NeedCondition cannot be modified by both complete " 595 "unrolling and runtime unrolling"); 596 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 597 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 598 // If we know the trip count or a multiple of it, we can safely use an 599 // unconditional branch for some iterations. 600 NeedConditional = false; 601 } 602 603 if (NeedConditional) { 604 // Update the conditional branch's successor for the following 605 // iteration. 606 Term->setSuccessor(!ContinueOnTrue, Dest); 607 } else { 608 // Remove phi operands at this loop exit 609 if (Dest != LoopExit) { 610 BasicBlock *BB = Latches[i]; 611 for (BasicBlock *Succ: successors(BB)) { 612 if (Succ == Headers[i]) 613 continue; 614 for (BasicBlock::iterator BBI = Succ->begin(); 615 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 616 Phi->removeIncomingValue(BB, false); 617 } 618 } 619 } 620 // Replace the conditional branch with an unconditional one. 621 BranchInst::Create(Dest, Term); 622 Term->eraseFromParent(); 623 } 624 } 625 626 // Update dominators of blocks we might reach through exits. 627 // Immediate dominator of such block might change, because we add more 628 // routes which can lead to the exit: we can now reach it from the copied 629 // iterations too. 630 if (DT && Count > 1) { 631 for (auto *BB : OriginalLoopBlocks) { 632 auto *BBDomNode = DT->getNode(BB); 633 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 634 for (auto *ChildDomNode : BBDomNode->getChildren()) { 635 auto *ChildBB = ChildDomNode->getBlock(); 636 if (!L->contains(ChildBB)) 637 ChildrenToUpdate.push_back(ChildBB); 638 } 639 BasicBlock *NewIDom; 640 if (BB == LatchBlock) { 641 // The latch is special because we emit unconditional branches in 642 // some cases where the original loop contained a conditional branch. 643 // Since the latch is always at the bottom of the loop, if the latch 644 // dominated an exit before unrolling, the new dominator of that exit 645 // must also be a latch. Specifically, the dominator is the first 646 // latch which ends in a conditional branch, or the last latch if 647 // there is no such latch. 648 NewIDom = Latches.back(); 649 for (BasicBlock *IterLatch : Latches) { 650 TerminatorInst *Term = IterLatch->getTerminator(); 651 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 652 NewIDom = IterLatch; 653 break; 654 } 655 } 656 } else { 657 // The new idom of the block will be the nearest common dominator 658 // of all copies of the previous idom. This is equivalent to the 659 // nearest common dominator of the previous idom and the first latch, 660 // which dominates all copies of the previous idom. 661 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 662 } 663 for (auto *ChildBB : ChildrenToUpdate) 664 DT->changeImmediateDominator(ChildBB, NewIDom); 665 } 666 } 667 668 if (DT && UnrollVerifyDomtree) 669 DT->verifyDomTree(); 670 671 // Merge adjacent basic blocks, if possible. 672 SmallPtrSet<Loop *, 4> ForgottenLoops; 673 for (BasicBlock *Latch : Latches) { 674 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 675 if (Term->isUnconditional()) { 676 BasicBlock *Dest = Term->getSuccessor(0); 677 if (BasicBlock *Fold = 678 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 679 // Dest has been folded into Fold. Update our worklists accordingly. 680 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 681 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 682 UnrolledLoopBlocks.end(), Dest), 683 UnrolledLoopBlocks.end()); 684 } 685 } 686 } 687 688 // Simplify any new induction variables in the partially unrolled loop. 689 if (SE && !CompletelyUnroll && Count > 1) { 690 SmallVector<WeakVH, 16> DeadInsts; 691 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 692 693 // Aggressively clean up dead instructions that simplifyLoopIVs already 694 // identified. Any remaining should be cleaned up below. 695 while (!DeadInsts.empty()) 696 if (Instruction *Inst = 697 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 698 RecursivelyDeleteTriviallyDeadInstructions(Inst); 699 } 700 701 // At this point, the code is well formed. We now do a quick sweep over the 702 // inserted code, doing constant propagation and dead code elimination as we 703 // go. 704 const DataLayout &DL = Header->getModule()->getDataLayout(); 705 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 706 for (BasicBlock *BB : NewLoopBlocks) { 707 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 708 Instruction *Inst = &*I++; 709 710 if (Value *V = SimplifyInstruction(Inst, DL)) 711 if (LI->replacementPreservesLCSSAForm(Inst, V)) 712 Inst->replaceAllUsesWith(V); 713 if (isInstructionTriviallyDead(Inst)) 714 BB->getInstList().erase(Inst); 715 } 716 } 717 718 // TODO: after peeling or unrolling, previously loop variant conditions are 719 // likely to fold to constants, eagerly propagating those here will require 720 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 721 // appropriate. 722 723 NumCompletelyUnrolled += CompletelyUnroll; 724 ++NumUnrolled; 725 726 Loop *OuterL = L->getParentLoop(); 727 // Update LoopInfo if the loop is completely removed. 728 if (CompletelyUnroll) 729 LI->markAsRemoved(L); 730 731 // After complete unrolling most of the blocks should be contained in OuterL. 732 // However, some of them might happen to be out of OuterL (e.g. if they 733 // precede a loop exit). In this case we might need to insert PHI nodes in 734 // order to preserve LCSSA form. 735 // We don't need to check this if we already know that we need to fix LCSSA 736 // form. 737 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 738 // it should be possible to fix it in-place. 739 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 740 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 741 742 // If we have a pass and a DominatorTree we should re-simplify impacted loops 743 // to ensure subsequent analyses can rely on this form. We want to simplify 744 // at least one layer outside of the loop that was unrolled so that any 745 // changes to the parent loop exposed by the unrolling are considered. 746 if (DT) { 747 if (OuterL) { 748 // OuterL includes all loops for which we can break loop-simplify, so 749 // it's sufficient to simplify only it (it'll recursively simplify inner 750 // loops too). 751 // TODO: That potentially might be compile-time expensive. We should try 752 // to fix the loop-simplified form incrementally. 753 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 754 755 // LCSSA must be performed on the outermost affected loop. The unrolled 756 // loop's last loop latch is guaranteed to be in the outermost loop after 757 // LoopInfo's been updated by markAsRemoved. 758 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 759 if (!OuterL->contains(LatchLoop)) 760 while (OuterL->getParentLoop() != LatchLoop) 761 OuterL = OuterL->getParentLoop(); 762 763 if (NeedToFixLCSSA) 764 formLCSSARecursively(*OuterL, *DT, LI, SE); 765 else 766 assert(OuterL->isLCSSAForm(*DT) && 767 "Loops should be in LCSSA form after loop-unroll."); 768 } else { 769 // Simplify loops for which we might've broken loop-simplify form. 770 for (Loop *SubLoop : LoopsToSimplify) 771 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 772 } 773 } 774 775 return true; 776 } 777 778 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 779 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 780 /// such metadata node exists, then nullptr is returned. 781 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 782 // First operand should refer to the loop id itself. 783 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 784 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 785 786 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 787 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 788 if (!MD) 789 continue; 790 791 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 792 if (!S) 793 continue; 794 795 if (Name.equals(S->getString())) 796 return MD; 797 } 798 return nullptr; 799 } 800