1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
65 #include "llvm/Transforms/Utils/UnrollLoop.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <assert.h>
69 #include <type_traits>
70 #include <vector>
71 
72 namespace llvm {
73 class DataLayout;
74 class Value;
75 } // namespace llvm
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-unroll"
80 
81 // TODO: Should these be here or in LoopUnroll?
82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                                "latch (completely or otherwise)");
86 
87 static cl::opt<bool>
88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                     cl::desc("Allow runtime unrolled loops to be unrolled "
90                              "with epilog instead of prolog."));
91 
92 static cl::opt<bool>
93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                     cl::desc("Verify domtree after unrolling"),
95 #ifdef EXPENSIVE_CHECKS
96     cl::init(true)
97 #else
98     cl::init(false)
99 #endif
100                     );
101 
102 /// Check if unrolling created a situation where we need to insert phi nodes to
103 /// preserve LCSSA form.
104 /// \param Blocks is a vector of basic blocks representing unrolled loop.
105 /// \param L is the outer loop.
106 /// It's possible that some of the blocks are in L, and some are not. In this
107 /// case, if there is a use is outside L, and definition is inside L, we need to
108 /// insert a phi-node, otherwise LCSSA will be broken.
109 /// The function is just a helper function for llvm::UnrollLoop that returns
110 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
111 static bool needToInsertPhisForLCSSA(Loop *L,
112                                      const std::vector<BasicBlock *> &Blocks,
113                                      LoopInfo *LI) {
114   for (BasicBlock *BB : Blocks) {
115     if (LI->getLoopFor(BB) == L)
116       continue;
117     for (Instruction &I : *BB) {
118       for (Use &U : I.operands()) {
119         if (const auto *Def = dyn_cast<Instruction>(U)) {
120           Loop *DefLoop = LI->getLoopFor(Def->getParent());
121           if (!DefLoop)
122             continue;
123           if (DefLoop->contains(L))
124             return true;
125         }
126       }
127     }
128   }
129   return false;
130 }
131 
132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
133 /// and adds a mapping from the original loop to the new loop to NewLoops.
134 /// Returns nullptr if no new loop was created and a pointer to the
135 /// original loop OriginalBB was part of otherwise.
136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
137                                            BasicBlock *ClonedBB, LoopInfo *LI,
138                                            NewLoopsMap &NewLoops) {
139   // Figure out which loop New is in.
140   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
141   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
142 
143   Loop *&NewLoop = NewLoops[OldLoop];
144   if (!NewLoop) {
145     // Found a new sub-loop.
146     assert(OriginalBB == OldLoop->getHeader() &&
147            "Header should be first in RPO");
148 
149     NewLoop = LI->AllocateLoop();
150     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
151 
152     if (NewLoopParent)
153       NewLoopParent->addChildLoop(NewLoop);
154     else
155       LI->addTopLevelLoop(NewLoop);
156 
157     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
158     return OldLoop;
159   } else {
160     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
161     return nullptr;
162   }
163 }
164 
165 /// The function chooses which type of unroll (epilog or prolog) is more
166 /// profitabale.
167 /// Epilog unroll is more profitable when there is PHI that starts from
168 /// constant.  In this case epilog will leave PHI start from constant,
169 /// but prolog will convert it to non-constant.
170 ///
171 /// loop:
172 ///   PN = PHI [I, Latch], [CI, PreHeader]
173 ///   I = foo(PN)
174 ///   ...
175 ///
176 /// Epilog unroll case.
177 /// loop:
178 ///   PN = PHI [I2, Latch], [CI, PreHeader]
179 ///   I1 = foo(PN)
180 ///   I2 = foo(I1)
181 ///   ...
182 /// Prolog unroll case.
183 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
184 /// loop:
185 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
186 ///   I1 = foo(PN)
187 ///   I2 = foo(I1)
188 ///   ...
189 ///
190 static bool isEpilogProfitable(Loop *L) {
191   BasicBlock *PreHeader = L->getLoopPreheader();
192   BasicBlock *Header = L->getHeader();
193   assert(PreHeader && Header);
194   for (const PHINode &PN : Header->phis()) {
195     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
196       return true;
197   }
198   return false;
199 }
200 
201 /// Perform some cleanup and simplifications on loops after unrolling. It is
202 /// useful to simplify the IV's in the new loop, as well as do a quick
203 /// simplify/dce pass of the instructions.
204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
205                                    ScalarEvolution *SE, DominatorTree *DT,
206                                    AssumptionCache *AC,
207                                    const TargetTransformInfo *TTI) {
208   // Simplify any new induction variables in the partially unrolled loop.
209   if (SE && SimplifyIVs) {
210     SmallVector<WeakTrackingVH, 16> DeadInsts;
211     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
212 
213     // Aggressively clean up dead instructions that simplifyLoopIVs already
214     // identified. Any remaining should be cleaned up below.
215     while (!DeadInsts.empty()) {
216       Value *V = DeadInsts.pop_back_val();
217       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
218         RecursivelyDeleteTriviallyDeadInstructions(Inst);
219     }
220   }
221 
222   // At this point, the code is well formed.  Perform constprop, instsimplify,
223   // and dce.
224   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
225   SmallVector<WeakTrackingVH, 16> DeadInsts;
226   for (BasicBlock *BB : L->getBlocks()) {
227     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
228       Instruction *Inst = &*I++;
229       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
230         if (LI->replacementPreservesLCSSAForm(Inst, V))
231           Inst->replaceAllUsesWith(V);
232       if (isInstructionTriviallyDead(Inst))
233         DeadInsts.emplace_back(Inst);
234     }
235     // We can't do recursive deletion until we're done iterating, as we might
236     // have a phi which (potentially indirectly) uses instructions later in
237     // the block we're iterating through.
238     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
239   }
240 }
241 
242 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
243 /// can only fail when the loop's latch block is not terminated by a conditional
244 /// branch instruction. However, if the trip count (and multiple) are not known,
245 /// loop unrolling will mostly produce more code that is no faster.
246 ///
247 /// TripCount is an upper bound on the number of times the loop header runs.
248 /// Note that the trip count does not need to be exact, it can be any upper
249 /// bound on the true trip count.
250 ///
251 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
252 /// execute without exiting the loop.
253 ///
254 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
255 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
256 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
257 /// iterations before branching into the unrolled loop.  UnrollLoop will not
258 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
259 /// AllowExpensiveTripCount is false.
260 ///
261 /// The LoopInfo Analysis that is passed will be kept consistent.
262 ///
263 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
264 /// DominatorTree if they are non-null.
265 ///
266 /// If RemainderLoop is non-null, it will receive the remainder loop (if
267 /// required and not fully unrolled).
268 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
269                                   ScalarEvolution *SE, DominatorTree *DT,
270                                   AssumptionCache *AC,
271                                   const TargetTransformInfo *TTI,
272                                   OptimizationRemarkEmitter *ORE,
273                                   bool PreserveLCSSA, Loop **RemainderLoop) {
274   assert(DT && "DomTree is required");
275 
276   if (!L->getLoopPreheader()) {
277     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
278     return LoopUnrollResult::Unmodified;
279   }
280 
281   if (!L->getLoopLatch()) {
282     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
283     return LoopUnrollResult::Unmodified;
284   }
285 
286   // Loops with indirectbr cannot be cloned.
287   if (!L->isSafeToClone()) {
288     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
289     return LoopUnrollResult::Unmodified;
290   }
291 
292   if (L->getHeader()->hasAddressTaken()) {
293     // The loop-rotate pass can be helpful to avoid this in many cases.
294     LLVM_DEBUG(
295         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
296     return LoopUnrollResult::Unmodified;
297   }
298 
299   if (ULO.TripCount != 0)
300     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
301   if (ULO.TripMultiple != 1)
302     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
303 
304   // Don't enter the unroll code if there is nothing to do.
305   if (ULO.TripCount == 0 && ULO.Count < 2) {
306     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
307     return LoopUnrollResult::Unmodified;
308   }
309 
310   assert(ULO.Count > 0);
311   assert(ULO.TripMultiple > 0);
312   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
313 
314   // All these values should be taken only after peeling because they might have
315   // changed.
316   BasicBlock *Preheader = L->getLoopPreheader();
317   BasicBlock *Header = L->getHeader();
318   BasicBlock *LatchBlock = L->getLoopLatch();
319   SmallVector<BasicBlock *, 4> ExitBlocks;
320   L->getExitBlocks(ExitBlocks);
321   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
322 
323   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
324   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
325 
326   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
327   // and will never be executed.
328   if (MaxTripCount && ULO.Count > MaxTripCount)
329     ULO.Count = MaxTripCount;
330 
331   struct ExitInfo {
332     unsigned TripCount;
333     unsigned TripMultiple;
334     unsigned BreakoutTrip;
335     bool ExitOnTrue;
336     SmallVector<BasicBlock *> ExitingBlocks;
337   };
338   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
339   SmallVector<BasicBlock *, 4> ExitingBlocks;
340   L->getExitingBlocks(ExitingBlocks);
341   for (auto *ExitingBlock : ExitingBlocks) {
342     // The folding code is not prepared to deal with non-branch instructions
343     // right now.
344     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
345     if (!BI)
346       continue;
347 
348     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
349     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
350     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
351     if (Info.TripCount != 0) {
352       Info.BreakoutTrip = Info.TripCount % ULO.Count;
353       Info.TripMultiple = 0;
354     } else {
355       Info.BreakoutTrip = Info.TripMultiple =
356           (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple);
357     }
358     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
359     Info.ExitingBlocks.push_back(ExitingBlock);
360   }
361 
362   // Are we eliminating the loop control altogether?  Note that we can know
363   // we're eliminating the backedge without knowing exactly which iteration
364   // of the unrolled body exits.
365   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
366 
367   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
368 
369   // We assume a run-time trip count if the compiler cannot
370   // figure out the loop trip count and the unroll-runtime
371   // flag is specified.
372   bool RuntimeTripCount =
373       !CompletelyUnroll && ULO.TripCount == 0 && ULO.AllowRuntime;
374 
375   // Go through all exits of L and see if there are any phi-nodes there. We just
376   // conservatively assume that they're inserted to preserve LCSSA form, which
377   // means that complete unrolling might break this form. We need to either fix
378   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
379   // now we just recompute LCSSA for the outer loop, but it should be possible
380   // to fix it in-place.
381   bool NeedToFixLCSSA =
382       PreserveLCSSA && CompletelyUnroll &&
383       any_of(ExitBlocks,
384              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
385 
386   // The current loop unroll pass can unroll loops that have
387   // (1) single latch; and
388   // (2a) latch is unconditional; or
389   // (2b) latch is conditional and is an exiting block
390   // FIXME: The implementation can be extended to work with more complicated
391   // cases, e.g. loops with multiple latches.
392   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
393 
394   // A conditional branch which exits the loop, which can be optimized to an
395   // unconditional branch in the unrolled loop in some cases.
396   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
397   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
398     LLVM_DEBUG(
399         dbgs() << "Can't unroll; a conditional latch must exit the loop");
400     return LoopUnrollResult::Unmodified;
401   }
402 
403   // Loops containing convergent instructions must have a count that divides
404   // their TripMultiple.
405   LLVM_DEBUG(
406       {
407         bool HasConvergent = false;
408         for (auto &BB : L->blocks())
409           for (auto &I : *BB)
410             if (auto *CB = dyn_cast<CallBase>(&I))
411               HasConvergent |= CB->isConvergent();
412         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
413                "Unroll count must divide trip multiple if loop contains a "
414                "convergent operation.");
415       });
416 
417   bool EpilogProfitability =
418       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
419                                               : isEpilogProfitable(L);
420 
421   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
422       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
423                                   EpilogProfitability, ULO.UnrollRemainder,
424                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
425                                   PreserveLCSSA, RemainderLoop)) {
426     if (ULO.Force)
427       RuntimeTripCount = false;
428     else {
429       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
430                            "generated when assuming runtime trip count\n");
431       return LoopUnrollResult::Unmodified;
432     }
433   }
434 
435   // If we know the trip count, we know the multiple...
436   // TODO: This is only used for the ORE code, remove it.
437   unsigned BreakoutTrip = 0;
438   if (ULO.TripCount != 0) {
439     BreakoutTrip = ULO.TripCount % ULO.Count;
440     ULO.TripMultiple = 0;
441   } else {
442     // Figure out what multiple to use.
443     BreakoutTrip = ULO.TripMultiple =
444         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
445   }
446 
447   using namespace ore;
448   // Report the unrolling decision.
449   if (CompletelyUnroll) {
450     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
451                       << " with trip count " << ULO.TripCount << "!\n");
452     if (ORE)
453       ORE->emit([&]() {
454         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
455                                   L->getHeader())
456                << "completely unrolled loop with "
457                << NV("UnrollCount", ULO.TripCount) << " iterations";
458       });
459   } else {
460     auto DiagBuilder = [&]() {
461       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
462                               L->getHeader());
463       return Diag << "unrolled loop by a factor of "
464                   << NV("UnrollCount", ULO.Count);
465     };
466 
467     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
468                       << ULO.Count);
469     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
470       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
471       if (ORE)
472         ORE->emit([&]() {
473           return DiagBuilder() << " with a breakout at trip "
474                                << NV("BreakoutTrip", BreakoutTrip);
475         });
476     } else if (ULO.TripMultiple != 1) {
477       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
478       if (ORE)
479         ORE->emit([&]() {
480           return DiagBuilder()
481                  << " with " << NV("TripMultiple", ULO.TripMultiple)
482                  << " trips per branch";
483         });
484     } else if (RuntimeTripCount) {
485       LLVM_DEBUG(dbgs() << " with run-time trip count");
486       if (ORE)
487         ORE->emit(
488             [&]() { return DiagBuilder() << " with run-time trip count"; });
489     }
490     LLVM_DEBUG(dbgs() << "!\n");
491   }
492 
493   // We are going to make changes to this loop. SCEV may be keeping cached info
494   // about it, in particular about backedge taken count. The changes we make
495   // are guaranteed to invalidate this information for our loop. It is tempting
496   // to only invalidate the loop being unrolled, but it is incorrect as long as
497   // all exiting branches from all inner loops have impact on the outer loops,
498   // and if something changes inside them then any of outer loops may also
499   // change. When we forget outermost loop, we also forget all contained loops
500   // and this is what we need here.
501   if (SE) {
502     if (ULO.ForgetAllSCEV)
503       SE->forgetAllLoops();
504     else
505       SE->forgetTopmostLoop(L);
506   }
507 
508   if (!LatchIsExiting)
509     ++NumUnrolledNotLatch;
510 
511   // For the first iteration of the loop, we should use the precloned values for
512   // PHI nodes.  Insert associations now.
513   ValueToValueMapTy LastValueMap;
514   std::vector<PHINode*> OrigPHINode;
515   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
516     OrigPHINode.push_back(cast<PHINode>(I));
517   }
518 
519   std::vector<BasicBlock *> Headers;
520   std::vector<BasicBlock *> Latches;
521   Headers.push_back(Header);
522   Latches.push_back(LatchBlock);
523 
524   // The current on-the-fly SSA update requires blocks to be processed in
525   // reverse postorder so that LastValueMap contains the correct value at each
526   // exit.
527   LoopBlocksDFS DFS(L);
528   DFS.perform(LI);
529 
530   // Stash the DFS iterators before adding blocks to the loop.
531   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
532   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
533 
534   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
535 
536   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
537   // might break loop-simplified form for these loops (as they, e.g., would
538   // share the same exit blocks). We'll keep track of loops for which we can
539   // break this so that later we can re-simplify them.
540   SmallSetVector<Loop *, 4> LoopsToSimplify;
541   for (Loop *SubLoop : *L)
542     LoopsToSimplify.insert(SubLoop);
543 
544   // When a FSDiscriminator is enabled, we don't need to add the multiply
545   // factors to the discriminators.
546   if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
547     for (BasicBlock *BB : L->getBlocks())
548       for (Instruction &I : *BB)
549         if (!isa<DbgInfoIntrinsic>(&I))
550           if (const DILocation *DIL = I.getDebugLoc()) {
551             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
552             if (NewDIL)
553               I.setDebugLoc(NewDIL.getValue());
554             else
555               LLVM_DEBUG(dbgs()
556                          << "Failed to create new discriminator: "
557                          << DIL->getFilename() << " Line: " << DIL->getLine());
558           }
559 
560   // Identify what noalias metadata is inside the loop: if it is inside the
561   // loop, the associated metadata must be cloned for each iteration.
562   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
563   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
564 
565   for (unsigned It = 1; It != ULO.Count; ++It) {
566     SmallVector<BasicBlock *, 8> NewBlocks;
567     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
568     NewLoops[L] = L;
569 
570     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
571       ValueToValueMapTy VMap;
572       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
573       Header->getParent()->getBasicBlockList().push_back(New);
574 
575       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
576              "Header should not be in a sub-loop");
577       // Tell LI about New.
578       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
579       if (OldLoop)
580         LoopsToSimplify.insert(NewLoops[OldLoop]);
581 
582       if (*BB == Header)
583         // Loop over all of the PHI nodes in the block, changing them to use
584         // the incoming values from the previous block.
585         for (PHINode *OrigPHI : OrigPHINode) {
586           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
587           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
588           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
589             if (It > 1 && L->contains(InValI))
590               InVal = LastValueMap[InValI];
591           VMap[OrigPHI] = InVal;
592           New->getInstList().erase(NewPHI);
593         }
594 
595       // Update our running map of newest clones
596       LastValueMap[*BB] = New;
597       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
598            VI != VE; ++VI)
599         LastValueMap[VI->first] = VI->second;
600 
601       // Add phi entries for newly created values to all exit blocks.
602       for (BasicBlock *Succ : successors(*BB)) {
603         if (L->contains(Succ))
604           continue;
605         for (PHINode &PHI : Succ->phis()) {
606           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
607           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
608           if (It != LastValueMap.end())
609             Incoming = It->second;
610           PHI.addIncoming(Incoming, New);
611         }
612       }
613       // Keep track of new headers and latches as we create them, so that
614       // we can insert the proper branches later.
615       if (*BB == Header)
616         Headers.push_back(New);
617       if (*BB == LatchBlock)
618         Latches.push_back(New);
619 
620       // Keep track of the exiting block and its successor block contained in
621       // the loop for the current iteration.
622       auto ExitInfoIt = ExitInfos.find(*BB);
623       if (ExitInfoIt != ExitInfos.end())
624         ExitInfoIt->second.ExitingBlocks.push_back(New);
625 
626       NewBlocks.push_back(New);
627       UnrolledLoopBlocks.push_back(New);
628 
629       // Update DomTree: since we just copy the loop body, and each copy has a
630       // dedicated entry block (copy of the header block), this header's copy
631       // dominates all copied blocks. That means, dominance relations in the
632       // copied body are the same as in the original body.
633       if (*BB == Header)
634         DT->addNewBlock(New, Latches[It - 1]);
635       else {
636         auto BBDomNode = DT->getNode(*BB);
637         auto BBIDom = BBDomNode->getIDom();
638         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
639         DT->addNewBlock(
640             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
641       }
642     }
643 
644     // Remap all instructions in the most recent iteration
645     remapInstructionsInBlocks(NewBlocks, LastValueMap);
646     for (BasicBlock *NewBlock : NewBlocks)
647       for (Instruction &I : *NewBlock)
648         if (auto *II = dyn_cast<AssumeInst>(&I))
649           AC->registerAssumption(II);
650 
651     {
652       // Identify what other metadata depends on the cloned version. After
653       // cloning, replace the metadata with the corrected version for both
654       // memory instructions and noalias intrinsics.
655       std::string ext = (Twine("It") + Twine(It)).str();
656       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
657                                  Header->getContext(), ext);
658     }
659   }
660 
661   // Loop over the PHI nodes in the original block, setting incoming values.
662   for (PHINode *PN : OrigPHINode) {
663     if (CompletelyUnroll) {
664       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
665       Header->getInstList().erase(PN);
666     } else if (ULO.Count > 1) {
667       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
668       // If this value was defined in the loop, take the value defined by the
669       // last iteration of the loop.
670       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
671         if (L->contains(InValI))
672           InVal = LastValueMap[InVal];
673       }
674       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
675       PN->addIncoming(InVal, Latches.back());
676     }
677   }
678 
679   // Connect latches of the unrolled iterations to the headers of the next
680   // iteration. Currently they point to the header of the same iteration.
681   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
682     unsigned j = (i + 1) % e;
683     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
684   }
685 
686   // Update dominators of blocks we might reach through exits.
687   // Immediate dominator of such block might change, because we add more
688   // routes which can lead to the exit: we can now reach it from the copied
689   // iterations too.
690   if (ULO.Count > 1) {
691     for (auto *BB : OriginalLoopBlocks) {
692       auto *BBDomNode = DT->getNode(BB);
693       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
694       for (auto *ChildDomNode : BBDomNode->children()) {
695         auto *ChildBB = ChildDomNode->getBlock();
696         if (!L->contains(ChildBB))
697           ChildrenToUpdate.push_back(ChildBB);
698       }
699       // The new idom of the block will be the nearest common dominator
700       // of all copies of the previous idom. This is equivalent to the
701       // nearest common dominator of the previous idom and the first latch,
702       // which dominates all copies of the previous idom.
703       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
704       for (auto *ChildBB : ChildrenToUpdate)
705         DT->changeImmediateDominator(ChildBB, NewIDom);
706     }
707   }
708 
709   assert(!UnrollVerifyDomtree ||
710          DT->verify(DominatorTree::VerificationLevel::Fast));
711 
712   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
713 
714   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
715     auto *Term = cast<BranchInst>(Src->getTerminator());
716     const unsigned Idx = ExitOnTrue ^ WillExit;
717     BasicBlock *Dest = Term->getSuccessor(Idx);
718     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
719 
720     // Remove predecessors from all non-Dest successors.
721     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
722 
723     // Replace the conditional branch with an unconditional one.
724     BranchInst::Create(Dest, Term);
725     Term->eraseFromParent();
726 
727     DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
728   };
729 
730   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
731                       bool IsLatch) -> Optional<bool> {
732     if (CompletelyUnroll) {
733       if (PreserveOnlyFirst) {
734         if (i == 0)
735           return None;
736         return j == 0;
737       }
738       // Complete (but possibly inexact) unrolling
739       if (j == 0)
740         return true;
741       if (Info.TripCount && j != Info.TripCount)
742         return false;
743       return None;
744     }
745 
746     if (RuntimeTripCount) {
747       // If runtime unrolling inserts a prologue, information about non-latch
748       // exits may be stale.
749       if (IsLatch && j != 0)
750         return false;
751       return None;
752     }
753 
754     if (j != Info.BreakoutTrip &&
755         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
756       // If we know the trip count or a multiple of it, we can safely use an
757       // unconditional branch for some iterations.
758       return false;
759     }
760     return None;
761   };
762 
763   // Fold branches for iterations where we know that they will exit or not
764   // exit.
765   for (const auto &Pair : ExitInfos) {
766     const ExitInfo &Info = Pair.second;
767     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
768       // The branch destination.
769       unsigned j = (i + 1) % e;
770       bool IsLatch = Pair.first == LatchBlock;
771       Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
772       if (!KnownWillExit)
773         continue;
774 
775       // We don't fold known-exiting branches for non-latch exits here,
776       // because this ensures that both all loop blocks and all exit blocks
777       // remain reachable in the CFG.
778       // TODO: We could fold these branches, but it would require much more
779       // sophisticated updates to LoopInfo.
780       if (*KnownWillExit && !IsLatch)
781         continue;
782 
783       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
784     }
785   }
786 
787   // When completely unrolling, the last latch becomes unreachable.
788   if (!LatchIsExiting && CompletelyUnroll)
789     changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false,
790                         PreserveLCSSA, &DTU);
791 
792   // Merge adjacent basic blocks, if possible.
793   for (BasicBlock *Latch : Latches) {
794     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
795     assert((Term ||
796             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
797            "Need a branch as terminator, except when fully unrolling with "
798            "unconditional latch");
799     if (Term && Term->isUnconditional()) {
800       BasicBlock *Dest = Term->getSuccessor(0);
801       BasicBlock *Fold = Dest->getUniquePredecessor();
802       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
803         // Dest has been folded into Fold. Update our worklists accordingly.
804         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
805         llvm::erase_value(UnrolledLoopBlocks, Dest);
806       }
807     }
808   }
809   // Apply updates to the DomTree.
810   DT = &DTU.getDomTree();
811 
812   // At this point, the code is well formed.  We now simplify the unrolled loop,
813   // doing constant propagation and dead code elimination as we go.
814   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
815                           TTI);
816 
817   NumCompletelyUnrolled += CompletelyUnroll;
818   ++NumUnrolled;
819 
820   Loop *OuterL = L->getParentLoop();
821   // Update LoopInfo if the loop is completely removed.
822   if (CompletelyUnroll)
823     LI->erase(L);
824 
825   // After complete unrolling most of the blocks should be contained in OuterL.
826   // However, some of them might happen to be out of OuterL (e.g. if they
827   // precede a loop exit). In this case we might need to insert PHI nodes in
828   // order to preserve LCSSA form.
829   // We don't need to check this if we already know that we need to fix LCSSA
830   // form.
831   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
832   // it should be possible to fix it in-place.
833   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
834     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
835 
836   // Make sure that loop-simplify form is preserved. We want to simplify
837   // at least one layer outside of the loop that was unrolled so that any
838   // changes to the parent loop exposed by the unrolling are considered.
839   if (OuterL) {
840     // OuterL includes all loops for which we can break loop-simplify, so
841     // it's sufficient to simplify only it (it'll recursively simplify inner
842     // loops too).
843     if (NeedToFixLCSSA) {
844       // LCSSA must be performed on the outermost affected loop. The unrolled
845       // loop's last loop latch is guaranteed to be in the outermost loop
846       // after LoopInfo's been updated by LoopInfo::erase.
847       Loop *LatchLoop = LI->getLoopFor(Latches.back());
848       Loop *FixLCSSALoop = OuterL;
849       if (!FixLCSSALoop->contains(LatchLoop))
850         while (FixLCSSALoop->getParentLoop() != LatchLoop)
851           FixLCSSALoop = FixLCSSALoop->getParentLoop();
852 
853       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
854     } else if (PreserveLCSSA) {
855       assert(OuterL->isLCSSAForm(*DT) &&
856              "Loops should be in LCSSA form after loop-unroll.");
857     }
858 
859     // TODO: That potentially might be compile-time expensive. We should try
860     // to fix the loop-simplified form incrementally.
861     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
862   } else {
863     // Simplify loops for which we might've broken loop-simplify form.
864     for (Loop *SubLoop : LoopsToSimplify)
865       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
866   }
867 
868   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
869                           : LoopUnrollResult::PartiallyUnrolled;
870 }
871 
872 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
873 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
874 /// such metadata node exists, then nullptr is returned.
875 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
876   // First operand should refer to the loop id itself.
877   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
878   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
879 
880   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
881     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
882     if (!MD)
883       continue;
884 
885     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
886     if (!S)
887       continue;
888 
889     if (Name.equals(S->getString()))
890       return MD;
891   }
892   return nullptr;
893 }
894